Absolute value

629 views

Published on

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
629
On SlideShare
0
From Embeds
0
Number of Embeds
19
Actions
Shares
0
Downloads
31
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Absolute value

  1. 1. Integers and Absolute Values Objective: Graph integers on a number line and find absolute value.
  2. 2. Example 1. Study the pattern of the following subtraction sentences. 5 – 1 = 4 5 – 2 = 3 5 – 3 = 2 5 – 4 = 1 5 – 5 = 0 5 – 6 = ?
  3. 3. Example 1. Study the pattern of the following subtraction sentences. 5 – 1 = 4 5 – 2 = 3 5 – 3 = 2 5 – 4 = 1 5 – 5 = 0 5 – 6 = -1 This is an example of a negative number. A negative number is less than zero.
  4. 4. Integers
  5. 5. Integers Numbers to the left of zero are less than zero.
  6. 6. Integers Numbers to the left of zero are less than zero. Numbers to the right of zero are more than zero.
  7. 7. Integers Numbers to the left of zero are less than zero. Numbers to the right of zero are more than zero. The numbers –1, -2, -3,… are called negative integers. The number negative 3 is written –3.
  8. 8. Integers Numbers to the left of zero are less than zero. Numbers to the right of zero are more than zero. The numbers –1, -2, -3,… are called negative integers. The number negative 3 is written –3. The numbers 1, 2, 3, … are called positive integers. The number positive 4 is written +4 or 4.
  9. 9. Integers Numbers to the left of zero are less than zero. Numbers to the right of zero are more than zero. The numbers –1, -2, -3,… are called negative integers. The number negative 3 is written –3. The numbers 1, 2, 3, … are called positive integers. The number positive 4 is written +4 or 4. Zero is neither negative nor positive.
  10. 10. Example 2a: Name the coordinates of D, E, and B A E C B D
  11. 11. Example 2b: Graph points F, U, and N on a number line if F has coordinate 1, U has coordinate –3, and N has coordinate 4.
  12. 12. Absolute Value Absolute Value In words: The absolute value of a number is the distance the number is from the zero point on the number line. In symbols: |4| = 4 and |-4| = 4
  13. 13. Example 3: Simplify <ul><li>|9| + |-9| </li></ul>
  14. 14. Example 3: Simplify <ul><li>|9| + |-9| </li></ul><ul><li>|9| + |-9| = 9 + 9 </li></ul>
  15. 15. Example 3: Simplify <ul><li>|9| + |-9|| </li></ul><ul><li>|9| + |-9| = 9 + 9 </li></ul><ul><li> = 18 </li></ul>
  16. 16. Example 3: Simplify <ul><li>|9| + |-9|| </li></ul><ul><li>|9| + |-9| = 9 + 9 </li></ul><ul><li> = 18 </li></ul><ul><li>|13| - |-2| </li></ul>
  17. 17. Example 3: Simplify <ul><li>|9| + |-9|| </li></ul><ul><li>|9| + |-9| = 9 + 9 </li></ul><ul><li> = 18 </li></ul><ul><li>|13| - |-2| </li></ul><ul><li>|13| - |-2| = 13 – 2 </li></ul>
  18. 18. Example 3: Simplify <ul><li>|9| + |-9|| </li></ul><ul><li>|9| + |-9| = 9 + 9 </li></ul><ul><li> = 18 </li></ul><ul><li>|13| - |-2| </li></ul><ul><li>|13| - |-2| = 13 – 2 </li></ul><ul><li> = 11 </li></ul>
  19. 19. Example 4: Evaluate the expression |x| - 7 if x = - 13
  20. 20. Example 4: Evaluate the expression |x| - 7 if x = - 13 |x| - 7 = |-13| - 7
  21. 21. Example 4: Evaluate the expression |x| - 7 if x = - 13 |x| - 7 = |-13| - 7 = 13 – 7
  22. 22. Example 4: Evaluate the expression |x| - 7 if x = - 13 |x| - 7 = |-13| - 7 = 13 – 7 = 6
  23. 23. Assignment: Lesson 109 do all evens

×