SlideShare a Scribd company logo
1 of 9
Download to read offline
TELKOMNIKA, Vol.17, No.4, August 2019, pp.2008~2016
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v17i4.10116  2008
Received May 31, 2018; Revised March 4, 2019; Accepted April 2, 2019
Analyzing the deformation of copper conductor
from a fire impact
Didik Notosudjono*
1
, Tatang Kukuh Wibawa
2
, Bagus Dwi Ramadhon
3
1
Electrical Engineering, Pakuan University Bogor, Indonesia
Pakuan St. PO Box 452 Bogor 16143, tel/fax: (0251) 8312206 ext 51/(0251) 8312206
2
Institut Sains dan Teknologi Nasional (ISTN) Jakarta
Moh Kahfi St. II, Srengseng Sawah, Jagakarsa, RT.13/RW.9, Srengseng Sawah, Jagakarsa,
Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12630, tel: (021) 7270090
3
Brawijaya University, Veteran St., Ketawanggede, Lowokwaru, Malang, Jawa Timur 65145,
tel/fax: (0341) 551611, (0341) 575777/(0341) 565420
*Corresponding author, e-mail: dnotosudjono@gmail.com
1
, tatang_kukuh@yahoo.com
2
,
gussygoosee@gmail.com
3
Abstract
Fire is an oxidation reaction of the three elements (fuel, oxygen, heat) that can result in loss of
property, injury, even death. Electricity potential that may results on fire is the short circuit current that
occurs on the equipments and electrical installation cables. The remaining wires at the first fire location are
subject to fire damage and can cause electrical short circuit. The purpose of this study is to analyze
the short-circuit electrical deformation of copper cable using SEM EDS and MICRO XRF instrument.
Based on the study result, there is a dominant change of oxygen elements in single cable and fiber sample
causing fire that is 35.96% and 21.24%, those values are higher than Oxygen on a burned short-circuited
cable that is 19.54% and 12.1%. The microstructure of the cable that causes fire looks like irregular clumps
whereas the burned cable looks like a clump of clumps.
Keywords: copper cable structure characteristics, copper deformation, electrical short circuit,
micro-XR, SEM-EDS
Copyright © 2019 Universitas Ahmad Dahlan. All rights reserved.
1. Introduction
Indonesian DKI Jakarta’s fire department (Damkar) data released recapitulation of
every fires occurred in 2017 in Jakarta that rounds up to 1.471 occurrences. From every burned
object in 2017, households occupy the highest with a total of 505 buildings and fires caused by
electricity reached 927 cases. From this data, it can be shown that in every day, 3 fire cases
caused by electricity occurred. Short circuit is always the main cause of the fires, even though
there are some cases that a criminal activity could be the cause. The purpose of this study is to
analyze whether or not the fire that occurred in buildings or houses is purely caused by short
circuit or intentional factor which leads to the fire. With fire development and smoke
propagation, some factors, such as high-temperature, smoke, carbon monoxide, electrical fire
left burning copper wire beads melt or melt marks used to identify physical evidence is
an important cause of the fire [1], one of the identifications of its role indistinguishing
the high-temperature fire, electrical fires caused by short circuit has a key role [2].
The capability of electrical cable and its safety mechanism related to fires is that
everything inside including switches, MCB, Electric Dashboard and other circuit breakers are
generally completely burned out, leaving only copper wires as a proof. These copper wires don’t
reach their melting point which is at 1.083˚C, visually still intact, and only a few wires suffered
damage from fire. This indicates that only these copper wires remain in the fire location [3].
As the temperature increases, the metal grains are growing [1, 4]. Thus, by observing
the microstructure, the heating process can be analyzed. Different holding time for metals,
the microstructure of its size has a huge impact. In addition, increased its water jet fire
undercooling, the wire will have an impact on the microstructure of metal [5].
The internal organization of Copper wire is the face-centered cubic crystal, after
annealing crystal easily become ɚ equiaxed grains. General microstructure of copper wire was
small equiaxed grains, the original equiaxed elongated along the deformation direction, but was
TELKOMNIKA ISSN: 1693-6930 
Analyzing the deformation of copper conductor ... (Didik Notosudjono)
2009
fibrous tissue, without the power of the copper wire is annealed organization. In the normal
power state, the copper wire still obvious orientation, only to stress the annealing temperature is
200-280˚C and under a certain time, the direction will disappear. Recrystallization annealing
temperature is between 600-700˚C [1].
Fire can occur when there are three elements: combustible, oxygen and heat. Fire is an
oxidation reaction of the three elements (fuel, oxygen, heat) which results in loss of property,
injury, even death [6]. Electrical causes can be identified by various events such as short circuit,
electrical overload, loose contact, errors in the material usage or in the electricity installation,
and electrical equipment defects [7].
Electrical fire is described as structure fire that involved some kind of electrical failure or
malfunction to ignite a fire that can only be assumed after all possible accidental causes of fire
are eliminated by the fire investigator [8]. Copper wires that are widely used in structure wiring
and electrical appliances are frequently associated with fire. Electrical overcurrent is a condition
where the current flows exceed the acceptable safety standards of that particular conductor,
depending on the duration and magnitude of the overcurrent [9, 10].
SEM-EDS (Scanning Electron Microscope Energy-Dispersive X-Ray Spectroscopy) and
MICRO XRF (X-Ray Fluorescence Spectrometry) are the supporting instruments of forensic
examination that couples each other to examine the elements and compounds on copper wires
based on Electron-Based Microscopes and X-Rays.
Until now there haven’t been any research that conducts forensic short circuit on
a single or stranded copper conductor using a modern instrument like SEM-EDS and
MICRO-XRF to analyze the source and cause of the fire so to gives an accurate value of what
causing fires in multi-story buildings, industries, or households. Fires only need 16% of oxygen
for them to lit up. The air that we breathe contains 21% oxygen, so a fuel is already surrounded
with adequate oxygen for them to burn. Some fuels however contain enough oxygen in
themselves to burn in an environment without oxygen [11].
This purpose of this study is to analyze the short circuit characteristic on copper wire
in fire cases by finding the difference in structure between the short-circuited cable that causes
the fire and the other cable that is due to the fire using SEM EDS and MICRO XRF. Researches
using SEM-EDS and MICRO XRF will be very helpful for the police to do forensic analysis on a
building, industry or a household so it can differentiate whether or not the fire caused by a short
circuit or burned intentionally where in most cases before these two instruments were invented,
it would prove to be very difficult to determine.
2. Theory of Electric Fires
2.1. Fire Cause due to Electricity
Electricity plays a role as one of the sources that can cause fire. The process in which
an ignition occurred can be started from various causes; they are electrical short circuit,
electrical overload, or the current leakage from loose contact. Electrical fire is described as
structure fire that involved some kind of electrical failure or malfunction to ignite a fire that can
only be assumed after all possible accidental causes of fire are eliminated by the fire
investigator [8]. When overcurrent occurs, the entire circuit is heated through which the current
flows which could then affect the thermoplastic insulator of the conductor and prolong heating of
the conductor could lead to fire ignition [12].
Electrical potential that can cause fires is short circuit that occurs on the available
electrical installation equipment and components. If the circuit breaker (fuse and MCB) is not
working properly, they can cause an increase in temperature on the cable and its isolation which
in turns could burn themselves and its surroundings. Other problems that could cause fires are
aging, standardization, planning, installation, and operation available electrical installation
equipment and components [11].
2.2. Copper Characteristics on Conducting Wire
Copper is an element from periodic table with the symbol Cu, originated from the Latin
Cuprum, has an atomic number 29, mass number 63,54, is a metal with reddish color scheme.
Copper is a good conductor for heat and electricity. This can be seen on the Table 1.
Macro structural Inspection Characteristics from a damaged conductor (melting) caused by
various events by the conductor, damage caused by electricity and receiving heat from
 ISSN: 1693-6930
TELKOMNIKA Vol. 17, No. 4, August 2019: 2008-2016
2010
environment. Figure 1 is derived from research result conducted by US Police Bureau that
handles fire cases [13].
Table 1. Physical, Mechanical, Heat Properties of Copper [3]
Physical Unit
Density 8920 kg / m3
Tensile Strength 200 N / mm2
Modulus of Elasticity 130 GPa
Brinnel Hardness 874 MN m-2
Thermal Expansion Coefficient 16,5 x 10-6 K-1
Heat Conductivity 400 W / Mk
Figure 1. Macro Structural Inspection for conductor [16]
Delplace and Vos (1983) characterised the internal electrical damages with
the presence of beads on the copper conductor, abrupt changes in cross sectional appearance
of the wires, and also damage on adjacent conductors or metal cable shielding [14].
Liu et al. [15] also added that the inner PVC insulator layer experienced a lot of damage in
internal heating. Examination of beads and globules frequently utilised for determination of
TELKOMNIKA ISSN: 1693-6930 
Analyzing the deformation of copper conductor ... (Didik Notosudjono)
2011
electrical as the source of fire but many researchers, i.e. Levinson [16], Babrauskas [17] and
Wright et al. [18] agreed that the examination solely based on the external appearance of beads
and globules was not a reliable indicator on the cause of their formation.
2.3. Electrical Fire Cause
The flow of electric current may cause heat to a conductor. This heating mechanism
can be either conductive or inductive. Conductive heating is a direct heating process with DRH
(Direct Resistance Heating) where direct heat occurs due to current flowing through electric
conductor having certain resistance. Those heating cause losses to existing electrical
equipment conductor losses, dielectric conductor.
On an inductive heating, heat is obtained from current flow on a conductor. The current
comes from the inductive electricity that occurs outside the heating plane. Inductive heating is
always related with an ever-changing magnetic field. Inductive heating can be depicted in
transformator where the heating surface acts as a secondary coil [11].
In every fire cases, a fire investigator is required to determine the cause of fires.
Therefore, it is important for a forensic investigator to have an in-depth investigation on the
copper wires as to conclude whether or not a fire could have due to faulty electrical appliances
or by the exertion of flame due to other consequences. This work was conducted to study the
morphological features of the cross section of copper wire due to external flame and eletrical
means [19].
2.4. Scanning Electron Microscope and Energy Dispersive X-Ray Spectroscopy
Scanning Electron Microscope (SEM) is one of the electron microscopes that use
electron beams to draw the surface shape of the analyzed material. The working principle of this
SEM is to draw the surface of an object or material with a reflected electron beam with high
energy. SEM-EDS has the ability to provide information directly about topography (sample
surface texture), morphology (shape and size), composition (sample compilers), even
crystallization information (atomic arrangement of samples).
Using SEM, Gray et al. [20] observed numerous square and rectangular pockmarks on
FCABs. Erlandsson and Strand [21] found copious voids in the cross sections of arc beads.
A study by the Tokyo Fire Department revealed that even arc beads formed in the air at 1000°C
contained voids, albeit smaller and more likely to be near the surface of the FCAB. On the other
hand, large voids have been observed deeper inside FRABs [22]. Lee et al. [23] found that
the spacing between the dendrite arms reflected the ambient temperature where the beads
solidified; thus, the dendrite arm spacings of FCABs were smaller than those of FRABs.
As seen in Figure 2, there are several important signals generated by SEM.
From the inelastic reflection, secondary electron signals are obtained. From the elastic
reflection, backscattered electron signal is obtained. Those signals are described in Figure 2.
Figure 2. Important signals generated by SEM
2.5. Scanning X-RAY Fluoroscence (XRF)
The XRF method is widely used to determine the elemental composition of a material.
Because this method is fast and does not damage the sample, this method is selected for field
 ISSN: 1693-6930
TELKOMNIKA Vol. 17, No. 4, August 2019: 2008-2016
2012
and industrial applications for material control. Depending on its use, XRF can be generated
not only by X-rays but also other primary excitation sources such as alpha particles, protons or
high energy electron sources. Figure 3 shows the X-Ray Fluoroscience Scanning Device.
Figure 3. Scanning X-Ray fluoroscence equipment
3. Research Methodology
This study was conducted only for NYM (single) and NYMH (Fiber) size 1.5 mm
2
, with
simulation in PLN Puslitbang’s Cable and Low Voltage Laboratory, simulated using load
addition (overload) to short circuit the connector of NYM and NYMH cable that causes fire.
The samples from the simulation in the lab PLN Puslitbang’s Cable and Low Voltage Laboratory
are then inspected using SEM EDS and MICRO XRF in Polri Bareskrim’s Forensic Laboratory.
Research only limited to find the structural characters on a short-circuited copper cable or fire
source by checking the cable structure which covers topographic sample, morphology, and
composition. The analytical method used in this study was scanning electron microscopy with
energy dispersive X-ray spectroscopy (SEM⁄EDS). SEM⁄EDS is a reliable and reproducible
technique that produces images of high resolution as well as an X-ray spectrum that represents
an elemental fingerprint of that product [24].
4. Analysis and Discussion
The morphologies and compositions of the dried samples were investigated using
field-emission Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray
Spectroscopy (EDS) [25]. In the fire simulation, maximum fire flash over temperature
measurements using FLIR proves that the melting points of copper wire 1083˚ Celsius is still
above the the maximum fire temperature that is 1015˚ Celsius as seen on the Figure 4.
Figure 4. Thermal imaging of FTIR tool on a mock house
with electrical cable installation inside set on fire (flash over)
TELKOMNIKA ISSN: 1693-6930 
Analyzing the deformation of copper conductor ... (Didik Notosudjono)
2013
According to the simulation result with copper wire on the fire case caused by a short
circuit on the electrical cable installation, and analyzed using SEM-EDS and MICRO-XRF
instrument. It can be seen that there is a deformation on the copper wires caused by the fire.
MICRO-XRF examination result on the dominant element shows that the difference between
a cable causing the fire and burned one is the composition of copper on the burned NYM cable
is, at 93.05%, much lower than the NYM Cable which causes the fire, at 97.8195%.
While burned NYM fiber cable at 92.46% copper composition against 97.8195% on the NYM
fiber cable which causes the fire. The difference can also be seen on the element of calcium
where the burned single NYM cable at 4.968% is higher than the NYM cable causing the fire at
0.3205% calcium composition. For the NYM fiber, the burned is at 4.9165% and the causal
NYM fiber cable is at 1.315%. More details can be seen in Figures 5 and 6.
From the Micro-XRF graphic below, it can be seen that there is a significant difference
on a single copper cable causing the fire and due to fire by seeing the single copper cable due
to fire element percentage is 93.057% which is lower than the one causing the fire 97.8195%.
From the analysis, the graphic will be very useful for the police or the authority to determine
the whether the cause of fire in a building, industry or a household is purely caused by short
circuit or intentional.
According to analysis result using Micro-XRF instrument with the graphic result, there is
a significant difference between the stranded cable due to fire which is 92.746% and the one
that causes the fire which is 96.9885%. The calcium element on the stranded NYM cable use to
fire is 4.916% which is higher than the one causing the fire which is at 1.3215%.
Figure 5. Micro-XRF Result NYM single cable
Figure 6. Micro-XRF Result on NYM fiber cable
 ISSN: 1693-6930
TELKOMNIKA Vol. 17, No. 4, August 2019: 2008-2016
2014
Forensic analysis of the single NYM cable from Figure 5 is not much different from
stranded NYM cable from Figure 6, research result shows that stranded copper cables causing
the fire is higher than the one due to fire despite the overall value is lower for stranded cables
but it can be a basis for the police or the authority to determine the cause of the fire.
Examination using SEM-EDS result on dominant element composition between
the cause and effect of fire on the cable shows that the amount of Oxygen on the NYM cable
which causes fire, at 35.69%, is much higher than the burned NYM cable at 19.54%. While
Oxygen elements on NYM fiber which causes fire, at 21.24, is also much higher than the burned
NYM fiber at 12.1%. Figure 7 shows that the cable which causes the fire has more oxygen than
the burned one.
From the forensic analysis using SEM-EDS it can be affirmed that the oxygen
percentage could be an indicator for the cause of fire. The percentage of oxygen both on
the single and stranded cable which causes the fire is higher than the ones due to fire. This will
also be helpful for the police to determine the fire cause if it happens on a building, industry, or
household accurately using the difference in oxygen percentage. As seen in Figure 8, oxygen
element on NYM Stranded cable sample causing the fire is 21.24% which is higher than the one
due to fire 17.7%. This shows that the short-circuited cable causing the fire has more oxygen
than the one due to fire while the copper element of the stranded cable causing the fire is
38.04% which is lower than the stranded cable due to fire.
Figure 7. SEM-EDS result on single NYM cable cause of fire and burned of Fire
Figure 8. SEM-EDS result on NYM fiber cable cause of Fire and due to fire
On Figure 9, as a result from morphology sample inspection using Micro XRF and
SEM-EDS on a NYM single cable causing the fire, it can be seen its tight microstructure and
TELKOMNIKA ISSN: 1693-6930 
Analyzing the deformation of copper conductor ... (Didik Notosudjono)
2015
other black elements attachment. The shape of the cable which caused the fire looks like
irregular clumps with the conductor severely damaged while the cable effected by the fire takes
shape of blobs in group.
Analysis result also conducted on the NYM single cable burned from the fire as seen on
Figure 10, from morphology analysis, it can see that the microstructure looks like subtle bubble
that protrudes the surface unlike the NYM single cable that causes the fire. The microstructure
of the single NYM cable and the fire-causing fibers appear to be tightly structured, while the fires
appear to resemble the fine bubbles that protrude the surface of the cable.
Figure 9. NYM Single Cable cause of fire Figure 10. Single NYM cable effected by fire
5. Conclusion
Based on the MICRO-XRF result on dominant element composition between the cable
that causes fire and the due to fire, on the copper composition, the burned cable contains
93.057% copper composition while the causal cable contains 97.8195%. For NYM Fiber cables,
the cable due to fire contains 92.4%, a lower value than the fiber cable causing the fire which
contains 96.9885%.
Based on the SEM-EDS on determining the element composition, the composition of
Oxygen on the NYM single cable which causes the fire is 35.96%, a higher value than NYM
single cable due to the fire at 19.54%. For the Fiber cables, the composition of Oxygen on
the causal cable is 21.24%, a higher value than the fiber cable due to the fire at 12.1%.
The microstructure of the cable causing the fire looks like irregular clump with a severe damage
on its conductor while the cable that is burned looks like a blob in group.
References
[1] Wei Mei-mei, Zhao Zhea, Liang Donga. Experiment of Electrical Fire Burned Copper Wire and
Parameters Analysis on Metallographic Test of Melted Mark. Procedia Engineering. 2011; 11:
496–503.
[2] Wang Xiqing, Han Baoyu and so on. Electrical fire scene investigation and identification of technical
guidelines. Shenyang: Liaoning University Press. 1996.
[3] Physics and Computer Forensics, Training material for Orbis Micro-XRF equipment. Puslabfor
Bareskrim Polri, Jakarta. 2016.
[4] Yip Mao, Wang Lifen, Yang Shi groups and so on. Electrical fire in the copper wire traces of fire.
Physical Testing-Part. 2007; 5(43): 226-235.
[5] Zhang post, Luo Liang, Wen Yuxiu and so on. Fire shooting water on the fire wire microstructure of
melt marks. Fire Safety Science. 2007; 16(2): 105-110.
[6] NFPA 921, National Fire Protection Association (NFPA). Guide for Fire and Explosion Investigations.
New York. 2014: 22.
[7] Richard J Roby, Jamie McAllister. Forensic Investigation Techniques for Inspecting Electrical
Conductors Involved in Fire. Journal National Institute of Justice, Office of Justice Programs, U.S.
Department of Justice. 2012.
[8] Hall Jr. JR. Home electrical fires. Quincy: National Fire Protection Association. 2013.
[9] NFPA. NFPA 921 guide for fire and explosion investigations. Quincy: National Fire Protection
Association. 2004.
[10] Mesrun N, Abdul Rahim MSN, Nik Hassan NF, Kah Haw Chang. Forensic Analysis of Copper Wire
for Fire Source Determination. Malaysian Journal of Forensic Sciences. 2015; 6(1): 54-62.
[11] Suharianti Lasuda. Electrical Fire occurrence analysis on Building. Ph. D. Thesis. Jakarta: Electrical
Engineering Department Universitas Indonesia. 2010.
 ISSN: 1693-6930
TELKOMNIKA Vol. 17, No. 4, August 2019: 2008-2016
2016
[12] Ettling BV. Electrical wiring in building fires. Fire Technology. 1978; 14(4): 317-325.
[13] Vytenis B. Visual Characteristics of Fire Melting on Copper Conductors. ATF Fire Research
Laboratory. Technical Bulletin 001 September 28
th
. 2012: 7.
[14] Delplace M, Vos E. Electric short circuits help the investigator determine where the fire started. Fire
Technology. 1983; 19(3): 185-191.
[15] Liu SJ, Man D, Yu Li L, Zhao CZ, Gao W, Liu XL. Thermal analysis of PVC wire insulation residues in
fire investigation. Procedia Engineering 11. 2011: 296-301.
[16] Levinson DW. Copper metallurgy as a diagnostic tool for analysis of the origin of building fires. Fire
Technology. 1977; 13(3): 211-222.
[17] Babrauskas V. Fires due to electric arcing: Can ‘cause’ beads be distinguished from ‘victim’ beads by
physical or chemical testing? Fire and Materials. 2003; 14: 189-201.
[18] Wright SA, Loud JD, Blanchard RA. Globules and beads: what do they indicate about small-diameter
copper conductors that have been through a fire?. Fire Technology. 2015; 51(5): 1051-1070.
[19] Mary A. Bush,1 D.D.S.; Raymond G. Miller,1 D.D.S.; Ann L. Norrlander,1 D.D.S.; and Peter J. Bush,1
B.S. Analytical Survey of Restorative Resins by SEM⁄EDS and XRF: Databases for Forensic
Purposes, J Forensic Sci, March 2008, Vol. 53, No. 2 doi: 10.1111/j.1556-4029.2007.00654.
[20] Gray DA, Drysdale DD, Lewis FAS. Identification of electrical sources of ignition in fires. Fire Saf. J.
1983; 6: 147–150.
[21] Erlandsson R, Strand G. An investigation of physical characteristics indicating primary or secondary
electrical damage. Fire Saf. J. 1985; 8: 97–103.
[22] Ishibashi Y, Kishida J. Research on first and second fused mark discrimination of electric wires. In
Proceedings of the 1990 Annual Meeting of Japan Association for Fire Science and Engineering.
17–18 May 1990: 83–90.
[23] Lee EP, Ohtani H, Seki T, Imada S, Yashiro I. Discrimination between primary and secondary molten
marks on electric wires by DAS. J. Appl. Fire Sci. 2000; 9: 361–379.
[24] Norlyiana Mesrun, Mohd Saharul Nizam Abdul Rahim, Nik Fakhuruddin Nik Hassan, Kah Haw
Chang. Forensic Analysis of Copper Wire for Fire Source Determination, Forensic Science
programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang
Kerian, Kelantan, Malaysian Journal of Forensic Sciences (2015) 6(1):54-62
[25] Kuan-Heng Liu, Yung-Hui Shih, Guo-Ju Chen, Jaw-Min Chou. Microstructural Study on Molten Marks
of Fire-Causing Copper Wires. Materials. 2015; 8: 3776-3790. DOI:10.3390/ma8063776,
ISSN 1996-1944.

More Related Content

What's hot

A Review: Microwave Energy for materials processing
A Review: Microwave Energy for materials processingA Review: Microwave Energy for materials processing
A Review: Microwave Energy for materials processingijsrd.com
 
Electrical Engineering Material Part-XIX
Electrical Engineering Material Part-XIXElectrical Engineering Material Part-XIX
Electrical Engineering Material Part-XIXAsif Jamadar
 
Electron Beam Machining (Modern ManufacturingProcess)
Electron Beam Machining (Modern ManufacturingProcess)Electron Beam Machining (Modern ManufacturingProcess)
Electron Beam Machining (Modern ManufacturingProcess)Dinesh Panchal
 
Current Advanced Research Development of Electric Discharge Machining (EDM): ...
Current Advanced Research Development of Electric Discharge Machining (EDM): ...Current Advanced Research Development of Electric Discharge Machining (EDM): ...
Current Advanced Research Development of Electric Discharge Machining (EDM): ...sushil Choudhary
 
Common thermocouple types and characteristics
Common thermocouple types and characteristicsCommon thermocouple types and characteristics
Common thermocouple types and characteristicsYiDan Li
 
APPLICATION AND ADVNTAGES OF DIFFERENT TYPES OF DIELECTRIC.
APPLICATION AND ADVNTAGES OF DIFFERENT TYPES OF DIELECTRIC.APPLICATION AND ADVNTAGES OF DIFFERENT TYPES OF DIELECTRIC.
APPLICATION AND ADVNTAGES OF DIFFERENT TYPES OF DIELECTRIC.Raj Raythatha
 
Plasma arc machining
Plasma arc machiningPlasma arc machining
Plasma arc machiningNayanGaykwad
 
Electron beam machining by Himanshu Vaid
Electron beam machining by Himanshu VaidElectron beam machining by Himanshu Vaid
Electron beam machining by Himanshu VaidHimanshu Vaid
 
Electrical Engineering Material Part-XVIII
Electrical Engineering Material Part-XVIIIElectrical Engineering Material Part-XVIII
Electrical Engineering Material Part-XVIIIAsif Jamadar
 
Sic an advanced semicondctor material for power devices
Sic an advanced semicondctor material for power devicesSic an advanced semicondctor material for power devices
Sic an advanced semicondctor material for power deviceseSAT Publishing House
 
Smart india inteligence india presentation by jmv lps
Smart india inteligence india presentation by jmv lpsSmart india inteligence india presentation by jmv lps
Smart india inteligence india presentation by jmv lpsMahesh Chandra Manav
 
Investigation into possible electrical fire outbreaks at welders’ worksho...
Investigation into possible electrical fire outbreaks at welders’     worksho...Investigation into possible electrical fire outbreaks at welders’     worksho...
Investigation into possible electrical fire outbreaks at welders’ worksho...Alexander Decker
 
PersonalThermalManagement
PersonalThermalManagementPersonalThermalManagement
PersonalThermalManagementAlexandra Welch
 

What's hot (20)

A Review: Microwave Energy for materials processing
A Review: Microwave Energy for materials processingA Review: Microwave Energy for materials processing
A Review: Microwave Energy for materials processing
 
Electrical Engineering Material Part-XIX
Electrical Engineering Material Part-XIXElectrical Engineering Material Part-XIX
Electrical Engineering Material Part-XIX
 
Energy conservation at high power consuming holding furnace with modified coi...
Energy conservation at high power consuming holding furnace with modified coi...Energy conservation at high power consuming holding furnace with modified coi...
Energy conservation at high power consuming holding furnace with modified coi...
 
Electron Beam Machining (Modern ManufacturingProcess)
Electron Beam Machining (Modern ManufacturingProcess)Electron Beam Machining (Modern ManufacturingProcess)
Electron Beam Machining (Modern ManufacturingProcess)
 
Current Advanced Research Development of Electric Discharge Machining (EDM): ...
Current Advanced Research Development of Electric Discharge Machining (EDM): ...Current Advanced Research Development of Electric Discharge Machining (EDM): ...
Current Advanced Research Development of Electric Discharge Machining (EDM): ...
 
Common thermocouple types and characteristics
Common thermocouple types and characteristicsCommon thermocouple types and characteristics
Common thermocouple types and characteristics
 
APPLICATION AND ADVNTAGES OF DIFFERENT TYPES OF DIELECTRIC.
APPLICATION AND ADVNTAGES OF DIFFERENT TYPES OF DIELECTRIC.APPLICATION AND ADVNTAGES OF DIFFERENT TYPES OF DIELECTRIC.
APPLICATION AND ADVNTAGES OF DIFFERENT TYPES OF DIELECTRIC.
 
Ebm
EbmEbm
Ebm
 
Plasma arc machining
Plasma arc machiningPlasma arc machining
Plasma arc machining
 
Electron beam machining by Himanshu Vaid
Electron beam machining by Himanshu VaidElectron beam machining by Himanshu Vaid
Electron beam machining by Himanshu Vaid
 
Electrical Engineering Material Part-XVIII
Electrical Engineering Material Part-XVIIIElectrical Engineering Material Part-XVIII
Electrical Engineering Material Part-XVIII
 
Sic an advanced semicondctor material for power devices
Sic an advanced semicondctor material for power devicesSic an advanced semicondctor material for power devices
Sic an advanced semicondctor material for power devices
 
Paper
PaperPaper
Paper
 
Ebw
EbwEbw
Ebw
 
Electron beam machining
Electron beam machiningElectron beam machining
Electron beam machining
 
Dielectrics
DielectricsDielectrics
Dielectrics
 
Smart india inteligence india presentation by jmv lps
Smart india inteligence india presentation by jmv lpsSmart india inteligence india presentation by jmv lps
Smart india inteligence india presentation by jmv lps
 
Investigation into possible electrical fire outbreaks at welders’ worksho...
Investigation into possible electrical fire outbreaks at welders’     worksho...Investigation into possible electrical fire outbreaks at welders’     worksho...
Investigation into possible electrical fire outbreaks at welders’ worksho...
 
Electron beam welding
Electron beam weldingElectron beam welding
Electron beam welding
 
PersonalThermalManagement
PersonalThermalManagementPersonalThermalManagement
PersonalThermalManagement
 

Similar to Analyzing the deformation of copper conductor from a fire impact

A low cost electromagnetic sensor for detecting holes in metallic sheet
A low cost electromagnetic sensor for detecting holes in metallic sheetA low cost electromagnetic sensor for detecting holes in metallic sheet
A low cost electromagnetic sensor for detecting holes in metallic sheetTELKOMNIKA JOURNAL
 
Thermopower in Si-Ge Alloy Nanowire
Thermopower in Si-Ge Alloy NanowireThermopower in Si-Ge Alloy Nanowire
Thermopower in Si-Ge Alloy NanowireAI Publications
 
Doc2 140130005556-phpapp02
Doc2 140130005556-phpapp02Doc2 140130005556-phpapp02
Doc2 140130005556-phpapp02firmanfds
 
Silicon carbide schottky diodes forward and reverse current properties upon f...
Silicon carbide schottky diodes forward and reverse current properties upon f...Silicon carbide schottky diodes forward and reverse current properties upon f...
Silicon carbide schottky diodes forward and reverse current properties upon f...journalBEEI
 
Mechanical workshop practice 2 by sudarshan.bollapu
Mechanical workshop practice  2 by sudarshan.bollapuMechanical workshop practice  2 by sudarshan.bollapu
Mechanical workshop practice 2 by sudarshan.bollapuDr B Sudarshan
 
Arc mapping an effective tool to determine fire area of origin in fire invest...
Arc mapping an effective tool to determine fire area of origin in fire invest...Arc mapping an effective tool to determine fire area of origin in fire invest...
Arc mapping an effective tool to determine fire area of origin in fire invest...eSAT Publishing House
 
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...journalBEEI
 
Highly thermally conductive dielectric coatings produced by Plasma Electrolyt...
Highly thermally conductive dielectric coatings produced by Plasma Electrolyt...Highly thermally conductive dielectric coatings produced by Plasma Electrolyt...
Highly thermally conductive dielectric coatings produced by Plasma Electrolyt...Tamires Tah
 
Indirect Power Saving From Air Conditioner Thesis
Indirect Power Saving From  Air Conditioner ThesisIndirect Power Saving From  Air Conditioner Thesis
Indirect Power Saving From Air Conditioner ThesisSandip Kumar Sahoo
 
Dielectric and Thermal Characterization of Insulating Organic Varnish Used in...
Dielectric and Thermal Characterization of Insulating Organic Varnish Used in...Dielectric and Thermal Characterization of Insulating Organic Varnish Used in...
Dielectric and Thermal Characterization of Insulating Organic Varnish Used in...Editor IJCATR
 
IRJET- Development of MGO-EPOXY Composites with Enhanced Thermal Conductivity
IRJET- Development of MGO-EPOXY Composites with Enhanced Thermal ConductivityIRJET- Development of MGO-EPOXY Composites with Enhanced Thermal Conductivity
IRJET- Development of MGO-EPOXY Composites with Enhanced Thermal ConductivityIRJET Journal
 
The Effects of Heat on Electronic Components
The Effects of Heat on Electronic ComponentsThe Effects of Heat on Electronic Components
The Effects of Heat on Electronic ComponentsIJERA Editor
 
STEPHEN CHUKWUEMEKA REVIEW PAPER
STEPHEN CHUKWUEMEKA REVIEW PAPERSTEPHEN CHUKWUEMEKA REVIEW PAPER
STEPHEN CHUKWUEMEKA REVIEW PAPERStephen Chukwuemeka
 
Fractal analysis of electrical tree grown in silicone rubber nanocomposites
Fractal analysis of electrical tree grown in silicone rubber nanocompositesFractal analysis of electrical tree grown in silicone rubber nanocomposites
Fractal analysis of electrical tree grown in silicone rubber nanocompositesTELKOMNIKA JOURNAL
 

Similar to Analyzing the deformation of copper conductor from a fire impact (20)

A low cost electromagnetic sensor for detecting holes in metallic sheet
A low cost electromagnetic sensor for detecting holes in metallic sheetA low cost electromagnetic sensor for detecting holes in metallic sheet
A low cost electromagnetic sensor for detecting holes in metallic sheet
 
2220 2447-1-pb
2220 2447-1-pb2220 2447-1-pb
2220 2447-1-pb
 
A review on the state
A review on the stateA review on the state
A review on the state
 
Thermopower in Si-Ge Alloy Nanowire
Thermopower in Si-Ge Alloy NanowireThermopower in Si-Ge Alloy Nanowire
Thermopower in Si-Ge Alloy Nanowire
 
Doc2 140130005556-phpapp02
Doc2 140130005556-phpapp02Doc2 140130005556-phpapp02
Doc2 140130005556-phpapp02
 
Silicon carbide schottky diodes forward and reverse current properties upon f...
Silicon carbide schottky diodes forward and reverse current properties upon f...Silicon carbide schottky diodes forward and reverse current properties upon f...
Silicon carbide schottky diodes forward and reverse current properties upon f...
 
Mechanical workshop practice 2 by sudarshan.bollapu
Mechanical workshop practice  2 by sudarshan.bollapuMechanical workshop practice  2 by sudarshan.bollapu
Mechanical workshop practice 2 by sudarshan.bollapu
 
Arc mapping an effective tool to determine fire area of origin in fire invest...
Arc mapping an effective tool to determine fire area of origin in fire invest...Arc mapping an effective tool to determine fire area of origin in fire invest...
Arc mapping an effective tool to determine fire area of origin in fire invest...
 
Cm4201598600
Cm4201598600Cm4201598600
Cm4201598600
 
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...
 
Highly thermally conductive dielectric coatings produced by Plasma Electrolyt...
Highly thermally conductive dielectric coatings produced by Plasma Electrolyt...Highly thermally conductive dielectric coatings produced by Plasma Electrolyt...
Highly thermally conductive dielectric coatings produced by Plasma Electrolyt...
 
Indirect Power Saving From Air Conditioner Thesis
Indirect Power Saving From  Air Conditioner ThesisIndirect Power Saving From  Air Conditioner Thesis
Indirect Power Saving From Air Conditioner Thesis
 
Dielectric and Thermal Characterization of Insulating Organic Varnish Used in...
Dielectric and Thermal Characterization of Insulating Organic Varnish Used in...Dielectric and Thermal Characterization of Insulating Organic Varnish Used in...
Dielectric and Thermal Characterization of Insulating Organic Varnish Used in...
 
IRJET- Development of MGO-EPOXY Composites with Enhanced Thermal Conductivity
IRJET- Development of MGO-EPOXY Composites with Enhanced Thermal ConductivityIRJET- Development of MGO-EPOXY Composites with Enhanced Thermal Conductivity
IRJET- Development of MGO-EPOXY Composites with Enhanced Thermal Conductivity
 
The Effects of Heat on Electronic Components
The Effects of Heat on Electronic ComponentsThe Effects of Heat on Electronic Components
The Effects of Heat on Electronic Components
 
STATE OF ART IN MODERN RESISTANCE SPOT WELDING
STATE OF ART IN MODERN RESISTANCE SPOT WELDINGSTATE OF ART IN MODERN RESISTANCE SPOT WELDING
STATE OF ART IN MODERN RESISTANCE SPOT WELDING
 
Final Paper
Final PaperFinal Paper
Final Paper
 
STEPHEN CHUKWUEMEKA REVIEW PAPER
STEPHEN CHUKWUEMEKA REVIEW PAPERSTEPHEN CHUKWUEMEKA REVIEW PAPER
STEPHEN CHUKWUEMEKA REVIEW PAPER
 
Doc 2
Doc 2Doc 2
Doc 2
 
Fractal analysis of electrical tree grown in silicone rubber nanocomposites
Fractal analysis of electrical tree grown in silicone rubber nanocompositesFractal analysis of electrical tree grown in silicone rubber nanocomposites
Fractal analysis of electrical tree grown in silicone rubber nanocomposites
 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...TELKOMNIKA JOURNAL
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...TELKOMNIKA JOURNAL
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...TELKOMNIKA JOURNAL
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...TELKOMNIKA JOURNAL
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...TELKOMNIKA JOURNAL
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaTELKOMNIKA JOURNAL
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireTELKOMNIKA JOURNAL
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkTELKOMNIKA JOURNAL
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsTELKOMNIKA JOURNAL
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...TELKOMNIKA JOURNAL
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesTELKOMNIKA JOURNAL
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...TELKOMNIKA JOURNAL
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemTELKOMNIKA JOURNAL
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...TELKOMNIKA JOURNAL
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorTELKOMNIKA JOURNAL
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...TELKOMNIKA JOURNAL
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...TELKOMNIKA JOURNAL
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksTELKOMNIKA JOURNAL
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingTELKOMNIKA JOURNAL
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...TELKOMNIKA JOURNAL
 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
 

Recently uploaded

(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 

Recently uploaded (20)

(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 

Analyzing the deformation of copper conductor from a fire impact

  • 1. TELKOMNIKA, Vol.17, No.4, August 2019, pp.2008~2016 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v17i4.10116  2008 Received May 31, 2018; Revised March 4, 2019; Accepted April 2, 2019 Analyzing the deformation of copper conductor from a fire impact Didik Notosudjono* 1 , Tatang Kukuh Wibawa 2 , Bagus Dwi Ramadhon 3 1 Electrical Engineering, Pakuan University Bogor, Indonesia Pakuan St. PO Box 452 Bogor 16143, tel/fax: (0251) 8312206 ext 51/(0251) 8312206 2 Institut Sains dan Teknologi Nasional (ISTN) Jakarta Moh Kahfi St. II, Srengseng Sawah, Jagakarsa, RT.13/RW.9, Srengseng Sawah, Jagakarsa, Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12630, tel: (021) 7270090 3 Brawijaya University, Veteran St., Ketawanggede, Lowokwaru, Malang, Jawa Timur 65145, tel/fax: (0341) 551611, (0341) 575777/(0341) 565420 *Corresponding author, e-mail: dnotosudjono@gmail.com 1 , tatang_kukuh@yahoo.com 2 , gussygoosee@gmail.com 3 Abstract Fire is an oxidation reaction of the three elements (fuel, oxygen, heat) that can result in loss of property, injury, even death. Electricity potential that may results on fire is the short circuit current that occurs on the equipments and electrical installation cables. The remaining wires at the first fire location are subject to fire damage and can cause electrical short circuit. The purpose of this study is to analyze the short-circuit electrical deformation of copper cable using SEM EDS and MICRO XRF instrument. Based on the study result, there is a dominant change of oxygen elements in single cable and fiber sample causing fire that is 35.96% and 21.24%, those values are higher than Oxygen on a burned short-circuited cable that is 19.54% and 12.1%. The microstructure of the cable that causes fire looks like irregular clumps whereas the burned cable looks like a clump of clumps. Keywords: copper cable structure characteristics, copper deformation, electrical short circuit, micro-XR, SEM-EDS Copyright © 2019 Universitas Ahmad Dahlan. All rights reserved. 1. Introduction Indonesian DKI Jakarta’s fire department (Damkar) data released recapitulation of every fires occurred in 2017 in Jakarta that rounds up to 1.471 occurrences. From every burned object in 2017, households occupy the highest with a total of 505 buildings and fires caused by electricity reached 927 cases. From this data, it can be shown that in every day, 3 fire cases caused by electricity occurred. Short circuit is always the main cause of the fires, even though there are some cases that a criminal activity could be the cause. The purpose of this study is to analyze whether or not the fire that occurred in buildings or houses is purely caused by short circuit or intentional factor which leads to the fire. With fire development and smoke propagation, some factors, such as high-temperature, smoke, carbon monoxide, electrical fire left burning copper wire beads melt or melt marks used to identify physical evidence is an important cause of the fire [1], one of the identifications of its role indistinguishing the high-temperature fire, electrical fires caused by short circuit has a key role [2]. The capability of electrical cable and its safety mechanism related to fires is that everything inside including switches, MCB, Electric Dashboard and other circuit breakers are generally completely burned out, leaving only copper wires as a proof. These copper wires don’t reach their melting point which is at 1.083˚C, visually still intact, and only a few wires suffered damage from fire. This indicates that only these copper wires remain in the fire location [3]. As the temperature increases, the metal grains are growing [1, 4]. Thus, by observing the microstructure, the heating process can be analyzed. Different holding time for metals, the microstructure of its size has a huge impact. In addition, increased its water jet fire undercooling, the wire will have an impact on the microstructure of metal [5]. The internal organization of Copper wire is the face-centered cubic crystal, after annealing crystal easily become ɚ equiaxed grains. General microstructure of copper wire was small equiaxed grains, the original equiaxed elongated along the deformation direction, but was
  • 2. TELKOMNIKA ISSN: 1693-6930  Analyzing the deformation of copper conductor ... (Didik Notosudjono) 2009 fibrous tissue, without the power of the copper wire is annealed organization. In the normal power state, the copper wire still obvious orientation, only to stress the annealing temperature is 200-280˚C and under a certain time, the direction will disappear. Recrystallization annealing temperature is between 600-700˚C [1]. Fire can occur when there are three elements: combustible, oxygen and heat. Fire is an oxidation reaction of the three elements (fuel, oxygen, heat) which results in loss of property, injury, even death [6]. Electrical causes can be identified by various events such as short circuit, electrical overload, loose contact, errors in the material usage or in the electricity installation, and electrical equipment defects [7]. Electrical fire is described as structure fire that involved some kind of electrical failure or malfunction to ignite a fire that can only be assumed after all possible accidental causes of fire are eliminated by the fire investigator [8]. Copper wires that are widely used in structure wiring and electrical appliances are frequently associated with fire. Electrical overcurrent is a condition where the current flows exceed the acceptable safety standards of that particular conductor, depending on the duration and magnitude of the overcurrent [9, 10]. SEM-EDS (Scanning Electron Microscope Energy-Dispersive X-Ray Spectroscopy) and MICRO XRF (X-Ray Fluorescence Spectrometry) are the supporting instruments of forensic examination that couples each other to examine the elements and compounds on copper wires based on Electron-Based Microscopes and X-Rays. Until now there haven’t been any research that conducts forensic short circuit on a single or stranded copper conductor using a modern instrument like SEM-EDS and MICRO-XRF to analyze the source and cause of the fire so to gives an accurate value of what causing fires in multi-story buildings, industries, or households. Fires only need 16% of oxygen for them to lit up. The air that we breathe contains 21% oxygen, so a fuel is already surrounded with adequate oxygen for them to burn. Some fuels however contain enough oxygen in themselves to burn in an environment without oxygen [11]. This purpose of this study is to analyze the short circuit characteristic on copper wire in fire cases by finding the difference in structure between the short-circuited cable that causes the fire and the other cable that is due to the fire using SEM EDS and MICRO XRF. Researches using SEM-EDS and MICRO XRF will be very helpful for the police to do forensic analysis on a building, industry or a household so it can differentiate whether or not the fire caused by a short circuit or burned intentionally where in most cases before these two instruments were invented, it would prove to be very difficult to determine. 2. Theory of Electric Fires 2.1. Fire Cause due to Electricity Electricity plays a role as one of the sources that can cause fire. The process in which an ignition occurred can be started from various causes; they are electrical short circuit, electrical overload, or the current leakage from loose contact. Electrical fire is described as structure fire that involved some kind of electrical failure or malfunction to ignite a fire that can only be assumed after all possible accidental causes of fire are eliminated by the fire investigator [8]. When overcurrent occurs, the entire circuit is heated through which the current flows which could then affect the thermoplastic insulator of the conductor and prolong heating of the conductor could lead to fire ignition [12]. Electrical potential that can cause fires is short circuit that occurs on the available electrical installation equipment and components. If the circuit breaker (fuse and MCB) is not working properly, they can cause an increase in temperature on the cable and its isolation which in turns could burn themselves and its surroundings. Other problems that could cause fires are aging, standardization, planning, installation, and operation available electrical installation equipment and components [11]. 2.2. Copper Characteristics on Conducting Wire Copper is an element from periodic table with the symbol Cu, originated from the Latin Cuprum, has an atomic number 29, mass number 63,54, is a metal with reddish color scheme. Copper is a good conductor for heat and electricity. This can be seen on the Table 1. Macro structural Inspection Characteristics from a damaged conductor (melting) caused by various events by the conductor, damage caused by electricity and receiving heat from
  • 3.  ISSN: 1693-6930 TELKOMNIKA Vol. 17, No. 4, August 2019: 2008-2016 2010 environment. Figure 1 is derived from research result conducted by US Police Bureau that handles fire cases [13]. Table 1. Physical, Mechanical, Heat Properties of Copper [3] Physical Unit Density 8920 kg / m3 Tensile Strength 200 N / mm2 Modulus of Elasticity 130 GPa Brinnel Hardness 874 MN m-2 Thermal Expansion Coefficient 16,5 x 10-6 K-1 Heat Conductivity 400 W / Mk Figure 1. Macro Structural Inspection for conductor [16] Delplace and Vos (1983) characterised the internal electrical damages with the presence of beads on the copper conductor, abrupt changes in cross sectional appearance of the wires, and also damage on adjacent conductors or metal cable shielding [14]. Liu et al. [15] also added that the inner PVC insulator layer experienced a lot of damage in internal heating. Examination of beads and globules frequently utilised for determination of
  • 4. TELKOMNIKA ISSN: 1693-6930  Analyzing the deformation of copper conductor ... (Didik Notosudjono) 2011 electrical as the source of fire but many researchers, i.e. Levinson [16], Babrauskas [17] and Wright et al. [18] agreed that the examination solely based on the external appearance of beads and globules was not a reliable indicator on the cause of their formation. 2.3. Electrical Fire Cause The flow of electric current may cause heat to a conductor. This heating mechanism can be either conductive or inductive. Conductive heating is a direct heating process with DRH (Direct Resistance Heating) where direct heat occurs due to current flowing through electric conductor having certain resistance. Those heating cause losses to existing electrical equipment conductor losses, dielectric conductor. On an inductive heating, heat is obtained from current flow on a conductor. The current comes from the inductive electricity that occurs outside the heating plane. Inductive heating is always related with an ever-changing magnetic field. Inductive heating can be depicted in transformator where the heating surface acts as a secondary coil [11]. In every fire cases, a fire investigator is required to determine the cause of fires. Therefore, it is important for a forensic investigator to have an in-depth investigation on the copper wires as to conclude whether or not a fire could have due to faulty electrical appliances or by the exertion of flame due to other consequences. This work was conducted to study the morphological features of the cross section of copper wire due to external flame and eletrical means [19]. 2.4. Scanning Electron Microscope and Energy Dispersive X-Ray Spectroscopy Scanning Electron Microscope (SEM) is one of the electron microscopes that use electron beams to draw the surface shape of the analyzed material. The working principle of this SEM is to draw the surface of an object or material with a reflected electron beam with high energy. SEM-EDS has the ability to provide information directly about topography (sample surface texture), morphology (shape and size), composition (sample compilers), even crystallization information (atomic arrangement of samples). Using SEM, Gray et al. [20] observed numerous square and rectangular pockmarks on FCABs. Erlandsson and Strand [21] found copious voids in the cross sections of arc beads. A study by the Tokyo Fire Department revealed that even arc beads formed in the air at 1000°C contained voids, albeit smaller and more likely to be near the surface of the FCAB. On the other hand, large voids have been observed deeper inside FRABs [22]. Lee et al. [23] found that the spacing between the dendrite arms reflected the ambient temperature where the beads solidified; thus, the dendrite arm spacings of FCABs were smaller than those of FRABs. As seen in Figure 2, there are several important signals generated by SEM. From the inelastic reflection, secondary electron signals are obtained. From the elastic reflection, backscattered electron signal is obtained. Those signals are described in Figure 2. Figure 2. Important signals generated by SEM 2.5. Scanning X-RAY Fluoroscence (XRF) The XRF method is widely used to determine the elemental composition of a material. Because this method is fast and does not damage the sample, this method is selected for field
  • 5.  ISSN: 1693-6930 TELKOMNIKA Vol. 17, No. 4, August 2019: 2008-2016 2012 and industrial applications for material control. Depending on its use, XRF can be generated not only by X-rays but also other primary excitation sources such as alpha particles, protons or high energy electron sources. Figure 3 shows the X-Ray Fluoroscience Scanning Device. Figure 3. Scanning X-Ray fluoroscence equipment 3. Research Methodology This study was conducted only for NYM (single) and NYMH (Fiber) size 1.5 mm 2 , with simulation in PLN Puslitbang’s Cable and Low Voltage Laboratory, simulated using load addition (overload) to short circuit the connector of NYM and NYMH cable that causes fire. The samples from the simulation in the lab PLN Puslitbang’s Cable and Low Voltage Laboratory are then inspected using SEM EDS and MICRO XRF in Polri Bareskrim’s Forensic Laboratory. Research only limited to find the structural characters on a short-circuited copper cable or fire source by checking the cable structure which covers topographic sample, morphology, and composition. The analytical method used in this study was scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM⁄EDS). SEM⁄EDS is a reliable and reproducible technique that produces images of high resolution as well as an X-ray spectrum that represents an elemental fingerprint of that product [24]. 4. Analysis and Discussion The morphologies and compositions of the dried samples were investigated using field-emission Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) [25]. In the fire simulation, maximum fire flash over temperature measurements using FLIR proves that the melting points of copper wire 1083˚ Celsius is still above the the maximum fire temperature that is 1015˚ Celsius as seen on the Figure 4. Figure 4. Thermal imaging of FTIR tool on a mock house with electrical cable installation inside set on fire (flash over)
  • 6. TELKOMNIKA ISSN: 1693-6930  Analyzing the deformation of copper conductor ... (Didik Notosudjono) 2013 According to the simulation result with copper wire on the fire case caused by a short circuit on the electrical cable installation, and analyzed using SEM-EDS and MICRO-XRF instrument. It can be seen that there is a deformation on the copper wires caused by the fire. MICRO-XRF examination result on the dominant element shows that the difference between a cable causing the fire and burned one is the composition of copper on the burned NYM cable is, at 93.05%, much lower than the NYM Cable which causes the fire, at 97.8195%. While burned NYM fiber cable at 92.46% copper composition against 97.8195% on the NYM fiber cable which causes the fire. The difference can also be seen on the element of calcium where the burned single NYM cable at 4.968% is higher than the NYM cable causing the fire at 0.3205% calcium composition. For the NYM fiber, the burned is at 4.9165% and the causal NYM fiber cable is at 1.315%. More details can be seen in Figures 5 and 6. From the Micro-XRF graphic below, it can be seen that there is a significant difference on a single copper cable causing the fire and due to fire by seeing the single copper cable due to fire element percentage is 93.057% which is lower than the one causing the fire 97.8195%. From the analysis, the graphic will be very useful for the police or the authority to determine the whether the cause of fire in a building, industry or a household is purely caused by short circuit or intentional. According to analysis result using Micro-XRF instrument with the graphic result, there is a significant difference between the stranded cable due to fire which is 92.746% and the one that causes the fire which is 96.9885%. The calcium element on the stranded NYM cable use to fire is 4.916% which is higher than the one causing the fire which is at 1.3215%. Figure 5. Micro-XRF Result NYM single cable Figure 6. Micro-XRF Result on NYM fiber cable
  • 7.  ISSN: 1693-6930 TELKOMNIKA Vol. 17, No. 4, August 2019: 2008-2016 2014 Forensic analysis of the single NYM cable from Figure 5 is not much different from stranded NYM cable from Figure 6, research result shows that stranded copper cables causing the fire is higher than the one due to fire despite the overall value is lower for stranded cables but it can be a basis for the police or the authority to determine the cause of the fire. Examination using SEM-EDS result on dominant element composition between the cause and effect of fire on the cable shows that the amount of Oxygen on the NYM cable which causes fire, at 35.69%, is much higher than the burned NYM cable at 19.54%. While Oxygen elements on NYM fiber which causes fire, at 21.24, is also much higher than the burned NYM fiber at 12.1%. Figure 7 shows that the cable which causes the fire has more oxygen than the burned one. From the forensic analysis using SEM-EDS it can be affirmed that the oxygen percentage could be an indicator for the cause of fire. The percentage of oxygen both on the single and stranded cable which causes the fire is higher than the ones due to fire. This will also be helpful for the police to determine the fire cause if it happens on a building, industry, or household accurately using the difference in oxygen percentage. As seen in Figure 8, oxygen element on NYM Stranded cable sample causing the fire is 21.24% which is higher than the one due to fire 17.7%. This shows that the short-circuited cable causing the fire has more oxygen than the one due to fire while the copper element of the stranded cable causing the fire is 38.04% which is lower than the stranded cable due to fire. Figure 7. SEM-EDS result on single NYM cable cause of fire and burned of Fire Figure 8. SEM-EDS result on NYM fiber cable cause of Fire and due to fire On Figure 9, as a result from morphology sample inspection using Micro XRF and SEM-EDS on a NYM single cable causing the fire, it can be seen its tight microstructure and
  • 8. TELKOMNIKA ISSN: 1693-6930  Analyzing the deformation of copper conductor ... (Didik Notosudjono) 2015 other black elements attachment. The shape of the cable which caused the fire looks like irregular clumps with the conductor severely damaged while the cable effected by the fire takes shape of blobs in group. Analysis result also conducted on the NYM single cable burned from the fire as seen on Figure 10, from morphology analysis, it can see that the microstructure looks like subtle bubble that protrudes the surface unlike the NYM single cable that causes the fire. The microstructure of the single NYM cable and the fire-causing fibers appear to be tightly structured, while the fires appear to resemble the fine bubbles that protrude the surface of the cable. Figure 9. NYM Single Cable cause of fire Figure 10. Single NYM cable effected by fire 5. Conclusion Based on the MICRO-XRF result on dominant element composition between the cable that causes fire and the due to fire, on the copper composition, the burned cable contains 93.057% copper composition while the causal cable contains 97.8195%. For NYM Fiber cables, the cable due to fire contains 92.4%, a lower value than the fiber cable causing the fire which contains 96.9885%. Based on the SEM-EDS on determining the element composition, the composition of Oxygen on the NYM single cable which causes the fire is 35.96%, a higher value than NYM single cable due to the fire at 19.54%. For the Fiber cables, the composition of Oxygen on the causal cable is 21.24%, a higher value than the fiber cable due to the fire at 12.1%. The microstructure of the cable causing the fire looks like irregular clump with a severe damage on its conductor while the cable that is burned looks like a blob in group. References [1] Wei Mei-mei, Zhao Zhea, Liang Donga. Experiment of Electrical Fire Burned Copper Wire and Parameters Analysis on Metallographic Test of Melted Mark. Procedia Engineering. 2011; 11: 496–503. [2] Wang Xiqing, Han Baoyu and so on. Electrical fire scene investigation and identification of technical guidelines. Shenyang: Liaoning University Press. 1996. [3] Physics and Computer Forensics, Training material for Orbis Micro-XRF equipment. Puslabfor Bareskrim Polri, Jakarta. 2016. [4] Yip Mao, Wang Lifen, Yang Shi groups and so on. Electrical fire in the copper wire traces of fire. Physical Testing-Part. 2007; 5(43): 226-235. [5] Zhang post, Luo Liang, Wen Yuxiu and so on. Fire shooting water on the fire wire microstructure of melt marks. Fire Safety Science. 2007; 16(2): 105-110. [6] NFPA 921, National Fire Protection Association (NFPA). Guide for Fire and Explosion Investigations. New York. 2014: 22. [7] Richard J Roby, Jamie McAllister. Forensic Investigation Techniques for Inspecting Electrical Conductors Involved in Fire. Journal National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. 2012. [8] Hall Jr. JR. Home electrical fires. Quincy: National Fire Protection Association. 2013. [9] NFPA. NFPA 921 guide for fire and explosion investigations. Quincy: National Fire Protection Association. 2004. [10] Mesrun N, Abdul Rahim MSN, Nik Hassan NF, Kah Haw Chang. Forensic Analysis of Copper Wire for Fire Source Determination. Malaysian Journal of Forensic Sciences. 2015; 6(1): 54-62. [11] Suharianti Lasuda. Electrical Fire occurrence analysis on Building. Ph. D. Thesis. Jakarta: Electrical Engineering Department Universitas Indonesia. 2010.
  • 9.  ISSN: 1693-6930 TELKOMNIKA Vol. 17, No. 4, August 2019: 2008-2016 2016 [12] Ettling BV. Electrical wiring in building fires. Fire Technology. 1978; 14(4): 317-325. [13] Vytenis B. Visual Characteristics of Fire Melting on Copper Conductors. ATF Fire Research Laboratory. Technical Bulletin 001 September 28 th . 2012: 7. [14] Delplace M, Vos E. Electric short circuits help the investigator determine where the fire started. Fire Technology. 1983; 19(3): 185-191. [15] Liu SJ, Man D, Yu Li L, Zhao CZ, Gao W, Liu XL. Thermal analysis of PVC wire insulation residues in fire investigation. Procedia Engineering 11. 2011: 296-301. [16] Levinson DW. Copper metallurgy as a diagnostic tool for analysis of the origin of building fires. Fire Technology. 1977; 13(3): 211-222. [17] Babrauskas V. Fires due to electric arcing: Can ‘cause’ beads be distinguished from ‘victim’ beads by physical or chemical testing? Fire and Materials. 2003; 14: 189-201. [18] Wright SA, Loud JD, Blanchard RA. Globules and beads: what do they indicate about small-diameter copper conductors that have been through a fire?. Fire Technology. 2015; 51(5): 1051-1070. [19] Mary A. Bush,1 D.D.S.; Raymond G. Miller,1 D.D.S.; Ann L. Norrlander,1 D.D.S.; and Peter J. Bush,1 B.S. Analytical Survey of Restorative Resins by SEM⁄EDS and XRF: Databases for Forensic Purposes, J Forensic Sci, March 2008, Vol. 53, No. 2 doi: 10.1111/j.1556-4029.2007.00654. [20] Gray DA, Drysdale DD, Lewis FAS. Identification of electrical sources of ignition in fires. Fire Saf. J. 1983; 6: 147–150. [21] Erlandsson R, Strand G. An investigation of physical characteristics indicating primary or secondary electrical damage. Fire Saf. J. 1985; 8: 97–103. [22] Ishibashi Y, Kishida J. Research on first and second fused mark discrimination of electric wires. In Proceedings of the 1990 Annual Meeting of Japan Association for Fire Science and Engineering. 17–18 May 1990: 83–90. [23] Lee EP, Ohtani H, Seki T, Imada S, Yashiro I. Discrimination between primary and secondary molten marks on electric wires by DAS. J. Appl. Fire Sci. 2000; 9: 361–379. [24] Norlyiana Mesrun, Mohd Saharul Nizam Abdul Rahim, Nik Fakhuruddin Nik Hassan, Kah Haw Chang. Forensic Analysis of Copper Wire for Fire Source Determination, Forensic Science programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysian Journal of Forensic Sciences (2015) 6(1):54-62 [25] Kuan-Heng Liu, Yung-Hui Shih, Guo-Ju Chen, Jaw-Min Chou. Microstructural Study on Molten Marks of Fire-Causing Copper Wires. Materials. 2015; 8: 3776-3790. DOI:10.3390/ma8063776, ISSN 1996-1944.