SlideShare a Scribd company logo
1 of 16
The Shadow Curve
BY: STEPHEN EBERT
ADVISOR: DR. CHUNGWU HO
Purpose
Determine the shadow curve of a rod as the sun moves
given the latitude of the location and the inclination of
the sun.
Geometry – Earth & Tangent plane
Z
P
Sun
t
180 - a
latitude) 

Sun
x
y
a
Z
z
Concepts, Definitions & Variables
•Angle rho (ρ) is the latitude of the Earth
When it descends from the Celestial pole. b = 90 – ρ
•The sun is denoted with a dot in a circle.
•P is the Celestial pole
•Delta (δ) is the angle of the sun measured from the equatorial
plane.
•δ & ρ are constant.
Z
P
Sun
t
180 - a
latitude) 

o
Tangent Plane
•X is the North(+) and South(-); while Y is East(-) and West(+).
•z(lower case) is the distance from the sun to Z.
•Angle a is the angle the shadow casts onto the xy plane. This is
measured from the X axis.
•The shadow’s projection from the sun rays can be approximated on
a plane tangent to the Earth.
Sun
x
y
a
Z
z
Concepts, Definitions & Variables(Cont.)
•a is the angle between the shadow of the rod and the North
(i.e. X axis).
•Z is the zenith of the rod. Z is independent from the Sun.
•t = time
•z and t are variables
Z
P
Sun
t
180 - a
latitude) 

Spherical Trigonometry
Sine:
𝑆𝑖𝑛(𝐴)
𝑆𝑖𝑛(𝑎)
=
𝑆𝑖𝑛(𝐵)
𝑆𝑖𝑛(𝑏)
=
𝑆𝑖𝑛(𝐶)
𝑆𝑖𝑛(𝑐)
Cosine: Cos(a) = Cos(b)Cos(c) + Sin(b)Sin(c)Cos(A)
Cotangent: Cos(b)Cos(C) = Cot(a)Sin(b) – Cot(A)Sin(C)
Spherical Trigonometry
Law of Sines: Sin(a)Sin(z) = Sin(p)Sin(t) … [1]
Law of Cosines: Cos(z) = Cos(b)Cos(p) +Sin(b)Sin(p)Cos(t) … [2]
Law of Cotangents: -Cos(b)Cos(a) = Sin(b)Cot(z)- Sin(a)Cot(t) … [3]
Z
P
Sun
t
latitude) 
180 - a
o
z
Law of Sines: Sin(a)Sin(z) = Sin(p)Sin(t) [1]
Law of Cosines: Cos(z) = Cos(b)Cos(p) +Sin(b)Sin(p)Cos(t) [2]
Law of Cotangents: -Cos(b)Cos(a) = Sin(b)Cot(z)- Sin(a)Cot(t) [3]
Recall:
[1]
[2]
=
𝑆𝑖𝑛 𝑎 𝑆𝑖𝑛(𝑍)
𝐶𝑜𝑠(𝑍)
=
𝑆𝑖𝑛 𝑃 𝑆𝑖𝑛(𝑡)
𝐶𝑜𝑠 𝑏 𝐶𝑜𝑠 𝑃 + 𝑆𝑖𝑛 𝑏 Sin p Cos(t)
[1]
[3]
1
𝐶𝑜𝑠(𝑃)
1
𝐶𝑜𝑠(𝑃)
:
𝑇𝑎𝑛 𝑃 𝑆𝑖𝑛(𝑡)
𝐶𝑜𝑠 𝑡 𝑇𝑎𝑛 𝑃 𝑆𝑖𝑛 𝑏 +𝐶𝑜𝑠(𝑏)
→ Ψ(psi)
𝐶𝑜𝑠 𝑏 = 𝐶𝑜𝑠(90 − ρ) = Sin(ρ)
Sin 𝑏 = 𝑆𝑖𝑛(90 − ρ) = Cos(ρ)
b = 90 −ρ
o
o
[1]
[2]
=
𝑆𝑖𝑛 𝑎 𝑆𝑖𝑛(𝑧)
𝐶𝑜𝑠(𝑍)
=
𝑆𝑖𝑛 𝑃 𝑆𝑖𝑛(𝑡)
𝐶𝑜𝑠 𝑏 𝐶𝑜𝑠 𝑃 + 𝑆𝑖𝑛 𝑏 𝑆𝑖𝑛 𝑃 𝐶𝑜𝑠(𝑡)
Recall:
Γ becomes the Following: Sin(ρ)Cos(a)Tan(z) = -Cos(ρ) + Cot(t)Tan(z)Sin(a)
X = Cos(a)Tan(z)
Y = Sin(a)Tan(z)
i = Sin(ρ)
o = Cos(ρ)
Q = Tan(p)
Γ = iX = -o + YCot(t)
Wcan transform This equation to Y =
𝑄𝑆𝑖𝑛(𝑡)
𝑖+𝑜𝑄𝐶𝑜𝑠(𝑡)
Need to relate X & Y to a function
Γ = Y = Tan(t)(o+iX) =
𝑄𝑆𝑖𝑛(𝑡)
𝑖 + 𝑜𝑋𝐶𝑜𝑠𝑡(𝑡)
𝑄𝐶𝑜𝑠 𝑡 = (𝑜 + 𝑖𝑋)(𝑖 + 𝑜𝑄𝐶𝑜𝑠(𝑡))
QCos(t) =
𝑜+𝑖𝑋
𝑖 −𝑜𝑋
QSin(t) = Y( i + oQCos(t))
=
𝑌{ 𝑖 + 𝑜 𝑜 + 𝑖𝑋 }
𝑖 − 𝑜𝑋
=
𝑌{ 𝑖2
+ 𝑜2
}
𝑖 − 𝑜𝑋 i = Sin(ρ)
o = Cos(ρ)
∴ QSin(t) =
𝑌
𝑖 −𝑜𝑋
Now apply 𝑆𝑖𝑛2
(𝑡)+ 𝐶𝑜𝑠2
(𝑡) = 1
Since QCos(t) =
𝑜+𝑖𝑋
𝑖 −𝑜𝑋
& 𝑄𝑆𝑖𝑛 𝑡 =
𝑌
𝑖 −𝑜𝑥
(𝑜+𝑖𝑥)2
𝑄2(𝑖 −𝑜𝑥)2 +
𝑌2
𝑄2(𝑖 −𝑜𝑋2)
= 1  𝑌2 = 𝑄2(𝑖 − 𝑜𝑋)2 − (𝑜 + 𝑖𝑋)2
Equation
𝑌2
= 𝑄2
(𝑖 − 𝑜𝑋)2
− (𝑜 + 𝑖𝑋)2
Alternative Equation
By substituting the values:
i = Sin(ρ)
o = Cos(ρ)
Q = Tan(p)
We obtain
𝑌2 = 2Tan(p)X – (1 - -
𝐶𝑜𝑠2(ρ)
𝐶𝑜𝑠2(𝑝)
) 𝑋2
Meaning
𝑌2
= 2Tan(p)X – (1 - -
𝐶𝑜𝑠2(ρ)
𝐶𝑜𝑠2(𝑝)
) 𝑋2
◦Case I: ρ > 𝑝  Ellipse
◦Case II: ρ = p  Parabola
◦Case III: ρ < p  Hyperbola

More Related Content

What's hot

Learning object 1
Learning object 1Learning object 1
Learning object 1Jenny Gu
 
Lesson 16 length of an arc
Lesson 16 length of an arcLesson 16 length of an arc
Lesson 16 length of an arcLawrence De Vera
 
Volume of solid of revolution
Volume of solid of revolutionVolume of solid of revolution
Volume of solid of revolutionKushal Gohel
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mappingCss Founder
 
010 applications of integral calculus
010 applications of integral calculus010 applications of integral calculus
010 applications of integral calculusphysics101
 
Orbital thrust problem of space aircraft
Orbital thrust problem of space aircraftOrbital thrust problem of space aircraft
Orbital thrust problem of space aircraftNahid Hasan Ashik
 
The washer method
The washer methodThe washer method
The washer methodRon Eick
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcardsyunyun2313
 
towers of hanoi
towers of hanoitowers of hanoi
towers of hanoistudent
 
The disk method
The disk methodThe disk method
The disk methodRon Eick
 
A* (aster) Search Algorithm
A* (aster) Search AlgorithmA* (aster) Search Algorithm
A* (aster) Search AlgorithmSanzid Kawsar
 
Lesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolutionLesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolutionLawrence De Vera
 
2.6.2 Rotations and Compositions
2.6.2 Rotations and Compositions2.6.2 Rotations and Compositions
2.6.2 Rotations and Compositionssmiller5
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Muhammad Luthfan
 
7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washersdicosmo178
 

What's hot (19)

Qa05 volume and surface area
Qa05 volume and surface areaQa05 volume and surface area
Qa05 volume and surface area
 
Learning object 1
Learning object 1Learning object 1
Learning object 1
 
Lesson 16 length of an arc
Lesson 16 length of an arcLesson 16 length of an arc
Lesson 16 length of an arc
 
The wave function
The wave functionThe wave function
The wave function
 
Volume of solid of revolution
Volume of solid of revolutionVolume of solid of revolution
Volume of solid of revolution
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 
010 applications of integral calculus
010 applications of integral calculus010 applications of integral calculus
010 applications of integral calculus
 
Orbital thrust problem of space aircraft
Orbital thrust problem of space aircraftOrbital thrust problem of space aircraft
Orbital thrust problem of space aircraft
 
The washer method
The washer methodThe washer method
The washer method
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcards
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 
towers of hanoi
towers of hanoitowers of hanoi
towers of hanoi
 
The disk method
The disk methodThe disk method
The disk method
 
Calc 7.2a
Calc 7.2aCalc 7.2a
Calc 7.2a
 
A* (aster) Search Algorithm
A* (aster) Search AlgorithmA* (aster) Search Algorithm
A* (aster) Search Algorithm
 
Lesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolutionLesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolution
 
2.6.2 Rotations and Compositions
2.6.2 Rotations and Compositions2.6.2 Rotations and Compositions
2.6.2 Rotations and Compositions
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)
 
7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers
 

Viewers also liked

Viewers also liked (6)

Bruja de Agnesi
Bruja de AgnesiBruja de Agnesi
Bruja de Agnesi
 
Biotech 2011-07-finding-orf-etc
Biotech 2011-07-finding-orf-etcBiotech 2011-07-finding-orf-etc
Biotech 2011-07-finding-orf-etc
 
Histone protein
Histone proteinHistone protein
Histone protein
 
Super coil, cot curve, c value pardox
Super coil, cot curve, c value pardoxSuper coil, cot curve, c value pardox
Super coil, cot curve, c value pardox
 
Histone Protiens
Histone ProtiensHistone Protiens
Histone Protiens
 
Potentiometry
PotentiometryPotentiometry
Potentiometry
 

Similar to Research_Project_The_Shadow_Curve

NYQUIST_PLOTS.pdf
NYQUIST_PLOTS.pdfNYQUIST_PLOTS.pdf
NYQUIST_PLOTS.pdfMUST
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinatemath267
 
Modeling Transformations
Modeling TransformationsModeling Transformations
Modeling TransformationsTarun Gehlot
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinatesmath266
 
Advanced Complex Analysis
Advanced Complex AnalysisAdvanced Complex Analysis
Advanced Complex Analysisambareen50
 
Question 5 Math 1
Question 5 Math 1Question 5 Math 1
Question 5 Math 1M.T.H Group
 
Trigonometry part 1 and 2
Trigonometry part 1 and 2Trigonometry part 1 and 2
Trigonometry part 1 and 2swathiLakshmi17
 
23 Double Integral over Polar Coordinate.pptx
23 Double Integral over Polar Coordinate.pptx23 Double Integral over Polar Coordinate.pptx
23 Double Integral over Polar Coordinate.pptxmath267
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesvenkateshp100
 
Matrix 2 d
Matrix 2 dMatrix 2 d
Matrix 2 dxyz120
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsMatthew Leingang
 
Lesson 8: Curves, Arc Length, Acceleration
Lesson 8: Curves, Arc Length, AccelerationLesson 8: Curves, Arc Length, Acceleration
Lesson 8: Curves, Arc Length, AccelerationMatthew Leingang
 
三角関数(人間科学のための基礎数学)
三角関数(人間科学のための基礎数学)三角関数(人間科学のための基礎数学)
三角関数(人間科学のための基礎数学)Masahiro Okano
 
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...National Cheng Kung University
 

Similar to Research_Project_The_Shadow_Curve (20)

NYQUIST_PLOTS.pdf
NYQUIST_PLOTS.pdfNYQUIST_PLOTS.pdf
NYQUIST_PLOTS.pdf
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinate
 
Modeling Transformations
Modeling TransformationsModeling Transformations
Modeling Transformations
 
bode_plot By DEV
 bode_plot By DEV bode_plot By DEV
bode_plot By DEV
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
 
Ps02 cmth03 unit 1
Ps02 cmth03 unit 1Ps02 cmth03 unit 1
Ps02 cmth03 unit 1
 
Advanced Complex Analysis
Advanced Complex AnalysisAdvanced Complex Analysis
Advanced Complex Analysis
 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
 
ME Reference.pdf
ME Reference.pdfME Reference.pdf
ME Reference.pdf
 
Question 5 Math 1
Question 5 Math 1Question 5 Math 1
Question 5 Math 1
 
Trigonometry part 1 and 2
Trigonometry part 1 and 2Trigonometry part 1 and 2
Trigonometry part 1 and 2
 
23 Double Integral over Polar Coordinate.pptx
23 Double Integral over Polar Coordinate.pptx23 Double Integral over Polar Coordinate.pptx
23 Double Integral over Polar Coordinate.pptx
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Matrix 2 d
Matrix 2 dMatrix 2 d
Matrix 2 d
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
Lesson 8: Curves, Arc Length, Acceleration
Lesson 8: Curves, Arc Length, AccelerationLesson 8: Curves, Arc Length, Acceleration
Lesson 8: Curves, Arc Length, Acceleration
 
Curvature final
Curvature finalCurvature final
Curvature final
 
Trignometryppt
TrignometrypptTrignometryppt
Trignometryppt
 
三角関数(人間科学のための基礎数学)
三角関数(人間科学のための基礎数学)三角関数(人間科学のための基礎数学)
三角関数(人間科学のための基礎数学)
 
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
 

Research_Project_The_Shadow_Curve

  • 1. The Shadow Curve BY: STEPHEN EBERT ADVISOR: DR. CHUNGWU HO
  • 2. Purpose Determine the shadow curve of a rod as the sun moves given the latitude of the location and the inclination of the sun.
  • 3. Geometry – Earth & Tangent plane Z P Sun t 180 - a latitude)   Sun x y a Z z
  • 4. Concepts, Definitions & Variables •Angle rho (ρ) is the latitude of the Earth When it descends from the Celestial pole. b = 90 – ρ •The sun is denoted with a dot in a circle. •P is the Celestial pole •Delta (δ) is the angle of the sun measured from the equatorial plane. •δ & ρ are constant. Z P Sun t 180 - a latitude)   o
  • 5. Tangent Plane •X is the North(+) and South(-); while Y is East(-) and West(+). •z(lower case) is the distance from the sun to Z. •Angle a is the angle the shadow casts onto the xy plane. This is measured from the X axis. •The shadow’s projection from the sun rays can be approximated on a plane tangent to the Earth. Sun x y a Z z
  • 6. Concepts, Definitions & Variables(Cont.) •a is the angle between the shadow of the rod and the North (i.e. X axis). •Z is the zenith of the rod. Z is independent from the Sun. •t = time •z and t are variables Z P Sun t 180 - a latitude)  
  • 8. Spherical Trigonometry Law of Sines: Sin(a)Sin(z) = Sin(p)Sin(t) … [1] Law of Cosines: Cos(z) = Cos(b)Cos(p) +Sin(b)Sin(p)Cos(t) … [2] Law of Cotangents: -Cos(b)Cos(a) = Sin(b)Cot(z)- Sin(a)Cot(t) … [3] Z P Sun t latitude)  180 - a o z
  • 9. Law of Sines: Sin(a)Sin(z) = Sin(p)Sin(t) [1] Law of Cosines: Cos(z) = Cos(b)Cos(p) +Sin(b)Sin(p)Cos(t) [2] Law of Cotangents: -Cos(b)Cos(a) = Sin(b)Cot(z)- Sin(a)Cot(t) [3] Recall: [1] [2] = 𝑆𝑖𝑛 𝑎 𝑆𝑖𝑛(𝑍) 𝐶𝑜𝑠(𝑍) = 𝑆𝑖𝑛 𝑃 𝑆𝑖𝑛(𝑡) 𝐶𝑜𝑠 𝑏 𝐶𝑜𝑠 𝑃 + 𝑆𝑖𝑛 𝑏 Sin p Cos(t) [1] [3] 1 𝐶𝑜𝑠(𝑃) 1 𝐶𝑜𝑠(𝑃) : 𝑇𝑎𝑛 𝑃 𝑆𝑖𝑛(𝑡) 𝐶𝑜𝑠 𝑡 𝑇𝑎𝑛 𝑃 𝑆𝑖𝑛 𝑏 +𝐶𝑜𝑠(𝑏) → Ψ(psi) 𝐶𝑜𝑠 𝑏 = 𝐶𝑜𝑠(90 − ρ) = Sin(ρ) Sin 𝑏 = 𝑆𝑖𝑛(90 − ρ) = Cos(ρ) b = 90 −ρ o o
  • 10. [1] [2] = 𝑆𝑖𝑛 𝑎 𝑆𝑖𝑛(𝑧) 𝐶𝑜𝑠(𝑍) = 𝑆𝑖𝑛 𝑃 𝑆𝑖𝑛(𝑡) 𝐶𝑜𝑠 𝑏 𝐶𝑜𝑠 𝑃 + 𝑆𝑖𝑛 𝑏 𝑆𝑖𝑛 𝑃 𝐶𝑜𝑠(𝑡) Recall: Γ becomes the Following: Sin(ρ)Cos(a)Tan(z) = -Cos(ρ) + Cot(t)Tan(z)Sin(a) X = Cos(a)Tan(z) Y = Sin(a)Tan(z) i = Sin(ρ) o = Cos(ρ) Q = Tan(p) Γ = iX = -o + YCot(t)
  • 11. Wcan transform This equation to Y = 𝑄𝑆𝑖𝑛(𝑡) 𝑖+𝑜𝑄𝐶𝑜𝑠(𝑡) Need to relate X & Y to a function Γ = Y = Tan(t)(o+iX) = 𝑄𝑆𝑖𝑛(𝑡) 𝑖 + 𝑜𝑋𝐶𝑜𝑠𝑡(𝑡) 𝑄𝐶𝑜𝑠 𝑡 = (𝑜 + 𝑖𝑋)(𝑖 + 𝑜𝑄𝐶𝑜𝑠(𝑡)) QCos(t) = 𝑜+𝑖𝑋 𝑖 −𝑜𝑋
  • 12. QSin(t) = Y( i + oQCos(t)) = 𝑌{ 𝑖 + 𝑜 𝑜 + 𝑖𝑋 } 𝑖 − 𝑜𝑋 = 𝑌{ 𝑖2 + 𝑜2 } 𝑖 − 𝑜𝑋 i = Sin(ρ) o = Cos(ρ) ∴ QSin(t) = 𝑌 𝑖 −𝑜𝑋
  • 13. Now apply 𝑆𝑖𝑛2 (𝑡)+ 𝐶𝑜𝑠2 (𝑡) = 1 Since QCos(t) = 𝑜+𝑖𝑋 𝑖 −𝑜𝑋 & 𝑄𝑆𝑖𝑛 𝑡 = 𝑌 𝑖 −𝑜𝑥 (𝑜+𝑖𝑥)2 𝑄2(𝑖 −𝑜𝑥)2 + 𝑌2 𝑄2(𝑖 −𝑜𝑋2) = 1  𝑌2 = 𝑄2(𝑖 − 𝑜𝑋)2 − (𝑜 + 𝑖𝑋)2
  • 14. Equation 𝑌2 = 𝑄2 (𝑖 − 𝑜𝑋)2 − (𝑜 + 𝑖𝑋)2
  • 15. Alternative Equation By substituting the values: i = Sin(ρ) o = Cos(ρ) Q = Tan(p) We obtain 𝑌2 = 2Tan(p)X – (1 - - 𝐶𝑜𝑠2(ρ) 𝐶𝑜𝑠2(𝑝) ) 𝑋2
  • 16. Meaning 𝑌2 = 2Tan(p)X – (1 - - 𝐶𝑜𝑠2(ρ) 𝐶𝑜𝑠2(𝑝) ) 𝑋2 ◦Case I: ρ > 𝑝  Ellipse ◦Case II: ρ = p  Parabola ◦Case III: ρ < p  Hyperbola