SlideShare a Scribd company logo
1 of 26
Download to read offline
 
	
  
	
  
4-­‐Speed	
  Transmission	
  
10/20/15	
  	
  
Group	
  44	
  
Ryan	
  Rampolla	
  	
  
Ryland	
  Ballingham	
  
Dr.	
  Griffis
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  2	
  
Table	
  of	
  Contents	
  
1.0	
  Preliminary	
  Need	
  .............................................................................................................	
  3	
  
2.0	
  Preliminary	
  Specifications	
  ............................................................................................	
  3	
  
2.1	
  Constraints	
  Imposed	
  by	
  Boss	
  .................................................................................................	
  3	
  
3.0	
  Design	
  ...................................................................................................................................	
  4	
  
3.1	
  Countershaft	
  Assembly	
  ............................................................................................................	
  5	
  
3.2	
  Countershaft	
  Layout	
  ..................................................................................................................	
  5	
  
4.0	
  Theoretical	
  Overview	
  ......................................................................................................	
  6	
  
4.1	
  Theoretical	
  Loads	
  ......................................................................................................................	
  6	
  
4.2	
  Estimated	
  Performance	
  ........................................................................................................	
  17	
  
4.3	
  Countershaft	
  Bearings	
  ...........................................................................................................	
  20	
  
4.4	
  Countershaft	
  Critical	
  Locations	
  ..........................................................................................	
  21	
  
4.5	
  Theoretical	
  Critical	
  Locations	
  .............................................................................................	
  21	
  
4.6	
  Theoretical	
  Keys	
  ......................................................................................................................	
  25	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  3	
  
	
  
1.0	
  Preliminary	
  Need	
  
The	
  preliminary	
  need	
  provided	
  was,	
  “For	
  a	
  conventional	
  rear-­‐wheel	
  drive	
  sporty	
  
vehicle,	
  there	
  is	
  a	
  need	
  for	
  a	
  4-­‐speed	
  manual	
  transmission	
  that	
  can	
  operate	
  in	
  any	
  gear	
  over	
  
an	
  infinite	
  life.”	
  	
  While	
  designing	
  this	
  transmission	
  it	
  will	
  be	
  crucial	
  to	
  take	
  the	
  strength	
  and	
  
torque	
  requirements	
  of	
  all	
  the	
  components	
  into	
  consideration.	
  
2.0	
  Preliminary	
  Specifications	
  
The	
  specifications	
  that	
  were	
  provided	
  are	
  as	
  follows:	
  
1. Design	
  Point	
  (continuous):	
  40	
  HP	
  at	
  2000	
  RPM	
  (input	
  shaft)	
  
2. Design	
  factor	
  (countershaft):	
  nd	
  =	
  1.75	
  
3. Design	
  factor	
  (gears):	
  ng	
  =	
  1.25	
  
4. Design	
  factor	
  (keys):	
  nk	
  =	
  1.1	
  
5. Size	
  (Max):	
  
a. Length:	
  2	
  ft	
  (target	
  1	
  ft	
  on	
  main	
  body,	
  1	
  ft	
  on	
  tail	
  piece)	
  
b. Width:	
  14	
  in	
  
c. Height:	
  14	
  in	
  
6. Target	
  Ratios:	
  
a. 1st	
  gear:	
  3.2	
  to	
  1	
  (+/-­‐	
  5%)	
  
b. 2nd	
  gear:	
  2.2	
  to	
  1	
  (+/-­‐	
  5%)	
  
c. 3rd	
  gear:	
  1.6	
  to	
  1	
  (+/-­‐	
  2%)	
  
d. 4th	
  gear:	
  direct	
  drive	
  
2.1	
  Constraints	
  Imposed	
  by	
  Boss	
  
	
  
The	
  constraints	
  given	
  by	
  the	
  boss	
  were:	
  
	
  
1. Assume	
  constant	
  torque	
  at	
  the	
  design	
  point	
  (even	
  though	
  it	
  isn’t).	
  
2. Input-­‐output	
  shafts	
  collinear	
  (so	
  4th	
  can	
  be	
  direct	
  connect).	
  
3. Helical,	
  parallel	
  axis	
  gearing,	
  all	
  gears	
  same	
  diametral	
  pitch.	
  
4. Simplification:	
  no	
  reverse	
  gear	
  here.	
  
5. Gears	
  Keyed	
  to	
  Countershaft	
  (idler	
  shaft).	
  
6. Leave	
  3	
  in	
  spacing	
  between	
  1st	
  &	
  2nd	
  gears	
  and	
  also	
  between	
  3rd	
  &	
  4th	
  for	
  
synchronizers.	
  
7. Gear	
  teeth	
  (counts)	
  should	
  be	
  chosen	
  for	
  even	
  wear.	
  
8. Passenger	
  side	
  view	
  of	
  countershaft,	
  maintain	
  ordering	
  of	
  gears:	
  starting	
  on	
  left:	
  1st,	
  
2nd,	
  3rd	
  gear	
  with	
  countershaft	
  input	
  driver	
  gear	
  on	
  right.	
  
9. Objective	
  is	
  to	
  fully	
  design	
  the	
  countershaft	
  (idler	
  shaft)	
  of	
  the	
  transmission.	
  	
  The	
  
case,	
  the	
  input,	
  output	
  shafts,	
  the	
  synchronizers	
  are	
  not	
  being	
  designed	
  in	
  this	
  
project.	
  	
  For	
  those	
  parts,	
  include	
  enough	
  mainshaft	
  detail	
  (input,	
  output	
  shafts)	
  and	
  
case	
  detail	
  to	
  allow	
  for	
  simulation,	
  provide	
  space	
  for	
  synchronizers,	
  use	
  solid	
  works	
  
mates	
  to	
  simulate	
  synchronizers.	
  
  4	
  
3.0	
  Design	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  above	
  figure	
  is	
  the	
  overall	
  design	
  of	
  the	
  4-­‐speed	
  transmission.	
  	
  The	
  view	
  is	
  oriented	
  
from	
  the	
  passenger	
  side	
  of	
  the	
  vehicle	
  showing	
  the	
  input	
  shaft	
  on	
  the	
  top	
  left	
  and	
  the	
  output	
  
on	
  the	
  top	
  right.	
  	
  The	
  shaft	
  assembly	
  on	
  the	
  bottom	
  is	
  the	
  countershaft	
  with	
  a	
  total	
  of	
  four	
  
gears.	
  	
  The	
  gear	
  on	
  the	
  far	
  right	
  is	
  the	
  idler	
  gear,	
  which	
  is	
  driven	
  by	
  the	
  driving	
  gear	
  directly	
  
above	
  it	
  at	
  2000	
  RPM.	
  	
  To	
  the	
  left	
  of	
  the	
  idler	
  are	
  the	
  1st,	
  2nd,	
  and	
  3rd	
  gears	
  (left	
  to	
  right),	
  
which	
  are	
  all	
  attached	
  to	
  their	
  corresponding	
  output	
  gears.	
  	
  This	
  design	
  incorporates	
  
multiple	
  snap	
  rings,	
  key	
  ways,	
  bearings,	
  and	
  spacers	
  to	
  keep	
  the	
  gears	
  in	
  place.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  above	
  illustration	
  is	
  used	
  to	
  declare	
  important	
  values	
  of	
  the	
  gears	
  and	
  overall	
  
transmission	
  design.	
  	
  The	
  image	
  provides	
  the	
  face	
  width	
  values	
  for	
  the	
  output	
  and	
  driving	
  
gears	
  along	
  with	
  the	
  tooth	
  numbers	
  for	
  all	
  gears.	
  Gear	
  teeth	
  numbers	
  were	
  chosen	
  in	
  order	
  
to	
  achieve	
  the	
  desired	
  gear	
  ratios.	
  	
  In	
  addition	
  the	
  pitch	
  for	
  all	
  gears	
  was	
  established	
  to	
  be	
  5	
  
T/in	
  and	
  a	
  diametral	
  pitch	
  of	
  7.011.	
  	
  Also,	
  a	
  centerline	
  distance	
  from	
  the	
  mainshaft	
  to	
  
countershaft	
  was	
  chosen	
  to	
  be	
  5.9	
  in	
  which	
  allowed	
  gears	
  enough	
  clearance	
  to	
  work	
  
properly	
  while	
  achieving	
  the	
  desired	
  torque	
  values.	
  
  5	
  
Since	
  location	
  A	
  only	
  experiences	
  radial	
  loading	
  and	
  spins	
  at	
  an	
  RPM	
  greater	
  than	
  100,	
  we	
  
chose	
  to	
  use	
  a	
  1in	
  roller	
  bearing	
  at	
  this	
  location.	
  At	
  location	
  B,	
  axial	
  and	
  radial	
  loading	
  
occurs	
  and	
  thus	
  we	
  need	
  to	
  a	
  1.25in	
  tapered-­‐roller	
  bearing	
  to	
  account	
  for	
  this	
  extra	
  force	
  
component.	
  	
  As	
  for	
  the	
  keys,	
  we	
  chose	
  to	
  use	
  the	
  same	
  key/keyway	
  for	
  all	
  the	
  gears.	
  We	
  
chose	
  to	
  use	
  a	
  woodruff	
  key	
  with	
  a	
  length	
  of	
  0.75in	
  and	
  a	
  radius	
  of	
  0.303	
  in.	
  The	
  keyways	
  
were	
  sized	
  accordingly	
  to	
  this	
  size	
  with	
  a	
  depth	
  of	
  0.06in	
  and	
  length	
  of	
  0.44	
  in.	
  The	
  keys	
  are	
  
made	
  out	
  of	
  316	
  stainless	
  steel.	
  	
  In	
  order	
  to	
  fix	
  bearing	
  A	
  to	
  the	
  countershaft,	
  two	
  1in	
  snap	
  
rings	
  are	
  used	
  on	
  both	
  sides	
  of	
  the	
  bearing.	
  Bearing	
  B	
  is	
  held	
  in	
  place	
  by	
  the	
  1.5	
  in	
  shoulder	
  
and	
  a	
  1.25in	
  snap	
  ring.	
  There	
  is	
  nothing	
  to	
  hold	
  the	
  gears	
  in	
  place	
  axially,	
  which	
  is	
  a	
  design	
  
flaw	
  in	
  our	
  design.	
  
3.1	
  Countershaft	
  Assembly	
  
	
  
The	
  countershaft	
  can	
  easily	
  be	
  assembled	
  due	
  to	
  its	
  design	
  by	
  following	
  a	
  series	
  of	
  simple	
  
steps.	
  	
  The	
  first	
  step	
  in	
  the	
  countershaft	
  assembly	
  is	
  to	
  insert	
  all	
  the	
  keys	
  into	
  their	
  mating	
  
key	
  ways,	
  since	
  all	
  the	
  keys	
  are	
  the	
  same	
  it	
  doesn’t	
  matter	
  which	
  key	
  goes	
  to	
  which	
  key	
  
way.	
  	
  Once	
  all	
  the	
  keys	
  are	
  installed,	
  gear	
  3	
  would	
  be	
  slid	
  over	
  the	
  countershaft	
  followed	
  by	
  
a	
  0.125in	
  spacer	
  and	
  gear	
  2	
  would	
  be	
  slid	
  over	
  the	
  countershaft	
  and	
  against	
  the	
  
spacer.	
  	
  Following	
  this,	
  a	
  3in	
  spacer	
  and	
  gear	
  1	
  would	
  be	
  slid	
  over	
  the	
  counter	
  shaft.	
  Now	
  
the	
  idler	
  gear	
  along	
  with	
  a	
  spacer	
  can	
  be	
  slid	
  onto	
  the	
  end	
  by	
  gear	
  3	
  followed	
  on	
  the	
  end	
  by	
  
a	
  1.25in	
  snap	
  ring.	
  	
  Finally	
  the	
  1in,	
  1.25in	
  roller	
  bearings	
  would	
  be	
  held	
  in	
  place	
  onto	
  the	
  
ends	
  of	
  the	
  counter	
  shaft	
  with	
  the	
  appropriately	
  sized	
  snap	
  rings.	
  
3.2	
  Countershaft	
  Layout	
  
	
  
	
  
	
  
The	
  image	
  above	
  is	
  a	
  passenger	
  view	
  of	
  the	
  countershaft	
  alone.	
  	
  On	
  both	
  the	
  far	
  left	
  and	
  far	
  
right	
  of	
  the	
  countershaft	
  are	
  flat	
  ends	
  which	
  is	
  where	
  the	
  specific	
  rolling	
  bearing	
  will	
  be	
  
implicated	
  in	
  order	
  to	
  allow	
  the	
  shaft	
  to	
  spin	
  freely	
  within	
  the	
  case.	
  	
  Starting	
  from	
  the	
  left	
  
  6	
  
side	
  of	
  the	
  shaft	
  we	
  have	
  the	
  two	
  1in	
  snap	
  rings	
  (to	
  hold	
  the	
  roller-­‐bearing	
  in	
  place)	
  
followed	
  by	
  the	
  1st	
  gear,	
  2nd	
  gear,	
  3rd	
  gear	
  keys	
  ways	
  followed	
  by	
  the	
  1.25in	
  shoulder	
  and	
  
idler	
  gear	
  key	
  way	
  followed	
  by	
  the	
  1.50	
  in	
  shoulder	
  and	
  finally	
  the	
  1.25	
  in	
  snap	
  ring	
  to	
  hold	
  
the	
  tapered	
  roller	
  bearing	
  in	
  place.	
  
4.0	
  Theoretical	
  Overview	
  
	
  
4.1	
  Theoretical	
  Loads	
  
	
  
The	
  following	
  figures	
  are	
  the	
  fbd’s	
  of	
  the	
  countershaft	
  gears.	
  	
  All	
  dimensions	
  are	
  detailed	
  
along	
  with	
  locations	
  of	
  all	
  the	
  forces.	
  	
  All	
  images	
  are	
  a	
  passenger	
  view	
  of	
  the	
  countershaft	
  
and	
  its	
  gears.	
  
	
  
	
  
The	
  figure	
  above	
  is	
  the	
  fbd	
  of	
  the	
  1st	
  gear.	
  
	
  
  7	
  
	
  
The	
  figure	
  above	
  is	
  the	
  fbd	
  of	
  the	
  2nd	
  gear.	
  
	
  
	
  
	
  
The	
  figure	
  above	
  is	
  the	
  fbd	
  of	
  the	
  3rd	
  gear.	
  
  8	
  
The	
  following	
  table	
  shows	
  the	
  calculations	
  used	
  to	
  find	
  the	
  various	
  tooth	
  and	
  reaction	
  forces	
  
along	
  with	
  torques	
  from	
  the	
  three	
  countershaft	
  fbd’s	
  above.	
  
	
  
	
  
Table	
  I	
  
Diameter	
  of	
  drive	
  gear	
   𝑑! = 7𝑖𝑛	
  
Pressure	
  angle	
   ϕ! = 14.5°	
  
Helix	
  angle	
   ψ = 45°	
  
Length	
   L=15.62in	
  
B	
  coordinate	
   𝑥! = 14.4575𝑖𝑛	
  
Input-­‐shaft	
  torque	
  
𝑇! =
40  𝐻𝑃
2000  𝑟𝑝𝑚
5252  𝑙𝑏𝑓  𝑓𝑡  12  𝑖𝑛  𝑟𝑝𝑚
𝑓𝑡  𝐻𝑃
=   1260  𝑙𝑏𝑓  𝑖𝑛	
  
Counter-­‐shaft	
  torque	
  
𝑇! =
𝑁!
𝑁!
𝑇! =   
35
24
1260  𝑙𝑏𝑓  𝑖𝑛 = 1838  𝑙𝑏𝑓  𝑖𝑛	
  
Tangential	
  tooth	
  force	
  at	
  drive	
  gear	
  
𝐹!" = 2
𝑇!
𝑑!
= 2
1838  𝑙𝑏𝑓  𝑖𝑛
7  𝑖𝑛
= 525  𝑙𝑏𝑓	
  
Normal	
  tooth	
  force	
  at	
  drive	
  gear	
  
𝐹! =
𝐹!"
cos ϕ! cos  (ψ)
=
525  𝑙𝑏𝑓
cos 14.5 cos  (45)
= 767  𝑙𝑏𝑓	
  
Radial	
  tooth	
  force	
  at	
  drive	
  gear	
   𝐹!" = 𝐹! sin ϕ! = 767  𝑙𝑏𝑓 sin 14.5 = 192  𝑙𝑏𝑓	
  
Axial	
  tooth	
  force	
  at	
  drive	
  gear	
   𝐹!" = 𝐹! cos ϕ! sin ψ = 767  𝑙𝑏𝑓 cos 14.5 sin 45 = 525	
  
Drive	
  gear	
  coordinate	
   𝑥! = 𝑥! − 𝑥! = 11.975  𝑖𝑛	
  
Drive	
  gear	
  pitch	
  radius	
  
𝑦! =
7𝑖𝑛
2
= 3.5𝑖𝑛	
  
Diameter	
  of	
  1st	
  gear	
   𝑑! = 3.6𝑖𝑛	
  
Tangential	
  tooth	
  force	
  at	
  1st	
  gear	
  
𝐹!! =
𝑑!
𝑑!
𝐹!" =
7  𝑖𝑛
3.6  𝑖𝑛
525  𝑙𝑏𝑓 = 1021  𝑙𝑏𝑓	
  
Normal	
  tooth	
  force	
  at	
  1st	
  gear	
  
𝐹! =
𝐹!!
cos ϕ! cos  (ψ)
=
1021  𝑙𝑏𝑓
cos 14.5 cos  (45)
= 1491  𝑙𝑏𝑓	
  
Radial	
  tooth	
  force	
  at	
  1st	
  gear	
   𝐹!! = 𝐹! sin ϕ! = 1491  𝑙𝑏𝑓 sin 14.5 = 373  𝑙𝑏𝑓	
  
Axial	
  tooth	
  force	
  at	
  1st	
  gear	
   𝐹!! = 𝐹! cos ϕ! sin ψ = 1491  𝑙𝑏𝑓 cos 14.5 sin 45
= 1021  𝑙𝑏𝑓	
  
1st	
  gear	
  torque	
  
𝑇! = 𝐹!!
𝑑!
2
= 525  𝑙𝑏𝑓
3.6𝑖𝑛
2
= 1838  𝑙𝑏𝑓𝑖𝑛	
  
1st	
  gear	
  output	
  torque	
  
𝑇!! = 𝐹!!
𝑑!!
2
= 525  𝑙𝑏𝑓
8.2𝑖𝑛
2
= 2153  𝑙𝑏𝑓𝑖𝑛	
  
1st	
  gear	
  coordinate	
   𝑥! = 2.02125𝑖𝑛	
  
1st	
  gear	
  pitch	
  radius	
  
𝑦! =
𝑑!
2
=
3.6𝑖𝑛
2
= 1.8𝑖𝑛	
  
Right-­‐side	
  bearing	
  reaction	
  (axial)	
   𝑅!" = 𝐹!! − 𝐹!" = 496  𝑙𝑏𝑓	
  
Right-­‐side	
  bearing	
  reaction	
  (vertical)	
  
𝑅!" =
1
𝑥!
𝑥! 𝐹!! + 𝑦! 𝐹!! + 𝑥! 𝐹!" − 𝑦! 𝐹!" = 211  𝑙𝑏𝑓	
  
Right-­‐side	
  bearing	
  reaction	
  (horizontal)	
  
𝑅!" =
1
𝑥!
𝑥! 𝐹!" − 𝑥! 𝐹!! = 292  𝑙𝑏𝑓	
  
Left-­‐side	
  bearing	
  reaction	
  (vertical)	
   𝑅!" = 𝐹!! + 𝐹!! − 𝑅!" = 354  𝑙𝑏𝑓	
  
Left-­‐side	
  bearing	
  reaction	
  (horizontal)	
   𝑅!" = 𝐹!" − 𝐹!! − 𝑅!" = −788  𝑙𝑏𝑓	
  
Diameter	
  of	
  2nd	
  gear	
   𝑑! = 4.6𝑖𝑛	
  
Tangential	
  tooth	
  force	
  at	
  2nd	
  gear	
  
𝐹!! =
𝑑!
𝑑!
𝐹!" =
7  𝑖𝑛
4.6  𝑖𝑛
525  𝑙𝑏𝑓 = 799  𝑙𝑏𝑓	
  
Normal	
  tooth	
  force	
  at	
  2nd	
  gear	
  
𝐹! =
𝐹!!
cos ϕ! cos  (ψ)
=
799  𝑙𝑏𝑓
cos 14.5 cos  (45)
= 1167  𝑙𝑏𝑓	
  
Radial	
  tooth	
  force	
  at	
  2nd	
  gear	
   𝐹!! = 𝐹! sin ϕ! = 1167  𝑙𝑏𝑓 sin 14.5 = 292  𝑙𝑏𝑓	
  
  9	
  
Axial	
  tooth	
  force	
  at	
  2nd	
  gear	
   𝐹!! = 𝐹! cos ϕ! sin ψ = 1167  𝑙𝑏𝑓 cos 14.5 sin 45
= 799  𝑙𝑏𝑓	
  
2nd	
  gear	
  torque	
  
𝑇! = 𝐹!!
𝑑!
2
= 799  𝑙𝑏𝑓
4.6𝑖𝑛
2
= 1838  𝑙𝑏𝑓𝑖𝑛	
  
2nd	
  gear	
  output	
  torque	
  
𝑇!! = 𝐹!!
𝑑!!
2
= 799  𝑙𝑏𝑓
7.2𝑖𝑛
2
= 2876  𝑙𝑏𝑓𝑖𝑛	
  
2nd	
  gear	
  coordinate	
   𝑥! = 6.33625𝑖𝑛	
  
2nd	
  gear	
  pitch	
  radius	
  
𝑦! =
𝑑!
2
=
4.6𝑖𝑛
2
= 2.3𝑖𝑛	
  
Right-­‐side	
  bearing	
  reaction	
  (axial)	
   𝑅!" = 𝐹!! − 𝐹!" = 274  𝑙𝑏𝑓	
  
Right-­‐side	
  bearing	
  reaction	
  (vertical)	
  
𝑅!" =
1
𝑥!
𝑥! 𝐹!! + 𝑦! 𝐹!! + 𝑥! 𝐹!" − 𝑦! 𝐹!" = 287  𝑙𝑏𝑓	
  
Right-­‐side	
  bearing	
  reaction	
  (horizontal)	
  
𝑅!" =
1
𝑥!
𝑥! 𝐹!" − 𝑥! 𝐹!! = 85  𝑙𝑏𝑓	
  
Left-­‐side	
  bearing	
  reaction	
  (vertical)	
   𝑅!" = 𝐹!! + 𝐹!" − 𝑅!" = 197  𝑙𝑏𝑓	
  
Left-­‐side	
  bearing	
  reaction	
  (horizontal)	
   𝑅!" = 𝐹!" − 𝐹!! − 𝑅!" = −359  𝑙𝑏𝑓	
  
Diameter	
  of	
  3rd	
  gear	
   𝑑! = 5.6𝑖𝑛	
  
Tangential	
  tooth	
  force	
  at	
  3rd	
  gear	
  
𝐹!! =
𝑑!
𝑑!
𝐹!" =
7  𝑖𝑛
5.6  𝑖𝑛
525  𝑙𝑏𝑓 = 656  𝑙𝑏𝑓	
  
Normal	
  tooth	
  force	
  at	
  3rd	
  gear	
  
𝐹! =
𝐹!!
cos ϕ! cos  (ψ)
=
656  𝑙𝑏𝑓
cos 14.5 cos  (45)
= 959  𝑙𝑏𝑓	
  
Radial	
  tooth	
  force	
  at	
  3rd	
  gear	
   𝐹!! = 𝐹! sin ϕ! = 959  𝑙𝑏𝑓 sin 14.5 = 240  𝑙𝑏𝑓	
  
Axial	
  tooth	
  force	
  at	
  3rd	
  gear	
   𝐹!! = 𝐹! cos ϕ! sin ψ = 959  𝑙𝑏𝑓 cos 14.5 sin 45 = 656  𝑙𝑏𝑓	
  
3rd	
  gear	
  torque	
  
𝑇! = 𝐹!!
𝑑!
2
= 656  𝑙𝑏𝑓
5.6𝑖𝑛
2
= 1838  𝑙𝑏𝑓𝑖𝑛	
  
3rd	
  gear	
  output	
  torque	
  
𝑇!! = 𝐹!!
𝑑!!
2
= 656  𝑙𝑏𝑓
6.2𝑖𝑛
2
= 2034  𝑙𝑏𝑓𝑖𝑛	
  
3rd	
  gear	
  coordinate	
   𝑥! = 7.03125𝑖𝑛	
  
3rd	
  gear	
  pitch	
  radius	
  
𝑦! =
𝑑!
2
=
5.6𝑖𝑛
2
= 2.8𝑖𝑛	
  
Right-­‐side	
  bearing	
  reaction	
  (axial)	
   𝑅!" = 𝐹!! − 𝐹!" = 131𝑙𝑏𝑓	
  
Right-­‐side	
  bearing	
  reaction	
  (vertical)	
  
𝑅!" =
1
𝑥!
𝑥! 𝐹!! + 𝑦! 𝐹!! + 𝑥! 𝐹!" − 𝑦! 𝐹!" = 276𝑙𝑏𝑓	
  
Right-­‐side	
  bearing	
  reaction	
  (horizontal)	
  
𝑅!" =
1
𝑥!
𝑥! 𝐹!" − 𝑥! 𝐹!! = 116𝑙𝑏𝑓	
  
Left-­‐side	
  bearing	
  reaction	
  (vertical)	
   𝑅!" = 𝐹!! + 𝐹!" − 𝑅!" = 156𝑙𝑏𝑓	
  
Left-­‐side	
  bearing	
  reaction	
  (horizontal)	
   𝑅!" = 𝐹!" − 𝐹!! − 𝑅!" = −247𝑙𝑏𝑓	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  10	
  
The	
  following	
  images	
  show	
  the	
  shear	
  and	
  bending	
  moments	
  of	
  all	
  the	
  gears	
  in	
  order.	
  
	
  
  11	
  
	
  
  12	
  
	
  
  13	
  
	
  
  14	
  
	
  
  15	
  
	
  
  16	
  
	
  
	
  
	
  
	
  
	
  
	
  
  17	
  
	
  
4.2	
  Estimated	
  Performance	
  	
  
	
  
The	
  following	
  images	
  are	
  the	
  results	
  for	
  all	
  the	
  gears	
  in	
  the	
  transmission.	
  
	
  
	
  
1st	
  gear	
  results.	
  
	
  
	
  
1st	
  gear	
  output	
  results	
  
	
  
  18	
  
	
  
2nd	
  gear	
  results.	
  
	
  
	
  
2nd	
  gear	
  output	
  results.	
  
	
  
  19	
  
	
  
3rd	
  gear	
  results.	
  
	
  
	
  
3rd	
  gear	
  output	
  results.	
  
	
  
  20	
  
	
  
Drive	
  gear	
  results.	
  
	
  
	
  
Input	
  gear	
  results.	
  
	
  
When	
  comparing	
  the	
  torque	
  calculations	
  in	
  4.1	
  to	
  the	
  rush	
  gear	
  results	
  above	
  for	
  each	
  gear,	
  
it	
  is	
  clear	
  that	
  the	
  gear	
  will	
  be	
  strong	
  enough	
  to	
  handle	
  the	
  transmitted	
  torque.	
  
	
  
4.3	
  Countershaft	
  Bearings	
  
	
  
Since our countershaft at the design point spins at 1371 RPMs, we must select bearings that are
rated for speeds greater than 1371RPMs. Since the radial loads at location A equals:
𝑅!" =      𝑅!"! + 𝑅!"!   + 𝑅!"! = 788 lbf+359 lbf +247 lbf= 1394 lbf
  21	
  
𝑅!" =      𝑅!"! + 𝑅!"!   + 𝑅!"! = 354 lbf+197 lbf +156 lbf= 707 lbf
Since 1394 lbf >707 lbf, we need to select a bearing that can handle that is rated for more than
1394 lbf of dynamic loading. Since we have only radial loads at point A and 𝜔 > 100 RPMS, we
chose to use a double sealed ball bearing. The one chosen is rated up to 2500 RPMs, has a
maximum dynamic load capacity of 1480 lbf and its designed for a 1in diameter shaft.
Now we analyze the bearing at point B. Since point B has axial and radial loading, we chose to
use a tapered-roller bearing. First we will analyze the radial loading.
𝑅!" =      𝑅!"! + 𝑅!"!   + 𝑅!"! = 292 lbf+85 lbf +116 lbf= 493 lbf
𝑅!" =      𝑅!"! + 𝑅!"!   + 𝑅!"! =211 lbf+287 lbf +276 lbf= 774 lbf
Since 774 lbf >493 lbf, we need to choose a bearing that can handle more than 774 lbf radially.
Now we will analyze the axial loading
𝑅!" =      𝑅!"! + 𝑅!"!   + 𝑅!"! =496 lbf+274 lbf +131 lbf= 901 lbf
So we need a bearing that can handle more than 901 lbf axially and 774 lbf radially. Because of
this we chose a tapered steel roller bearing with a maximum radial dynamic load rating of 2,130
lbf, a maximum axially axial dynamic load rating of 1,500 lbf and is designed for a shaft with a
diameter of 1.25 in.
	
  
4.4	
  Countershaft	
  Critical	
  Locations	
  
	
  
Critical	
  locations	
  occur	
  at	
  locations,	
  which	
  undergo	
  high	
  bending	
  moments,	
  high	
  stress	
  
concentrations,	
  small	
  cross	
  sectional	
  area,	
  and/or	
  heavy	
  torque.	
  	
  Throughout	
  the	
  
countershaft	
  design	
  there	
  are	
  several	
  critical	
  locations	
  that	
  can	
  be	
  recognized.	
  	
  These	
  
locations	
  include	
  key	
  ways,	
  snap	
  ring	
  grooves,	
  and	
  shoulders.	
  	
  The	
  keyways	
  and	
  keys	
  
themselves	
  have	
  a	
  very	
  small	
  cross	
  sectional	
  area	
  and	
  the	
  gears	
  are	
  torqueing	
  the	
  keys.	
  The	
  
snap	
  rings	
  are	
  critical	
  locations	
  because	
  they	
  involve	
  keeping	
  the	
  gears	
  from	
  walking	
  
around	
  on	
  the	
  countershaft.	
  
4.5	
  Theoretical	
  Critical	
  Locations	
  
	
  
The	
  Mcomp	
  graph	
  image	
  in	
  section	
  4.1	
  will	
  be	
  used	
  to	
  find	
  the	
  correct	
  moment	
  values	
  used	
  
for	
  the	
  analysis	
  of	
  the	
  critical	
  locations.	
  	
  This	
  section	
  is	
  used	
  primarily	
  to	
  determine	
  what	
  
material	
  and	
  dimensions	
  of	
  the	
  countershaft	
  should	
  be	
  used	
  in	
  order	
  for	
  the	
  shaft	
  to	
  be	
  
strong	
  enough	
  for	
  the	
  applied	
  forces.	
  	
  Tables	
  and	
  equations	
  were	
  all	
  found	
  in	
  the	
  McGraw-­‐
Hill	
  textbook.	
  	
  	
  
	
  
First	
  we	
  will	
  analyze	
  the	
  critical	
  point	
  at	
  the	
  shoulder	
  to	
  the	
  right	
  of	
  gear	
  3.	
  	
  The	
  material	
  
used	
  for	
  the	
  countershaft	
  was	
  AISI	
  1045	
  steel	
  CD	
  with	
  a	
  diameter,	
  d=	
  1in.	
  From	
  the	
  material	
  
properties	
  in	
  Solid	
  Works,	
  Sut=	
  91kpsi,	
  and	
  Sy=	
  77kpsi.	
  	
  In	
  order	
  to	
  find	
  Se	
  we	
  must	
  find	
  ka	
  &	
  
  22	
  
kb	
  first.	
  	
  From	
  table	
  6-­‐2	
  for	
  cold	
  drawn	
  finish	
  we	
  get,	
  a=	
  2.7	
  &	
  b=	
  -­‐0.265.	
  	
  	
  From	
  Eq.	
  6-­‐19,20	
  
we	
  get:	
  
	
  
𝑘! = 𝑎𝑆!"
!
	
  
𝑘! = 2.7(91𝑘𝑝𝑠𝑖)!!.!"#
	
  
𝑘! = 0.817	
  
𝑘! = 0.879𝑑!!.!"#
	
  
𝑘! = 0.879(1𝑖𝑛)!!.!"#
	
  
𝑘! = 0.879	
  
	
  
𝑆! = 𝑘! 𝑘!
𝑆!"
2
	
  
𝑆! = (0.817)(0.879)
91𝑘𝑝𝑠𝑖
2
	
  
𝑆! = 32.68  𝑘𝑝𝑠𝑖	
  
	
  
For	
  the	
  shoulder	
  at	
  gear	
  3,	
  its	
  estimated	
  that	
  Ma=	
  2000lbf	
  in.	
  	
  Using	
  
!
!
= 1.5𝑖𝑛  &  
!
!
=
0.1𝑖𝑛,  gives	
  kt=	
  1.65,	
  and	
  kts=	
  1.425	
  when	
  using	
  table	
  A15-­‐7,8.	
  	
  Next	
  from	
  figure	
  6-­‐20,21	
  q=	
  
0.825,	
  and	
  qs=	
  0.84.	
  	
  All	
  these	
  values	
  will	
  now	
  be	
  used	
  in	
  Eq.	
  6-­‐32:	
  
	
  
𝑘! = 1 + 𝑞 𝑘! − 1 	
  
𝑘! = 1 + 0.825 1.65 − 1 	
  
𝑘! = 1.53625	
  
	
  
𝑘!" = 1 + 𝑞 𝑘!" − 1 	
  
𝑘!" = 1 + 0.84 1.425 − 1 	
  
𝑘!" = 1.357	
  
	
  
Next	
  the	
  Alternating	
  and	
  Midrange	
  Von	
  Mises	
  Stresses	
  will	
  be	
  solved	
  for	
  with	
  all	
  the	
  given	
  
values	
  from	
  above.	
  
	
  
σ!
!
=
32𝑘! 𝑀!
π𝑑!
	
  
σ!
!
=
32(1.53625)(2000  𝑙𝑏𝑓  𝑖𝑛)
π(1𝑖𝑛)!
	
  
σ!
!
= 31.296  𝑘𝑝𝑠𝑖	
  
	
  
σ!
!
= 3
16𝑘!" 𝑇!
π𝑑!
	
  
σ!
!
= 3
16(1.357)(1838  𝑙𝑏𝑓  𝑖𝑛)
π(1𝑖𝑛)!
	
  
σ!
!
= 22.002  𝑘𝑝𝑠𝑖	
  
	
  
Finally	
  the	
  fatigue	
  factor	
  of	
  safety	
  and	
  Langer	
  will	
  be	
  calculated:	
  
	
  
1
𝑛!
=
σ!
!
𝑆!
+
σ!
!
𝑆!"
	
  
  23	
  
1
𝑛!
=
31.296  𝑘𝑝𝑠𝑖
32.68  𝑘𝑝𝑠𝑖
+
22.002  𝑘𝑝𝑠𝑖
91  𝑘𝑝𝑠𝑖
	
  
𝑛! = 0.834	
  
	
  
1
𝑛!
=
σ!
!
𝑆!
+
σ!
!
𝑆!
	
  
1
𝑛!
=
31.296  𝑘𝑝𝑠𝑖
77  𝑘𝑝𝑠𝑖
+
22.002  𝑘𝑝𝑠𝑖
77  𝑘𝑝𝑠𝑖
	
  
𝑛! = 1.44	
  
	
  
These	
  are	
  not	
  acceptable	
  factors	
  of	
  safety	
  for	
  the	
  shoulder	
  to	
  the	
  right	
  of	
  gear	
  3.	
  	
  The	
  target	
  
factor	
  of	
  safety	
  was	
  at	
  least	
  1.75.	
  	
  In	
  order	
  to	
  obtain	
  this	
  factor	
  of	
  safety	
  the	
  material	
  of	
  the	
  
countershaft	
  could	
  be	
  changed	
  to	
  a	
  stronger	
  material	
  but	
  more	
  importantly	
  the	
  diameter	
  of	
  
1in	
  should	
  be	
  increased.	
  	
  Next	
  we	
  will	
  find	
  the	
  Alternating/Midrange	
  Von	
  Mises	
  Stresses	
  
and	
  fatigue/Langer	
  factors	
  of	
  safety	
  of	
  the	
  shoulder	
  to	
  the	
  right	
  of	
  the	
  drive	
  gear.	
  	
  At	
  this	
  
point	
  it	
  is	
  estimated	
  that	
  Ma=	
  690	
  lbf	
  in	
  and	
  the	
  midrange	
  stress	
  is	
  equal	
  to	
  the	
  previous	
  
shoulders.	
  
	
  
σ!
!
=
32𝑘! 𝑀!
π𝑑!
	
  
σ!
!
=
32(1.53625)(690  𝑙𝑏𝑓  𝑖𝑛)
π(1𝑖𝑛)!
	
  
σ!
!
= 10.8  𝑘𝑝𝑠𝑖	
  
	
  
1
𝑛!
=
σ!
!
𝑆!
+
σ!
!
𝑆!"
	
  
1
𝑛!
=
10.8  𝑘𝑝𝑠𝑖
32.68  𝑘𝑝𝑠𝑖
+
22.002  𝑘𝑝𝑠𝑖
91  𝑘𝑝𝑠𝑖
	
  
𝑛! = 1.75	
  
	
  
1
𝑛!
=
σ!
!
𝑆!
+
σ!
!
𝑆!
	
  
1
𝑛!
=
10.8  𝑘𝑝𝑠𝑖
77  𝑘𝑝𝑠𝑖
+
22.002  𝑘𝑝𝑠𝑖
77  𝑘𝑝𝑠𝑖
	
  
𝑛! = 2.35	
  
	
  
These	
  are	
  acceptable	
  factors	
  of	
  safety	
  for	
  the	
  shoulder	
  to	
  the	
  right	
  of	
  the	
  drive	
  gear.	
  	
  The	
  
target	
  factor	
  of	
  safety	
  was	
  at	
  least	
  1.75,	
  which	
  was	
  just	
  obtained.	
  	
  Next	
  we	
  will	
  find	
  the	
  
Alternating	
  Von	
  Mises	
  Stresses	
  and	
  fatigue/Langer	
  factor	
  of	
  safety	
  of	
  the	
  snap	
  ring	
  groove	
  
closest	
  to	
  gear	
  1,	
  directly	
  to	
  the	
  right	
  of	
  the	
  bearing.	
  	
  For	
  this	
  snap	
  ring	
  groove,	
  its	
  estimated	
  
that	
  Ma=	
  200lbf	
  in.	
  	
  Using	
  
!
!
= 0.2𝑖𝑛  &  
!
!
=
!.!
!.!
= 1.2,  gives	
  kt=	
  4.35	
  when	
  using	
  table	
  A15-­‐16.	
  	
  
Next	
  from	
  figure	
  6-­‐20,21	
  q=	
  0.58,	
  when	
  using	
  r=	
  (0.2)(0.5)=	
  0.1.	
  	
  All	
  these	
  values	
  will	
  now	
  
be	
  used	
  in	
  Eq.	
  6-­‐32:	
  
	
  
𝑘! = 1 + 𝑞 𝑘! − 1 	
  
𝑘! = 1 + 0.58 4.35 − 1 	
  
𝑘! = 2.943	
  
  24	
  
	
  
Next	
  the	
  Alternating	
  Von	
  Mises	
  Stresses	
  will	
  be	
  solved	
  for	
  with	
  all	
  the	
  given	
  values	
  from	
  
above.	
  	
  	
  
	
  
σ!
!
=
32𝑘! 𝑀!
π𝑑!
	
  
σ!
!
=
32(2.943)(200  𝑙𝑏𝑓  𝑖𝑛)
π(1𝑖𝑛)!
	
  
σ!
!
= 6  𝑘𝑝𝑠𝑖	
  
	
  
Finally	
  the	
  fatigue/Langer	
  factor	
  of	
  safety	
  will	
  be	
  calculated,	
  since	
  there	
  is	
  no	
  torque	
  acting	
  
at	
  this	
  location	
  the	
  midrange	
  stress	
  is	
  equal	
  to	
  zero:	
  
	
  
1
𝑛!
=
σ!
!
𝑆!
+
σ!
!
𝑆!"
	
  
1
𝑛!
=
σ!
!
𝑆!
	
  
1
𝑛!
=
6  𝑘𝑝𝑠𝑖
32.68  𝑘𝑝𝑠𝑖
	
  
𝑛! = 5.45	
  
	
  
1
𝑛!
=
σ!
!
𝑆!
+
σ!
!
𝑆!
	
  
1
𝑛!
=
σ!
!
𝑆!
	
  
1
𝑛!
=
6  𝑘𝑝𝑠𝑖
77  𝑘𝑝𝑠𝑖
	
  
𝑛! = 12.8	
  
	
  
	
  
	
  
These	
  exceed	
  the	
  acceptable	
  factor	
  of	
  safety	
  for	
  the	
  snap	
  ring	
  groove	
  to	
  the	
  right	
  of	
  the	
  
bearing	
  closest	
  to	
  gear	
  1.	
  	
  The	
  target	
  factor	
  of	
  safety	
  was	
  at	
  least	
  1.75.	
  	
  Next	
  we	
  will	
  find	
  the	
  
Alternating	
  Von	
  Mises	
  Stresses	
  and	
  fatigue/Langer	
  factor	
  of	
  safety	
  of	
  the	
  snap	
  ring	
  groove	
  
to	
  the	
  right	
  of	
  the	
  bearing	
  closest	
  to	
  the	
  drive	
  gear.	
  	
  At	
  this	
  point	
  it	
  is	
  estimated	
  that	
  Ma=	
  600	
  
lbf	
  in.	
  
	
  
σ!
!
=
32𝑘! 𝑀!
π𝑑!
	
  
σ!
!
=
32(2.943)(600  𝑙𝑏𝑓  𝑖𝑛)
π(1𝑖𝑛)!
	
  
σ!
!
= 18  𝑘𝑝𝑠𝑖	
  
	
  
Finally	
  the	
  fatigue/Langer	
  factor	
  of	
  safety	
  will	
  be	
  calculated,	
  since	
  there	
  is	
  no	
  torque	
  acting	
  
at	
  this	
  location	
  the	
  midrange	
  stress	
  is	
  equal	
  to	
  zero:	
  
	
  
1
𝑛!
=
σ!
!
𝑆!
+
σ!
!
𝑆!"
	
  
  25	
  
1
𝑛!
=
σ!
!
𝑆!
	
  
1
𝑛!
=
18  𝑘𝑝𝑠𝑖
32.68  𝑘𝑝𝑠𝑖
	
  
𝑛! = 1.82	
  
	
  
1
𝑛!
=
σ!
!
𝑆!
+
σ!
!
𝑆!
	
  
1
𝑛!
=
σ!
!
𝑆!
	
  
1
𝑛!
=
18  𝑘𝑝𝑠𝑖
77  𝑘𝑝𝑠𝑖
	
  
𝑛! = 4.28	
  
	
  
	
  
These	
  are	
  acceptable	
  factors	
  of	
  safety	
  for	
  the	
  snap	
  ring	
  groove	
  to	
  the	
  right	
  of	
  the	
  bearing	
  
closest	
  to	
  the	
  drive	
  gear.	
  	
  The	
  target	
  factor	
  of	
  safety	
  was	
  at	
  least	
  1.75.	
  
	
  
4.6	
  Theoretical	
  Keys	
  
	
  
Next	
  we	
  will	
  analyze	
  the	
  keyway	
  critical	
  location	
  at	
  gear	
  2,	
  all	
  keyways	
  are	
  critical	
  locations	
  
but	
  the	
  keyway	
  here	
  has	
  the	
  highest	
  bending	
  moment.	
  	
  At	
  this	
  point	
  its	
  estimated	
  that	
  Ma=	
  
2500lbf	
  in.	
  	
  Using	
  
!
!
= 0.02𝑖𝑛,  gives	
  kt=	
  2.14,	
  and	
  kts=	
  3.0	
  when	
  using	
  table	
  7-­‐1.	
  	
  Next	
  from	
  
figure	
  6-­‐20,21	
  q=	
  0.65,	
  and	
  qs=	
  0.7.	
  	
  All	
  these	
  values	
  will	
  now	
  be	
  used	
  in	
  Eq.	
  6-­‐32:	
  
	
  
𝑘! = 1 + 𝑞 𝑘! − 1 	
  
𝑘! = 1 + 0.65 2.14 − 1 	
  
𝑘! = 1.741	
  
	
  
𝑘!" = 1 + 𝑞 𝑘!" − 1 	
  
𝑘!" = 1 + 0.7 3.0 − 1 	
  
𝑘!" = 2.4	
  
	
  
Next	
  the	
  Alternating	
  and	
  Midrange	
  Von	
  Mises	
  Stresses	
  will	
  be	
  solved	
  for	
  with	
  all	
  the	
  given	
  
values	
  from	
  above.	
  
	
  
σ!
!
=
32𝑘! 𝑀!
π𝑑!
	
  
σ!
!
=
32(1.741)(2500  𝑙𝑏𝑓  𝑖𝑛)
π(1𝑖𝑛)!
	
  
σ!
!
= 44.33  𝑘𝑝𝑠𝑖	
  
	
  
σ!
!
= 3
16𝑘!" 𝑇!
π𝑑!
	
  
σ!
!
= 3
16(2.4)(1838  𝑙𝑏𝑓  𝑖𝑛)
π(1𝑖𝑛)!
	
  
  26	
  
σ!
!
= 38.91  𝑘𝑝𝑠𝑖	
  
	
  
Finally	
  the	
  fatigue	
  factor	
  of	
  safety	
  and	
  Langer	
  will	
  be	
  calculated:	
  
	
  
1
𝑛!
=
σ!
!
𝑆!
+
σ!
!
𝑆!"
	
  
1
𝑛!
=
44.33  𝑘𝑝𝑠𝑖
32.68  𝑘𝑝𝑠𝑖
+
38.91  𝑘𝑝𝑠𝑖
91  𝑘𝑝𝑠𝑖
	
  
𝑛! = 0.56	
  
	
  
1
𝑛!
=
σ!
!
𝑆!
+
σ!
!
𝑆!
	
  
1
𝑛!
=
44.33  𝑘𝑝𝑠𝑖
77  𝑘𝑝𝑠𝑖
+
38.91  𝑘𝑝𝑠𝑖
77  𝑘𝑝𝑠𝑖
	
  
𝑛! = 0.93	
  
	
  
These	
  are	
  not	
  acceptable	
  factors	
  of	
  safety	
  for	
  the	
  keyway	
  at	
  gear	
  2.	
  	
  The	
  target	
  factor	
  of	
  
safety	
  was	
  at	
  least	
  1.1.	
  	
  In	
  order	
  to	
  obtain	
  this	
  factor	
  of	
  safety	
  the	
  material	
  of	
  the	
  
countershaft	
  could	
  be	
  changed	
  to	
  a	
  stronger	
  material	
  but	
  more	
  importantly	
  the	
  diameter	
  of	
  
1in	
  should	
  be	
  increased.	
  	
  Finally	
  we	
  will	
  calculate	
  the	
  static	
  failure	
  factor	
  of	
  safety	
  for	
  the	
  
keys.	
  	
  The	
  keys	
  used	
  had	
  a	
  length	
  and	
  width	
  of	
  0.065	
  and	
  0.25	
  inches.	
  	
  The	
  key	
  is	
  made	
  out	
  
of	
  316	
  stainless	
  steel	
  which	
  has	
  a	
  σy=	
  30	
  kpsi.	
  
	
  
𝑉 =
2𝑇!
𝑑
=
2(1838  𝑙𝑏𝑓  𝑖𝑛)
1𝑖𝑛
= 3.7  𝑘𝑝𝑠𝑖	
  
τ =
𝑉
ℎ𝑙
=
3.7  𝑘𝑝𝑠𝑖
(0.065𝑖𝑛)(0.25𝑖𝑛)
= 226  𝑘𝑝𝑠𝑖	
  
𝑛!"" =
σ!
2τ
=
30  𝑘𝑝𝑠𝑖
2(226  𝑘𝑝𝑠𝑖)
= 15.1	
  
	
  
This	
  factor	
  of	
  safety	
  exceeds	
  the	
  target	
  factor	
  of	
  safety	
  at	
  1.1.	
  	
  	
  
	
  
	
  
	
  
	
  

More Related Content

What's hot

354 2 Jetta 2006.pdf
354 2 Jetta 2006.pdf354 2 Jetta 2006.pdf
354 2 Jetta 2006.pdf
jcarrey
 
Dissertation - Design of a Formula Student Race Car Spring, Damper and Anti-R...
Dissertation - Design of a Formula Student Race Car Spring, Damper and Anti-R...Dissertation - Design of a Formula Student Race Car Spring, Damper and Anti-R...
Dissertation - Design of a Formula Student Race Car Spring, Damper and Anti-R...
Keiran Stigant
 
Suspensión mecánica v
Suspensión mecánica vSuspensión mecánica v
Suspensión mecánica v
Angel Yañez
 
E.stf. diapositivas 02. embragues y convertidores de par.reducido
E.stf. diapositivas 02. embragues y convertidores de par.reducidoE.stf. diapositivas 02. embragues y convertidores de par.reducido
E.stf. diapositivas 02. embragues y convertidores de par.reducido
Diego Algaba
 
76 Traccion total con embrague Haldex.pdf
76 Traccion total con embrague Haldex.pdf76 Traccion total con embrague Haldex.pdf
76 Traccion total con embrague Haldex.pdf
jcarrey
 
Curso sistemas-transmision-caterpillar-tren-potencia-tipos-componentes-contro...
Curso sistemas-transmision-caterpillar-tren-potencia-tipos-componentes-contro...Curso sistemas-transmision-caterpillar-tren-potencia-tipos-componentes-contro...
Curso sistemas-transmision-caterpillar-tren-potencia-tipos-componentes-contro...
Marcos ....
 
M12 sistema electrico_de_potencia
M12 sistema electrico_de_potenciaM12 sistema electrico_de_potencia
M12 sistema electrico_de_potencia
Alejandro Bepmale
 

What's hot (20)

354 2 Jetta 2006.pdf
354 2 Jetta 2006.pdf354 2 Jetta 2006.pdf
354 2 Jetta 2006.pdf
 
Tren motriz
Tren motrizTren motriz
Tren motriz
 
Embrague
EmbragueEmbrague
Embrague
 
Automotive Systems course (Module 08) - Starting Systems for road vehicles
Automotive Systems course (Module 08) - Starting Systems for road vehiclesAutomotive Systems course (Module 08) - Starting Systems for road vehicles
Automotive Systems course (Module 08) - Starting Systems for road vehicles
 
Dissertation - Design of a Formula Student Race Car Spring, Damper and Anti-R...
Dissertation - Design of a Formula Student Race Car Spring, Damper and Anti-R...Dissertation - Design of a Formula Student Race Car Spring, Damper and Anti-R...
Dissertation - Design of a Formula Student Race Car Spring, Damper and Anti-R...
 
Suspensión mecánica v
Suspensión mecánica vSuspensión mecánica v
Suspensión mecánica v
 
E.stf. diapositivas 02. embragues y convertidores de par.reducido
E.stf. diapositivas 02. embragues y convertidores de par.reducidoE.stf. diapositivas 02. embragues y convertidores de par.reducido
E.stf. diapositivas 02. embragues y convertidores de par.reducido
 
Toyota 42 5fg25 forklift service repair manual
Toyota 42 5fg25 forklift service repair manualToyota 42 5fg25 forklift service repair manual
Toyota 42 5fg25 forklift service repair manual
 
2003 nissan frontier service repair manual
2003 nissan frontier service repair manual2003 nissan frontier service repair manual
2003 nissan frontier service repair manual
 
Design Report - ESI 2017
Design Report - ESI 2017Design Report - ESI 2017
Design Report - ESI 2017
 
Clutch
ClutchClutch
Clutch
 
76 Traccion total con embrague Haldex.pdf
76 Traccion total con embrague Haldex.pdf76 Traccion total con embrague Haldex.pdf
76 Traccion total con embrague Haldex.pdf
 
Automatic Transmission
Automatic TransmissionAutomatic Transmission
Automatic Transmission
 
Curso sistemas-transmision-caterpillar-tren-potencia-tipos-componentes-contro...
Curso sistemas-transmision-caterpillar-tren-potencia-tipos-componentes-contro...Curso sistemas-transmision-caterpillar-tren-potencia-tipos-componentes-contro...
Curso sistemas-transmision-caterpillar-tren-potencia-tipos-componentes-contro...
 
M12 sistema electrico_de_potencia
M12 sistema electrico_de_potenciaM12 sistema electrico_de_potencia
M12 sistema electrico_de_potencia
 
Chap94
Chap94Chap94
Chap94
 
Rear wheel steering system ppt
Rear wheel steering system pptRear wheel steering system ppt
Rear wheel steering system ppt
 
Nomenclatura de motores
Nomenclatura de motoresNomenclatura de motores
Nomenclatura de motores
 
Manual sistema-suspension-neumatica-4-niveles-audi-quattro-estrategias-regula...
Manual sistema-suspension-neumatica-4-niveles-audi-quattro-estrategias-regula...Manual sistema-suspension-neumatica-4-niveles-audi-quattro-estrategias-regula...
Manual sistema-suspension-neumatica-4-niveles-audi-quattro-estrategias-regula...
 
UNIT IV STEERING, BRAKES AND SUSPENSION SYSTEMS
UNIT IV    STEERING, BRAKES AND SUSPENSION SYSTEMS	UNIT IV    STEERING, BRAKES AND SUSPENSION SYSTEMS
UNIT IV STEERING, BRAKES AND SUSPENSION SYSTEMS
 

Viewers also liked

5years _transmission design engineer
5years _transmission design engineer5years _transmission design engineer
5years _transmission design engineer
showkath ali
 
Automatic manual transmission
Automatic manual transmissionAutomatic manual transmission
Automatic manual transmission
Manish Dhiman
 

Viewers also liked (15)

5years _transmission design engineer
5years _transmission design engineer5years _transmission design engineer
5years _transmission design engineer
 
Nine speed transmission design
Nine speed transmission designNine speed transmission design
Nine speed transmission design
 
004 major transmission components
004 major transmission components004 major transmission components
004 major transmission components
 
Automotive Noise and Vibration Congress 2016
Automotive Noise and Vibration Congress 2016Automotive Noise and Vibration Congress 2016
Automotive Noise and Vibration Congress 2016
 
Manual Transmission in Automotive
Manual Transmission in AutomotiveManual Transmission in Automotive
Manual Transmission in Automotive
 
Transmission In Maruti cars
Transmission In Maruti carsTransmission In Maruti cars
Transmission In Maruti cars
 
AUTOMATED MANUAL TRANSMISSION
AUTOMATED MANUAL TRANSMISSIONAUTOMATED MANUAL TRANSMISSION
AUTOMATED MANUAL TRANSMISSION
 
Automotive Systems course (Module 06) - Power Transmission Systems in road ve...
Automotive Systems course (Module 06) - Power Transmission Systems in road ve...Automotive Systems course (Module 06) - Power Transmission Systems in road ve...
Automotive Systems course (Module 06) - Power Transmission Systems in road ve...
 
Automatic manual transmission
Automatic manual transmissionAutomatic manual transmission
Automatic manual transmission
 
Gear train
Gear trainGear train
Gear train
 
Study of Gear Technology
Study of Gear TechnologyStudy of Gear Technology
Study of Gear Technology
 
Gears and Gear Trains
Gears and Gear Trains Gears and Gear Trains
Gears and Gear Trains
 
Chap 5
Chap 5Chap 5
Chap 5
 
Gear and Gear trains ppt
Gear and Gear trains pptGear and Gear trains ppt
Gear and Gear trains ppt
 
Gear trains
Gear trainsGear trains
Gear trains
 

Similar to Transmission Design Report

Zero Turn Radius Presentation - Team Panache
Zero Turn Radius Presentation - Team PanacheZero Turn Radius Presentation - Team Panache
Zero Turn Radius Presentation - Team Panache
Siddhesh Ozarkar
 
Derek Oung 2015 NFR Wheel Center Design Documentation
Derek Oung 2015 NFR Wheel Center Design DocumentationDerek Oung 2015 NFR Wheel Center Design Documentation
Derek Oung 2015 NFR Wheel Center Design Documentation
Derek Oung
 
Derek Oung 2014 NFR Steering Design Documentation
Derek Oung 2014 NFR Steering Design DocumentationDerek Oung 2014 NFR Steering Design Documentation
Derek Oung 2014 NFR Steering Design Documentation
Derek Oung
 
Design and development of a six tool turret using Geneva Mechanism
Design and development of a six tool turret using Geneva MechanismDesign and development of a six tool turret using Geneva Mechanism
Design and development of a six tool turret using Geneva Mechanism
Sundar Bhattacharjee
 
35004182 manual-de-taller-jeep-cherokee-seccion-95 xj-21
35004182 manual-de-taller-jeep-cherokee-seccion-95 xj-2135004182 manual-de-taller-jeep-cherokee-seccion-95 xj-21
35004182 manual-de-taller-jeep-cherokee-seccion-95 xj-21
Carlos Gutierrez Martinez
 
Rice Transporter Robot Project Report
Rice Transporter Robot Project ReportRice Transporter Robot Project Report
Rice Transporter Robot Project Report
Kristopher Brown
 
FinalProject_Report_ADEKT
FinalProject_Report_ADEKTFinalProject_Report_ADEKT
FinalProject_Report_ADEKT
Ajinkya Shewale
 
Final Robot Report
Final Robot ReportFinal Robot Report
Final Robot Report
Yuji Heid
 

Similar to Transmission Design Report (20)

Zero Turn Radius Presentation - Team Panache
Zero Turn Radius Presentation - Team PanacheZero Turn Radius Presentation - Team Panache
Zero Turn Radius Presentation - Team Panache
 
Crane Gearbox Helical/Planetary train
Crane Gearbox Helical/Planetary trainCrane Gearbox Helical/Planetary train
Crane Gearbox Helical/Planetary train
 
Derek Oung 2015 NFR Wheel Center Design Documentation
Derek Oung 2015 NFR Wheel Center Design DocumentationDerek Oung 2015 NFR Wheel Center Design Documentation
Derek Oung 2015 NFR Wheel Center Design Documentation
 
Design of Helical Gear box
Design of Helical Gear boxDesign of Helical Gear box
Design of Helical Gear box
 
Derek Oung 2014 NFR Steering Design Documentation
Derek Oung 2014 NFR Steering Design DocumentationDerek Oung 2014 NFR Steering Design Documentation
Derek Oung 2014 NFR Steering Design Documentation
 
Romax Transmission Gearbox Design
Romax Transmission Gearbox DesignRomax Transmission Gearbox Design
Romax Transmission Gearbox Design
 
Design and development of a six tool turret using Geneva Mechanism
Design and development of a six tool turret using Geneva MechanismDesign and development of a six tool turret using Geneva Mechanism
Design and development of a six tool turret using Geneva Mechanism
 
Design and Development of Gear Test Rig
Design and Development of Gear Test RigDesign and Development of Gear Test Rig
Design and Development of Gear Test Rig
 
Design and Optimization of Steering System
Design and Optimization of Steering SystemDesign and Optimization of Steering System
Design and Optimization of Steering System
 
Analysis and Improvement of the Steering Characteristics of an ATV.
Analysis and Improvement of the Steering Characteristics of an ATV.Analysis and Improvement of the Steering Characteristics of an ATV.
Analysis and Improvement of the Steering Characteristics of an ATV.
 
35004182 manual-de-taller-jeep-cherokee-seccion-95 xj-21
35004182 manual-de-taller-jeep-cherokee-seccion-95 xj-2135004182 manual-de-taller-jeep-cherokee-seccion-95 xj-21
35004182 manual-de-taller-jeep-cherokee-seccion-95 xj-21
 
KHK Gears Technical Reference.pdf
KHK Gears Technical Reference.pdfKHK Gears Technical Reference.pdf
KHK Gears Technical Reference.pdf
 
Rice Transporter Robot Project Report
Rice Transporter Robot Project ReportRice Transporter Robot Project Report
Rice Transporter Robot Project Report
 
Alignment 2020 ok
Alignment 2020 okAlignment 2020 ok
Alignment 2020 ok
 
Gearbox design
Gearbox designGearbox design
Gearbox design
 
B029010016
B029010016B029010016
B029010016
 
FinalProject_Report_ADEKT
FinalProject_Report_ADEKTFinalProject_Report_ADEKT
FinalProject_Report_ADEKT
 
TM 9-1803B
TM 9-1803BTM 9-1803B
TM 9-1803B
 
gear.pdf
gear.pdfgear.pdf
gear.pdf
 
Final Robot Report
Final Robot ReportFinal Robot Report
Final Robot Report
 

More from Ryland Ballingham (11)

FEA_project1
FEA_project1FEA_project1
FEA_project1
 
MOMLabFinalProject-1
MOMLabFinalProject-1MOMLabFinalProject-1
MOMLabFinalProject-1
 
LabReport5
LabReport5LabReport5
LabReport5
 
LabReport4
LabReport4LabReport4
LabReport4
 
Lab3report
Lab3reportLab3report
Lab3report
 
LabReport2
LabReport2LabReport2
LabReport2
 
Ballingham_Levine_FinalProject
Ballingham_Levine_FinalProjectBallingham_Levine_FinalProject
Ballingham_Levine_FinalProject
 
Ballingham_Severance_Lab4
Ballingham_Severance_Lab4Ballingham_Severance_Lab4
Ballingham_Severance_Lab4
 
ControlsLab1
ControlsLab1ControlsLab1
ControlsLab1
 
ControlsLab2
ControlsLab2ControlsLab2
ControlsLab2
 
Staircase Design Report
Staircase Design ReportStaircase Design Report
Staircase Design Report
 

Transmission Design Report

  • 1.       4-­‐Speed  Transmission   10/20/15     Group  44   Ryan  Rampolla     Ryland  Ballingham   Dr.  Griffis                      
  • 2.   2   Table  of  Contents   1.0  Preliminary  Need  .............................................................................................................  3   2.0  Preliminary  Specifications  ............................................................................................  3   2.1  Constraints  Imposed  by  Boss  .................................................................................................  3   3.0  Design  ...................................................................................................................................  4   3.1  Countershaft  Assembly  ............................................................................................................  5   3.2  Countershaft  Layout  ..................................................................................................................  5   4.0  Theoretical  Overview  ......................................................................................................  6   4.1  Theoretical  Loads  ......................................................................................................................  6   4.2  Estimated  Performance  ........................................................................................................  17   4.3  Countershaft  Bearings  ...........................................................................................................  20   4.4  Countershaft  Critical  Locations  ..........................................................................................  21   4.5  Theoretical  Critical  Locations  .............................................................................................  21   4.6  Theoretical  Keys  ......................................................................................................................  25                                          
  • 3.   3     1.0  Preliminary  Need   The  preliminary  need  provided  was,  “For  a  conventional  rear-­‐wheel  drive  sporty   vehicle,  there  is  a  need  for  a  4-­‐speed  manual  transmission  that  can  operate  in  any  gear  over   an  infinite  life.”    While  designing  this  transmission  it  will  be  crucial  to  take  the  strength  and   torque  requirements  of  all  the  components  into  consideration.   2.0  Preliminary  Specifications   The  specifications  that  were  provided  are  as  follows:   1. Design  Point  (continuous):  40  HP  at  2000  RPM  (input  shaft)   2. Design  factor  (countershaft):  nd  =  1.75   3. Design  factor  (gears):  ng  =  1.25   4. Design  factor  (keys):  nk  =  1.1   5. Size  (Max):   a. Length:  2  ft  (target  1  ft  on  main  body,  1  ft  on  tail  piece)   b. Width:  14  in   c. Height:  14  in   6. Target  Ratios:   a. 1st  gear:  3.2  to  1  (+/-­‐  5%)   b. 2nd  gear:  2.2  to  1  (+/-­‐  5%)   c. 3rd  gear:  1.6  to  1  (+/-­‐  2%)   d. 4th  gear:  direct  drive   2.1  Constraints  Imposed  by  Boss     The  constraints  given  by  the  boss  were:     1. Assume  constant  torque  at  the  design  point  (even  though  it  isn’t).   2. Input-­‐output  shafts  collinear  (so  4th  can  be  direct  connect).   3. Helical,  parallel  axis  gearing,  all  gears  same  diametral  pitch.   4. Simplification:  no  reverse  gear  here.   5. Gears  Keyed  to  Countershaft  (idler  shaft).   6. Leave  3  in  spacing  between  1st  &  2nd  gears  and  also  between  3rd  &  4th  for   synchronizers.   7. Gear  teeth  (counts)  should  be  chosen  for  even  wear.   8. Passenger  side  view  of  countershaft,  maintain  ordering  of  gears:  starting  on  left:  1st,   2nd,  3rd  gear  with  countershaft  input  driver  gear  on  right.   9. Objective  is  to  fully  design  the  countershaft  (idler  shaft)  of  the  transmission.    The   case,  the  input,  output  shafts,  the  synchronizers  are  not  being  designed  in  this   project.    For  those  parts,  include  enough  mainshaft  detail  (input,  output  shafts)  and   case  detail  to  allow  for  simulation,  provide  space  for  synchronizers,  use  solid  works   mates  to  simulate  synchronizers.  
  • 4.   4   3.0  Design                                   The  above  figure  is  the  overall  design  of  the  4-­‐speed  transmission.    The  view  is  oriented   from  the  passenger  side  of  the  vehicle  showing  the  input  shaft  on  the  top  left  and  the  output   on  the  top  right.    The  shaft  assembly  on  the  bottom  is  the  countershaft  with  a  total  of  four   gears.    The  gear  on  the  far  right  is  the  idler  gear,  which  is  driven  by  the  driving  gear  directly   above  it  at  2000  RPM.    To  the  left  of  the  idler  are  the  1st,  2nd,  and  3rd  gears  (left  to  right),   which  are  all  attached  to  their  corresponding  output  gears.    This  design  incorporates   multiple  snap  rings,  key  ways,  bearings,  and  spacers  to  keep  the  gears  in  place.                                     The  above  illustration  is  used  to  declare  important  values  of  the  gears  and  overall   transmission  design.    The  image  provides  the  face  width  values  for  the  output  and  driving   gears  along  with  the  tooth  numbers  for  all  gears.  Gear  teeth  numbers  were  chosen  in  order   to  achieve  the  desired  gear  ratios.    In  addition  the  pitch  for  all  gears  was  established  to  be  5   T/in  and  a  diametral  pitch  of  7.011.    Also,  a  centerline  distance  from  the  mainshaft  to   countershaft  was  chosen  to  be  5.9  in  which  allowed  gears  enough  clearance  to  work   properly  while  achieving  the  desired  torque  values.  
  • 5.   5   Since  location  A  only  experiences  radial  loading  and  spins  at  an  RPM  greater  than  100,  we   chose  to  use  a  1in  roller  bearing  at  this  location.  At  location  B,  axial  and  radial  loading   occurs  and  thus  we  need  to  a  1.25in  tapered-­‐roller  bearing  to  account  for  this  extra  force   component.    As  for  the  keys,  we  chose  to  use  the  same  key/keyway  for  all  the  gears.  We   chose  to  use  a  woodruff  key  with  a  length  of  0.75in  and  a  radius  of  0.303  in.  The  keyways   were  sized  accordingly  to  this  size  with  a  depth  of  0.06in  and  length  of  0.44  in.  The  keys  are   made  out  of  316  stainless  steel.    In  order  to  fix  bearing  A  to  the  countershaft,  two  1in  snap   rings  are  used  on  both  sides  of  the  bearing.  Bearing  B  is  held  in  place  by  the  1.5  in  shoulder   and  a  1.25in  snap  ring.  There  is  nothing  to  hold  the  gears  in  place  axially,  which  is  a  design   flaw  in  our  design.   3.1  Countershaft  Assembly     The  countershaft  can  easily  be  assembled  due  to  its  design  by  following  a  series  of  simple   steps.    The  first  step  in  the  countershaft  assembly  is  to  insert  all  the  keys  into  their  mating   key  ways,  since  all  the  keys  are  the  same  it  doesn’t  matter  which  key  goes  to  which  key   way.    Once  all  the  keys  are  installed,  gear  3  would  be  slid  over  the  countershaft  followed  by   a  0.125in  spacer  and  gear  2  would  be  slid  over  the  countershaft  and  against  the   spacer.    Following  this,  a  3in  spacer  and  gear  1  would  be  slid  over  the  counter  shaft.  Now   the  idler  gear  along  with  a  spacer  can  be  slid  onto  the  end  by  gear  3  followed  on  the  end  by   a  1.25in  snap  ring.    Finally  the  1in,  1.25in  roller  bearings  would  be  held  in  place  onto  the   ends  of  the  counter  shaft  with  the  appropriately  sized  snap  rings.   3.2  Countershaft  Layout         The  image  above  is  a  passenger  view  of  the  countershaft  alone.    On  both  the  far  left  and  far   right  of  the  countershaft  are  flat  ends  which  is  where  the  specific  rolling  bearing  will  be   implicated  in  order  to  allow  the  shaft  to  spin  freely  within  the  case.    Starting  from  the  left  
  • 6.   6   side  of  the  shaft  we  have  the  two  1in  snap  rings  (to  hold  the  roller-­‐bearing  in  place)   followed  by  the  1st  gear,  2nd  gear,  3rd  gear  keys  ways  followed  by  the  1.25in  shoulder  and   idler  gear  key  way  followed  by  the  1.50  in  shoulder  and  finally  the  1.25  in  snap  ring  to  hold   the  tapered  roller  bearing  in  place.   4.0  Theoretical  Overview     4.1  Theoretical  Loads     The  following  figures  are  the  fbd’s  of  the  countershaft  gears.    All  dimensions  are  detailed   along  with  locations  of  all  the  forces.    All  images  are  a  passenger  view  of  the  countershaft   and  its  gears.       The  figure  above  is  the  fbd  of  the  1st  gear.    
  • 7.   7     The  figure  above  is  the  fbd  of  the  2nd  gear.         The  figure  above  is  the  fbd  of  the  3rd  gear.  
  • 8.   8   The  following  table  shows  the  calculations  used  to  find  the  various  tooth  and  reaction  forces   along  with  torques  from  the  three  countershaft  fbd’s  above.       Table  I   Diameter  of  drive  gear   𝑑! = 7𝑖𝑛   Pressure  angle   ϕ! = 14.5°   Helix  angle   ψ = 45°   Length   L=15.62in   B  coordinate   𝑥! = 14.4575𝑖𝑛   Input-­‐shaft  torque   𝑇! = 40  𝐻𝑃 2000  𝑟𝑝𝑚 5252  𝑙𝑏𝑓  𝑓𝑡  12  𝑖𝑛  𝑟𝑝𝑚 𝑓𝑡  𝐻𝑃 =  1260  𝑙𝑏𝑓  𝑖𝑛   Counter-­‐shaft  torque   𝑇! = 𝑁! 𝑁! 𝑇! =   35 24 1260  𝑙𝑏𝑓  𝑖𝑛 = 1838  𝑙𝑏𝑓  𝑖𝑛   Tangential  tooth  force  at  drive  gear   𝐹!" = 2 𝑇! 𝑑! = 2 1838  𝑙𝑏𝑓  𝑖𝑛 7  𝑖𝑛 = 525  𝑙𝑏𝑓   Normal  tooth  force  at  drive  gear   𝐹! = 𝐹!" cos ϕ! cos  (ψ) = 525  𝑙𝑏𝑓 cos 14.5 cos  (45) = 767  𝑙𝑏𝑓   Radial  tooth  force  at  drive  gear   𝐹!" = 𝐹! sin ϕ! = 767  𝑙𝑏𝑓 sin 14.5 = 192  𝑙𝑏𝑓   Axial  tooth  force  at  drive  gear   𝐹!" = 𝐹! cos ϕ! sin ψ = 767  𝑙𝑏𝑓 cos 14.5 sin 45 = 525   Drive  gear  coordinate   𝑥! = 𝑥! − 𝑥! = 11.975  𝑖𝑛   Drive  gear  pitch  radius   𝑦! = 7𝑖𝑛 2 = 3.5𝑖𝑛   Diameter  of  1st  gear   𝑑! = 3.6𝑖𝑛   Tangential  tooth  force  at  1st  gear   𝐹!! = 𝑑! 𝑑! 𝐹!" = 7  𝑖𝑛 3.6  𝑖𝑛 525  𝑙𝑏𝑓 = 1021  𝑙𝑏𝑓   Normal  tooth  force  at  1st  gear   𝐹! = 𝐹!! cos ϕ! cos  (ψ) = 1021  𝑙𝑏𝑓 cos 14.5 cos  (45) = 1491  𝑙𝑏𝑓   Radial  tooth  force  at  1st  gear   𝐹!! = 𝐹! sin ϕ! = 1491  𝑙𝑏𝑓 sin 14.5 = 373  𝑙𝑏𝑓   Axial  tooth  force  at  1st  gear   𝐹!! = 𝐹! cos ϕ! sin ψ = 1491  𝑙𝑏𝑓 cos 14.5 sin 45 = 1021  𝑙𝑏𝑓   1st  gear  torque   𝑇! = 𝐹!! 𝑑! 2 = 525  𝑙𝑏𝑓 3.6𝑖𝑛 2 = 1838  𝑙𝑏𝑓𝑖𝑛   1st  gear  output  torque   𝑇!! = 𝐹!! 𝑑!! 2 = 525  𝑙𝑏𝑓 8.2𝑖𝑛 2 = 2153  𝑙𝑏𝑓𝑖𝑛   1st  gear  coordinate   𝑥! = 2.02125𝑖𝑛   1st  gear  pitch  radius   𝑦! = 𝑑! 2 = 3.6𝑖𝑛 2 = 1.8𝑖𝑛   Right-­‐side  bearing  reaction  (axial)   𝑅!" = 𝐹!! − 𝐹!" = 496  𝑙𝑏𝑓   Right-­‐side  bearing  reaction  (vertical)   𝑅!" = 1 𝑥! 𝑥! 𝐹!! + 𝑦! 𝐹!! + 𝑥! 𝐹!" − 𝑦! 𝐹!" = 211  𝑙𝑏𝑓   Right-­‐side  bearing  reaction  (horizontal)   𝑅!" = 1 𝑥! 𝑥! 𝐹!" − 𝑥! 𝐹!! = 292  𝑙𝑏𝑓   Left-­‐side  bearing  reaction  (vertical)   𝑅!" = 𝐹!! + 𝐹!! − 𝑅!" = 354  𝑙𝑏𝑓   Left-­‐side  bearing  reaction  (horizontal)   𝑅!" = 𝐹!" − 𝐹!! − 𝑅!" = −788  𝑙𝑏𝑓   Diameter  of  2nd  gear   𝑑! = 4.6𝑖𝑛   Tangential  tooth  force  at  2nd  gear   𝐹!! = 𝑑! 𝑑! 𝐹!" = 7  𝑖𝑛 4.6  𝑖𝑛 525  𝑙𝑏𝑓 = 799  𝑙𝑏𝑓   Normal  tooth  force  at  2nd  gear   𝐹! = 𝐹!! cos ϕ! cos  (ψ) = 799  𝑙𝑏𝑓 cos 14.5 cos  (45) = 1167  𝑙𝑏𝑓   Radial  tooth  force  at  2nd  gear   𝐹!! = 𝐹! sin ϕ! = 1167  𝑙𝑏𝑓 sin 14.5 = 292  𝑙𝑏𝑓  
  • 9.   9   Axial  tooth  force  at  2nd  gear   𝐹!! = 𝐹! cos ϕ! sin ψ = 1167  𝑙𝑏𝑓 cos 14.5 sin 45 = 799  𝑙𝑏𝑓   2nd  gear  torque   𝑇! = 𝐹!! 𝑑! 2 = 799  𝑙𝑏𝑓 4.6𝑖𝑛 2 = 1838  𝑙𝑏𝑓𝑖𝑛   2nd  gear  output  torque   𝑇!! = 𝐹!! 𝑑!! 2 = 799  𝑙𝑏𝑓 7.2𝑖𝑛 2 = 2876  𝑙𝑏𝑓𝑖𝑛   2nd  gear  coordinate   𝑥! = 6.33625𝑖𝑛   2nd  gear  pitch  radius   𝑦! = 𝑑! 2 = 4.6𝑖𝑛 2 = 2.3𝑖𝑛   Right-­‐side  bearing  reaction  (axial)   𝑅!" = 𝐹!! − 𝐹!" = 274  𝑙𝑏𝑓   Right-­‐side  bearing  reaction  (vertical)   𝑅!" = 1 𝑥! 𝑥! 𝐹!! + 𝑦! 𝐹!! + 𝑥! 𝐹!" − 𝑦! 𝐹!" = 287  𝑙𝑏𝑓   Right-­‐side  bearing  reaction  (horizontal)   𝑅!" = 1 𝑥! 𝑥! 𝐹!" − 𝑥! 𝐹!! = 85  𝑙𝑏𝑓   Left-­‐side  bearing  reaction  (vertical)   𝑅!" = 𝐹!! + 𝐹!" − 𝑅!" = 197  𝑙𝑏𝑓   Left-­‐side  bearing  reaction  (horizontal)   𝑅!" = 𝐹!" − 𝐹!! − 𝑅!" = −359  𝑙𝑏𝑓   Diameter  of  3rd  gear   𝑑! = 5.6𝑖𝑛   Tangential  tooth  force  at  3rd  gear   𝐹!! = 𝑑! 𝑑! 𝐹!" = 7  𝑖𝑛 5.6  𝑖𝑛 525  𝑙𝑏𝑓 = 656  𝑙𝑏𝑓   Normal  tooth  force  at  3rd  gear   𝐹! = 𝐹!! cos ϕ! cos  (ψ) = 656  𝑙𝑏𝑓 cos 14.5 cos  (45) = 959  𝑙𝑏𝑓   Radial  tooth  force  at  3rd  gear   𝐹!! = 𝐹! sin ϕ! = 959  𝑙𝑏𝑓 sin 14.5 = 240  𝑙𝑏𝑓   Axial  tooth  force  at  3rd  gear   𝐹!! = 𝐹! cos ϕ! sin ψ = 959  𝑙𝑏𝑓 cos 14.5 sin 45 = 656  𝑙𝑏𝑓   3rd  gear  torque   𝑇! = 𝐹!! 𝑑! 2 = 656  𝑙𝑏𝑓 5.6𝑖𝑛 2 = 1838  𝑙𝑏𝑓𝑖𝑛   3rd  gear  output  torque   𝑇!! = 𝐹!! 𝑑!! 2 = 656  𝑙𝑏𝑓 6.2𝑖𝑛 2 = 2034  𝑙𝑏𝑓𝑖𝑛   3rd  gear  coordinate   𝑥! = 7.03125𝑖𝑛   3rd  gear  pitch  radius   𝑦! = 𝑑! 2 = 5.6𝑖𝑛 2 = 2.8𝑖𝑛   Right-­‐side  bearing  reaction  (axial)   𝑅!" = 𝐹!! − 𝐹!" = 131𝑙𝑏𝑓   Right-­‐side  bearing  reaction  (vertical)   𝑅!" = 1 𝑥! 𝑥! 𝐹!! + 𝑦! 𝐹!! + 𝑥! 𝐹!" − 𝑦! 𝐹!" = 276𝑙𝑏𝑓   Right-­‐side  bearing  reaction  (horizontal)   𝑅!" = 1 𝑥! 𝑥! 𝐹!" − 𝑥! 𝐹!! = 116𝑙𝑏𝑓   Left-­‐side  bearing  reaction  (vertical)   𝑅!" = 𝐹!! + 𝐹!" − 𝑅!" = 156𝑙𝑏𝑓   Left-­‐side  bearing  reaction  (horizontal)   𝑅!" = 𝐹!" − 𝐹!! − 𝑅!" = −247𝑙𝑏𝑓                            
  • 10.   10   The  following  images  show  the  shear  and  bending  moments  of  all  the  gears  in  order.    
  • 11.   11    
  • 12.   12    
  • 13.   13    
  • 14.   14    
  • 15.   15    
  • 16.   16              
  • 17.   17     4.2  Estimated  Performance       The  following  images  are  the  results  for  all  the  gears  in  the  transmission.       1st  gear  results.       1st  gear  output  results    
  • 18.   18     2nd  gear  results.       2nd  gear  output  results.    
  • 19.   19     3rd  gear  results.       3rd  gear  output  results.    
  • 20.   20     Drive  gear  results.       Input  gear  results.     When  comparing  the  torque  calculations  in  4.1  to  the  rush  gear  results  above  for  each  gear,   it  is  clear  that  the  gear  will  be  strong  enough  to  handle  the  transmitted  torque.     4.3  Countershaft  Bearings     Since our countershaft at the design point spins at 1371 RPMs, we must select bearings that are rated for speeds greater than 1371RPMs. Since the radial loads at location A equals: 𝑅!" =    𝑅!"! + 𝑅!"!   + 𝑅!"! = 788 lbf+359 lbf +247 lbf= 1394 lbf
  • 21.   21   𝑅!" =    𝑅!"! + 𝑅!"!   + 𝑅!"! = 354 lbf+197 lbf +156 lbf= 707 lbf Since 1394 lbf >707 lbf, we need to select a bearing that can handle that is rated for more than 1394 lbf of dynamic loading. Since we have only radial loads at point A and 𝜔 > 100 RPMS, we chose to use a double sealed ball bearing. The one chosen is rated up to 2500 RPMs, has a maximum dynamic load capacity of 1480 lbf and its designed for a 1in diameter shaft. Now we analyze the bearing at point B. Since point B has axial and radial loading, we chose to use a tapered-roller bearing. First we will analyze the radial loading. 𝑅!" =    𝑅!"! + 𝑅!"!   + 𝑅!"! = 292 lbf+85 lbf +116 lbf= 493 lbf 𝑅!" =    𝑅!"! + 𝑅!"!   + 𝑅!"! =211 lbf+287 lbf +276 lbf= 774 lbf Since 774 lbf >493 lbf, we need to choose a bearing that can handle more than 774 lbf radially. Now we will analyze the axial loading 𝑅!" =    𝑅!"! + 𝑅!"!   + 𝑅!"! =496 lbf+274 lbf +131 lbf= 901 lbf So we need a bearing that can handle more than 901 lbf axially and 774 lbf radially. Because of this we chose a tapered steel roller bearing with a maximum radial dynamic load rating of 2,130 lbf, a maximum axially axial dynamic load rating of 1,500 lbf and is designed for a shaft with a diameter of 1.25 in.   4.4  Countershaft  Critical  Locations     Critical  locations  occur  at  locations,  which  undergo  high  bending  moments,  high  stress   concentrations,  small  cross  sectional  area,  and/or  heavy  torque.    Throughout  the   countershaft  design  there  are  several  critical  locations  that  can  be  recognized.    These   locations  include  key  ways,  snap  ring  grooves,  and  shoulders.    The  keyways  and  keys   themselves  have  a  very  small  cross  sectional  area  and  the  gears  are  torqueing  the  keys.  The   snap  rings  are  critical  locations  because  they  involve  keeping  the  gears  from  walking   around  on  the  countershaft.   4.5  Theoretical  Critical  Locations     The  Mcomp  graph  image  in  section  4.1  will  be  used  to  find  the  correct  moment  values  used   for  the  analysis  of  the  critical  locations.    This  section  is  used  primarily  to  determine  what   material  and  dimensions  of  the  countershaft  should  be  used  in  order  for  the  shaft  to  be   strong  enough  for  the  applied  forces.    Tables  and  equations  were  all  found  in  the  McGraw-­‐ Hill  textbook.         First  we  will  analyze  the  critical  point  at  the  shoulder  to  the  right  of  gear  3.    The  material   used  for  the  countershaft  was  AISI  1045  steel  CD  with  a  diameter,  d=  1in.  From  the  material   properties  in  Solid  Works,  Sut=  91kpsi,  and  Sy=  77kpsi.    In  order  to  find  Se  we  must  find  ka  &  
  • 22.   22   kb  first.    From  table  6-­‐2  for  cold  drawn  finish  we  get,  a=  2.7  &  b=  -­‐0.265.      From  Eq.  6-­‐19,20   we  get:     𝑘! = 𝑎𝑆!" !   𝑘! = 2.7(91𝑘𝑝𝑠𝑖)!!.!"#   𝑘! = 0.817   𝑘! = 0.879𝑑!!.!"#   𝑘! = 0.879(1𝑖𝑛)!!.!"#   𝑘! = 0.879     𝑆! = 𝑘! 𝑘! 𝑆!" 2   𝑆! = (0.817)(0.879) 91𝑘𝑝𝑠𝑖 2   𝑆! = 32.68  𝑘𝑝𝑠𝑖     For  the  shoulder  at  gear  3,  its  estimated  that  Ma=  2000lbf  in.    Using   ! ! = 1.5𝑖𝑛  &   ! ! = 0.1𝑖𝑛,  gives  kt=  1.65,  and  kts=  1.425  when  using  table  A15-­‐7,8.    Next  from  figure  6-­‐20,21  q=   0.825,  and  qs=  0.84.    All  these  values  will  now  be  used  in  Eq.  6-­‐32:     𝑘! = 1 + 𝑞 𝑘! − 1   𝑘! = 1 + 0.825 1.65 − 1   𝑘! = 1.53625     𝑘!" = 1 + 𝑞 𝑘!" − 1   𝑘!" = 1 + 0.84 1.425 − 1   𝑘!" = 1.357     Next  the  Alternating  and  Midrange  Von  Mises  Stresses  will  be  solved  for  with  all  the  given   values  from  above.     σ! ! = 32𝑘! 𝑀! π𝑑!   σ! ! = 32(1.53625)(2000  𝑙𝑏𝑓  𝑖𝑛) π(1𝑖𝑛)!   σ! ! = 31.296  𝑘𝑝𝑠𝑖     σ! ! = 3 16𝑘!" 𝑇! π𝑑!   σ! ! = 3 16(1.357)(1838  𝑙𝑏𝑓  𝑖𝑛) π(1𝑖𝑛)!   σ! ! = 22.002  𝑘𝑝𝑠𝑖     Finally  the  fatigue  factor  of  safety  and  Langer  will  be  calculated:     1 𝑛! = σ! ! 𝑆! + σ! ! 𝑆!"  
  • 23.   23   1 𝑛! = 31.296  𝑘𝑝𝑠𝑖 32.68  𝑘𝑝𝑠𝑖 + 22.002  𝑘𝑝𝑠𝑖 91  𝑘𝑝𝑠𝑖   𝑛! = 0.834     1 𝑛! = σ! ! 𝑆! + σ! ! 𝑆!   1 𝑛! = 31.296  𝑘𝑝𝑠𝑖 77  𝑘𝑝𝑠𝑖 + 22.002  𝑘𝑝𝑠𝑖 77  𝑘𝑝𝑠𝑖   𝑛! = 1.44     These  are  not  acceptable  factors  of  safety  for  the  shoulder  to  the  right  of  gear  3.    The  target   factor  of  safety  was  at  least  1.75.    In  order  to  obtain  this  factor  of  safety  the  material  of  the   countershaft  could  be  changed  to  a  stronger  material  but  more  importantly  the  diameter  of   1in  should  be  increased.    Next  we  will  find  the  Alternating/Midrange  Von  Mises  Stresses   and  fatigue/Langer  factors  of  safety  of  the  shoulder  to  the  right  of  the  drive  gear.    At  this   point  it  is  estimated  that  Ma=  690  lbf  in  and  the  midrange  stress  is  equal  to  the  previous   shoulders.     σ! ! = 32𝑘! 𝑀! π𝑑!   σ! ! = 32(1.53625)(690  𝑙𝑏𝑓  𝑖𝑛) π(1𝑖𝑛)!   σ! ! = 10.8  𝑘𝑝𝑠𝑖     1 𝑛! = σ! ! 𝑆! + σ! ! 𝑆!"   1 𝑛! = 10.8  𝑘𝑝𝑠𝑖 32.68  𝑘𝑝𝑠𝑖 + 22.002  𝑘𝑝𝑠𝑖 91  𝑘𝑝𝑠𝑖   𝑛! = 1.75     1 𝑛! = σ! ! 𝑆! + σ! ! 𝑆!   1 𝑛! = 10.8  𝑘𝑝𝑠𝑖 77  𝑘𝑝𝑠𝑖 + 22.002  𝑘𝑝𝑠𝑖 77  𝑘𝑝𝑠𝑖   𝑛! = 2.35     These  are  acceptable  factors  of  safety  for  the  shoulder  to  the  right  of  the  drive  gear.    The   target  factor  of  safety  was  at  least  1.75,  which  was  just  obtained.    Next  we  will  find  the   Alternating  Von  Mises  Stresses  and  fatigue/Langer  factor  of  safety  of  the  snap  ring  groove   closest  to  gear  1,  directly  to  the  right  of  the  bearing.    For  this  snap  ring  groove,  its  estimated   that  Ma=  200lbf  in.    Using   ! ! = 0.2𝑖𝑛  &   ! ! = !.! !.! = 1.2,  gives  kt=  4.35  when  using  table  A15-­‐16.     Next  from  figure  6-­‐20,21  q=  0.58,  when  using  r=  (0.2)(0.5)=  0.1.    All  these  values  will  now   be  used  in  Eq.  6-­‐32:     𝑘! = 1 + 𝑞 𝑘! − 1   𝑘! = 1 + 0.58 4.35 − 1   𝑘! = 2.943  
  • 24.   24     Next  the  Alternating  Von  Mises  Stresses  will  be  solved  for  with  all  the  given  values  from   above.         σ! ! = 32𝑘! 𝑀! π𝑑!   σ! ! = 32(2.943)(200  𝑙𝑏𝑓  𝑖𝑛) π(1𝑖𝑛)!   σ! ! = 6  𝑘𝑝𝑠𝑖     Finally  the  fatigue/Langer  factor  of  safety  will  be  calculated,  since  there  is  no  torque  acting   at  this  location  the  midrange  stress  is  equal  to  zero:     1 𝑛! = σ! ! 𝑆! + σ! ! 𝑆!"   1 𝑛! = σ! ! 𝑆!   1 𝑛! = 6  𝑘𝑝𝑠𝑖 32.68  𝑘𝑝𝑠𝑖   𝑛! = 5.45     1 𝑛! = σ! ! 𝑆! + σ! ! 𝑆!   1 𝑛! = σ! ! 𝑆!   1 𝑛! = 6  𝑘𝑝𝑠𝑖 77  𝑘𝑝𝑠𝑖   𝑛! = 12.8         These  exceed  the  acceptable  factor  of  safety  for  the  snap  ring  groove  to  the  right  of  the   bearing  closest  to  gear  1.    The  target  factor  of  safety  was  at  least  1.75.    Next  we  will  find  the   Alternating  Von  Mises  Stresses  and  fatigue/Langer  factor  of  safety  of  the  snap  ring  groove   to  the  right  of  the  bearing  closest  to  the  drive  gear.    At  this  point  it  is  estimated  that  Ma=  600   lbf  in.     σ! ! = 32𝑘! 𝑀! π𝑑!   σ! ! = 32(2.943)(600  𝑙𝑏𝑓  𝑖𝑛) π(1𝑖𝑛)!   σ! ! = 18  𝑘𝑝𝑠𝑖     Finally  the  fatigue/Langer  factor  of  safety  will  be  calculated,  since  there  is  no  torque  acting   at  this  location  the  midrange  stress  is  equal  to  zero:     1 𝑛! = σ! ! 𝑆! + σ! ! 𝑆!"  
  • 25.   25   1 𝑛! = σ! ! 𝑆!   1 𝑛! = 18  𝑘𝑝𝑠𝑖 32.68  𝑘𝑝𝑠𝑖   𝑛! = 1.82     1 𝑛! = σ! ! 𝑆! + σ! ! 𝑆!   1 𝑛! = σ! ! 𝑆!   1 𝑛! = 18  𝑘𝑝𝑠𝑖 77  𝑘𝑝𝑠𝑖   𝑛! = 4.28       These  are  acceptable  factors  of  safety  for  the  snap  ring  groove  to  the  right  of  the  bearing   closest  to  the  drive  gear.    The  target  factor  of  safety  was  at  least  1.75.     4.6  Theoretical  Keys     Next  we  will  analyze  the  keyway  critical  location  at  gear  2,  all  keyways  are  critical  locations   but  the  keyway  here  has  the  highest  bending  moment.    At  this  point  its  estimated  that  Ma=   2500lbf  in.    Using   ! ! = 0.02𝑖𝑛,  gives  kt=  2.14,  and  kts=  3.0  when  using  table  7-­‐1.    Next  from   figure  6-­‐20,21  q=  0.65,  and  qs=  0.7.    All  these  values  will  now  be  used  in  Eq.  6-­‐32:     𝑘! = 1 + 𝑞 𝑘! − 1   𝑘! = 1 + 0.65 2.14 − 1   𝑘! = 1.741     𝑘!" = 1 + 𝑞 𝑘!" − 1   𝑘!" = 1 + 0.7 3.0 − 1   𝑘!" = 2.4     Next  the  Alternating  and  Midrange  Von  Mises  Stresses  will  be  solved  for  with  all  the  given   values  from  above.     σ! ! = 32𝑘! 𝑀! π𝑑!   σ! ! = 32(1.741)(2500  𝑙𝑏𝑓  𝑖𝑛) π(1𝑖𝑛)!   σ! ! = 44.33  𝑘𝑝𝑠𝑖     σ! ! = 3 16𝑘!" 𝑇! π𝑑!   σ! ! = 3 16(2.4)(1838  𝑙𝑏𝑓  𝑖𝑛) π(1𝑖𝑛)!  
  • 26.   26   σ! ! = 38.91  𝑘𝑝𝑠𝑖     Finally  the  fatigue  factor  of  safety  and  Langer  will  be  calculated:     1 𝑛! = σ! ! 𝑆! + σ! ! 𝑆!"   1 𝑛! = 44.33  𝑘𝑝𝑠𝑖 32.68  𝑘𝑝𝑠𝑖 + 38.91  𝑘𝑝𝑠𝑖 91  𝑘𝑝𝑠𝑖   𝑛! = 0.56     1 𝑛! = σ! ! 𝑆! + σ! ! 𝑆!   1 𝑛! = 44.33  𝑘𝑝𝑠𝑖 77  𝑘𝑝𝑠𝑖 + 38.91  𝑘𝑝𝑠𝑖 77  𝑘𝑝𝑠𝑖   𝑛! = 0.93     These  are  not  acceptable  factors  of  safety  for  the  keyway  at  gear  2.    The  target  factor  of   safety  was  at  least  1.1.    In  order  to  obtain  this  factor  of  safety  the  material  of  the   countershaft  could  be  changed  to  a  stronger  material  but  more  importantly  the  diameter  of   1in  should  be  increased.    Finally  we  will  calculate  the  static  failure  factor  of  safety  for  the   keys.    The  keys  used  had  a  length  and  width  of  0.065  and  0.25  inches.    The  key  is  made  out   of  316  stainless  steel  which  has  a  σy=  30  kpsi.     𝑉 = 2𝑇! 𝑑 = 2(1838  𝑙𝑏𝑓  𝑖𝑛) 1𝑖𝑛 = 3.7  𝑘𝑝𝑠𝑖   τ = 𝑉 ℎ𝑙 = 3.7  𝑘𝑝𝑠𝑖 (0.065𝑖𝑛)(0.25𝑖𝑛) = 226  𝑘𝑝𝑠𝑖   𝑛!"" = σ! 2τ = 30  𝑘𝑝𝑠𝑖 2(226  𝑘𝑝𝑠𝑖) = 15.1     This  factor  of  safety  exceeds  the  target  factor  of  safety  at  1.1.