SlideShare a Scribd company logo
1 of 49
FIELD EFFECT TRANSISTORS
(FET)
Celso José Faria de Araújo, Dr.
1
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Gate
Drain
Source
Base
Collector
Emitter
FET
 3 terminal device
 Channel e- current
from source to drain
controlled by the
electric field
generated by the gate
 Extremely high input
impedance for base
BJT
 3 terminal device emitter
to collector e- current
controlled by the current
injected into the base
FET X BJT (NPN)
2
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
• In addition to carrier type (N or P channel), there are differences in
how the control element is constructed (Junction x Insulated) and
those devices must be used differently
Depletion mode junction FETs (JFET)
npn
pnp
npn
pnp
Metal oxide semi-conductor FET (MOSFET)
– depletion/enhancement mode
– enhancement mode
(insulated gate FETs, IGFETs, are the same as MOSFETs)
Types of FETs
3
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross section. Typically L = 1 to 10 m, W = 2
to 500 m, and the thickness of the oxide layer is in the range of 0.02 to 0.1 m.
4
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
n
+
v Small
DS
D
n
+
S
B
v > V
GS TN
G
Depletion
Region
p
n
+
D
n
+
S v = v - V
DS GS TN
v > V
GS TN
G
B
Depletion
Region
p
n
+
D
n
+
S v > v - V
DS GS TN
v > V
GS TN
G
B
Depletion
Region Pinch-off Point
p Acceptor Ion
( a ) MOSFET in the linear region
( b ) MOSFET with channel just pinched
off at the drain.
( c ) Channel pinch off for vDS > vGS - VTN
Water
Waterfalls analogy
5
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n channel is induced at the top of the substrate
beneath the gate.
6
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
An NMOS transistor with vGS > Vt and with a small vDS applied. The device acts as a conductance whose value is determined by vGS.
Specifically, the channel conductance is proportional to vGS - Vt, and this iD is proportional to (vGS - Vt) vDS. Note that the depletion
region is not shown (for simplicity).
7
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
0.8
0.6
0.4
0.2
0.0
0.00e+0
2.00e-4
4.00e-4
6.00e-4
8.00e-4
Drain-Source Voltage (V)
Drain-Source
Current
(A)
V = 2 V
V = 3 V
V = 4 V
V = 5 V
GS
GS
GS
GS
NMOS i-v characteristics in the linear region (VSB = 0)
  








2
2
DS
DS
tn
GS
OX
n
D
v
v
V
v
L
W
C
μ
i vGS  Vtn
0  vDS  vDSSAT
= vGS-Vtn
Linear Region (small vDS)
 
 
tn
GS
n
DS
D
DS
tn
GS
n
D
DS
V
v
L
W
k
dv
di
v
V
v
L
W
k
i
v
small




'
'
VTN =1V
OX
n
n C
μ
k 
'
8
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Operation of the enhancement NMOS transistor as vDS is increased. The induced channel acquires a tapered shape and its resistance
increases as vDS is increased. Here, vGS is kept constant at a value > Vt.
9
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The drain current iD versus the drain-to-source voltage vDS for an enhancement-type NMOS transistor operated with vGS > Vt.
10
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Output characteristics
for an NMOS transistor with
Vtn = 1 V and k’n (W/L)= 25 x 10-6 A/V2
12
10
8
6
4
2
0
0.00e+0
2.00e-5
4.00e-5
6.00e-5
8.00e-5
1.00e-4
1.20e-4
1.40e-4
1.60e-4
1.80e-4
2.00e-4
2.20e-4
Drain-Source Voltage (V)
Drain-Source
Current
(A)
V = 2 V
V = 3 V
V = 4 V
V = 5 V
Pinchoff Locus
V Š 1 V
Saturation Region
Linear
Region
GS
GS
GS
GS
GS
 
















tn
GS
DS
DS
tn
GS
DS
DS
tn
GS
n
D
V
v
v
v
V
v
for
v
v
V
v
L
W
k
i
SAT
2
2
'
ID
G
D
S  B
vD  vS
tn
GS
D V
v
for
i 
 0
 









tn
GS
DS
DS
tn
GS
tn
GS
n
D
V
v
v
v
V
v
for
V
v
L
W
k
i
SAT
2
'
2
11
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Derivation of the iD - vDS characteristic of the NMOS transistor.
12
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
p+
L
Source
Gate
Drain
Channel Region
Body
N-Type Substrate
v > 0
B
i
B
iS
v
S
v < 0
G
i
G
v < 0
D
iD
p+
Cross section of an enhancement-mode PMOS transistor
ID
G
D
S
ID
G
D
S
B
The PMOS Transistor
13
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Output characteristics for a
PMOS transistor with
Vtp = -1V and k’P (W/L)= 25 x 10-6 A/V2
12
10
8
6
4
2
0
-2
-5.00e-5
0.00e+0
5.00e-5
1.00e-4
1.50e-4
2.00e-4
2.50e-4
Source-Drain Voltage (V)
Source-Drain
Current
(A)
V Š 1 V (V •
-1 V)
SG GS
V = 3 V (V = -3 V)
SG GS
V = 2 V (V = -2 V)
SG GS
V = 4 V (V = -4 V)
SG GS
V = 5 V (V = -5 V)
SG GS
ID
G
D
S  B
tp
GS
D V
v
for
i 
 0
 
















tp
GS
DS
DS
tp
GS
DS
DS
tp
GS
p
D
V
v
v
v
V
v
for
v
v
V
v
L
W
k
i
SAT
2
2
'
 









tp
GS
DS
DS
tp
GS
tp
GS
p
D
V
v
v
v
V
v
for
V
v
L
W
k
i
SAT
2
'
2
vS  vD
14
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Cross section of a CMOS integrated circuit. Note that the PMOS transistor is formed in a separate n-type region, known as an n well.
Another arrangement is also possible in which an n-type body is used and the n device is formed in a p well.
15
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
(a) An n-channel enhancement-type MOSFET with vGS and vDS applied and with the normal directions of current flow indicated.
(b)The iD - vDS characteristics for a device with Vt = 1 V and k’n(W/L) = 0.5 mA/V2 (d) The iD - vGS characteristic for an enhancement-
type NMOS transistor in saturation.
(d)
16
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Channel Length Modulation
 





 










M
D
M
D
D
M
D
t
GS
ox
D
L
L
I
L
L
I
i
L
L
I
V
v
L
W
C
i
SAT
SAT
SAT
1
1
2
2

LM
   
DS
t
GS
ox
D
A
DS
M
v
V
v
L
W
C
i
L
V
v
L
L












1
2
1
2
Increasing vDS beyond vDSsat causes the channel pinch-off point to move slightly away from the drain, thus reducing the effective
channel length (by L).
17
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Effect of vDS on iD in the saturation region. The MOSFET parameter VA is typically in the range of 30 to 200 V.
    Saturation
1
2
2



 DS
t
GS
ox
D v
V
v
L
W
C
i 

D
DS
-
v
DS
D
o
I
v
v
i
r
GS

1
1
constant














  A
DS
D
A
D
o V
V
I
V
I
r 



1

Output Resistance:
VA is directly proportional to L; thus two devices with the same process, and having channel lengths L1 e L2,
will have Early voltage VA1 and VA2,.
2
1
2
1
L
L
V
V
A
A

18
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Large-signal equivalent circuit model of the n-channel MOSFET in saturation, incorporating the output resistance ro. The output
resistance models the linear dependence of iD on vDS and is given by ro  VA/ID.
19
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
ID
G
D
S
ID
G
D
S
G
D
S
B G
D
S
B
P-channel
N-channel
Vtn > 0
vDS  0
Vtp < 0
vDS  0
or or
ox
p
p C
μ
k 
'
Summary of equations for the enhancement-mode MOSFET
   
    























































A
SD
tp
SG
p
D
tp
SG
SD
tp
SG
A
DS
tn
GS
n
D
tn
GS
DS
tn
GS
SD
SD
tp
SG
p
D
tp
SG
SD
tp
SG
DS
DS
tn
GS
n
D
tn
GS
DS
tn
GS
D
tp
SG
D
tn
GS
V
V
V
v
L
W
k
i
V
v
v
and
V
v
V
V
V
v
L
W
k
i
V
v
v
and
V
v
v
v
V
v
L
W
k
i
V
v
v
and
V
v
v
v
V
v
L
W
k
i
V
v
v
and
V
v
i
V
v
i
V
v
1
2
1
2
Saturation
2
2
(Linear)
Triodo
0
0
Cutoff
Type
-
P
Type
-
N
Region
2
'
2
'
2
'
2
'
ox
n
n C
μ
k 
'
20
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The current-voltage characteristics of a depletion-type n-channel MOSFET for which Vt = -4 V and k’n(W/L) = 2 mA/V2:
(a) transistor with current and voltage polarities indicated; (b) the iD - vDS characteristics; (c) the iD - vGS characteristic in saturation.
21
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
-  usually neglected ( 1/  =VA)
- Q-point most often located in saturation for analog circuits
DD
G V
R
R
R
V
2
1
2


D
S
S I
R
V 
  D
S
D
DD
DS I
R
R
V
V 


 2
'
2
t
GS
n
D V
V
L
W
k
I 

2
2
1
2
'
2









 D
S
t
DD
n
D I
R
V
V
R
R
R
L
W
k
I
D
S
DD
GS I
R
V
R
R
R
V 


2
1
2
VDD
VG
RD
RS
RG
R1
R2
ID
( assuming the MOSFET to be
in the saturation region )
( two solutions  only one
is possible )
Ex: VDD = 10 V R1 = 150 k R2 = 100 k RS = 10 k
RD = 50 k k’n(W/L) = 50 A/V2 Vt = 1 V
Solution: ID = 100 A VDS = 4 V
Bias Circuits 1
22
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
VDD
-VSS
RD
RS
RG
VDD
-VSS
RD
I
RG
Two power supplies are
available
A simple circuit utilizing
a current source
Bias Circuits 2
VDD
VDS = VGS2
load line
curve VDS = VGS
VGS1
VGS2
VGS3
Q
VDD/ RD
VDD
RD
RG
ID
 2
'
2
t
GS
n
D V
V
L
W
k
I 

 2
'
2
D
D
t
DD
n
D I
R
V
V
k
I 


 
0


 G
DS
GS I
V
V
Analysis
D
D
DD
GS I
R
V
V 

23
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Basic MOSFET current mirror.
Q1: I  V converter
Q2: V  I converter
If Q2 in saturation
then
 
 1
2
L
W
L
W
I
I
REF
o 
 
t
GS
o V
V
v 

min
Example: VDD = 5V ;IREF=10A; Q1 and Q2 are
matched ; L=10 m and W=100 m; Vt = 1V ;
k’
n=20  A/V2 VA = 10L; Vo=+3V
 
3%
μA
3
M
1
V
3
M
1
100
V
100
V
100
10
x
10
1V
1
2
30
100
2
5
2V
1
10
100
20
2
1
100
min
2
1



























o
o
o
o
A
o
GS
GS
REF
D
r
V
I
μA
r
V
v
K
R
V
V
I
I

24
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
 
 
   
 
 
 
D
m
gs
d
v
gs
D
m
D
d
d
d
D
D
d
D
D
DD
D
D
DD
D
D
n
t
GS
n
gs
d
V
v
GS
D
m
gs
t
GS
n
d
d
D
D
t
GS
gs
gs
t
GS
n
gs
n
gs
n
gs
t
GS
n
t
GS
n
D
t
gs
GS
n
D
gs
GS
GS
t
GS
D
D
D
DD
D
t
GS
n
D
R
g
v
v
A
v
R
g
R
i
v
i
R
V
i
I
R
V
i
R
V
v
I
L
W
k
V
V
L
W
k
v
i
v
i
g
v
V
V
L
W
k
i
i
I
i
V
V
v
v
V
V
L
W
k
v
L
W
k
v
L
W
k
v
V
V
L
W
k
V
V
L
W
k
i
V
v
V
L
W
k
i
v
V
v
V
V
V
I
R
V
V
V
V
L
W
k
I
GS
GS





















































)
(
Gain
Voltage
2
)
(
2
2
1
2
1
2
1
2
1
Terminal
Drain
in the
Current
signal
The
0
2
1
Point
Bias
DC
ctance
transcondu
'
'
'
signal
small
'
2
'
2
'
'
2
'
2
'
2
'










 










 










 









 


The operation of the MOSFET as an amplifier.
25
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Small-signal models for the MOSFET: (a) neglecting the dependence of iD on vDS in saturation (channel-length modulation effect); and
(b) including the effect of channel-length modulation modeled by output resistance ro = |VA|/ID.
(a.1) -Model
(a.2) T-Model
(b.1) -Model
(b.2) T-Model
26
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
 
 
 
2.33MΩ
3
.
4
3
.
4
1
Resistance
Input
V
V
37
.
3
//
//
//
1
Gain
Voltage
0
//
//
Analysis
AC
47KΩ
1.06m
50
mA/V
725
.
0
)
5
.
1
4
.
4
(
25
.
0
Meaningful
Physically
4.4V
and
1.06mA
K
10
15
15
5
.
1
25
.
0
2
1
Analysis
DC
2























 























G
i
i
in
G
i
i
o
G
i
G
o
i
i
G
L
D
o
G
m
i
o
v
G
i
o
i
m
L
D
o
o
o
m
D
D
D
D
D
D
D
D
D
GS
R
i
v
R
R
v
v
v
R
v
R
v
v
i
R
R
R
r
R
g
v
v
A
R
v
v
v
g
R
R
r
v
r
m
g
V
I
I
I
R
V
V
m
I
V
V
Example: Vt = 1.5V ; k’
n(W/L)=0.25 mA/V2 VA = 50V
27
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Small-signal equivalent-circuit model of a MOSFET in which the body is not connected to the source.
0.3
χ
0.1
g
v
i
g m
v
v
BS
D
mb
DS
GS









constante
constante
ctance
Transcondu
Body
28
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
VDD
I
vo
-VSS
vI
VDD
I
vo
vI
VDD
I
vI
vo
Source follower
or common-drain
amplifier
Common-source
amplifier
Common-gate
amplifier
Basic amplifier configurations with current sources
29
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
 
2
1
1
2
1
//
//
o
o
m
v
o
o
o
i
r
r
g
A
r
r
R
R





ID2
ID2
The CMOS common-source amplifier: (a) circuit; (b) i-v characteristic of the active-load Q2; (c) graphical construction to determine
the transfer characteristic; and transfer characteristic.
30
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Example: VDD=10V;Vtn = | Vtp| = 1V ; k’
n= 2 k’
p= 20 A/V2
(W=100 m; L =10 m |VA|= 100V for both the n and p device)
IREF=100 A.
 
 
 
 
  MΩ
5
.
0
//
V
V
100
//
1MΩ
V
A
2
.
0
2
2V
2
1
μA
100
V
795
.
4
V
1
8.59V
)
(
10
2.41V
2
1
μA
100
μA
100
2
1
2
1
1
2
1
1
'
1
2
1
'
1
2
1
1
2
3
'
3
1
2
min
min
max
min
max




























































o
o
o
in
o
o
m
i
o
v
REF
A
o
o
REF
n
m
I
tn
I
n
REF
D
O
o
o
o
O
O
O
tn
I
O
tp
SG
O
SG
tp
SG
p
REF
D
D
D
REF
r
r
R
R
r
r
g
v
v
A
I
V
r
r
m
I
L
W
k
g
V
V
V
L
W
k
I
I
v
r
r
r
v
v
V
V
V
v
V
V
v
V
V
V
L
W
k
I
I
I
I
I
vO
vI
2 2.04
1.96
8.59
10
4.795
1
Bias Point
Slope = -100V/V
p
^
p
^
mV
40
V
795
.
3 



 i
o v
v
31
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The CMOS common-gate amplifier: (a) circuit; (b) small-signal equivalent circuit; and (c) simplified version of the circuit in (b).
 
  






































1
2
1
1
1
2
1
1
1
2
1
1
1
2
1
1
1
1
1
1
1
1
1
//
//
1
o
o
mb
m
i
o
o
o
mb
m
i
i
i
o
o
mb
m
v
o
o
o
mb
m
i
o
v
r
r
g
g
R
r
r
r
g
g
i
v
R
r
r
g
g
A
r
r
r
g
g
v
v
A
32
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The source follower: (a) circuit; (b) small-signal equivalent circuit; and (c) simplified version of the equivalent circuit.
 
χ
g
g
g
R
r
r
g
g
R
χ
g
g
g
A
r
r
g
g
g
R
g
R
g
v
v
A
m
mb
m
o
o
o
mb
m
o
mb
m
m
v
o
o
mb
m
m
S
m
S
m
i
o
v







































1
1
1
//
1
//
//
1
//
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
2
1
1
1
1
1
1
33
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
(a) NMOS amplifier with enhancement load; (b) graphical determination of the transfer characteristic; (c) transfer characteristic.
 
 
 
 
 
 
 
 2
1
2
2
1
2
1
2
1
1
1
L
W
L
W
L
W
L
W
A
v
L
W
L
W
V
L
W
L
W
V
V
v
v
I
t
t
DD
O


















34
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The NMOS amplifier with depletion load: (a) circuit; (b) graphical construction to determine the transfer characteristic; and
(c) transfer characteristic.
 
  χ
L
W
L
W
g
g
A
r
r
g
g
v
v
A
mb
m
v
o
o
mb
m
i
o
v
1
//
//
1
2
1
2
1
2
1
1
1




















35
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Operation of the CMOS inverter when v1 is high: (a) circuit with v1 = VDD (logic-1 level, or VOH); (b) graphical construction to
determine the operating point; and (c) equivalent circuit.
 













tn
DD
n
n
DSN
V
V
L
W
k
r
'
1
36
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Operation of the CMOS inverter when v1 is low: (a) circuit with v1 = 0V (logic-0 level, or VOL); (b) graphical construction to
determine the operating point; and (c) equivalent circuit.
 
















tp
DD
p
p
DSP
V
V
L
W
k
r
'
1
37
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
 
 
t
DD
IL
t
DD
IH
V
V
V
V
V
V
2
3
8
1
2
5
8
1




The voltage transfer characteristic of the CMOS inverter.
 
 
t
DD
L
t
DD
H
V
V
NM
V
V
NM
2
3
8
1
2
3
8
1
Margins
Noise




38
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output waveforms; (c) trajectory of the operating
point as the input goes high and C discharges through the QN; (d) equivalent circuit during the capacitor discharge.
39
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
(a) High-frequency equivalent circuit model for the MOSFET; (b) the equivalent circuit for the case the source is connected to the
substrate (body); (c) the equivalent circuit model of (b) with Cdb neglected (to simplify analysis).
  D
m I
L
W
k
g 2

D
DS
A
o
I
V
V
r


Strong inversion and saturation:
VGS – Vt > 200 mV
W L
C
C ox
gs
3
2

40
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Determining the short-circuit current gain Io/Ii.
 
gd
gs
m
i
o
C
C
s
g
I
I


For physical frequencies s = j, it cam be seen that the magnitude of the current gain
becomes unity at the frequency:
 
gd
gs
m
T
C
C
g
f


π
2
41
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The Junction Field-Effect Transistor
p
p
Depletion
region
Depletion
region
G
S D
G
n
p
p
v = 0
GS
W
p
p
Depletion
region
Depletion
region
G
S D
G
n
p
p
+ -
V < v < 0
GS
P
W'
i
G
p
p
Depletion
region
Depletion
region
G
S D
G
n
p
p
+ -
v = V
GS P
Pinched-Off Channel
< 0
( a ) JFET with zero gate-source bias
( b ) JFET with negative gate-source voltage
that is less negative than the pinch-off
voltage VP. Note W’ < W
( c ) JFET at pinch-off with VGS = VP
42
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The Junction Field-Effect Transistor ( a ) JFET with small drain-source ( b ) JFET with channel just at
pinch-off with vDS = vDSP
D
S
G
G
+ -
vGS
Depletion
region
Depletion
region
v
DS
p
p
p
n iDS
< 0
D
S
G
G
+ -
vGS
Depletion
region
Depletion
region
p
p
p
n iDS
v = v
DS DSP
( a ) JFET with small drain-source
( b ) JFET with channel just at
pinch-off with vDS = vDSP
43
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
iD
G
D
S
G
D
S
iD
P-channel
N-channel
Summary of equations for the JFET


















































































































A
DS
P
GS
DSS
D
P
GS
DS
P
GS
A
DS
P
GS
DSS
D
P
GS
DS
GS
P
P
DS
P
DS
P
GS
DSS
D
P
GS
DS
P
GS
P
DS
P
DS
P
GS
DSS
D
P
GS
DS
GS
P
D
P
GS
D
P
GS
V
V
V
v
I
i
V
v
v
and
V
v
V
V
V
v
I
i
V
v
v
and
v
V
V
v
V
v
V
v
I
i
V
v
v
and
V
v
V
v
V
v
V
v
I
i
V
v
v
and
v
V
i
V
v
i
V
v
1
1
0
1
1
0
Saturation
1
2
0
1
2
0
(Linear)
Triodo
0
0
Cutoff
Type
-
P
Type
-
N
Region
2
2
2
2
0
0
max


GS
P
v
V
0
0
min


GS
P
v
V
D
A
o
DSS
D
P
DSS
P
GS
P
DSS
m
I
V
r
I
I
V
I
V
V
V
I
g 




























2
1
2
44
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Output characteristics for a JFET with IDSS = 200 A and VP = -4V
12
10
8
6
4
2
0
0.00e+0
2.00e-5
4.00e-5
6.00e-5
8.00e-5
1.00e-4
1.20e-4
1.40e-4
1.60e-4
1.80e-4
2.00e-4
2.20e-4
Drain-Source Voltage (V)
Drain-Source
Current
(A)
V = -3 V
V = -2 V
V = -1 V
V = 0 V
Pinch-off Locus
V Š V
Pinch-off Region
(Saturation)
Linear
Region I
GS
P
DSS
GS
GS
GS
GS
D
S
G
iDS
vGS
v
DS
D
S
G
iSD
vSG
v
SD
n-channel JFET p-channel JFET
+
-
+
-
+
-
+
-
45
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Transfer characteristic for a saturated JFET with IDSS = 1 mA and VP = -3.5V
3
2
1
0
-1
-2
-3
-4
-5
-6
-5.00e-4
0.00e+0
5.00e-4
1.00e-3
1.50e-3
Gate-Source Voltage (V)
Drain-Source
Current
(A) I DSS
V
P
46
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
When to use JFETs
 JFET have much higher input impedances
and much lower input currents than BJTs.
 BJTs are more linear than JFETs.
 The gain of a BJT is much higher than that
of a JFET.
47
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
JFET (Example)
The JFET in the circuit below has VP=-3V, IDSS=9mA,
and =0. Find the values of all resistors so that VG=5V,
ID=4mA, and VD=11V. Design for 0.05mA in the
voltage divider.
1KΩ
4m
11
15
R
100KΩ
R
200KΩ
R
0.05m
R
R
15
15
R
R
R
5
D
G2
G1
G1
G2
G1
G2
G2









1.5KΩ
R
10V
V
6V
V
3
V
5
1
9m
4m
S
'
'
S
Ok
'
S
2
S





















 


 

Saturation
For the JFET circuit designed in the former exercise,
let an input signal vi be capacitively coupled to the
gate, a large bypass capacitor be connected between
the source and ground, and the output signal vo be
taken from the drain through a large coupling
capacitor. The resulting common-source amplifier is
shown below. Calculate gm and ro (assuming
VA=100V). Also find Ri and Ro.
25KΩ
4m
100
V
A
4m
9m
4m
3
9m
2x













 o
m r
g
  V
V
3.85
R
// D 



 o
m
i
o
v r
g
v
v
A
66.7KΩ
//R
R
962
R
// G2
G1
D 




 i
o
o R
r
R
48
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
 SEDRA. Adel S. e SMITH, Kenneth C. Microelectronic
Circuits. Oxford University Press.
 BOYLESTAD, Robert e NASHELSKY, Louis.
Dispositivos Eletrônicos e Teoria de Circuitos. Prentice
Hall do Brasil.
 SZE, S. M. Physics of Semiconductor Devices. John Wiley
& Sons.
 SCHILLING, Donald L. e BELOVE, Charles. Circuitos
Eletrônicos Discretos e Integrados. Guanabara Dois.
 COMER, David J. Introduction to Semiconductor
Circuits Design. Addison Wesley Publishing Company.
 MALVINO, Albert P. Eletrônica. Volume I. McGraw-Hill.
References

More Related Content

Similar to Field_Effect_Transistors.pptx

FET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif SirFET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif SirMuntasir Mahdi
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorDr Naim R Kidwai
 
Metal Insulator Semiconductor devices
Metal Insulator Semiconductor devicesMetal Insulator Semiconductor devices
Metal Insulator Semiconductor devicesutpal sarkar
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect TransistorYong Heui Cho
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewAUTHELECTRONIC
 
IDS MOS Equation (1).pptx
IDS MOS Equation (1).pptxIDS MOS Equation (1).pptx
IDS MOS Equation (1).pptxAravindS273883
 
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IROriginal P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IRAUTHELECTRONIC
 
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas ElectronicsOriginal N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas ElectronicsAUTHELECTRONIC
 
Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.pptssuserb4d806
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewAUTHELECTRONIC
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewAUTHELECTRONIC
 
Lect2 up090 (100324)
Lect2 up090 (100324)Lect2 up090 (100324)
Lect2 up090 (100324)aicdesign
 

Similar to Field_Effect_Transistors.pptx (20)

FET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif SirFET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif Sir
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistor
 
Metal Insulator Semiconductor devices
Metal Insulator Semiconductor devicesMetal Insulator Semiconductor devices
Metal Insulator Semiconductor devices
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Tluenotes lehmann
Tluenotes lehmannTluenotes lehmann
Tluenotes lehmann
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
 
15 mosfet threshold voltage
15 mosfet threshold voltage15 mosfet threshold voltage
15 mosfet threshold voltage
 
IDS MOS Equation (1).pptx
IDS MOS Equation (1).pptxIDS MOS Equation (1).pptx
IDS MOS Equation (1).pptx
 
FET
FETFET
FET
 
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IROriginal P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
 
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas ElectronicsOriginal N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
 
Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.ppt
 
Chapter3
Chapter3Chapter3
Chapter3
 
Session 4
Session 4Session 4
Session 4
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
 
Electrical characteristics of MOSFET
Electrical characteristics of MOSFETElectrical characteristics of MOSFET
Electrical characteristics of MOSFET
 
Mosfet baising
Mosfet baisingMosfet baising
Mosfet baising
 
Lect2 up090 (100324)
Lect2 up090 (100324)Lect2 up090 (100324)
Lect2 up090 (100324)
 

Recently uploaded

VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 

Recently uploaded (20)

VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 

Field_Effect_Transistors.pptx

  • 1. FIELD EFFECT TRANSISTORS (FET) Celso José Faria de Araújo, Dr.
  • 2. 1 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Gate Drain Source Base Collector Emitter FET  3 terminal device  Channel e- current from source to drain controlled by the electric field generated by the gate  Extremely high input impedance for base BJT  3 terminal device emitter to collector e- current controlled by the current injected into the base FET X BJT (NPN)
  • 3. 2 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. • In addition to carrier type (N or P channel), there are differences in how the control element is constructed (Junction x Insulated) and those devices must be used differently Depletion mode junction FETs (JFET) npn pnp npn pnp Metal oxide semi-conductor FET (MOSFET) – depletion/enhancement mode – enhancement mode (insulated gate FETs, IGFETs, are the same as MOSFETs) Types of FETs
  • 4. 3 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross section. Typically L = 1 to 10 m, W = 2 to 500 m, and the thickness of the oxide layer is in the range of 0.02 to 0.1 m.
  • 5. 4 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. n + v Small DS D n + S B v > V GS TN G Depletion Region p n + D n + S v = v - V DS GS TN v > V GS TN G B Depletion Region p n + D n + S v > v - V DS GS TN v > V GS TN G B Depletion Region Pinch-off Point p Acceptor Ion ( a ) MOSFET in the linear region ( b ) MOSFET with channel just pinched off at the drain. ( c ) Channel pinch off for vDS > vGS - VTN Water Waterfalls analogy
  • 6. 5 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n channel is induced at the top of the substrate beneath the gate.
  • 7. 6 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. An NMOS transistor with vGS > Vt and with a small vDS applied. The device acts as a conductance whose value is determined by vGS. Specifically, the channel conductance is proportional to vGS - Vt, and this iD is proportional to (vGS - Vt) vDS. Note that the depletion region is not shown (for simplicity).
  • 8. 7 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. 0.8 0.6 0.4 0.2 0.0 0.00e+0 2.00e-4 4.00e-4 6.00e-4 8.00e-4 Drain-Source Voltage (V) Drain-Source Current (A) V = 2 V V = 3 V V = 4 V V = 5 V GS GS GS GS NMOS i-v characteristics in the linear region (VSB = 0)            2 2 DS DS tn GS OX n D v v V v L W C μ i vGS  Vtn 0  vDS  vDSSAT = vGS-Vtn Linear Region (small vDS)     tn GS n DS D DS tn GS n D DS V v L W k dv di v V v L W k i v small     ' ' VTN =1V OX n n C μ k  '
  • 9. 8 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Operation of the enhancement NMOS transistor as vDS is increased. The induced channel acquires a tapered shape and its resistance increases as vDS is increased. Here, vGS is kept constant at a value > Vt.
  • 10. 9 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The drain current iD versus the drain-to-source voltage vDS for an enhancement-type NMOS transistor operated with vGS > Vt.
  • 11. 10 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Output characteristics for an NMOS transistor with Vtn = 1 V and k’n (W/L)= 25 x 10-6 A/V2 12 10 8 6 4 2 0 0.00e+0 2.00e-5 4.00e-5 6.00e-5 8.00e-5 1.00e-4 1.20e-4 1.40e-4 1.60e-4 1.80e-4 2.00e-4 2.20e-4 Drain-Source Voltage (V) Drain-Source Current (A) V = 2 V V = 3 V V = 4 V V = 5 V Pinchoff Locus V Š 1 V Saturation Region Linear Region GS GS GS GS GS                   tn GS DS DS tn GS DS DS tn GS n D V v v v V v for v v V v L W k i SAT 2 2 ' ID G D S  B vD  vS tn GS D V v for i   0            tn GS DS DS tn GS tn GS n D V v v v V v for V v L W k i SAT 2 ' 2
  • 12. 11 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Derivation of the iD - vDS characteristic of the NMOS transistor.
  • 13. 12 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. p+ L Source Gate Drain Channel Region Body N-Type Substrate v > 0 B i B iS v S v < 0 G i G v < 0 D iD p+ Cross section of an enhancement-mode PMOS transistor ID G D S ID G D S B The PMOS Transistor
  • 14. 13 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Output characteristics for a PMOS transistor with Vtp = -1V and k’P (W/L)= 25 x 10-6 A/V2 12 10 8 6 4 2 0 -2 -5.00e-5 0.00e+0 5.00e-5 1.00e-4 1.50e-4 2.00e-4 2.50e-4 Source-Drain Voltage (V) Source-Drain Current (A) V Š 1 V (V • -1 V) SG GS V = 3 V (V = -3 V) SG GS V = 2 V (V = -2 V) SG GS V = 4 V (V = -4 V) SG GS V = 5 V (V = -5 V) SG GS ID G D S  B tp GS D V v for i   0                   tp GS DS DS tp GS DS DS tp GS p D V v v v V v for v v V v L W k i SAT 2 2 '            tp GS DS DS tp GS tp GS p D V v v v V v for V v L W k i SAT 2 ' 2 vS  vD
  • 15. 14 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Cross section of a CMOS integrated circuit. Note that the PMOS transistor is formed in a separate n-type region, known as an n well. Another arrangement is also possible in which an n-type body is used and the n device is formed in a p well.
  • 16. 15 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. (a) An n-channel enhancement-type MOSFET with vGS and vDS applied and with the normal directions of current flow indicated. (b)The iD - vDS characteristics for a device with Vt = 1 V and k’n(W/L) = 0.5 mA/V2 (d) The iD - vGS characteristic for an enhancement- type NMOS transistor in saturation. (d)
  • 17. 16 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Channel Length Modulation                    M D M D D M D t GS ox D L L I L L I i L L I V v L W C i SAT SAT SAT 1 1 2 2  LM     DS t GS ox D A DS M v V v L W C i L V v L L             1 2 1 2 Increasing vDS beyond vDSsat causes the channel pinch-off point to move slightly away from the drain, thus reducing the effective channel length (by L).
  • 18. 17 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Effect of vDS on iD in the saturation region. The MOSFET parameter VA is typically in the range of 30 to 200 V.     Saturation 1 2 2     DS t GS ox D v V v L W C i   D DS - v DS D o I v v i r GS  1 1 constant                 A DS D A D o V V I V I r     1  Output Resistance: VA is directly proportional to L; thus two devices with the same process, and having channel lengths L1 e L2, will have Early voltage VA1 and VA2,. 2 1 2 1 L L V V A A 
  • 19. 18 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Large-signal equivalent circuit model of the n-channel MOSFET in saturation, incorporating the output resistance ro. The output resistance models the linear dependence of iD on vDS and is given by ro  VA/ID.
  • 20. 19 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. ID G D S ID G D S G D S B G D S B P-channel N-channel Vtn > 0 vDS  0 Vtp < 0 vDS  0 or or ox p p C μ k  ' Summary of equations for the enhancement-mode MOSFET                                                                 A SD tp SG p D tp SG SD tp SG A DS tn GS n D tn GS DS tn GS SD SD tp SG p D tp SG SD tp SG DS DS tn GS n D tn GS DS tn GS D tp SG D tn GS V V V v L W k i V v v and V v V V V v L W k i V v v and V v v v V v L W k i V v v and V v v v V v L W k i V v v and V v i V v i V v 1 2 1 2 Saturation 2 2 (Linear) Triodo 0 0 Cutoff Type - P Type - N Region 2 ' 2 ' 2 ' 2 ' ox n n C μ k  '
  • 21. 20 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The current-voltage characteristics of a depletion-type n-channel MOSFET for which Vt = -4 V and k’n(W/L) = 2 mA/V2: (a) transistor with current and voltage polarities indicated; (b) the iD - vDS characteristics; (c) the iD - vGS characteristic in saturation.
  • 22. 21 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. -  usually neglected ( 1/  =VA) - Q-point most often located in saturation for analog circuits DD G V R R R V 2 1 2   D S S I R V    D S D DD DS I R R V V     2 ' 2 t GS n D V V L W k I   2 2 1 2 ' 2           D S t DD n D I R V V R R R L W k I D S DD GS I R V R R R V    2 1 2 VDD VG RD RS RG R1 R2 ID ( assuming the MOSFET to be in the saturation region ) ( two solutions  only one is possible ) Ex: VDD = 10 V R1 = 150 k R2 = 100 k RS = 10 k RD = 50 k k’n(W/L) = 50 A/V2 Vt = 1 V Solution: ID = 100 A VDS = 4 V Bias Circuits 1
  • 23. 22 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. VDD -VSS RD RS RG VDD -VSS RD I RG Two power supplies are available A simple circuit utilizing a current source Bias Circuits 2 VDD VDS = VGS2 load line curve VDS = VGS VGS1 VGS2 VGS3 Q VDD/ RD VDD RD RG ID  2 ' 2 t GS n D V V L W k I    2 ' 2 D D t DD n D I R V V k I      0    G DS GS I V V Analysis D D DD GS I R V V  
  • 24. 23 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Basic MOSFET current mirror. Q1: I  V converter Q2: V  I converter If Q2 in saturation then    1 2 L W L W I I REF o    t GS o V V v   min Example: VDD = 5V ;IREF=10A; Q1 and Q2 are matched ; L=10 m and W=100 m; Vt = 1V ; k’ n=20  A/V2 VA = 10L; Vo=+3V   3% μA 3 M 1 V 3 M 1 100 V 100 V 100 10 x 10 1V 1 2 30 100 2 5 2V 1 10 100 20 2 1 100 min 2 1                            o o o o A o GS GS REF D r V I μA r V v K R V V I I 
  • 25. 24 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc.               D m gs d v gs D m D d d d D D d D D DD D D DD D D n t GS n gs d V v GS D m gs t GS n d d D D t GS gs gs t GS n gs n gs n gs t GS n t GS n D t gs GS n D gs GS GS t GS D D D DD D t GS n D R g v v A v R g R i v i R V i I R V i R V v I L W k V V L W k v i v i g v V V L W k i i I i V V v v V V L W k v L W k v L W k v V V L W k V V L W k i V v V L W k i v V v V V V I R V V V V L W k I GS GS                                                      ) ( Gain Voltage 2 ) ( 2 2 1 2 1 2 1 2 1 Terminal Drain in the Current signal The 0 2 1 Point Bias DC ctance transcondu ' ' ' signal small ' 2 ' 2 ' ' 2 ' 2 ' 2 '                                                  The operation of the MOSFET as an amplifier.
  • 26. 25 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Small-signal models for the MOSFET: (a) neglecting the dependence of iD on vDS in saturation (channel-length modulation effect); and (b) including the effect of channel-length modulation modeled by output resistance ro = |VA|/ID. (a.1) -Model (a.2) T-Model (b.1) -Model (b.2) T-Model
  • 27. 26 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc.       2.33MΩ 3 . 4 3 . 4 1 Resistance Input V V 37 . 3 // // // 1 Gain Voltage 0 // // Analysis AC 47KΩ 1.06m 50 mA/V 725 . 0 ) 5 . 1 4 . 4 ( 25 . 0 Meaningful Physically 4.4V and 1.06mA K 10 15 15 5 . 1 25 . 0 2 1 Analysis DC 2                                                 G i i in G i i o G i G o i i G L D o G m i o v G i o i m L D o o o m D D D D D D D D D GS R i v R R v v v R v R v v i R R R r R g v v A R v v v g R R r v r m g V I I I R V V m I V V Example: Vt = 1.5V ; k’ n(W/L)=0.25 mA/V2 VA = 50V
  • 28. 27 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Small-signal equivalent-circuit model of a MOSFET in which the body is not connected to the source. 0.3 χ 0.1 g v i g m v v BS D mb DS GS          constante constante ctance Transcondu Body
  • 29. 28 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. VDD I vo -VSS vI VDD I vo vI VDD I vI vo Source follower or common-drain amplifier Common-source amplifier Common-gate amplifier Basic amplifier configurations with current sources
  • 30. 29 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc.   2 1 1 2 1 // // o o m v o o o i r r g A r r R R      ID2 ID2 The CMOS common-source amplifier: (a) circuit; (b) i-v characteristic of the active-load Q2; (c) graphical construction to determine the transfer characteristic; and transfer characteristic.
  • 31. 30 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Example: VDD=10V;Vtn = | Vtp| = 1V ; k’ n= 2 k’ p= 20 A/V2 (W=100 m; L =10 m |VA|= 100V for both the n and p device) IREF=100 A.           MΩ 5 . 0 // V V 100 // 1MΩ V A 2 . 0 2 2V 2 1 μA 100 V 795 . 4 V 1 8.59V ) ( 10 2.41V 2 1 μA 100 μA 100 2 1 2 1 1 2 1 1 ' 1 2 1 ' 1 2 1 1 2 3 ' 3 1 2 min min max min max                                                             o o o in o o m i o v REF A o o REF n m I tn I n REF D O o o o O O O tn I O tp SG O SG tp SG p REF D D D REF r r R R r r g v v A I V r r m I L W k g V V V L W k I I v r r r v v V V V v V V v V V V L W k I I I I I vO vI 2 2.04 1.96 8.59 10 4.795 1 Bias Point Slope = -100V/V p ^ p ^ mV 40 V 795 . 3      i o v v
  • 32. 31 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The CMOS common-gate amplifier: (a) circuit; (b) small-signal equivalent circuit; and (c) simplified version of the circuit in (b).                                            1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 // // 1 o o mb m i o o o mb m i i i o o mb m v o o o mb m i o v r r g g R r r r g g i v R r r g g A r r r g g v v A
  • 33. 32 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The source follower: (a) circuit; (b) small-signal equivalent circuit; and (c) simplified version of the equivalent circuit.   χ g g g R r r g g R χ g g g A r r g g g R g R g v v A m mb m o o o mb m o mb m m v o o mb m m S m S m i o v                                        1 1 1 // 1 // // 1 // 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1
  • 34. 33 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. (a) NMOS amplifier with enhancement load; (b) graphical determination of the transfer characteristic; (c) transfer characteristic.                2 1 2 2 1 2 1 2 1 1 1 L W L W L W L W A v L W L W V L W L W V V v v I t t DD O                  
  • 35. 34 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The NMOS amplifier with depletion load: (a) circuit; (b) graphical construction to determine the transfer characteristic; and (c) transfer characteristic.     χ L W L W g g A r r g g v v A mb m v o o mb m i o v 1 // // 1 2 1 2 1 2 1 1 1                    
  • 36. 35 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Operation of the CMOS inverter when v1 is high: (a) circuit with v1 = VDD (logic-1 level, or VOH); (b) graphical construction to determine the operating point; and (c) equivalent circuit.                tn DD n n DSN V V L W k r ' 1
  • 37. 36 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Operation of the CMOS inverter when v1 is low: (a) circuit with v1 = 0V (logic-0 level, or VOL); (b) graphical construction to determine the operating point; and (c) equivalent circuit.                   tp DD p p DSP V V L W k r ' 1
  • 38. 37 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc.     t DD IL t DD IH V V V V V V 2 3 8 1 2 5 8 1     The voltage transfer characteristic of the CMOS inverter.     t DD L t DD H V V NM V V NM 2 3 8 1 2 3 8 1 Margins Noise    
  • 39. 38 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output waveforms; (c) trajectory of the operating point as the input goes high and C discharges through the QN; (d) equivalent circuit during the capacitor discharge.
  • 40. 39 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. (a) High-frequency equivalent circuit model for the MOSFET; (b) the equivalent circuit for the case the source is connected to the substrate (body); (c) the equivalent circuit model of (b) with Cdb neglected (to simplify analysis).   D m I L W k g 2  D DS A o I V V r   Strong inversion and saturation: VGS – Vt > 200 mV W L C C ox gs 3 2 
  • 41. 40 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Determining the short-circuit current gain Io/Ii.   gd gs m i o C C s g I I   For physical frequencies s = j, it cam be seen that the magnitude of the current gain becomes unity at the frequency:   gd gs m T C C g f   π 2
  • 42. 41 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The Junction Field-Effect Transistor p p Depletion region Depletion region G S D G n p p v = 0 GS W p p Depletion region Depletion region G S D G n p p + - V < v < 0 GS P W' i G p p Depletion region Depletion region G S D G n p p + - v = V GS P Pinched-Off Channel < 0 ( a ) JFET with zero gate-source bias ( b ) JFET with negative gate-source voltage that is less negative than the pinch-off voltage VP. Note W’ < W ( c ) JFET at pinch-off with VGS = VP
  • 43. 42 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The Junction Field-Effect Transistor ( a ) JFET with small drain-source ( b ) JFET with channel just at pinch-off with vDS = vDSP D S G G + - vGS Depletion region Depletion region v DS p p p n iDS < 0 D S G G + - vGS Depletion region Depletion region p p p n iDS v = v DS DSP ( a ) JFET with small drain-source ( b ) JFET with channel just at pinch-off with vDS = vDSP
  • 44. 43 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. iD G D S G D S iD P-channel N-channel Summary of equations for the JFET                                                                                                                   A DS P GS DSS D P GS DS P GS A DS P GS DSS D P GS DS GS P P DS P DS P GS DSS D P GS DS P GS P DS P DS P GS DSS D P GS DS GS P D P GS D P GS V V V v I i V v v and V v V V V v I i V v v and v V V v V v V v I i V v v and V v V v V v V v I i V v v and v V i V v i V v 1 1 0 1 1 0 Saturation 1 2 0 1 2 0 (Linear) Triodo 0 0 Cutoff Type - P Type - N Region 2 2 2 2 0 0 max   GS P v V 0 0 min   GS P v V D A o DSS D P DSS P GS P DSS m I V r I I V I V V V I g                              2 1 2
  • 45. 44 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Output characteristics for a JFET with IDSS = 200 A and VP = -4V 12 10 8 6 4 2 0 0.00e+0 2.00e-5 4.00e-5 6.00e-5 8.00e-5 1.00e-4 1.20e-4 1.40e-4 1.60e-4 1.80e-4 2.00e-4 2.20e-4 Drain-Source Voltage (V) Drain-Source Current (A) V = -3 V V = -2 V V = -1 V V = 0 V Pinch-off Locus V Š V Pinch-off Region (Saturation) Linear Region I GS P DSS GS GS GS GS D S G iDS vGS v DS D S G iSD vSG v SD n-channel JFET p-channel JFET + - + - + - + -
  • 46. 45 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Transfer characteristic for a saturated JFET with IDSS = 1 mA and VP = -3.5V 3 2 1 0 -1 -2 -3 -4 -5 -6 -5.00e-4 0.00e+0 5.00e-4 1.00e-3 1.50e-3 Gate-Source Voltage (V) Drain-Source Current (A) I DSS V P
  • 47. 46 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. When to use JFETs  JFET have much higher input impedances and much lower input currents than BJTs.  BJTs are more linear than JFETs.  The gain of a BJT is much higher than that of a JFET.
  • 48. 47 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. JFET (Example) The JFET in the circuit below has VP=-3V, IDSS=9mA, and =0. Find the values of all resistors so that VG=5V, ID=4mA, and VD=11V. Design for 0.05mA in the voltage divider. 1KΩ 4m 11 15 R 100KΩ R 200KΩ R 0.05m R R 15 15 R R R 5 D G2 G1 G1 G2 G1 G2 G2          1.5KΩ R 10V V 6V V 3 V 5 1 9m 4m S ' ' S Ok ' S 2 S                             Saturation For the JFET circuit designed in the former exercise, let an input signal vi be capacitively coupled to the gate, a large bypass capacitor be connected between the source and ground, and the output signal vo be taken from the drain through a large coupling capacitor. The resulting common-source amplifier is shown below. Calculate gm and ro (assuming VA=100V). Also find Ri and Ro. 25KΩ 4m 100 V A 4m 9m 4m 3 9m 2x               o m r g   V V 3.85 R // D      o m i o v r g v v A 66.7KΩ //R R 962 R // G2 G1 D       i o o R r R
  • 49. 48 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc.  SEDRA. Adel S. e SMITH, Kenneth C. Microelectronic Circuits. Oxford University Press.  BOYLESTAD, Robert e NASHELSKY, Louis. Dispositivos Eletrônicos e Teoria de Circuitos. Prentice Hall do Brasil.  SZE, S. M. Physics of Semiconductor Devices. John Wiley & Sons.  SCHILLING, Donald L. e BELOVE, Charles. Circuitos Eletrônicos Discretos e Integrados. Guanabara Dois.  COMER, David J. Introduction to Semiconductor Circuits Design. Addison Wesley Publishing Company.  MALVINO, Albert P. Eletrônica. Volume I. McGraw-Hill. References