SlideShare a Scribd company logo
1 of 22
Data and ComputerData and Computer
CommunicationsCommunications
Eighth EditionEighth Edition
by William Stallingsby William Stallings
Lecture slides by Lawrie BrownLecture slides by Lawrie Brown
Chapter 9 – Spread SpectrumChapter 9 – Spread Spectrum
Spread SpectrumSpread Spectrum
All creative people want to do the unexpected.
—Ecstasy and Me: My Life as a Woman,
Hedy Lamarr
Spread SpectrumSpread Spectrum
 important encoding method for wirelessimportant encoding method for wireless
communicationscommunications
 analog & digital data with analog signalanalog & digital data with analog signal
 spreads data over wide bandwidthspreads data over wide bandwidth
 makes jamming and interception hardermakes jamming and interception harder
 two approaches, both in use:two approaches, both in use:

Frequency HoppingFrequency Hopping

Direct SequenceDirect Sequence
General Model of SpreadGeneral Model of Spread
Spectrum SystemSpectrum System
Spread Spectrum AdvantagesSpread Spectrum Advantages
 immunity from noise and multipathimmunity from noise and multipath
distortiondistortion
 can hide / encrypt signalscan hide / encrypt signals
 several users can share same higherseveral users can share same higher
bandwidth with little interferencebandwidth with little interference

CDM/CDMA Mobile telephonesCDM/CDMA Mobile telephones
Pseudorandom NumbersPseudorandom Numbers
 generated by a deterministic algorithmgenerated by a deterministic algorithm

not actually randomnot actually random

but if algorithm good, results pass reasonablebut if algorithm good, results pass reasonable
tests of randomnesstests of randomness
 starting from an initial seedstarting from an initial seed
 need to know algorithm and seed toneed to know algorithm and seed to
predict sequencepredict sequence
 hence only receiver can decode signalhence only receiver can decode signal
Frequency Hopping SpreadFrequency Hopping Spread
Spectrum (FHSS)Spectrum (FHSS)
 signal is broadcast over seeminglysignal is broadcast over seemingly
random series of frequenciesrandom series of frequencies
 receiver hops between frequencies in syncreceiver hops between frequencies in sync
with transmitterwith transmitter
 eavesdroppers hear unintelligible blipseavesdroppers hear unintelligible blips
 jamming on one frequency affects only ajamming on one frequency affects only a
few bitsfew bits
Frequency Hopping ExampleFrequency Hopping Example
FHSS (Transmitter)FHSS (Transmitter)
Frequency Hopping SpreadFrequency Hopping Spread
Spectrum System (Receiver)Spectrum System (Receiver)
Slow and Fast FHSSSlow and Fast FHSS
 commonly use multiple FSK (MFSK)commonly use multiple FSK (MFSK)
 have frequency shifted every Thave frequency shifted every Tcc secondsseconds
 duration of signal element is Tduration of signal element is Tss secondsseconds
 Slow FHSS has TSlow FHSS has Tcc ≥≥ TTss
 Fast FHSS has TFast FHSS has Tcc < T< Tss
 FHSS quite resistant to noise or jammingFHSS quite resistant to noise or jamming

with fast FHSS giving better performancewith fast FHSS giving better performance
Slow MFSK FHSSSlow MFSK FHSS
Fast MFSK FHSSFast MFSK FHSS
Direct Sequence SpreadDirect Sequence Spread
Spectrum (DSSS)Spectrum (DSSS)
 each bit is represented by multiple bitseach bit is represented by multiple bits
using a spreading codeusing a spreading code
 this spreads signal across a widerthis spreads signal across a wider
frequency bandfrequency band
 has performance similar to FHSShas performance similar to FHSS
Direct Sequence SpreadDirect Sequence Spread
Spectrum ExampleSpectrum Example
Direct Sequence SpreadDirect Sequence Spread
Spectrum SystemSpectrum System
DSSS Example Using BPSKDSSS Example Using BPSK
ApproximateApproximate
Spectrum ofSpectrum of
DSSS SignalDSSS Signal
Code Division MultipleCode Division Multiple
Access (CDMA)Access (CDMA)
 a multiplexing technique used with spreada multiplexing technique used with spread
spectrumspectrum
 given a data signal rate Dgiven a data signal rate D
 break each bit intobreak each bit into kk chips according to achips according to a
fixed chipping code specific to each userfixed chipping code specific to each user
 resulting new channel has chip data rateresulting new channel has chip data rate
kDkD chips per secondchips per second
 can have multiple channels superimposedcan have multiple channels superimposed
CDMA ExampleCDMA Example
CDMA for DSSSCDMA for DSSS
SummarySummary
 looked at use of spread spectrumlooked at use of spread spectrum
techniques:techniques:
 FHSSFHSS
 DSSSDSSS
 CDMACDMA

More Related Content

What's hot

Multiple access techniques
Multiple access techniquesMultiple access techniques
Multiple access techniquesBibhu Prasad
 
8. introduction to small scale fading
8. introduction to small scale fading8. introduction to small scale fading
8. introduction to small scale fadingJAIGANESH SEKAR
 
Chap 4 (large scale propagation)
Chap 4 (large scale propagation)Chap 4 (large scale propagation)
Chap 4 (large scale propagation)asadkhan1327
 
FHSS- Frequency Hop Spread Spectrum
FHSS- Frequency Hop Spread SpectrumFHSS- Frequency Hop Spread Spectrum
FHSS- Frequency Hop Spread SpectrumRohit Choudhury
 
Small scale fading
Small scale fadingSmall scale fading
Small scale fadingAJAL A J
 
4.4 diversity combining techniques
4.4   diversity combining techniques4.4   diversity combining techniques
4.4 diversity combining techniquesJAIGANESH SEKAR
 
Fading and Large Scale Fading
 Fading and Large Scale Fading Fading and Large Scale Fading
Fading and Large Scale Fadingvickydone
 
OFDM (Orthogonal Frequency Division Multiplexing)
OFDM (Orthogonal Frequency Division Multiplexing)OFDM (Orthogonal Frequency Division Multiplexing)
OFDM (Orthogonal Frequency Division Multiplexing)Ameya Vijay Gokhale
 
SPREAD SPECTRUM MODULATION.pptx
SPREAD SPECTRUM MODULATION.pptxSPREAD SPECTRUM MODULATION.pptx
SPREAD SPECTRUM MODULATION.pptxDeepakBaghel50
 
Frequency Division Multiple Access (FDMA)
Frequency Division Multiple Access (FDMA)Frequency Division Multiple Access (FDMA)
Frequency Division Multiple Access (FDMA)Miles Kevin Galario
 
Frequency hopping spread spectrum
Frequency hopping spread spectrumFrequency hopping spread spectrum
Frequency hopping spread spectrumHarshit Gupta
 
Chapter 7 multiple access techniques
Chapter 7 multiple access techniquesChapter 7 multiple access techniques
Chapter 7 multiple access techniquesKaushal Kabra
 
Packet radio protocol
Packet radio protocolPacket radio protocol
Packet radio protocolPriya Kaushal
 

What's hot (20)

Multiple access techniques
Multiple access techniquesMultiple access techniques
Multiple access techniques
 
Mobile Radio Propagations
Mobile Radio PropagationsMobile Radio Propagations
Mobile Radio Propagations
 
8. introduction to small scale fading
8. introduction to small scale fading8. introduction to small scale fading
8. introduction to small scale fading
 
Chap 4 (large scale propagation)
Chap 4 (large scale propagation)Chap 4 (large scale propagation)
Chap 4 (large scale propagation)
 
Fading Seminar
Fading SeminarFading Seminar
Fading Seminar
 
Channel Estimation
Channel EstimationChannel Estimation
Channel Estimation
 
FHSS- Frequency Hop Spread Spectrum
FHSS- Frequency Hop Spread SpectrumFHSS- Frequency Hop Spread Spectrum
FHSS- Frequency Hop Spread Spectrum
 
Small scale fading
Small scale fadingSmall scale fading
Small scale fading
 
Outdoor propagatiom model
Outdoor propagatiom modelOutdoor propagatiom model
Outdoor propagatiom model
 
4.4 diversity combining techniques
4.4   diversity combining techniques4.4   diversity combining techniques
4.4 diversity combining techniques
 
Fading and Large Scale Fading
 Fading and Large Scale Fading Fading and Large Scale Fading
Fading and Large Scale Fading
 
OFDM (Orthogonal Frequency Division Multiplexing)
OFDM (Orthogonal Frequency Division Multiplexing)OFDM (Orthogonal Frequency Division Multiplexing)
OFDM (Orthogonal Frequency Division Multiplexing)
 
SPREAD SPECTRUM MODULATION.pptx
SPREAD SPECTRUM MODULATION.pptxSPREAD SPECTRUM MODULATION.pptx
SPREAD SPECTRUM MODULATION.pptx
 
Frequency Division Multiple Access (FDMA)
Frequency Division Multiple Access (FDMA)Frequency Division Multiple Access (FDMA)
Frequency Division Multiple Access (FDMA)
 
Frequency hopping spread spectrum
Frequency hopping spread spectrumFrequency hopping spread spectrum
Frequency hopping spread spectrum
 
OFDM for LTE
OFDM for LTEOFDM for LTE
OFDM for LTE
 
Propagation Model
Propagation ModelPropagation Model
Propagation Model
 
Chapter 7 multiple access techniques
Chapter 7 multiple access techniquesChapter 7 multiple access techniques
Chapter 7 multiple access techniques
 
Multiple access techniques for wireless communications
Multiple access techniques for wireless communicationsMultiple access techniques for wireless communications
Multiple access techniques for wireless communications
 
Packet radio protocol
Packet radio protocolPacket radio protocol
Packet radio protocol
 

Viewers also liked (19)

Spread Spectrum System
Spread Spectrum SystemSpread Spectrum System
Spread Spectrum System
 
Spread Spectrum Multiple Access
 Spread Spectrum Multiple Access Spread Spectrum Multiple Access
Spread Spectrum Multiple Access
 
Spread Spectrum
Spread SpectrumSpread Spectrum
Spread Spectrum
 
Spread spectrum
Spread spectrumSpread spectrum
Spread spectrum
 
Physical layer overview
Physical layer overviewPhysical layer overview
Physical layer overview
 
Spread spectrum
Spread spectrumSpread spectrum
Spread spectrum
 
Ch03
Ch03Ch03
Ch03
 
Fhss
FhssFhss
Fhss
 
09 spread spectrum
09 spread spectrum09 spread spectrum
09 spread spectrum
 
Chapter 9 - Spread Spectrum 9e
Chapter 9 - Spread Spectrum 9eChapter 9 - Spread Spectrum 9e
Chapter 9 - Spread Spectrum 9e
 
Frequency Hopping Network
Frequency Hopping NetworkFrequency Hopping Network
Frequency Hopping Network
 
FHSS
FHSSFHSS
FHSS
 
Advantages And The Disadvantages Of Spread Football Betting.
Advantages And The Disadvantages Of Spread Football Betting.Advantages And The Disadvantages Of Spread Football Betting.
Advantages And The Disadvantages Of Spread Football Betting.
 
FHSS
FHSSFHSS
FHSS
 
spread spectrum technique
 spread spectrum technique spread spectrum technique
spread spectrum technique
 
SPREAD SPECTRUM
SPREAD SPECTRUMSPREAD SPECTRUM
SPREAD SPECTRUM
 
Spread spectrum modulation
Spread spectrum modulationSpread spectrum modulation
Spread spectrum modulation
 
Spread spectrum techniques
Spread spectrum techniquesSpread spectrum techniques
Spread spectrum techniques
 
Digital modulation
Digital modulationDigital modulation
Digital modulation
 

Similar to spread spectrum

Similar to spread spectrum (20)

09-SpreadSpectrum.ppt
09-SpreadSpectrum.ppt09-SpreadSpectrum.ppt
09-SpreadSpectrum.ppt
 
Topic: Spread Spectrum
Topic: Spread SpectrumTopic: Spread Spectrum
Topic: Spread Spectrum
 
4rth lec dsss
4rth lec   dsss4rth lec   dsss
4rth lec dsss
 
8 spread spectrum
8 spread spectrum8 spread spectrum
8 spread spectrum
 
Introduction to spred spectrum and CDMA
Introduction to spred spectrum and CDMAIntroduction to spred spectrum and CDMA
Introduction to spred spectrum and CDMA
 
Spread Spectrum
Spread SpectrumSpread Spectrum
Spread Spectrum
 
Spread spectrum
Spread spectrumSpread spectrum
Spread spectrum
 
Spread spectrum technologies
Spread spectrum technologiesSpread spectrum technologies
Spread spectrum technologies
 
Signal and system (1)
Signal and system (1)Signal and system (1)
Signal and system (1)
 
3rd lec fcss
3rd lec   fcss3rd lec   fcss
3rd lec fcss
 
UNIT-5 Spread Spectrum Communication.pdf
UNIT-5 Spread Spectrum Communication.pdfUNIT-5 Spread Spectrum Communication.pdf
UNIT-5 Spread Spectrum Communication.pdf
 
Ch11 spread spectrum
Ch11 spread spectrumCh11 spread spectrum
Ch11 spread spectrum
 
Spread spectrum
Spread spectrumSpread spectrum
Spread spectrum
 
Spread spectrum
Spread spectrumSpread spectrum
Spread spectrum
 
Spread spectrum
Spread spectrumSpread spectrum
Spread spectrum
 
Simulation of Direct Sequence Spread Spectrum for Wireless Communication Syst...
Simulation of Direct Sequence Spread Spectrum for Wireless Communication Syst...Simulation of Direct Sequence Spread Spectrum for Wireless Communication Syst...
Simulation of Direct Sequence Spread Spectrum for Wireless Communication Syst...
 
Spread spectrum seminar
Spread spectrum seminarSpread spectrum seminar
Spread spectrum seminar
 
EC8395 COMMUNICATION ENGINEERING UNIT V
EC8395 COMMUNICATION ENGINEERING UNIT V EC8395 COMMUNICATION ENGINEERING UNIT V
EC8395 COMMUNICATION ENGINEERING UNIT V
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
 
spread spectrum in digital communication
spread spectrum in digital communicationspread spectrum in digital communication
spread spectrum in digital communication
 

More from Srinivasa Rao

Process control 3 chapter
Process control 3 chapterProcess control 3 chapter
Process control 3 chapterSrinivasa Rao
 
Process control 5 chapter
Process control 5 chapterProcess control 5 chapter
Process control 5 chapterSrinivasa Rao
 
Process control 2 chapter
Process control 2 chapterProcess control 2 chapter
Process control 2 chapterSrinivasa Rao
 
Process control 4 chapter
Process control 4 chapterProcess control 4 chapter
Process control 4 chapterSrinivasa Rao
 
Process control 3 chapter
Process control 3 chapterProcess control 3 chapter
Process control 3 chapterSrinivasa Rao
 
Density and viscocity
Density and viscocityDensity and viscocity
Density and viscocitySrinivasa Rao
 
C14 ee-105-electrical engineering materials
C14 ee-105-electrical engineering materialsC14 ee-105-electrical engineering materials
C14 ee-105-electrical engineering materialsSrinivasa Rao
 
C14 ee-106-basic electrical engineering
C14 ee-106-basic electrical engineeringC14 ee-106-basic electrical engineering
C14 ee-106-basic electrical engineeringSrinivasa Rao
 
C 14-met-mng-aei-107-engg drawing
C 14-met-mng-aei-107-engg drawingC 14-met-mng-aei-107-engg drawing
C 14-met-mng-aei-107-engg drawingSrinivasa Rao
 
C 14-met-mng-aei-104-engg chemistry
C 14-met-mng-aei-104-engg chemistryC 14-met-mng-aei-104-engg chemistry
C 14-met-mng-aei-104-engg chemistrySrinivasa Rao
 

More from Srinivasa Rao (20)

Oscillators
OscillatorsOscillators
Oscillators
 
power amplifiers
power amplifierspower amplifiers
power amplifiers
 
Amplifiers
AmplifiersAmplifiers
Amplifiers
 
Transistors
TransistorsTransistors
Transistors
 
Rectifiers
RectifiersRectifiers
Rectifiers
 
Process control 3 chapter
Process control 3 chapterProcess control 3 chapter
Process control 3 chapter
 
Process control 5 chapter
Process control 5 chapterProcess control 5 chapter
Process control 5 chapter
 
Process control 2 chapter
Process control 2 chapterProcess control 2 chapter
Process control 2 chapter
 
Process control 4 chapter
Process control 4 chapterProcess control 4 chapter
Process control 4 chapter
 
Process control 3 chapter
Process control 3 chapterProcess control 3 chapter
Process control 3 chapter
 
Process control
Process controlProcess control
Process control
 
Weight measurement
Weight measurementWeight measurement
Weight measurement
 
Density and viscocity
Density and viscocityDensity and viscocity
Density and viscocity
 
Flow measurement
Flow measurementFlow measurement
Flow measurement
 
Level measurement
Level measurementLevel measurement
Level measurement
 
C14 ee-105-electrical engineering materials
C14 ee-105-electrical engineering materialsC14 ee-105-electrical engineering materials
C14 ee-105-electrical engineering materials
 
C14 ee-106-basic electrical engineering
C14 ee-106-basic electrical engineeringC14 ee-106-basic electrical engineering
C14 ee-106-basic electrical engineering
 
C 14-met-mng-aei-107-engg drawing
C 14-met-mng-aei-107-engg drawingC 14-met-mng-aei-107-engg drawing
C 14-met-mng-aei-107-engg drawing
 
C 14-ee-101-english
C 14-ee-101-englishC 14-ee-101-english
C 14-ee-101-english
 
C 14-met-mng-aei-104-engg chemistry
C 14-met-mng-aei-104-engg chemistryC 14-met-mng-aei-104-engg chemistry
C 14-met-mng-aei-104-engg chemistry
 

Recently uploaded

HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 

Recently uploaded (20)

HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 

spread spectrum

  • 1. Data and ComputerData and Computer CommunicationsCommunications Eighth EditionEighth Edition by William Stallingsby William Stallings Lecture slides by Lawrie BrownLecture slides by Lawrie Brown Chapter 9 – Spread SpectrumChapter 9 – Spread Spectrum
  • 2. Spread SpectrumSpread Spectrum All creative people want to do the unexpected. —Ecstasy and Me: My Life as a Woman, Hedy Lamarr
  • 3. Spread SpectrumSpread Spectrum  important encoding method for wirelessimportant encoding method for wireless communicationscommunications  analog & digital data with analog signalanalog & digital data with analog signal  spreads data over wide bandwidthspreads data over wide bandwidth  makes jamming and interception hardermakes jamming and interception harder  two approaches, both in use:two approaches, both in use:  Frequency HoppingFrequency Hopping  Direct SequenceDirect Sequence
  • 4. General Model of SpreadGeneral Model of Spread Spectrum SystemSpectrum System
  • 5. Spread Spectrum AdvantagesSpread Spectrum Advantages  immunity from noise and multipathimmunity from noise and multipath distortiondistortion  can hide / encrypt signalscan hide / encrypt signals  several users can share same higherseveral users can share same higher bandwidth with little interferencebandwidth with little interference  CDM/CDMA Mobile telephonesCDM/CDMA Mobile telephones
  • 6. Pseudorandom NumbersPseudorandom Numbers  generated by a deterministic algorithmgenerated by a deterministic algorithm  not actually randomnot actually random  but if algorithm good, results pass reasonablebut if algorithm good, results pass reasonable tests of randomnesstests of randomness  starting from an initial seedstarting from an initial seed  need to know algorithm and seed toneed to know algorithm and seed to predict sequencepredict sequence  hence only receiver can decode signalhence only receiver can decode signal
  • 7. Frequency Hopping SpreadFrequency Hopping Spread Spectrum (FHSS)Spectrum (FHSS)  signal is broadcast over seeminglysignal is broadcast over seemingly random series of frequenciesrandom series of frequencies  receiver hops between frequencies in syncreceiver hops between frequencies in sync with transmitterwith transmitter  eavesdroppers hear unintelligible blipseavesdroppers hear unintelligible blips  jamming on one frequency affects only ajamming on one frequency affects only a few bitsfew bits
  • 10. Frequency Hopping SpreadFrequency Hopping Spread Spectrum System (Receiver)Spectrum System (Receiver)
  • 11. Slow and Fast FHSSSlow and Fast FHSS  commonly use multiple FSK (MFSK)commonly use multiple FSK (MFSK)  have frequency shifted every Thave frequency shifted every Tcc secondsseconds  duration of signal element is Tduration of signal element is Tss secondsseconds  Slow FHSS has TSlow FHSS has Tcc ≥≥ TTss  Fast FHSS has TFast FHSS has Tcc < T< Tss  FHSS quite resistant to noise or jammingFHSS quite resistant to noise or jamming  with fast FHSS giving better performancewith fast FHSS giving better performance
  • 12. Slow MFSK FHSSSlow MFSK FHSS
  • 13. Fast MFSK FHSSFast MFSK FHSS
  • 14. Direct Sequence SpreadDirect Sequence Spread Spectrum (DSSS)Spectrum (DSSS)  each bit is represented by multiple bitseach bit is represented by multiple bits using a spreading codeusing a spreading code  this spreads signal across a widerthis spreads signal across a wider frequency bandfrequency band  has performance similar to FHSShas performance similar to FHSS
  • 15. Direct Sequence SpreadDirect Sequence Spread Spectrum ExampleSpectrum Example
  • 16. Direct Sequence SpreadDirect Sequence Spread Spectrum SystemSpectrum System
  • 17. DSSS Example Using BPSKDSSS Example Using BPSK
  • 19. Code Division MultipleCode Division Multiple Access (CDMA)Access (CDMA)  a multiplexing technique used with spreada multiplexing technique used with spread spectrumspectrum  given a data signal rate Dgiven a data signal rate D  break each bit intobreak each bit into kk chips according to achips according to a fixed chipping code specific to each userfixed chipping code specific to each user  resulting new channel has chip data rateresulting new channel has chip data rate kDkD chips per secondchips per second  can have multiple channels superimposedcan have multiple channels superimposed
  • 21. CDMA for DSSSCDMA for DSSS
  • 22. SummarySummary  looked at use of spread spectrumlooked at use of spread spectrum techniques:techniques:  FHSSFHSS  DSSSDSSS  CDMACDMA

Editor's Notes

  1. Lecture slides prepared by Dr Lawrie Brown (UNSW@ADFA) for “Data and Computer Communications”, 8/e, by William Stallings, Chapter 9 “Spread Spectrum”.
  2. This quote is from the start of Stallings DCC8e Ch9.
  3. Spread spectrum is an increasingly important form of encoding for wireless communications. It it can be used to transmit either analog or digital data, using an analog signal.The basic idea of spread spectrum is to modulate the signal so as to increase significantly the bandwidth (spread the spectrum) of the signal to be transmitted. It was initially developed for military and intelligence requirements. The use of spread spectrum makes jamming and interception more difficult and provides improved reception. The first type of spread spectrum developed is known as frequency hopping. A more recent type of spread spectrum is direct sequence. Both of these techniques are used in various wireless communications standards and products.
  4. Stallings DCC8e Figure 9.1 highlights the key characteristics of any spread spectrum system. Input is fed into a channel encoder that produces an analog signal with a relatively narrow bandwidth around some center frequency. This signal is further modulated using a sequence of digits known as a spreading code or spreading sequence. Typically, but not always, the spreading code is generated by a pseudonoise, or pseudorandom number, generator. The effect of this modulation is to increase significantly the bandwidth (spread the spectrum) of the signal to be transmitted. On the receiving end, the same digit sequence is used to demodulate the spread spectrum signal. Finally, the signal is fed into a channel decoder to recover the data.
  5. Several advantages can be gained from this apparent waste of spectrum by this approach: • The signals gains immunity from various kinds of noise and multipath distortion. The earliest applications of spread spectrum were military, where it was used for its immunity to jamming. • It can also be used for hiding and encrypting signals. Only a recipient who knows the spreading code can recover the encoded information. • Several users can independently use the same higher bandwidth with very little interference. This property is used in cellular telephony applications, with a technique know as code division multiplexing (CDM) or code division multiple access (CDMA).
  6. A comment about pseudorandom numbers is in order. These numbers are generated by an algorithm using some initial value called the seed. The algorithm is deterministic and therefore produces sequences of numbers that are not statistically random. However, if the algorithm is good, the resulting sequences will pass many reasonable tests of randomness. Such numbers are often referred to as pseudorandom numbers. The important point is that unless you know the algorithm and the seed, it is impractical to predict the sequence. Hence, only a receiver that shares this information with a transmitter will be able to decode the signal successfully.
  7. With frequency-hopping spread spectrum (FHSS), the signal is broadcast over a seemingly random series of radio frequencies, hopping from frequency to frequency at fixed intervals. A receiver, hopping between frequencies in synchronization with the transmitter, picks up the message. Would-be eavesdroppers hear only unintelligible blips. Attempts to jam the signal on one frequency succeed only at knocking out a few bits of it.
  8. Stallings DCC8e Figure 9.2 shows an example of a frequency-hopping signal. A number of channels are allocated for the FH signal. Typically, there are 2k carrier frequencies forming 2k channels. The spacing between carrier frequencies and hence the width of each channel usually corresponds to the bandwidth of the input signal. The transmitter operates in one channel at a time for a fixed interval; for example, the IEEE 802.11 standard uses a 300-ms interval. During that interval, some number of bits (possibly a fraction of a bit, as discussed subsequently) is transmitted using some encoding scheme. A spreading code dictates the sequence of channels used. Both transmitter and receiver use the same code to tune into a sequence of channels in synchronization.
  9. Stallings DCC8e Figure 9.3 shows a typical block diagram for a frequency-hopping system. For transmission, binary data are fed into a modulator using some digital-to-analog encoding scheme, such as frequency shift keying (FSK) or binary phase shift keying (BPSK). The resulting signal sd(t) is centered on some base frequency. A pseudonoise (PN), or pseudorandom number, source serves as an index into a table of frequencies; this is the spreading code referred to previously. Each k bits of the PN source specifies one of the 2k carrier frequencies. At each successive interval (each k PN bits), a new carrier frequency is selected. The frequency synthesizer generates a constant-frequency tone whose frequency hops among a set of 2k frequencies, with the hopping pattern determined by k bits from the PN sequence. This is known as the spreading or chipping signal c(t). This is then modulated by the signal produced from the initial modulator to produce a new signal with the same shape but now centered on the selected carrier frequency. A bandpass filter is used to block the difference frequency and pass the sum frequency, yielding the final FHSS signal s(t).
  10. On reception, Stallings DCC8e Figure 9.3 shows that the spread spectrum signal is demodulated using the same sequence of PN-derived frequencies and then demodulated to produce the output data. At the receiver, a signal of the form s(t) defined on the previous slide, will be received. This is multiplied by a replica of the spreading signal to yield a product signal. A bandpass filter is used to block the sum frequency and pass the difference frequency, which is then demodulated to recover the binary data.
  11. A common modulation technique used in conjunction with FHSS is multiple FSK (MFSK), which uses M = 2L different frequencies to encode the digital input L bits at a time (see Chapter 5). For FHSS, the MFSK signal is translated to a new frequency every Tc seconds by modulating the MFSK signal with the FHSS carrier signal. The effect is to translate the MFSK signal into the appropriate FHSS channel. For a data rate of R, the duration of a bit is T = 1/R seconds and the duration of a signal element is Ts = LT seconds. If Tc is greater than or equal to Ts, the spreading modulation is referred to as slow-frequency-hop spread spectrum; otherwise it is known as fast-frequency-hop spread spectrum. Typically, a large number of frequencies is used in FHSS so that bandwidth of the FHSS signal is much larger than that of the original MFSK signal. One benefit of this is that a large value of k results in a system that is quite resistant to jamming. If frequency hopping is used, the jammer must jam all 2k frequencies. With a fixed power, this reduces the jamming power in any one frequency band to Sj/2k. In general, fast FHSS provides improved performance compared to slow FHSS in the face of noise or jamming, as will discuss shortly.
  12. Stallings DCC8e Figure 9.4 shows an example of slow FHSS, using the MFSK example from Stallings DCC8e Figure 5.9. Here we have M = 4, which means that four different frequencies are used to encode the data input 2 bits at a time. Each signal element is a discrete frequency tone, and the total MFSK bandwidth is Wd = Mfd. We use an FHSS scheme with k = 2. That is, there are 4 = 2k different channels, each of width Wd. The total FHSS bandwidth is Ws = 2kWd. Each 2 bits of the PN sequence is used to select one of the four channels. That channel is held for a duration of two signal elements, or four bits (Tc = 2Ts = 4T).
  13. Stallings DCC8e Figure 9.5 shows an example of fast FHSS, using the same MFSK example. Again, M = 4 and k = 2. In this case, however, each signal element is represented by two frequency tones. Again, Wd = Mfd and Ws = 2kWd. In this example Ts = 2Tc = 2T. In general, fast FHSS provides improved performance compared to slow FHSS in the face of noise or jamming. For example, if three or more frequencies (chips) are used for each signal element, the receiver can decide which signal element was sent on the basis of a majority of the chips being correct.
  14. With direct sequence spread spectrum (DSSS), each bit in the original signal is represented by multiple bits in the transmitted signal, using a spreading code. The spreading code spreads the signal across a wider frequency band in direct proportion to the number of bits used. Therefore, a 10-bit spreading code spreads the signal across a frequency band that is 10 times greater than a 1-bit spreading code.
  15. One technique with direct sequence spread spectrum is to combine the digital information stream with the spreading code bit stream using an exclusive-OR (XOR). Stallings DCC8e Figure 9.6 shows an example. Note that an information bit of one inverts the spreading code bits in the combination, while an information bit of zero causes the spreading code bits to be transmitted without inversion. The combination bit stream has the data rate of the original spreading code sequence, so it has a wider bandwidth than the information stream. In this example, the spreading code bit stream is clocked at four times the information rate.
  16. To see how this technique works out in practice, assume that a BPSK modulation scheme is to be used. Rather than represent binary data with 1 and 0, it is more convenient for our purposes to use +1 and –1 to represent the two binary digits. To produce the DSSS signal, we multiply the BPSK signal by c(t), which is the PN sequence taking on values of +1 and –1: s(t) = A d(t)c(t) cos(2πfct): Equation (9.5) At the receiver, the incoming signal is multiplied again by c(t). But c(t)  c(t) = 1 and therefore the original signal is recovered. Equation (9.5) can be interpreted in two ways, leading to two different implementations. The first interpretation is to first multiply d(t) and c(t) together and then perform the BPSK modulation. That is the interpretation we have been discussing. Alternatively, we can first perform the BPSK modulation on the data stream d(t) to generate the data signal sd(t). This signal can then be multiplied by c(t). An implementation using the second interpretation is shown in Stallings DCC8e Figure 9.7 above.
  17. Stallings DCC8e Figure 9.8 is an example of the approach discussed on the previous slide.
  18. The spectrum spreading achieved by the direct sequence technique is easily determined (Stallings DCC8e Figure 9.9 above). In our example, the information signal has a bit width of T, which is equivalent to a data rate of 1/T. In that case, the spectrum of the signal, depending on the encoding technique, is roughly 2/T. Similarly, the spectrum of the PN signal is 2/Tc. Figure 9.9c shows the resulting spectrum spreading. The amount of spreading that is achieved is a direct result of the data rate of the PN stream. As with FHSS, we can get some insight into the performance of DSSS by looking at its effectiveness against jamming. Let us assume a simple jamming signal at the center frequency of the DSSS system. Can show the carrier power Sj is spread over a bandwidth of approximately 2/Tc. However, the BPSK demodulator (Figure 9.7) following the DSSS despreader includes a bandpass filter matched to the BPSK data, with bandwidth of 2/T. Thus, most of the jamming power is filtered. The jamming power has been reduced by a factor of (Tc /T) through the use of spread spectrum. The result is similar to the result for FHSS.
  19. CDMA is a multiplexing technique used with spread spectrum. The scheme works in the following manner. We start with a data signal with rate D, which we call the bit data rate. We break each bit into k chips according to a fixed pattern that is specific to each user, called the user’s code, or chipping code. The new channel has a chip data rate, or chipping rate, of kD chips per second. With CDMA, the receiver can sort out transmission from the desired sender, even when there may be other users broadcasting in the same cell.
  20. As an illustration we consider a simple example with k = 6. It is simplest to characterize a chipping code as a sequence of 1s and –1s. Figure 9.10 shows the codes for three users, A, B, and C, each of which is communicating with the same base station receiver, R. Thus, the code for user A is cA = &amp;lt;1, –1, –1, 1, –1, 1&amp;gt;. Similarly, user B has code cB = &amp;lt;1, 1, –1, –1, 1, 1&amp;gt;, and user C has cC = &amp;lt;1, 1, –1, 1, 1, –1&amp;gt;. We now consider the case of user A communicating with the base station. The base station is assumed to know A’s code. For simplicity, we assume that communication is already synchronized so that the base station knows when to look for codes. If A wants to send a 1 bit, A transmits its code as a chip pattern &amp;lt;1, –1, –1, 1, –1, 1&amp;gt;. If a 0 bit is to be sent, A transmits the complement (1s and –1s reversed) of its code, &amp;lt;–1, 1, 1, –1, 1, –1&amp;gt;. At the base station the receiver decodes the chip patterns. If the decoder is linear and if A and B transmit signals sA and sB, respectively, at the same time, then SA (sA + sB) = SA (sA) + SA (sB) = SA (sA) since the decoder ignores B when it is using A’s code. The codes of A and B that have the property that SA (cB) = SB (cA) = 0 are called orthogonal. Using the decoder, Su, the receiver can sort out transmission from u even when there may be other users broadcasting in the same cell. In practice, the CDMA receiver can filter out the contribution from unwanted users or they appear as low-level noise. However, if there are many users competing for the channel with the user the receiver is trying to listen to, or if the signal power of one or more competing signals is too high, perhaps because it is very near the receiver (the “near/far” problem), the system breaks down.
  21. Let us now look at CDMA from the viewpoint of a DSSS system using BPSK. Stallings DCC8eFigure 9.11 depicts a configuration in which there are n users, each transmitting using a different, orthogonal, PN sequence (compare Figure 9.7). For each user, the data stream to be transmitted, di(t), is BPSK modulated to produce a signal with a bandwidth of Ws and then multiplied by the spreading code for that user, ci(t). All of the signals, plus noise, are received at the receiver&amp;apos;s antenna. Suppose that the receiver is attempting to recover the data of user 1. The incoming signal is multiplied by the spreading code of user 1 and then demodulated. The effect of this is to narrow the bandwidth of that portion of the incoming signal corresponding to user 1 to the original bandwidth of the unspread signal, which is proportional to the data rate. Incoming signals from other users are not despread by the spreading code from user 1 and hence retain their bandwidth of Ws. Thus the unwanted signal energy remains spread over a large bandwidth and the wanted signal is concentrated in a narrow bandwidth. The bandpass filter at the demodulator can therefore recover the desired signal.
  22. Chapter 9 summary.