SlideShare a Scribd company logo
1 of 11
Download to read offline
Hyperspectral remote sensing images were used to
develop a method of oil-gas exploration (Tian, 2012). The
researcher, (Tian, 2012), found that the oil-gas reservoirs
can be detected directly by the absorption bands near
1730 nm in hyperspectral images. In addition, he
discovered that thin oil silk of microseepage could be
extracted using spectral angle matching of alteration
mineral. Hyperspectral images include large data sets, but
interpreting them requires an understanding of exactly
what properties of materials that we are trying to
measure and how they relate to the measurements
actually made by the hyperspectral sensor (camera).
Therefore, the purpose of this paper is to provide an
introduction to the fundamental concepts in the field of
hyperspectral imaging and review some applications of
hyperspectral imaging technology in determining concrete
properties.
2.0 Basic Principles of Spectral Imagery
2.1 Electromagnetic Spectrum
The electromagnetic spectrum is the entire range of
electromagnetic radiation extending in frequency from
high-energy waves (10²¹ Hz) to low-energy waves ( Hz).
The electromagnetic spectrum is divided into five major
types of radiation. As shown in Figure (1), these include
radio waves (including microwaves, FM, TV, Shortwave, and
AM), light (including ultraviolet, visible, and infrared), heat
radiation, X-rays, and gamma rays. Your eye can detect only
part of the light spectrum (BBC, 2006). The visible light of
the electromagnetic radiation which is near the center of
the spectrum extends from 400 nm to 700 nm. It is only a
very small part of the overall range of wavelengths in
the spectrum. While, the other electromagnetic radiation
which range from shortest wavelengths (10-¹ ) m (gamma
rays) to longest wavelengths (10 ) m (AM radio waves)
span a wider range of wavelengths than does visible
light. For instance, the infrared range includes a broad
range of wavelengths. Infrared range includes a broad
range of wavelengths. It begins just above the longest
waves in the visible portion (red) and extends up to the
wavelength range that is used for communication.
Infrared wavelengths range from about 700 nm up to
1 mm. The part of the range closest to the visible
spectrum is called near infrared and the longer
wavelength part is called far infrared (Space Computer
Corporation, 2007).
Science Journal of Civil Engineering & Architecture Published By
ISSN: 2276-6332 Science Journal Publication
http://www.sjpub.org/sjcea.html International Open Access Publisher
© Author(s) 2011. CC Attribution 3.0 License.
Research Article Volume 2013 (2013), Issue 3
Determination of Concrete Properties Using Hyperspectral Imaging Technology: A Review
Alaa Shaban
PhD Candidate in Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
Accepted 22th May, 2013
ABSTRACT
The strength and durability of concrete are the most
essential parameters for determining structural
performance of any concrete structure. Thus, there has
been always a need to develop an appropriate test method
to evaluate and identify concrete properties in various
structural members. In recent years, several researchers
have strived to exploit hyperspectral technology as a non
destructive test method for assessing properties of
concrete structures in-situ. In this test method, the
reflectance radiations across the visible near-infrared and
shortwave-infrared (VI-NIR & SWIR) in the region
between (350 - 2500) nm were utilized as an approach to
predict unknown concrete properties. The application of
hyperspectral measurements are becoming more
significant for the cost effective coverage of large concrete
areas and can provide accurate predictions of concrete
properties relatively quickly compared to traditional
field sampling and subsequent experimental tests
under laboratory conditions. This paper presents the
fundamental elements of hyperspectral technology and
discusses the possibility of utilizing hyperspectral imaging
sensors for detecting characteristics of concrete structures
in-situ.
KEYWORDS: Hypespectral, Spectrometer, Concrete, Reflectance,
Imaging Spectroscopy, Spectral Signature
1.0 Introduction
Hyperspectral imaging is a relatively new technology that
has been utilized by researchers and scientists for several
applications, including mineral identification, vegetation
classification, land cover exploration, atmospheric
monitoring, and target detection. All of these applications
depend on a material having a spectral (Finger-Print) that
can be collected as a set of images for measurement
purposes.
The prefix (hyper) in hyperspectral means "over", and
indicates to a vast number of measured spectral bands of
electromagnetic radiation. Hyperspectral images are
spectrally over determined, which implies that they
provide extensive spectral information to detect and
identify spectrally a wide variety of materials (Shippert,
2012). For instance, hyperspectral imaging technology has
been used by agricultural engineers, (Detar et al, 2008), to
detect in-field distribution of soil properties with airbone
hyperspectral measurements of bare fields.
Corresponding Author: Alaa Shaban
PhD Candidate in Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
Email:ashaban2012@my.fit.edu
2.2 Spectral Signature
When electromagnetic radiation hits an object, the
wavelengths may be reflected, absorbed or transmitted
through the object. The following schematic, Figure (2),
depicts these three processes. In fact, reflection,
absorption and transmission electromagnetic radiations
through objects depend mainly on physical properties and
chemical composition of the objects and wavelengths of
the radiations. So, for any given material, the amount of
electromagnetic radiation that is reflected, emitted,
transmitted or absorbed varies with the wavelength of the
radiation. If the percentage of reflection or emissivity for a
given material is plotted across a range of wavelengths,
the resulting curve is referred to as a spectral signature
for that material (Vagni, 2007). The spectral signature is a
unique spectral reflectance of an object that can be used
to identify and discriminate different types of materials.
As an example, Figure (3) shows the reflectance spectra
(i.e. the percentage of reflected electromagnetic radiation)
measured by laboratory spectrometer for four materials:
granite, concrete, asphalt and basalt. Each object’s
reflectance is plotted on the chart as a function of
wavelength; such a chart is known as a spectral signature.
Field and laboratory spectrometers usually measure
reflectance at many narrow, closely spaced wavelength
bands, so that the resulting spectra appear to be
continuous curves.
Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) page 2
,
Fig. (1): Electromagnetic Spectrum
(Adapted: Space Computer Corporation, 2007)
Fig. (2): a. Reflection b. Absorption c. Transmission
(Adapted: Space computer Corporation, 2007)
a b c
Page 3 Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332)
Fig. (3): Reflectance spectra measured by laboratory spectrometers for four materials:
granite, concrete, asphalt & basalt
(Adapted: Randall, 2012)
2.3 Hyperspectral Data
Most conventional multispectral imagers measure reflected
energy from a surface at a few wide wavelength bands
separated by segments where no measurements are taken.
Typically, multispectral imagers yield between 3 and 10
different band measurements in each pixel of their images.
On the other hand, hyperspectral imagers measure reflected
radiation at a series of narrow and contiguous wavelength
bands. Hyperspectral images can include more than 200 of
narrow contiguous spectrum bands. Therefore, this type of
detailed pixel spectrum can provide more information about
Fig. (4): Reflectance spectra of the four materials; on the left: as they would appear to the
multispectral sensor; on the right as they would appear to the hyperspectral sensor
(Adapted: Shippert, 2004)
surface than is available in traditional multispectral pixel
spectrum (Shippert, 2004). Also, hyperspectral data sets allow
an almost complete reconstruction of the spectral
signature: the retrieved spectrum for each pixel appears
very much like the spectrum that would be measured in a
spectroscopy laboratory. This concept is illustrated in the
Figure (4), which typifies the reflectance spectra of five
materials as they would appear to a multispectral sensor
and to hyperspectral sensor.
Wavelength (micrometer)
Reflectance
(%)
Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) Page 4
It is important to underline that, although most
hyperspectral sensors measure hundreds of wavelength
bands, it is not the number of measured wavelengths that
defines a sensor as hyperspectral. Rather it is the
narrowness and contiguous nature of the measurements.
Hyperspectral imagery provides an opportunity for more
detailed image analysis. Using hyperspectral data, spectrally
similar (but unique) materials can be identified and
distinguished and sub-pixel scale information can be
extracted (Andreoli et al, 2007).
2.4 Spectral Libraries
Several spectral libraries include wide collections of
reflectance spectra of different types of materials. These high
quality libraries provide valuable information for many
investigators who collect spectral libraries for materials in
their sites as part of every project, to facilitate analysis of
multispectral or hyperspectral imagery from those sites. The
following libraries are the most trusted and comprehensive
mass spectral libraries in the world that use for
identification and quantification hyperspectral images:
● ASTER Spectral Library: This library has been
developed by NASA as part of the Advanced
Spaceborne Thermal Emission Reflection Radiometer
(ASTER) imaging instrument program. ASTER which
was first released in 1998 contains a compilation of
over 2400 spectra of natural and manmade materials.
Many of the spectra cover the entire wavelength region
from 0.4 to 14 μm (Baldridge et al, 2009).
Fig. (5): The Concept of Imaging Spectroscopy
(Adapted: Shaw & Burke, 2003)
● USGS Spectral Library : This library has been developed
by United States Geological Survey. This digital spectral
library which covers the wavelength range from ultraviolet
to far infrared parts of electromagnetic spectrum provides a
source of reference spectra that can be used to support
imaging spectroscopy studies of the Earth and planets
(Ranadall,2012).
3.0 Hyperspectral Sensor
3.1 Imaging Spectroscopy
Imaging spectroscopy is a simultaneous acquisition of
images in many relatively narrow and contiguous spectral
bands, encompassing the visible, the near-infrared (NIR) and
shortwave infrared (SWIR) regions of electromagnetic
spectrum. Consequently, applying this concept results in
quantitative and qualitative characterization of both the
surface and the atmosphere, using geometrically coherent
spectro-radiometric measurements that can be used to
identify and map individual materials (Michael et al, 2006).
The schematic illustration of the imaging spectroscopy
concept is shown in Figure (5). As shown in this figure, an
airborne or spaceborne imaging sensor simultaneously
samples multiple spectral wavebands over a large area in a
ground-based scene. After appropriate processing, spectral
information in the resulting images provides a complete
reflectance spectrum for every pixel in the imaging
spectrometer scene, which can be interpreted to identify and
detect the materials present in the scene. The graphs in the
Figure (5) clarify the spectral variation in reflectance for
soil, water, and vegetation.
Page 5 Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332)
3.2 Imaging Spectrometer
An imaging spectrometer, spectroradiometer, is an
instrument used in the field of imaging spectroscopy to
acquire spectral measurements of a light reflected from an
object. An optical dispersing element such as refracting
prism in the spectrometer splits this light into many narrow,
adjacent wavelength bands and the energy in each band is
measured by a separate detectors. By using detection
system, spectrometers can make spectral measurements of
bands as narrow as 0.01 micrometers over a wide
wavelength range, typically at least 350 to 2400 nm (visible
through middle infrared wavelength ranges) (Randall,
2012).
Data from imaging spectrometers are usually reported in
units of reflectance. As stated previously, reflectance is a
physical property of an object's surface. It is defined as the
percentage of total amount of radiation reflected by a
surface to the total amount of electromagnetic radiation
incident on the surface. Reflectance can be presented in
a variety of ways depending upon the direction of incident
radiation and it characteristics and the type of
spectrometer. The two most common types of reflectance
used in remote sensing include directional-hemispherical
reflectance and bi-directional reflectance. Directional-
hemispherical reflectance is typically determined in the
laboratory by utilizing a collimated beam as the directional
Table 1: Ground Based / Hand Held Systems (Adapted from: Vagni, 2007)
Name
Manufacturer
Country Number of Bands
Spectral Range
(µm)
Spectral
GALAAD
(Prototype)
ATIS
(France)
/ 7.0 – 14.0
Double grating
with needle mask
CTHIS LWIR
SSC
(USA)
40 6.5 – 11.0 Rotating prism
CTHIS MWIR SSC
(USA)
62 2.7 – 5.0
Rotating prism
ImSpector N10
Spectral Imaging
Ltd. (Finland)
Spectral resol. 5.0
nm
0.7 – 1.0
Prism-Grating-
Prism(PGP)
ImSpector N17
Spectral Imaging
Ltd. (Finland)
Spectral resol. 10
nm
0.9 – 1.75
Prism-Grating-
Prism(PGP)
Orion IR Imager
(SWIR, MWIR,
LWIR models)
CEDIP
(France)
4 or 6
per model
SWIR, MWIR
LWIR
Filter wheel
Sherlock LWIR
Pacific Advanced
Technology
(USA)
Spectral resol.
3 nm at
= 3.0 m
8.0 – 10.5
Image Multi-
Spectral Sensing
Sherlock MWIR
Pacific Advanced
Technology
(USA)
Spectral resol.
33 nm at
= 3.0 m
3.0 – 5.0
Image Multi-
Spectral Sensing
source, and an integrating sphere to take reflected radiation
at all possible view geometries. Contrary, Bidirectional
reflectance is usually determined in the field by most
imaging spectrometers. In this case, reflected energy is
measured from specific points of incidence (Dar & Martin,
2004). As stated previously, laboratory-based instruments
typically measure directional-hemispherical reflectance to
investigate material properties based on the interaction of
electromagnetic radiation with matter. These instruments
have the advantage of providing controlled conditions and
the highest quality reflectance. While, field instruments are
used to capture the real-world effects of surface particles.
The performance of these instruments depends on many
factors such the weight of the instrument, its durability, scan
time, software and environmental circumstance (John et al,
2008).
According to the development in hyperspectral imaging
technology, many different types of hyperspectral sensors
have been developed recently. There are two main types of
systems that take images: airborne/spaceborne system
and ground system. In this investigation, we are more
interested in ground systems. Table (1) lists the current
ground based hyperspectral sensors and their principle
characteristics.
imaging systems, which are outdoors, typically rely on
natural illumination comes from the sun, while laboratory
systems are usually used in conjunction with several laser
illumination sources, artificial illumination. These sources
have significant influence on accuracy of spectral reflectance
measured at hyperspectral sensors. For instance, Dim
illumination can affect the reflectance properties of objects
in a scene, and introduce shadowing within the scene.
Generally, laboratory and field tests have shown that
utilizing an active source of illumination drastically reduces
shadowing. Moreover, active illumination enables a sensor
to operate day or night; even under adverse weather
conditions when solar illumination is greatly reduced
(Nischan et al, 2003).
● Illumination Geometry
The amount of electromagnetic radiations reflected or
emitted form a surface depends on the amount of light
energy illuminating the surface, which in turn depends
upon the angle of incidence. This angle can be defined as
the angle between a light ray and a line perpendicular to
the reflecting surface at the point of incidence, as shown
Figure (6), illumination difference can arise from altering
incidence angles. Specifically, the energy received at each
wavelength (Eg) varies as the cosine of the angle of
incidence (θ): Eg = Eo x cos θ, where Eo is the amount of
incoming energy. In addition, if the object’s surface is not
flat, the energy received also varies instantaneously across
a scene because of differences in slope angle and direction
(Randall, 2012).
Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) Page 6
3.3 Practical Considerations
There are many practical issues that must be considered in
the design and implementation of in-situ hyperspectral
measurements. These issues which have a potential effect
on the accuracy of resultant spectral data include the
following:
● Atmospheric effect
The reflected radiations while traveling from the object’s
surface to a sensor interact with the atmosphere, through
absorption and diffusion process. Subsequently, the
contaminated reflectance received at the sensor may be
more or less than that due to reflectance from surface
alone. Typically, the incident radiation on the surface-
sensor ray path is subjected to the following:
1) Absorption by well-mixed gases such as (oxygen-O,
methane-CH, and carbon dioxide-CO)
2) Absorption by water vapor
3) Scattering gas by molecules and particulates
4 ) Scattering and absorption by aerosols and
hydrometeors
Therefore, a series of atmospheric correction algorithms
have been developed to retrieve accurate surface
reflectance and to minimize the atmospheric effects (Griffin
& Burke, 2003).
● Illumination source
Illumination source that use in hyperspectral measurements
can be classified into two main categories: natural
illumination & artificial illumination. In-situ, field spectral
Fig. (6): The effect of illumination geometry
(Adapted: Randall, 2012)
Page 8 Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332)
4.0 Hyperspectral Applications for Detecting Concrete
Properties
Modern architecture and construction nearly always include
concrete in some form and to some extent. Concrete is used
in buildings, foundation, bridges, retaining walls, roads and
in many other applications. Concrete structures must be
strong enough to withstand the structural and service loads
which will be applied to them, as well as must be durable to
resist severe environmental conditions to which they are
intended.
The compressive strength of concrete is the most common
performance measure used by engineers as a basis for
quality control to assure that structural requirements are
met. This parameter is widely determined by compression
test of the standard specimens (cube or cylinder). The test
procedure is relatively easy to perform in terms of sampling,
preparation of specimens and the determination of strength;
however it is not intended for determining the in-situ
strength of the concrete since it makes no allowance for the
effects of placing, compaction, or curing. Therefore, several
non-destructive tests including ultrasonic testing,
radiographic testing and rebound hammer testing have been
developed to assess and evaluate concrete properties in-situ.
Ideally, these methods don't impair the function of the
structure and permit re-testing at the same locations to
evaluate changes in properties with time.
Recently, several researchers indicate that the concept of
hyperspectral technology also might be utilized as a non
destructive test for monitoring concrete structures. If
spectral characteristics according to concrete conditions can
be understood, hyperspectral imagery may be applied as a
useful instrument for surveying the current state for a
number of concrete structures.
4.1 Spectral Reflectance of Concrete
Spectral reflectance measurements provide valuable
information on the characteristics of many objects. In fact,
each kind of object has its own specific reflectability: type of
the spectral curves and different values of spectral
reflectance coefficients in the different bands. These
characteristics are determined by the physical and chemical
properties of the objects (Karavanova, 2001). For concrete
the most important properties that influence the level of
reflectance are: components of concrete mixture, hardness
of concrete surface, maturity or (aging) of concrete and
hydration process in concrete matrix. For instance, a
laboratory investigation which was carried out by (Marceau
& Vangeem, 2008), showed that the solar reflectance of the
cementitious materials has more effect on the solar
reflectance of concrete than the other constituents. The solar
reflectance of the fine aggregate has a small effect on the
solar reflectance of the concrete, but the solar reflectance of
the coarse aggregate does not have a significant effect.
Moreover, the investigators reported that concrete
reflectance increased with progress of hydration process
and stabilized at 6 weeks of age, with an average increase of
about 8%. (Anna & Eyal, 2011) have utilized reflectance
spectroscopy as a tool to assess the quality of concrete in-
situ. In this work, more than 3000 concrete samples were
spectrally measured after applying several treatments.
It was concluded that the spectral reflectance is closely
related to the hardness of concrete surface. In another
study, (Nurul & Helmi, 2011) found that the spectral signatures
of older concrete samples comparatively different from
the new samples. The results reveal that the reflectance of
old type of concrete samples is high with the increasing
reflectance toward longer wavelength. While, spectral
reflectance of new samples is slightly low.
4.2 Concrete Spectroscopy
Recently, several studies have explored new spectral
techniques which have utilized the reflected radiation of
concrete (Sridhar et al, 2008; Anna & Eyal, 2011; Cavalli et al, 2011;
Lee et al, 2012; Anna & Eyal, 2012). As a result of these
investigations, the reflectance radiations across the VIS-
NIR and SWIR in the region between (350-2500) nm are
often considered a useful region with which to predict
unknown concrete properties. Such techniques are
becoming more significant for the cost effective coverage of
large concrete areas and can provide accurate predictions
of concrete properties relatively quickly compared to
traditional field sampling and subsequent experimental tests
under laboratory conditions.
Generally, there are many types of imaging spectrometers,
with many possible variations and modifications that can
improve the quality of retrieved surface reflectance and
identifying chemical and physical properties of concrete.
These types include (GER-2600, GER-3700, FieldSpec³Pro-
FRQ, FieldSpec Pro-FR…etc); however the (FieldSpec Pro-
FRQ) is the most widely used among many researchers in
this field.
FieldSpec Pro-FRQ instrument characteristics are
demonstrated in Table (2). The instrument uses three
integrated detectors. In the VNIR (350-1050 nm), the
spectral sampling interval of each channel is 1.4 nm,
however the spectral resolution (FWHM) is approximately
3 nm at around 700. The sampling interval for the SWIR
regions (900–1850 and 1700–2500) is 2 nm, with spectral
resolution varying between 10 - 12 nm. The spectral
information from the three detectors is subsequently
corrected within software for baseline electrical signal
(dark current), and then interpolated to a (1 nm)
sampling interval over the wavelength range. The
FieldSpec Pro-FRQ, as illustrated in Figure (7), collects
light passively by means of a fiber optic cable. Longer cable
results in a loss of signal strength, especially beyond 2000
nm. Thus, the standard fiber optic cable length of the
FieldSpec Pro- FRQ is typically 1 m (ASDinc , 2013).
4.3 Identification of Concrete Properties from Spectral
Data
Using reflectance spectroscopic methods, several direct
and indirect concrete properties, can be extracted simply
via spectra data analysis. Despite the importance of this
technology, knowledge concerning the spectral
characteristics of man-made surface such as concrete is
scarce, and little research has focused on this field. The
literature about these applications would be presented in
the following:
(Ju
D
Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) Page 8
Table 2: FieldSpec4Pro-FRQ Technical Specifications (Adapted from: ASD, 2013)
Spectral Range 350 -2500 nm
Spectral Resolution
3 nm @ 700 nm
10 nm @ 1400/2100 nm
Sampling interval
1.4 nm @ 350–1050 nm
2 nm @ 1000–2500 nm
Scanning time 100 milliseconds
Detectors
 VNIR detector (350-1000 nm): 512 element silicon array
 SWIR 1 detector (1000-1800 nm): Graded Index InGaAs
 Photodiode, TE Cooled
 SWIR 2 detector (1800-2500 nm): Graded Index InGaAs
 Photodiode, TE Cooled
Noise Equivalent Radiance  VNIR 1.0 X10-9 W/cm2/nm/sr @ 700 nm
 SWIR 1 1.2 X10-9 W/cm2/nm/sr @ 1400 nm
 SWIR 2 1.9 X10-9 W/cm2/nm/sr @ 2100 nm
Input Optional narrower field of view fiber optics available.
Weight
5.44 kg (12 Ibs)
Calibration Wavelength, reflectance, radiance*, irradiance*. All calibrations
are NIST traceable (*radiometric calibrations are optional).
Fiber-optic cable Standard ASD fiber optic cable is 1 m in length. SSD’s ASD has
a 5 m fiber optic cable.
Fig. (7): FieldSpc4Pro-Spectrometer
(Adapted: ASD, 2013)
Page 9 Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332)
Fig. (8): Spectrum of Normal Concrete Fig. (9): Spectrum of Degraded Concrete
(Adapted form: Jun et al, 2001)
(Anna & Eyal, 2012) presented a study to assess the in-situ
strength of high performance concrete using diffuse
reflectance spectroscopy. In this study, 77 high
performance concrete samples were spectrally measured,
analyzed and simultaneously tested for compressive
strength. The results of this work demonstrated that the
spectral measurement in the VNIR-SWIR (visible near
infrared & short wave infrared) spectral region (400-
2500) nm provides significant and accurate information
on concrete’s status and physical strength. Further, in-situ
validation was performed in this investigation which
exhibited that the spectral imagery acquired by spectral
camera in the field can be used as a useful tool for real-
time strength assessment of concrete structures.
The exploitation of hyperspectral technology for assessing
the conservation status of infrastructures, such as
reinforced concrete structures, roads, buildings .…etc was
studied by (Cavalli et al, 2011). In this study, hyperspectral
measurements were carried out on a reinforced concrete
beam that was subjected to different loading factors to
force a formation of a clear cracking within the concrete
beam. The researchers have utilized a processing
technique, RX algorithm, to analyze hyperspectral data
acquired by hyperspectral scanner from concrete beam.
The results indicate that the fractures are well detected by
the RX algorithm even though other anomalies are visible.
Figure (10) illustrates the good performance of
hyperspectral technology in solving and detecting surface
crack by using RX method.
An investigation was implemented by (Sridhar et al, 2008) to
identify unique spectral characteristics of concrete under
different construction practices. A total of 32 concrete
blocks of identical shape and size (20×20×6) cm³ were
prepared and subjected to eight different processes. The
(Ju
–
(Jun et al, 2001) have utilized hyperspectral imagery to
identify degradation of concrete structures due to
exposure to various aggressive environments, including
carbon dioxide, sodium chloride and sulfuric acid. The
results of this study indicate that the spectrum
characteristics of degraded concrete are strongly
influenced by spectrum chemical materials that are
generated during degradation process. Figures (8) & (9)
exhibit a significant difference in spectrum between intact
concrete and degraded concrete by carbon dioxide.
Moreover, the investigators have developed a formula,
equation No.1, to estimate degradation depth caused by
carbon dioxide from spectral reflectance of concrete
surface.
Another study was implemented by (Lee et al, 2012) to
extract spectral reflectance characteristics of concrete. In
this investigation, the spectral information of eight
concrete specimens with different strength at 27 day
material age was measured. As a result of these
measurements, spectral characteristics of specimens were
shown almost similarly on the whole; however they
appeared different aspect according to the strength in the
range of 1950 to 2350 nm. Also, the researchers, (Lee et al,
2012), extended their investigations to include real
concrete structures such as concrete slab of Daejongchum
Bridge and decks surface of Yangbuk Bridge. The results of
this extension exhibited that the spectral characteristics of
actual concrete show similar pattern with those of interior
experiment.
(Jun et al,
Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) Page 10
Fig. (10): RX Image shows structural cracks within concrete surface
(Adapted form: Cavalli et al, 2011)
different treatments were TC (control), TNC (no cure), TCL
(cool cure), TH (heat cure), THW (high water content), THC
(half cement), TG (gravel used as coarse aggregate) and
TL (limestone used as fine aggregate). The results of this
investigation clearly demonstrate that the spectral
absorption features around 450, 1380 and 1850 nm alter
accordingly with alteration in the characteristics of
concrete. Also, the TNC and TCL treated concrete blocks can
be differentiated from other concrete blocks based on the
following spectral ratio indices, R600/R450, R1380/R1440,
R1850/R1950 and R2150/R880. However, the spectral ratio
R600/R450 can differentiate the TC, TG and TL treated
concrete blocks, which were considered to have better
concrete quality from the rest of the concrete treatments.
Spectral reflectance of concrete surfaces has been studied
previously to monitor aging of concrete sidewalks by
(Herold et al, 2004). Spectral data analyses indicate that the
new concrete sidewalks exhibit higher spectral reflectance
than older sidewalks. The investigators attributed this
behavior to the continued oxidation of concrete surfaces,
as well as accumulation of dust and dirt that decreases the
brightness of concrete surfaces. On the other hand, the
results of this study demonstrate that concrete sidewalks
have stronger SWIR absorption features. This observation
can be ascribed that calcium carbonate in concrete matrix
have a significant absorption feature at 2300 nm for calcite
and at 2370 nm from dolomite.
5.0 Summary & Conclusions
This paper has provided a brief overview of some
important aspects of hyperspectral imaging technology.
Then, it has discussed the important radiometric and
spectral concepts, with a focus on how they apply to
concrete structures. The fundamental findings of this
paper are summarized as following:
(Jun et al, 2001) have utilized hyperspectral
imagery method
1. Hyperspectral imaging technology has the ability to
measure an intrinsic property of material; its spectral
signature. As a consequence, hyperspectral technology
can be used to identify and discriminate different
types of materials.
2. The amount of electromagnetic radiation reflected or
emitted from a surface is affected by several factors
including; source of illumination, atmospheric
transmission, sampling strategy, timing of data
acquisition and viewing geometry.
3. Hyperspectral imagery provides opportunities to
extract more detailed information than is possible
using traditional multispectral imagery.
4. Spectral libraries are a collection of the spectral
signatures of the target materials. They require the in-
situ collection and laboratory spectroscopic analysis of
the investigated samples.
5. The impact of deterioration factors on concrete
surfaces can be diagnosed and measured by means of
hyperspectral imaging.
6. Reflectance spectroscopy can be used as a non
destructive cost-effective approach to determine
concrete strength in-situ.
7. Reflectance radiations across the VIS-NIR and SWIR in
the region between (350-2500) nm are often
considered a useful region with which to predict
unknown concrete properties.
8. Field portable spectrometer can be utilized as in-situ
tool for engineers to monitor and evaluate status of
different concrete structures.
D
a
t
Page 11 Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332)
References
1. Andreoli, G., Bulgarelli, B., Hosgood, B., March 2007,
"Hyperspectral Analysis of Oil and Oil-Impacted Soils for
Remote Sensing Purposes", Institute for the Protection and
Security of the Citizen, EUR 22739 EN, Italy.
2. Anna, B., Eyal, B., August 2011, "Reflectance Spectroscopy as
a Tool to Assess the Quality of Concrete in Situ", Journal of
Civil Engineering and Construction Technology, Vol. 2(8), pp.
169-188.
3. Anna, B., Eyal, B., August 2012, "Reflectance Spectroscopy as
a Tool to Assess the Strength of High-Performance Concrete
in Situ," Journal of Civil Engineering and Construction
Technology, Vol. 3(7) pp. 195-203.
4. ASDinc, 2013, "FieldSpec 4 Standard-Res Spectroradiometer
- Technical Guide", http://www.asdi.com , Analytical Spectral
Devices, March/1/2013, pp. 2.
5. Baldridge, A.M., Hook, S.J., Grove, C.I., 2009, "The ASTER
Spectral Library Version 2.0", Remote Sensing of
Environment, Vol. 113, pp. 711-715.
6. BBC, September 2006, "The Spectrum and Its Uses- A simple
guide to the radio spectrum", British Broadcasting
Corporation, UK.
7. Cavalli, R.M., Bassani, C., Palombo, A., 2011, "Exploitation of
Hyperspectral Data for Infrastructures Status Assessment:
Preliminary Results of the Is times Test Bed", IEEE, 978-1-
4577-2201-1/11, pp. 1-4.
8. Detar, W.R., Chesson, J.H., Penner, J.V., 2008, "Detection of
Soil Properties with Airborne Hyperspectral Measurements
of Bare Fields", American Society of Agricultural and
Biological Engineers (ASABE), ISSN 0001-2351, Vol. 51(2),
pp. 463-470.
9. Griffin, M.K., and Burke, H.K., 2003, "Compensation of
Hyperspectral Data for Atmospheric Effects", Lincoln
Laboratory Journal, Vol. 14(1), pp. 29-54.
10. Herold, M., Roberts, D.A., Gardner, M.E., 2004, "Spectrometry
for Urban Area Remote sensing-Development and Analysis of
a Spectral Library from 350 to 2400 nm", Remote Sensing of
Environment, Vol.91, pp. 304-319.
11. John, P.P., Kristin, S., and Carl, S., October 2008, "Spectral
Reflectance and Emissivity of Man-made Surfaces
Contaminated with Environmental Effects", Optical
Engineering, Vol. 47(10), pp. 106201-106211.
12. Jun, A., Ken, S., Takahiro, E., 2001, "Assessment of Concrete
Degradation with Hyper-Spectral Remote Sensing", 2nd
Asian Conference on Remote Sensing, Anonymous National
University of Singapore, Singapore Institute of Surveyors and
Valuers (SISV) & Asia Association on Remote Sensing (AARS),
Singapore, pp. 5-9.
13. Karavanova, E.I., 2001, "Spectral Reflectance as a Tool to
Study Soils in Semi-Arid Regions", Http://topsoil.Nserl.Pur
due.edu/nserlwebold/isco99/pdf/ISCOdisc/SustainingTheGl
obalFarm/P185-Karanova.Pdf, February/10/2013, pp. 6.
14. Lee, J., Dewitt, B.A., Lee, S., September 2012, "Analysis of
Concrete Reflectance Characteristics using Spectrometer and
VNIR Hyperspectral Camera", International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, Volume XXXIX-B7, 2012 XXII ISPRS Congress.
Melbourne, Australia, pp. 127-130.
15. Marceau, M.L., Vangeem, M.G., August 2008, "Solar
Reflectance Values for Concrete", Concrete International, pp.
52-58.
16. Nurul, N.E., Helmi, S.Z., 2011, "Development and Utilizationof
Urban Spectral Library for Remote Sensing of Urban
Environment", Journal of Urban and Environmental
Engineering (JUEE), Vol. 5(1) pp. 44-56.
17. Nischan, M.L., Joseph, R.M., Libby, J.C., 2003, "Active Spectral
Imaging Melissa L. Nischan, Rose M. Joseph, Justin C. Libby,
and John P. Kerekes," Lincoln Laboratory Journal, 14(1) pp.
131-144.
18. Randall, B.S., January 2012, "Introduction to Hyperspectral
Imaging", Http://www.Microimages.Com, January/28/2013,
pp. 24.
19. Dar, R.A., Martin, H., March 2004, "Imaging Spectrometry of
Urban Materials," Mineral Association of Canada, Short
Course Series, Vol. 33, pp.155-181.
20. Michael, S.E., Green, R.O., Ungar, S.G., 2006, "The Future of
Imaging Spectroscopy- Prospective Technologies and
Applications", IEEE, 0-7803-9510-7/06, pp. 1-4.
21. Shaw, G.A., Burke, H.K., 2003, "Spectral Imaging for Remote
Sensing", Lincoln Laboratory Journal, Vol. 14(1), pp. 1-28.
22. Shippert, P., January, 2012, "Introduction to Hyperspectral
Image Analysis", Online Journal of Space Communication,
Http://spacejournal.Ohio.edu/pdf/shippert.Pdf,January/25/
2013 pp. 35.
23. Shippert, P., April 2004, "Why use Hyperspectral Imagery?",
Photogrammetric Engineering & Remote Sensing, pp. 377-
380.
24. Space Computer Corporation, 2007, "An Introduction to
HyperspectralaImagingcTechnology",Http://cant.Ua.Ac.be/Si
tes/cant.Ua.Ac.be/files/courses/oe/Introduction_to_HSI_Tec
hnology.Pdf, January/25/2013 pp. 35.
25. Sridhar, B.B., Chapin, T.L., Vincent, R. K., 2008, "Identifying
the Effects of Different Construction Practices on the Spectral
Characteristics of Concrete", Cement and Concrete Research,
Vol. 38(4), pp. 538-542.
26. Tian, Q., 2012, "Study on Oil-Gas Reservoir Detecting
Methods Using Hyperspectral Remote Sensing", International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Volume XXXIX-B7, 2012 XXII ISPRS
Congress. Melbourne, Australia, pp. 158-162.
27. Vagni, F., 2007, "Survey of Hyperspectral and Multispectral
Imaging Technologies", The Research and Technology
Organization (RTO) of NATO, AC/323(SET-065) TP/44,
pp.44.

More Related Content

Similar to Determination_of_Concrete_Properties_Usi.pdf

Application of Seismic Reflection Surveys to Detect Massive Sulphide Deposits...
Application of Seismic Reflection Surveys to Detect Massive Sulphide Deposits...Application of Seismic Reflection Surveys to Detect Massive Sulphide Deposits...
Application of Seismic Reflection Surveys to Detect Massive Sulphide Deposits...iosrjce
 
S IGNAL A ND I MAGE P ROCESSING OF O PTICAL C OHERENCE T OMOGRAPHY AT 1310 NM...
S IGNAL A ND I MAGE P ROCESSING OF O PTICAL C OHERENCE T OMOGRAPHY AT 1310 NM...S IGNAL A ND I MAGE P ROCESSING OF O PTICAL C OHERENCE T OMOGRAPHY AT 1310 NM...
S IGNAL A ND I MAGE P ROCESSING OF O PTICAL C OHERENCE T OMOGRAPHY AT 1310 NM...sipij
 
study and analysis of hy si data in 400 to 500
study and analysis of hy si data in 400 to 500study and analysis of hy si data in 400 to 500
study and analysis of hy si data in 400 to 500IJAEMSJORNAL
 
Qualification of Phillips X’pert MPD Diffractometer for XRD
Qualification of Phillips X’pert MPD Diffractometer for XRD Qualification of Phillips X’pert MPD Diffractometer for XRD
Qualification of Phillips X’pert MPD Diffractometer for XRD Jacob Johnson
 
上海必和 Advancements in hyperspectral and multi-spectral ima超光谱高光谱多光谱
上海必和 Advancements in hyperspectral and multi-spectral ima超光谱高光谱多光谱上海必和 Advancements in hyperspectral and multi-spectral ima超光谱高光谱多光谱
上海必和 Advancements in hyperspectral and multi-spectral ima超光谱高光谱多光谱algous
 
Analysis of LED
Analysis of LEDAnalysis of LED
Analysis of LEDrpiitcbme
 
FTIR-Presentazione.ppt
FTIR-Presentazione.pptFTIR-Presentazione.ppt
FTIR-Presentazione.pptnitapanchal3
 
Few-mode optical fiber surface plasmon resonance sensor with controllable ra...
Few-mode optical fiber surface plasmon resonance sensor with  controllable ra...Few-mode optical fiber surface plasmon resonance sensor with  controllable ra...
Few-mode optical fiber surface plasmon resonance sensor with controllable ra...IJECEIAES
 
Basics of remote sensing and GIS.pptx
Basics of remote sensing and GIS.pptxBasics of remote sensing and GIS.pptx
Basics of remote sensing and GIS.pptxFUCKAGAIN
 
Effect of Laser Induced Tin Oxide (SnO2) Nano particle
Effect of Laser Induced Tin Oxide (SnO2) Nano particleEffect of Laser Induced Tin Oxide (SnO2) Nano particle
Effect of Laser Induced Tin Oxide (SnO2) Nano particleIRJET Journal
 
A new technique for infrared remote sensing of solar induced fluorescence and...
A new technique for infrared remote sensing of solar induced fluorescence and...A new technique for infrared remote sensing of solar induced fluorescence and...
A new technique for infrared remote sensing of solar induced fluorescence and...Alexander Decker
 

Similar to Determination_of_Concrete_Properties_Usi.pdf (20)

sources of imges
sources of imgessources of imges
sources of imges
 
DSP FINALs
DSP FINALsDSP FINALs
DSP FINALs
 
Application of Seismic Reflection Surveys to Detect Massive Sulphide Deposits...
Application of Seismic Reflection Surveys to Detect Massive Sulphide Deposits...Application of Seismic Reflection Surveys to Detect Massive Sulphide Deposits...
Application of Seismic Reflection Surveys to Detect Massive Sulphide Deposits...
 
Optical coherence tomography
Optical coherence tomographyOptical coherence tomography
Optical coherence tomography
 
S IGNAL A ND I MAGE P ROCESSING OF O PTICAL C OHERENCE T OMOGRAPHY AT 1310 NM...
S IGNAL A ND I MAGE P ROCESSING OF O PTICAL C OHERENCE T OMOGRAPHY AT 1310 NM...S IGNAL A ND I MAGE P ROCESSING OF O PTICAL C OHERENCE T OMOGRAPHY AT 1310 NM...
S IGNAL A ND I MAGE P ROCESSING OF O PTICAL C OHERENCE T OMOGRAPHY AT 1310 NM...
 
1
11
1
 
study and analysis of hy si data in 400 to 500
study and analysis of hy si data in 400 to 500study and analysis of hy si data in 400 to 500
study and analysis of hy si data in 400 to 500
 
Qualification of Phillips X’pert MPD Diffractometer for XRD
Qualification of Phillips X’pert MPD Diffractometer for XRD Qualification of Phillips X’pert MPD Diffractometer for XRD
Qualification of Phillips X’pert MPD Diffractometer for XRD
 
上海必和 Advancements in hyperspectral and multi-spectral ima超光谱高光谱多光谱
上海必和 Advancements in hyperspectral and multi-spectral ima超光谱高光谱多光谱上海必和 Advancements in hyperspectral and multi-spectral ima超光谱高光谱多光谱
上海必和 Advancements in hyperspectral and multi-spectral ima超光谱高光谱多光谱
 
MAPPING REMOTE PLANTS THROUGH REMOTE SENSING TECHNOLOGY AND GIS
MAPPING REMOTE PLANTS THROUGH REMOTE SENSING TECHNOLOGY AND GISMAPPING REMOTE PLANTS THROUGH REMOTE SENSING TECHNOLOGY AND GIS
MAPPING REMOTE PLANTS THROUGH REMOTE SENSING TECHNOLOGY AND GIS
 
G044044249
G044044249G044044249
G044044249
 
A010320107
A010320107A010320107
A010320107
 
Analysis of LED
Analysis of LEDAnalysis of LED
Analysis of LED
 
11
1111
11
 
Tearhertz Sub-Nanometer Sub-Surface Imaging of 2D Materials
Tearhertz Sub-Nanometer Sub-Surface Imaging of 2D MaterialsTearhertz Sub-Nanometer Sub-Surface Imaging of 2D Materials
Tearhertz Sub-Nanometer Sub-Surface Imaging of 2D Materials
 
FTIR-Presentazione.ppt
FTIR-Presentazione.pptFTIR-Presentazione.ppt
FTIR-Presentazione.ppt
 
Few-mode optical fiber surface plasmon resonance sensor with controllable ra...
Few-mode optical fiber surface plasmon resonance sensor with  controllable ra...Few-mode optical fiber surface plasmon resonance sensor with  controllable ra...
Few-mode optical fiber surface plasmon resonance sensor with controllable ra...
 
Basics of remote sensing and GIS.pptx
Basics of remote sensing and GIS.pptxBasics of remote sensing and GIS.pptx
Basics of remote sensing and GIS.pptx
 
Effect of Laser Induced Tin Oxide (SnO2) Nano particle
Effect of Laser Induced Tin Oxide (SnO2) Nano particleEffect of Laser Induced Tin Oxide (SnO2) Nano particle
Effect of Laser Induced Tin Oxide (SnO2) Nano particle
 
A new technique for infrared remote sensing of solar induced fluorescence and...
A new technique for infrared remote sensing of solar induced fluorescence and...A new technique for infrared remote sensing of solar induced fluorescence and...
A new technique for infrared remote sensing of solar induced fluorescence and...
 

More from PreetiKulkarni20

More from PreetiKulkarni20 (8)

IPR- Orientation.pptx
IPR- Orientation.pptxIPR- Orientation.pptx
IPR- Orientation.pptx
 
TRE-L1.pptx
TRE-L1.pptxTRE-L1.pptx
TRE-L1.pptx
 
Docks and Harbors.pptx
Docks and Harbors.pptxDocks and Harbors.pptx
Docks and Harbors.pptx
 
Hyperspectral Image Analysis for Mechanical and Chemical Properti.pdf
Hyperspectral Image Analysis for Mechanical and Chemical Properti.pdfHyperspectral Image Analysis for Mechanical and Chemical Properti.pdf
Hyperspectral Image Analysis for Mechanical and Chemical Properti.pdf
 
Aryal.pdf
Aryal.pdfAryal.pdf
Aryal.pdf
 
Jang-Ahn2019.pdf
Jang-Ahn2019.pdfJang-Ahn2019.pdf
Jang-Ahn2019.pdf
 
HyperspectralImaging (1).pdf
HyperspectralImaging (1).pdfHyperspectralImaging (1).pdf
HyperspectralImaging (1).pdf
 
j.1747-1567.2010.00658.x.pdf
j.1747-1567.2010.00658.x.pdfj.1747-1567.2010.00658.x.pdf
j.1747-1567.2010.00658.x.pdf
 

Recently uploaded

What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 

Recently uploaded (20)

What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 

Determination_of_Concrete_Properties_Usi.pdf

  • 1. Hyperspectral remote sensing images were used to develop a method of oil-gas exploration (Tian, 2012). The researcher, (Tian, 2012), found that the oil-gas reservoirs can be detected directly by the absorption bands near 1730 nm in hyperspectral images. In addition, he discovered that thin oil silk of microseepage could be extracted using spectral angle matching of alteration mineral. Hyperspectral images include large data sets, but interpreting them requires an understanding of exactly what properties of materials that we are trying to measure and how they relate to the measurements actually made by the hyperspectral sensor (camera). Therefore, the purpose of this paper is to provide an introduction to the fundamental concepts in the field of hyperspectral imaging and review some applications of hyperspectral imaging technology in determining concrete properties. 2.0 Basic Principles of Spectral Imagery 2.1 Electromagnetic Spectrum The electromagnetic spectrum is the entire range of electromagnetic radiation extending in frequency from high-energy waves (10²¹ Hz) to low-energy waves ( Hz). The electromagnetic spectrum is divided into five major types of radiation. As shown in Figure (1), these include radio waves (including microwaves, FM, TV, Shortwave, and AM), light (including ultraviolet, visible, and infrared), heat radiation, X-rays, and gamma rays. Your eye can detect only part of the light spectrum (BBC, 2006). The visible light of the electromagnetic radiation which is near the center of the spectrum extends from 400 nm to 700 nm. It is only a very small part of the overall range of wavelengths in the spectrum. While, the other electromagnetic radiation which range from shortest wavelengths (10-¹ ) m (gamma rays) to longest wavelengths (10 ) m (AM radio waves) span a wider range of wavelengths than does visible light. For instance, the infrared range includes a broad range of wavelengths. Infrared range includes a broad range of wavelengths. It begins just above the longest waves in the visible portion (red) and extends up to the wavelength range that is used for communication. Infrared wavelengths range from about 700 nm up to 1 mm. The part of the range closest to the visible spectrum is called near infrared and the longer wavelength part is called far infrared (Space Computer Corporation, 2007). Science Journal of Civil Engineering & Architecture Published By ISSN: 2276-6332 Science Journal Publication http://www.sjpub.org/sjcea.html International Open Access Publisher © Author(s) 2011. CC Attribution 3.0 License. Research Article Volume 2013 (2013), Issue 3 Determination of Concrete Properties Using Hyperspectral Imaging Technology: A Review Alaa Shaban PhD Candidate in Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA Accepted 22th May, 2013 ABSTRACT The strength and durability of concrete are the most essential parameters for determining structural performance of any concrete structure. Thus, there has been always a need to develop an appropriate test method to evaluate and identify concrete properties in various structural members. In recent years, several researchers have strived to exploit hyperspectral technology as a non destructive test method for assessing properties of concrete structures in-situ. In this test method, the reflectance radiations across the visible near-infrared and shortwave-infrared (VI-NIR & SWIR) in the region between (350 - 2500) nm were utilized as an approach to predict unknown concrete properties. The application of hyperspectral measurements are becoming more significant for the cost effective coverage of large concrete areas and can provide accurate predictions of concrete properties relatively quickly compared to traditional field sampling and subsequent experimental tests under laboratory conditions. This paper presents the fundamental elements of hyperspectral technology and discusses the possibility of utilizing hyperspectral imaging sensors for detecting characteristics of concrete structures in-situ. KEYWORDS: Hypespectral, Spectrometer, Concrete, Reflectance, Imaging Spectroscopy, Spectral Signature 1.0 Introduction Hyperspectral imaging is a relatively new technology that has been utilized by researchers and scientists for several applications, including mineral identification, vegetation classification, land cover exploration, atmospheric monitoring, and target detection. All of these applications depend on a material having a spectral (Finger-Print) that can be collected as a set of images for measurement purposes. The prefix (hyper) in hyperspectral means "over", and indicates to a vast number of measured spectral bands of electromagnetic radiation. Hyperspectral images are spectrally over determined, which implies that they provide extensive spectral information to detect and identify spectrally a wide variety of materials (Shippert, 2012). For instance, hyperspectral imaging technology has been used by agricultural engineers, (Detar et al, 2008), to detect in-field distribution of soil properties with airbone hyperspectral measurements of bare fields. Corresponding Author: Alaa Shaban PhD Candidate in Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA Email:ashaban2012@my.fit.edu
  • 2. 2.2 Spectral Signature When electromagnetic radiation hits an object, the wavelengths may be reflected, absorbed or transmitted through the object. The following schematic, Figure (2), depicts these three processes. In fact, reflection, absorption and transmission electromagnetic radiations through objects depend mainly on physical properties and chemical composition of the objects and wavelengths of the radiations. So, for any given material, the amount of electromagnetic radiation that is reflected, emitted, transmitted or absorbed varies with the wavelength of the radiation. If the percentage of reflection or emissivity for a given material is plotted across a range of wavelengths, the resulting curve is referred to as a spectral signature for that material (Vagni, 2007). The spectral signature is a unique spectral reflectance of an object that can be used to identify and discriminate different types of materials. As an example, Figure (3) shows the reflectance spectra (i.e. the percentage of reflected electromagnetic radiation) measured by laboratory spectrometer for four materials: granite, concrete, asphalt and basalt. Each object’s reflectance is plotted on the chart as a function of wavelength; such a chart is known as a spectral signature. Field and laboratory spectrometers usually measure reflectance at many narrow, closely spaced wavelength bands, so that the resulting spectra appear to be continuous curves. Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) page 2 , Fig. (1): Electromagnetic Spectrum (Adapted: Space Computer Corporation, 2007) Fig. (2): a. Reflection b. Absorption c. Transmission (Adapted: Space computer Corporation, 2007) a b c
  • 3. Page 3 Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) Fig. (3): Reflectance spectra measured by laboratory spectrometers for four materials: granite, concrete, asphalt & basalt (Adapted: Randall, 2012) 2.3 Hyperspectral Data Most conventional multispectral imagers measure reflected energy from a surface at a few wide wavelength bands separated by segments where no measurements are taken. Typically, multispectral imagers yield between 3 and 10 different band measurements in each pixel of their images. On the other hand, hyperspectral imagers measure reflected radiation at a series of narrow and contiguous wavelength bands. Hyperspectral images can include more than 200 of narrow contiguous spectrum bands. Therefore, this type of detailed pixel spectrum can provide more information about Fig. (4): Reflectance spectra of the four materials; on the left: as they would appear to the multispectral sensor; on the right as they would appear to the hyperspectral sensor (Adapted: Shippert, 2004) surface than is available in traditional multispectral pixel spectrum (Shippert, 2004). Also, hyperspectral data sets allow an almost complete reconstruction of the spectral signature: the retrieved spectrum for each pixel appears very much like the spectrum that would be measured in a spectroscopy laboratory. This concept is illustrated in the Figure (4), which typifies the reflectance spectra of five materials as they would appear to a multispectral sensor and to hyperspectral sensor. Wavelength (micrometer) Reflectance (%)
  • 4. Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) Page 4 It is important to underline that, although most hyperspectral sensors measure hundreds of wavelength bands, it is not the number of measured wavelengths that defines a sensor as hyperspectral. Rather it is the narrowness and contiguous nature of the measurements. Hyperspectral imagery provides an opportunity for more detailed image analysis. Using hyperspectral data, spectrally similar (but unique) materials can be identified and distinguished and sub-pixel scale information can be extracted (Andreoli et al, 2007). 2.4 Spectral Libraries Several spectral libraries include wide collections of reflectance spectra of different types of materials. These high quality libraries provide valuable information for many investigators who collect spectral libraries for materials in their sites as part of every project, to facilitate analysis of multispectral or hyperspectral imagery from those sites. The following libraries are the most trusted and comprehensive mass spectral libraries in the world that use for identification and quantification hyperspectral images: ● ASTER Spectral Library: This library has been developed by NASA as part of the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) imaging instrument program. ASTER which was first released in 1998 contains a compilation of over 2400 spectra of natural and manmade materials. Many of the spectra cover the entire wavelength region from 0.4 to 14 μm (Baldridge et al, 2009). Fig. (5): The Concept of Imaging Spectroscopy (Adapted: Shaw & Burke, 2003) ● USGS Spectral Library : This library has been developed by United States Geological Survey. This digital spectral library which covers the wavelength range from ultraviolet to far infrared parts of electromagnetic spectrum provides a source of reference spectra that can be used to support imaging spectroscopy studies of the Earth and planets (Ranadall,2012). 3.0 Hyperspectral Sensor 3.1 Imaging Spectroscopy Imaging spectroscopy is a simultaneous acquisition of images in many relatively narrow and contiguous spectral bands, encompassing the visible, the near-infrared (NIR) and shortwave infrared (SWIR) regions of electromagnetic spectrum. Consequently, applying this concept results in quantitative and qualitative characterization of both the surface and the atmosphere, using geometrically coherent spectro-radiometric measurements that can be used to identify and map individual materials (Michael et al, 2006). The schematic illustration of the imaging spectroscopy concept is shown in Figure (5). As shown in this figure, an airborne or spaceborne imaging sensor simultaneously samples multiple spectral wavebands over a large area in a ground-based scene. After appropriate processing, spectral information in the resulting images provides a complete reflectance spectrum for every pixel in the imaging spectrometer scene, which can be interpreted to identify and detect the materials present in the scene. The graphs in the Figure (5) clarify the spectral variation in reflectance for soil, water, and vegetation.
  • 5. Page 5 Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) 3.2 Imaging Spectrometer An imaging spectrometer, spectroradiometer, is an instrument used in the field of imaging spectroscopy to acquire spectral measurements of a light reflected from an object. An optical dispersing element such as refracting prism in the spectrometer splits this light into many narrow, adjacent wavelength bands and the energy in each band is measured by a separate detectors. By using detection system, spectrometers can make spectral measurements of bands as narrow as 0.01 micrometers over a wide wavelength range, typically at least 350 to 2400 nm (visible through middle infrared wavelength ranges) (Randall, 2012). Data from imaging spectrometers are usually reported in units of reflectance. As stated previously, reflectance is a physical property of an object's surface. It is defined as the percentage of total amount of radiation reflected by a surface to the total amount of electromagnetic radiation incident on the surface. Reflectance can be presented in a variety of ways depending upon the direction of incident radiation and it characteristics and the type of spectrometer. The two most common types of reflectance used in remote sensing include directional-hemispherical reflectance and bi-directional reflectance. Directional- hemispherical reflectance is typically determined in the laboratory by utilizing a collimated beam as the directional Table 1: Ground Based / Hand Held Systems (Adapted from: Vagni, 2007) Name Manufacturer Country Number of Bands Spectral Range (µm) Spectral GALAAD (Prototype) ATIS (France) / 7.0 – 14.0 Double grating with needle mask CTHIS LWIR SSC (USA) 40 6.5 – 11.0 Rotating prism CTHIS MWIR SSC (USA) 62 2.7 – 5.0 Rotating prism ImSpector N10 Spectral Imaging Ltd. (Finland) Spectral resol. 5.0 nm 0.7 – 1.0 Prism-Grating- Prism(PGP) ImSpector N17 Spectral Imaging Ltd. (Finland) Spectral resol. 10 nm 0.9 – 1.75 Prism-Grating- Prism(PGP) Orion IR Imager (SWIR, MWIR, LWIR models) CEDIP (France) 4 or 6 per model SWIR, MWIR LWIR Filter wheel Sherlock LWIR Pacific Advanced Technology (USA) Spectral resol. 3 nm at = 3.0 m 8.0 – 10.5 Image Multi- Spectral Sensing Sherlock MWIR Pacific Advanced Technology (USA) Spectral resol. 33 nm at = 3.0 m 3.0 – 5.0 Image Multi- Spectral Sensing source, and an integrating sphere to take reflected radiation at all possible view geometries. Contrary, Bidirectional reflectance is usually determined in the field by most imaging spectrometers. In this case, reflected energy is measured from specific points of incidence (Dar & Martin, 2004). As stated previously, laboratory-based instruments typically measure directional-hemispherical reflectance to investigate material properties based on the interaction of electromagnetic radiation with matter. These instruments have the advantage of providing controlled conditions and the highest quality reflectance. While, field instruments are used to capture the real-world effects of surface particles. The performance of these instruments depends on many factors such the weight of the instrument, its durability, scan time, software and environmental circumstance (John et al, 2008). According to the development in hyperspectral imaging technology, many different types of hyperspectral sensors have been developed recently. There are two main types of systems that take images: airborne/spaceborne system and ground system. In this investigation, we are more interested in ground systems. Table (1) lists the current ground based hyperspectral sensors and their principle characteristics.
  • 6. imaging systems, which are outdoors, typically rely on natural illumination comes from the sun, while laboratory systems are usually used in conjunction with several laser illumination sources, artificial illumination. These sources have significant influence on accuracy of spectral reflectance measured at hyperspectral sensors. For instance, Dim illumination can affect the reflectance properties of objects in a scene, and introduce shadowing within the scene. Generally, laboratory and field tests have shown that utilizing an active source of illumination drastically reduces shadowing. Moreover, active illumination enables a sensor to operate day or night; even under adverse weather conditions when solar illumination is greatly reduced (Nischan et al, 2003). ● Illumination Geometry The amount of electromagnetic radiations reflected or emitted form a surface depends on the amount of light energy illuminating the surface, which in turn depends upon the angle of incidence. This angle can be defined as the angle between a light ray and a line perpendicular to the reflecting surface at the point of incidence, as shown Figure (6), illumination difference can arise from altering incidence angles. Specifically, the energy received at each wavelength (Eg) varies as the cosine of the angle of incidence (θ): Eg = Eo x cos θ, where Eo is the amount of incoming energy. In addition, if the object’s surface is not flat, the energy received also varies instantaneously across a scene because of differences in slope angle and direction (Randall, 2012). Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) Page 6 3.3 Practical Considerations There are many practical issues that must be considered in the design and implementation of in-situ hyperspectral measurements. These issues which have a potential effect on the accuracy of resultant spectral data include the following: ● Atmospheric effect The reflected radiations while traveling from the object’s surface to a sensor interact with the atmosphere, through absorption and diffusion process. Subsequently, the contaminated reflectance received at the sensor may be more or less than that due to reflectance from surface alone. Typically, the incident radiation on the surface- sensor ray path is subjected to the following: 1) Absorption by well-mixed gases such as (oxygen-O, methane-CH, and carbon dioxide-CO) 2) Absorption by water vapor 3) Scattering gas by molecules and particulates 4 ) Scattering and absorption by aerosols and hydrometeors Therefore, a series of atmospheric correction algorithms have been developed to retrieve accurate surface reflectance and to minimize the atmospheric effects (Griffin & Burke, 2003). ● Illumination source Illumination source that use in hyperspectral measurements can be classified into two main categories: natural illumination & artificial illumination. In-situ, field spectral Fig. (6): The effect of illumination geometry (Adapted: Randall, 2012)
  • 7. Page 8 Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) 4.0 Hyperspectral Applications for Detecting Concrete Properties Modern architecture and construction nearly always include concrete in some form and to some extent. Concrete is used in buildings, foundation, bridges, retaining walls, roads and in many other applications. Concrete structures must be strong enough to withstand the structural and service loads which will be applied to them, as well as must be durable to resist severe environmental conditions to which they are intended. The compressive strength of concrete is the most common performance measure used by engineers as a basis for quality control to assure that structural requirements are met. This parameter is widely determined by compression test of the standard specimens (cube or cylinder). The test procedure is relatively easy to perform in terms of sampling, preparation of specimens and the determination of strength; however it is not intended for determining the in-situ strength of the concrete since it makes no allowance for the effects of placing, compaction, or curing. Therefore, several non-destructive tests including ultrasonic testing, radiographic testing and rebound hammer testing have been developed to assess and evaluate concrete properties in-situ. Ideally, these methods don't impair the function of the structure and permit re-testing at the same locations to evaluate changes in properties with time. Recently, several researchers indicate that the concept of hyperspectral technology also might be utilized as a non destructive test for monitoring concrete structures. If spectral characteristics according to concrete conditions can be understood, hyperspectral imagery may be applied as a useful instrument for surveying the current state for a number of concrete structures. 4.1 Spectral Reflectance of Concrete Spectral reflectance measurements provide valuable information on the characteristics of many objects. In fact, each kind of object has its own specific reflectability: type of the spectral curves and different values of spectral reflectance coefficients in the different bands. These characteristics are determined by the physical and chemical properties of the objects (Karavanova, 2001). For concrete the most important properties that influence the level of reflectance are: components of concrete mixture, hardness of concrete surface, maturity or (aging) of concrete and hydration process in concrete matrix. For instance, a laboratory investigation which was carried out by (Marceau & Vangeem, 2008), showed that the solar reflectance of the cementitious materials has more effect on the solar reflectance of concrete than the other constituents. The solar reflectance of the fine aggregate has a small effect on the solar reflectance of the concrete, but the solar reflectance of the coarse aggregate does not have a significant effect. Moreover, the investigators reported that concrete reflectance increased with progress of hydration process and stabilized at 6 weeks of age, with an average increase of about 8%. (Anna & Eyal, 2011) have utilized reflectance spectroscopy as a tool to assess the quality of concrete in- situ. In this work, more than 3000 concrete samples were spectrally measured after applying several treatments. It was concluded that the spectral reflectance is closely related to the hardness of concrete surface. In another study, (Nurul & Helmi, 2011) found that the spectral signatures of older concrete samples comparatively different from the new samples. The results reveal that the reflectance of old type of concrete samples is high with the increasing reflectance toward longer wavelength. While, spectral reflectance of new samples is slightly low. 4.2 Concrete Spectroscopy Recently, several studies have explored new spectral techniques which have utilized the reflected radiation of concrete (Sridhar et al, 2008; Anna & Eyal, 2011; Cavalli et al, 2011; Lee et al, 2012; Anna & Eyal, 2012). As a result of these investigations, the reflectance radiations across the VIS- NIR and SWIR in the region between (350-2500) nm are often considered a useful region with which to predict unknown concrete properties. Such techniques are becoming more significant for the cost effective coverage of large concrete areas and can provide accurate predictions of concrete properties relatively quickly compared to traditional field sampling and subsequent experimental tests under laboratory conditions. Generally, there are many types of imaging spectrometers, with many possible variations and modifications that can improve the quality of retrieved surface reflectance and identifying chemical and physical properties of concrete. These types include (GER-2600, GER-3700, FieldSpec³Pro- FRQ, FieldSpec Pro-FR…etc); however the (FieldSpec Pro- FRQ) is the most widely used among many researchers in this field. FieldSpec Pro-FRQ instrument characteristics are demonstrated in Table (2). The instrument uses three integrated detectors. In the VNIR (350-1050 nm), the spectral sampling interval of each channel is 1.4 nm, however the spectral resolution (FWHM) is approximately 3 nm at around 700. The sampling interval for the SWIR regions (900–1850 and 1700–2500) is 2 nm, with spectral resolution varying between 10 - 12 nm. The spectral information from the three detectors is subsequently corrected within software for baseline electrical signal (dark current), and then interpolated to a (1 nm) sampling interval over the wavelength range. The FieldSpec Pro-FRQ, as illustrated in Figure (7), collects light passively by means of a fiber optic cable. Longer cable results in a loss of signal strength, especially beyond 2000 nm. Thus, the standard fiber optic cable length of the FieldSpec Pro- FRQ is typically 1 m (ASDinc , 2013). 4.3 Identification of Concrete Properties from Spectral Data Using reflectance spectroscopic methods, several direct and indirect concrete properties, can be extracted simply via spectra data analysis. Despite the importance of this technology, knowledge concerning the spectral characteristics of man-made surface such as concrete is scarce, and little research has focused on this field. The literature about these applications would be presented in the following: (Ju D
  • 8. Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) Page 8 Table 2: FieldSpec4Pro-FRQ Technical Specifications (Adapted from: ASD, 2013) Spectral Range 350 -2500 nm Spectral Resolution 3 nm @ 700 nm 10 nm @ 1400/2100 nm Sampling interval 1.4 nm @ 350–1050 nm 2 nm @ 1000–2500 nm Scanning time 100 milliseconds Detectors  VNIR detector (350-1000 nm): 512 element silicon array  SWIR 1 detector (1000-1800 nm): Graded Index InGaAs  Photodiode, TE Cooled  SWIR 2 detector (1800-2500 nm): Graded Index InGaAs  Photodiode, TE Cooled Noise Equivalent Radiance  VNIR 1.0 X10-9 W/cm2/nm/sr @ 700 nm  SWIR 1 1.2 X10-9 W/cm2/nm/sr @ 1400 nm  SWIR 2 1.9 X10-9 W/cm2/nm/sr @ 2100 nm Input Optional narrower field of view fiber optics available. Weight 5.44 kg (12 Ibs) Calibration Wavelength, reflectance, radiance*, irradiance*. All calibrations are NIST traceable (*radiometric calibrations are optional). Fiber-optic cable Standard ASD fiber optic cable is 1 m in length. SSD’s ASD has a 5 m fiber optic cable. Fig. (7): FieldSpc4Pro-Spectrometer (Adapted: ASD, 2013)
  • 9. Page 9 Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) Fig. (8): Spectrum of Normal Concrete Fig. (9): Spectrum of Degraded Concrete (Adapted form: Jun et al, 2001) (Anna & Eyal, 2012) presented a study to assess the in-situ strength of high performance concrete using diffuse reflectance spectroscopy. In this study, 77 high performance concrete samples were spectrally measured, analyzed and simultaneously tested for compressive strength. The results of this work demonstrated that the spectral measurement in the VNIR-SWIR (visible near infrared & short wave infrared) spectral region (400- 2500) nm provides significant and accurate information on concrete’s status and physical strength. Further, in-situ validation was performed in this investigation which exhibited that the spectral imagery acquired by spectral camera in the field can be used as a useful tool for real- time strength assessment of concrete structures. The exploitation of hyperspectral technology for assessing the conservation status of infrastructures, such as reinforced concrete structures, roads, buildings .…etc was studied by (Cavalli et al, 2011). In this study, hyperspectral measurements were carried out on a reinforced concrete beam that was subjected to different loading factors to force a formation of a clear cracking within the concrete beam. The researchers have utilized a processing technique, RX algorithm, to analyze hyperspectral data acquired by hyperspectral scanner from concrete beam. The results indicate that the fractures are well detected by the RX algorithm even though other anomalies are visible. Figure (10) illustrates the good performance of hyperspectral technology in solving and detecting surface crack by using RX method. An investigation was implemented by (Sridhar et al, 2008) to identify unique spectral characteristics of concrete under different construction practices. A total of 32 concrete blocks of identical shape and size (20×20×6) cm³ were prepared and subjected to eight different processes. The (Ju – (Jun et al, 2001) have utilized hyperspectral imagery to identify degradation of concrete structures due to exposure to various aggressive environments, including carbon dioxide, sodium chloride and sulfuric acid. The results of this study indicate that the spectrum characteristics of degraded concrete are strongly influenced by spectrum chemical materials that are generated during degradation process. Figures (8) & (9) exhibit a significant difference in spectrum between intact concrete and degraded concrete by carbon dioxide. Moreover, the investigators have developed a formula, equation No.1, to estimate degradation depth caused by carbon dioxide from spectral reflectance of concrete surface. Another study was implemented by (Lee et al, 2012) to extract spectral reflectance characteristics of concrete. In this investigation, the spectral information of eight concrete specimens with different strength at 27 day material age was measured. As a result of these measurements, spectral characteristics of specimens were shown almost similarly on the whole; however they appeared different aspect according to the strength in the range of 1950 to 2350 nm. Also, the researchers, (Lee et al, 2012), extended their investigations to include real concrete structures such as concrete slab of Daejongchum Bridge and decks surface of Yangbuk Bridge. The results of this extension exhibited that the spectral characteristics of actual concrete show similar pattern with those of interior experiment. (Jun et al,
  • 10. Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) Page 10 Fig. (10): RX Image shows structural cracks within concrete surface (Adapted form: Cavalli et al, 2011) different treatments were TC (control), TNC (no cure), TCL (cool cure), TH (heat cure), THW (high water content), THC (half cement), TG (gravel used as coarse aggregate) and TL (limestone used as fine aggregate). The results of this investigation clearly demonstrate that the spectral absorption features around 450, 1380 and 1850 nm alter accordingly with alteration in the characteristics of concrete. Also, the TNC and TCL treated concrete blocks can be differentiated from other concrete blocks based on the following spectral ratio indices, R600/R450, R1380/R1440, R1850/R1950 and R2150/R880. However, the spectral ratio R600/R450 can differentiate the TC, TG and TL treated concrete blocks, which were considered to have better concrete quality from the rest of the concrete treatments. Spectral reflectance of concrete surfaces has been studied previously to monitor aging of concrete sidewalks by (Herold et al, 2004). Spectral data analyses indicate that the new concrete sidewalks exhibit higher spectral reflectance than older sidewalks. The investigators attributed this behavior to the continued oxidation of concrete surfaces, as well as accumulation of dust and dirt that decreases the brightness of concrete surfaces. On the other hand, the results of this study demonstrate that concrete sidewalks have stronger SWIR absorption features. This observation can be ascribed that calcium carbonate in concrete matrix have a significant absorption feature at 2300 nm for calcite and at 2370 nm from dolomite. 5.0 Summary & Conclusions This paper has provided a brief overview of some important aspects of hyperspectral imaging technology. Then, it has discussed the important radiometric and spectral concepts, with a focus on how they apply to concrete structures. The fundamental findings of this paper are summarized as following: (Jun et al, 2001) have utilized hyperspectral imagery method 1. Hyperspectral imaging technology has the ability to measure an intrinsic property of material; its spectral signature. As a consequence, hyperspectral technology can be used to identify and discriminate different types of materials. 2. The amount of electromagnetic radiation reflected or emitted from a surface is affected by several factors including; source of illumination, atmospheric transmission, sampling strategy, timing of data acquisition and viewing geometry. 3. Hyperspectral imagery provides opportunities to extract more detailed information than is possible using traditional multispectral imagery. 4. Spectral libraries are a collection of the spectral signatures of the target materials. They require the in- situ collection and laboratory spectroscopic analysis of the investigated samples. 5. The impact of deterioration factors on concrete surfaces can be diagnosed and measured by means of hyperspectral imaging. 6. Reflectance spectroscopy can be used as a non destructive cost-effective approach to determine concrete strength in-situ. 7. Reflectance radiations across the VIS-NIR and SWIR in the region between (350-2500) nm are often considered a useful region with which to predict unknown concrete properties. 8. Field portable spectrometer can be utilized as in-situ tool for engineers to monitor and evaluate status of different concrete structures. D a t
  • 11. Page 11 Science Journal of Civil Engineering & Architecture (ISSN: 2276-6332) References 1. Andreoli, G., Bulgarelli, B., Hosgood, B., March 2007, "Hyperspectral Analysis of Oil and Oil-Impacted Soils for Remote Sensing Purposes", Institute for the Protection and Security of the Citizen, EUR 22739 EN, Italy. 2. Anna, B., Eyal, B., August 2011, "Reflectance Spectroscopy as a Tool to Assess the Quality of Concrete in Situ", Journal of Civil Engineering and Construction Technology, Vol. 2(8), pp. 169-188. 3. Anna, B., Eyal, B., August 2012, "Reflectance Spectroscopy as a Tool to Assess the Strength of High-Performance Concrete in Situ," Journal of Civil Engineering and Construction Technology, Vol. 3(7) pp. 195-203. 4. ASDinc, 2013, "FieldSpec 4 Standard-Res Spectroradiometer - Technical Guide", http://www.asdi.com , Analytical Spectral Devices, March/1/2013, pp. 2. 5. Baldridge, A.M., Hook, S.J., Grove, C.I., 2009, "The ASTER Spectral Library Version 2.0", Remote Sensing of Environment, Vol. 113, pp. 711-715. 6. BBC, September 2006, "The Spectrum and Its Uses- A simple guide to the radio spectrum", British Broadcasting Corporation, UK. 7. Cavalli, R.M., Bassani, C., Palombo, A., 2011, "Exploitation of Hyperspectral Data for Infrastructures Status Assessment: Preliminary Results of the Is times Test Bed", IEEE, 978-1- 4577-2201-1/11, pp. 1-4. 8. Detar, W.R., Chesson, J.H., Penner, J.V., 2008, "Detection of Soil Properties with Airborne Hyperspectral Measurements of Bare Fields", American Society of Agricultural and Biological Engineers (ASABE), ISSN 0001-2351, Vol. 51(2), pp. 463-470. 9. Griffin, M.K., and Burke, H.K., 2003, "Compensation of Hyperspectral Data for Atmospheric Effects", Lincoln Laboratory Journal, Vol. 14(1), pp. 29-54. 10. Herold, M., Roberts, D.A., Gardner, M.E., 2004, "Spectrometry for Urban Area Remote sensing-Development and Analysis of a Spectral Library from 350 to 2400 nm", Remote Sensing of Environment, Vol.91, pp. 304-319. 11. John, P.P., Kristin, S., and Carl, S., October 2008, "Spectral Reflectance and Emissivity of Man-made Surfaces Contaminated with Environmental Effects", Optical Engineering, Vol. 47(10), pp. 106201-106211. 12. Jun, A., Ken, S., Takahiro, E., 2001, "Assessment of Concrete Degradation with Hyper-Spectral Remote Sensing", 2nd Asian Conference on Remote Sensing, Anonymous National University of Singapore, Singapore Institute of Surveyors and Valuers (SISV) & Asia Association on Remote Sensing (AARS), Singapore, pp. 5-9. 13. Karavanova, E.I., 2001, "Spectral Reflectance as a Tool to Study Soils in Semi-Arid Regions", Http://topsoil.Nserl.Pur due.edu/nserlwebold/isco99/pdf/ISCOdisc/SustainingTheGl obalFarm/P185-Karanova.Pdf, February/10/2013, pp. 6. 14. Lee, J., Dewitt, B.A., Lee, S., September 2012, "Analysis of Concrete Reflectance Characteristics using Spectrometer and VNIR Hyperspectral Camera", International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, 2012 XXII ISPRS Congress. Melbourne, Australia, pp. 127-130. 15. Marceau, M.L., Vangeem, M.G., August 2008, "Solar Reflectance Values for Concrete", Concrete International, pp. 52-58. 16. Nurul, N.E., Helmi, S.Z., 2011, "Development and Utilizationof Urban Spectral Library for Remote Sensing of Urban Environment", Journal of Urban and Environmental Engineering (JUEE), Vol. 5(1) pp. 44-56. 17. Nischan, M.L., Joseph, R.M., Libby, J.C., 2003, "Active Spectral Imaging Melissa L. Nischan, Rose M. Joseph, Justin C. Libby, and John P. Kerekes," Lincoln Laboratory Journal, 14(1) pp. 131-144. 18. Randall, B.S., January 2012, "Introduction to Hyperspectral Imaging", Http://www.Microimages.Com, January/28/2013, pp. 24. 19. Dar, R.A., Martin, H., March 2004, "Imaging Spectrometry of Urban Materials," Mineral Association of Canada, Short Course Series, Vol. 33, pp.155-181. 20. Michael, S.E., Green, R.O., Ungar, S.G., 2006, "The Future of Imaging Spectroscopy- Prospective Technologies and Applications", IEEE, 0-7803-9510-7/06, pp. 1-4. 21. Shaw, G.A., Burke, H.K., 2003, "Spectral Imaging for Remote Sensing", Lincoln Laboratory Journal, Vol. 14(1), pp. 1-28. 22. Shippert, P., January, 2012, "Introduction to Hyperspectral Image Analysis", Online Journal of Space Communication, Http://spacejournal.Ohio.edu/pdf/shippert.Pdf,January/25/ 2013 pp. 35. 23. Shippert, P., April 2004, "Why use Hyperspectral Imagery?", Photogrammetric Engineering & Remote Sensing, pp. 377- 380. 24. Space Computer Corporation, 2007, "An Introduction to HyperspectralaImagingcTechnology",Http://cant.Ua.Ac.be/Si tes/cant.Ua.Ac.be/files/courses/oe/Introduction_to_HSI_Tec hnology.Pdf, January/25/2013 pp. 35. 25. Sridhar, B.B., Chapin, T.L., Vincent, R. K., 2008, "Identifying the Effects of Different Construction Practices on the Spectral Characteristics of Concrete", Cement and Concrete Research, Vol. 38(4), pp. 538-542. 26. Tian, Q., 2012, "Study on Oil-Gas Reservoir Detecting Methods Using Hyperspectral Remote Sensing", International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, 2012 XXII ISPRS Congress. Melbourne, Australia, pp. 158-162. 27. Vagni, F., 2007, "Survey of Hyperspectral and Multispectral Imaging Technologies", The Research and Technology Organization (RTO) of NATO, AC/323(SET-065) TP/44, pp.44.