SlideShare a Scribd company logo
1 of 51
The Blind Men and the Quantum:
Adding Vision to the Quantum World
John G. Cramer
Dept. of Physics, Univ. of Washington
Seattle, Washington, 98195
1st Hal Clement Memorial Lecture
Boskone 41, Boston, MA, February 15, 2004
Quantum
Mechanics
A Quantum
Metaphor
(With apologies to Americans with Disabilities)
The Blind Men
and the Elephant
by John Godfrey Saxe (1816-1887)
It was six men of Indostan, To learning much inclined, Who went to see the Elephant,
(Though all of them were blind), That each by observation, Might satisfy his mind. .
The First approached the Elephant, And happening to fall, Against his broad and sturdy side, At once began to bawl:
“God bless me! but the Elephant, Is very like a wall!”
The Second, feeling of the tusk, Cried, “Ho! what have we here, So very round and smooth and sharp? To me ’tis mighty clear,
This wonder of an Elephant, Is very like a spear!”
The Third approached the animal, And happening to take, The squirming trunk within his hands, Thus boldly up and spake:
“I see,” quoth he, “the Elephant, Is very like a snake!”
The Fourth reached out an eager hand, And felt about the knee. “What most this wondrous beast is like, Is mighty plain,” quoth he;
“ ‘Tis clear enough the Elephant, Is very like a tree!”
The Fifth, who chanced to touch the ear, Said: “E’en the blindest man, Can tell what this resembles most; Deny the fact who can,
This marvel of an Elephant, Is very like a fan!”
The Sixth no sooner had begun, About the beast to grope, Than, seizing on the swinging tail, That fell within his scope,
I see,” quoth he, “the Elephant, Is very like a rope!”
Quantum Theory
and
Interpretations
What is Quantum Mechanics?
Quantum mechanics is a theory. It is our
current “standard model” for describing
the behavior of matter and energy at the
smallest scales (photons, atoms, nuclei,
quarks, gluons, leptons, …).
Like all theories, it consists of a
mathematical formalism, plus an
interpretation of that formalism.
However, quantum mechanics differs from other physical
theories because, while its formalism of has been accepted and
used for 80 years, its interpretation remains a matter of
controversy and debate. Like the opinions of the 6 blind men,
there are many rival QM interpretations on the market.
Today we’ll consider three QM interpretations (including mine),
and we’ll talk about ways for choosing between them.
Quantum
Mechanics
The Role of an Interpretation
The interpretation of a formalism should:
• Provide links between the mathematical
symbols of the formalism and elements of
the physical world;
• Neutralize the paradoxes; all of them;
• Provide tools for visualization or for
speculation and extension.
• It should not have its own sub-formalism!
• It should not make its own testable predictions,
(but it may be falsifiable, if it is found to be
inconsistent with the formalism and experiment)!
Interpretation Example:
Newton’s 2nd Law
• Formalism:
• What this interpretation does:
• It relates the formalism to physical observables.
• It avoids the paradoxes that would arise if m<0.
• It insures that F||a.
• Interpretation: “The vector force
on a body is proportional to the
product of its scalar mass, which is positive, and
the 2nd time derivative of its vector position.”
Four Quantum
Paradoxes
Paradox 1 (non-locality):
Einstein’s Bubble
Situation: A photon is emitted
from an isotropic source.
Paradox 1 (non-locality):
Einstein’s Bubble
Situation: A photon is emitted
from an isotropic source.
Its spherical wave function Ψ
expands like an inflating bubble.
Paradox 1 (non-locality):
Einstein’s Bubble
Question (Albert Einstein):
If a photon is detected at Detector A, how does the
photon’s wave function Ψ at the location of Detectors
B & C know that it should vanish?
Situation: A photon is emitted
from an isotropic source.
Its spherical wave function Ψ
expands like an inflating bubble.
It reaches a detector, and the Ψ
bubble “pops” and disappears.
It is as if one throws a beer bottle into
Boston Harbor. It disappears, and its
quantum ripples spread all over the
Atlantic.
Then in Copenhagen, the beer bottle
suddenly jumps onto the dock, and the
ripples disappear everywhere else.
That’s what quantum mechanics says
happens to electrons and photons when
they move from place to place.
Paradox 1 (non-locality):
Einstein’s Bubble
Experiment: A cat is placed in a sealed box
containing a device that has a 50% chance
of killing the cat.
Question 1: What is the
wave function of the cat
just before the box is
opened?
When does the wave function collapse?
Paradox 2 (Ψ collapse):
Schrödinger’s Cat
Experiment: A cat is placed in a sealed box
containing a device that has a 50% chance
of killing the cat.
Question 1: What is the
wave function of the cat
just before the box is
opened?
When does the wave function collapse?
Paradox 2 (Ψ collapse):
Schrödinger’s Cat
Question 2: If we observe Schrödinger, what is his wave
function during the experiment? When does it collapse?
Paradox 2 (Ψ collapse):
Schrödinger’s Cat
The question is, when and
how does the wave function
collapse.
• What event collapses it?
• How does the collapse
spread to remote locations?
Paradox 3 (wave vs. particle):
Wheeler’s Delayed Choice
A source emits one photon.
Its wave function passes
through slits 1 and 2, making
interference beyond the slits.
The observer can choose to either:
(a) measure the interference pattern
at plane σ1, requiring that the
photon travels through both slits.
or
(b) measure at plane σ2 which slit
image it appears in, indicating that
it has passed only through slit 2.
The observer waits
until after the photon
has passed the slits to
decide which
measurement to do.
*
*
*
Thus, the photon does not
decide if it is a particle or a
wave until after it passes
the slits, even though a particle
must pass through only one slit and a wave must pass
through both slits.
Apparently the measurement choice determines
whether the photon is a particle or a wave retroactively!
Paradox 3 (wave vs. particle):
Wheeler’s Delayed Choice
Paradox 4 (non-locality):
EPR Experiments
Malus and Furry
An EPR Experiment measures the
correlated polarizations of a pair
of entangled photons, obeying
Malus’ Law [P(θrel) = Cos2θrel]
Paradox 4 (non-locality):
EPR Experiments
Malus and Furry
An EPR Experiment measures the
correlated polarizations of a pair
of entangled photons, obeying
Malus’ Law [P(θrel) = Cos2θrel]
The measurement gives the same result
as if both filters were in the same arm.
Paradox 4 (non-locality):
EPR Experiments
Malus and Furry
An EPR Experiment measures the
correlated polarizations of a pair
of entangled photons, obeying
Malus’ Law [P(θrel) = Cos2θrel]
The measurement gives the same result
as if both filters were in the same arm.
Furry proposed to place both photons in
the same random polarization state.
This gives a different and weaker
correlation.
Paradox 4 (non-locality):
EPR Experiments
Malus and Furry
Apparently, the measurement on the right
side of the apparatus causes (in some
sense of the word cause) the photon on
the left side to be in the same quantum
mechanical state, and this does not
happen until well after they have left
the source.
This EPR “influence across space time”
works even if the measurements are
light years apart.
Could that be used for FTL signaling?
Sorry, SF fans, the answer is No!
Three
Interpretations
of Quantum
Heisenberg’s uncertainty principle:
Wave-particle duality, conjugate variables, e.g., x and p, E and t;
The impossibility of simultaneous conjugate measurements
Born’s statistical interpretation:
The meaning of the wave function ψ as probability: P = ψ ψ*;
Quantum mechanics predicts only the average behavior of a system.
Bohr’s complementarity:
The “wholeness” of the system and the measurement apparatus;
Complementary nature of wave-particle duality: a particle OR a wave;
The uncertainty principle is property of nature, not of measurement.
Heisenberg’s "knowledge" interpretation:
Identification of ψ with knowledge of an observer;
ψ collapse and non-locality reflect changing knowledge of observer.
Heisenberg’s positivism:
“Don’t-ask/Don’t tell” about the meaning or reality behind formalism;
Focus exclusively on observables and measurements.
The Copenhagen
Interpretation
Quantum
Mechanics
Retain Heisenberg’s uncertainty principle and
Born’s statistical interpretation from the Copenhagen Interpretation.
No Collapse.
The wave function ψ never collapses; it splits into new wave functions
that reflect the different possible outcomes of measurements. The split
off wave functions reside in physically distinguishable “worlds”.
No Observer:
Our preception of wave function collapse is because our consciousness
has followed a particular pattern of wave function splits.
Interference between “Worlds”:
Observation of quantum interference occurs because wave functions in
several “worlds” have not been separated because they lead to the
same physical outcomes.
The Many-Worlds
Interpretation
Quantum
Mechanics
Heisenberg’s uncertainty principle and Born’s statistical interpretation are not
postulates, because they can be derived from the Transactional Interpretation..
Offer Wave:
The initial wave function ψ is interpreted as a retarded-wave offer to form a
quantum event.
Confirmation wave:
The response wave function ψ* (present in the QM formalism) is interpreted
as an advanced-wave confirmation to proceed with the quantum event.
Transaction – the Quantum Handshake:
A forward/back-in-time ψ ψ* standing wave forms, transferring energy,
momentum, and other conserved quantities, and the event becomes real.
No Observers:
Transactions involving observers are no different from other transactions;
Observers and their knowledge play no special roles.
No Paraoxes:
Transactions are intrinsically nonlocal, and all paradoxes are resolved.
The Transactional
Interpretation (JGC)
Summary of QM Interpretations
Copenhagen
Many
Worlds
Transactional
Uses “observer knowledge” to explain
wave function collapse and non-locality.
Advises “don’t-ask/don’t tell” about reality.
Uses “world-splitting” to explain wave
function collapse. Has problems with non-
locality. Useful in quantum computing.
Uses “advanced-retarded handshake” to explain
wave function collapse and non-locality. Provides
a way of “visualizing” quantum events.
The Transactional
Interpretation
of Quantum
Mechanics
“Listening” to the Formalism
of Quantum Mechanics
Consider a quantum matrix element:
<S> = ∫v ψ* S ψ dr3 = <f | S | i>
… a ψ* - ψ “sandwich”. What does this suggest?
Hint: The complex conjugation in ψ* is the
Wigner operator for time reversal. If ψ is a
retarded wave, then ψ* is an advanced wave.
If ψ = Α ei(kr-ωt) then ψ* = Α ei(-kr+ωt)
(retarded) (advanced)
Maxwell’s Electromagnetic
Wave Equation (Classical)
∇2 Fi = 1/c2 ∂2Fi /∂t2
This is a 2nd order differential
equation, which has two time
solutions, retarded and advanced.
Wheeler-Feynman Approach:
Use ½ retarded and ½ advanced
(time symmetry).
Conventional Approach:
Choose only the retarded solution
(a “causality” boundary condition).
A Classical Wheeler-Feynman
Electromagnetic “Transaction”
• The emitter sends retarded and
advanced waves. It “offers”
to transfer energy.
A Classical Wheeler-Feynman
Electromagnetic “Transaction”
• The emitter sends retarded and
advanced waves. It “offers”
to transfer energy.
• The absorber responds with an
advanced wave that
“confirms” the transaction.
A Classical Wheeler-Feynman
Electromagnetic “Transaction”
• The emitter sends retarded and
advanced waves. It “offers”
to transfer energy.
• The absorber responds with an
advanced wave that
“confirms” the transaction.
• The loose ends cancel and
disappear, and energy is
transferred.
The Quantum
Transactional Model
Step 1: The emitter sends
out an “offer wave” Ψ.
The Quantum
Transactional Model
Step 1: The emitter sends
out an “offer wave” Ψ.
Step 2: The absorber responds
with a “confirmation wave”
Ψ*.
The Quantum
Transactional Model
Step 1: The emitter sends
out an “offer wave” Ψ.
Step 2: The absorber responds
with a “confirmation wave”
Ψ*.
Step 3: The process repeats
until energy and momentum
is transferred and the
transaction is completed
(wave function collapse).
The Transactional
Interpretation and
Wave-Particle Duality
• The completed transaction
projects out only that part
of the offer wave that had
been reinforced by the
confirmation wave.
• Therefore, the transaction
is, in effect, a projection
operator.
• This explains wave-particle
duality.
The Transactional
Interpretation and the
Born Probability Law
• Starting from E&M and the Wheeler-
Feynman approach, the E-field
“echo” that the emitter receives
from the absorber is the product
of the retarded-wave E-field at
the absorber and the advanced-
wave E-field at the emitter.
• Translating this to quantum
mechanical terms, the “echo”
that the emitter receives from
each potential absorber is ΨΨ*,
leading to the Born Probability Law.
The Role of the Observer in
the Transactional
Interpretation
• In the Copenhagen interpretation,
observers have a special role as the
collapsers of wave functions. This leads
to problems, e.g., in quantum cosmology
where no observers are present.
• In the transactional interpretation,
transactions involving an observer are the
same as any other transactions.
• Thus, the observer-centric aspects of the
Copenhagen interpretation are avoided.
Testing
Interpretations
Can Interpretations
of QM be Tested?
• The simple answer is “No!”. It is the formalism of quantum
mechanics that makes the testable predictions.
• As long as an interpretation is consistent with the formalism, it
will make the same predictions as any other interpretation, and
no experimental tests are possible.
• However, there is a new experiment (Afshar), which suggests
that the Copenhagen and Many-Worlds Interpretations may be
inconsistent with the quantum mechanical formalism.
• If this is true, then these interpretations can be falsified.
• The Transactional Interpretation is consistent with the Afshar
results and does not have this problem.
Wheeler’s Delayed
Choice Experiment
One can choose to either:
• Measure at σ1 the interference pattern, giving the
wavelength and momentum of the photon, or
• Measure at σ2 which slit the particle passed
through, giving its position.
Wheeler’s Delayed
Choice Experiment
Thus, one observes either:
• Wave-like behavior with the
interference pattern
or
• Particle-like behavior in determining
which slit the photon passed through.
The Afshar Experiment
• Put wires with 6% opacity at the positions of the
interference minima at σ1, and
• Place detector at 2’ on plane σ2 and observe the particles
passing through slit 2.
• Question: What fraction of the light is blocked by the
grid and not transmitted? (i.e., is the interference
pattern still there when one measures particle behavior?)
The Afshar Experiment
Copenhagen-influenced expectation:
The measurement-type forces particle-like
behavior, so there should be no interference, and
no minima. Therefore, 6% of the particles should
be intercepted.
The Afshar Experiment
Many-Worlds-influenced expectation:
The universe splits, and we are in a universe in which
the photon goes to 2. Therefore, there should be no
interference, and no minima. Consequently, 6% of
the particles should be intercepted.
The Afshar Experiment
Transactional-influenced expectation:
The initial offer waves pass through both slits on
their way to possible absorbers. At the wires, the
offer waves cancel in first order, so that no
transactions can form and no photons can be
intercepted by the wires. Therefore, the absorption
by the wires should be very small (<<6%).
Afshar Experiment Results
Grid + 1 Slit
6% Loss
Grid + 2 Slits
<0.1% Loss
No Grid
No Loss
Afshar Test Results
Copenhagen Many
Worlds
Transactional
Predicts no interference. Predicts no interference.
Predicts interference, as does the QM formalism.
Afshar Test Results
Transactional
Thus, it appears that the Transactional Interpretation
is the only interpretation of the three discussed that has
survived the Afshar test. It also appears that other
interpretations on the market (Decoherence, Consistent-
Histories, etc.) fail the Afshar Test.
However, quantum interpretational theorists are fairly
slippery characters. It remains to be seen if they will
find some way to save their pet interpretations.
References
Transactional
The Transactional Interpretation of Quantum
Mechanics:
http://www.npl.washington.edu/TI
“Schroedinger’s Kittens” by John Gribbin (1995).
The PowerPoint version of this talk will soon be
available at:
http://faculty.washington.edu/jcramer
The
End

More Related Content

Similar to Transactional Boskone_0402.pptx

Quantum Entanglement Project
Quantum Entanglement ProjectQuantum Entanglement Project
Quantum Entanglement ProjectMark Falcone
 
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...IOSR Journals
 
Heisgnberg principle, energy levels &amp; atomic spectra
Heisgnberg principle, energy levels &amp; atomic spectraHeisgnberg principle, energy levels &amp; atomic spectra
Heisgnberg principle, energy levels &amp; atomic spectraNoor Fatima
 
Quantum Entanglement
Quantum EntanglementQuantum Entanglement
Quantum Entanglementpixiejen
 
The Double Split Experiment & The Nature Of Reality
The Double Split Experiment & The Nature Of RealityThe Double Split Experiment & The Nature Of Reality
The Double Split Experiment & The Nature Of RealityJean-Philippe Divo
 
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)Gabriel O'Brien
 
Quantum Entanglement
Quantum EntanglementQuantum Entanglement
Quantum EntanglementAlexis Diaz
 
Quantum entanglement is one of the most intriguing and counterintuitive pheno...
Quantum entanglement is one of the most intriguing and counterintuitive pheno...Quantum entanglement is one of the most intriguing and counterintuitive pheno...
Quantum entanglement is one of the most intriguing and counterintuitive pheno...NishaJaiswal34
 
Relativity and Quantum Mechanics Are Not "Incompatible"
Relativity and Quantum Mechanics Are Not "Incompatible"Relativity and Quantum Mechanics Are Not "Incompatible"
Relativity and Quantum Mechanics Are Not "Incompatible"John47Wind
 
Quantum Mechanics and Computing
Quantum Mechanics and ComputingQuantum Mechanics and Computing
Quantum Mechanics and ComputingAntoniousIskander
 
“MISSING HIGGS BIGBANG & PARTICLE STUDY”
“MISSING HIGGS BIGBANG & PARTICLE STUDY”“MISSING HIGGS BIGBANG & PARTICLE STUDY”
“MISSING HIGGS BIGBANG & PARTICLE STUDY”Pushkar Purohit
 
Quantum Information
Quantum Information Quantum Information
Quantum Information Dario Scotto
 
Beyond and across space: entanglement
Beyond and across space: entanglementBeyond and across space: entanglement
Beyond and across space: entanglementVasil Penchev
 
Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationGaurav Singh Gusain
 
Elaborato torrieri andrea_5_e_esame di stato 20.21
Elaborato torrieri andrea_5_e_esame di stato 20.21Elaborato torrieri andrea_5_e_esame di stato 20.21
Elaborato torrieri andrea_5_e_esame di stato 20.21andreatorrieri
 
natsci1report (2007version)
natsci1report (2007version)natsci1report (2007version)
natsci1report (2007version)alezandria
 
Active information in quantum physics, biology and beyond. Argumenta lecture
Active information in quantum physics, biology and beyond. Argumenta lectureActive information in quantum physics, biology and beyond. Argumenta lecture
Active information in quantum physics, biology and beyond. Argumenta lectureGenes and Society Argumenta Project
 

Similar to Transactional Boskone_0402.pptx (20)

Quantum Entanglement Project
Quantum Entanglement ProjectQuantum Entanglement Project
Quantum Entanglement Project
 
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
 
Heisgnberg principle, energy levels &amp; atomic spectra
Heisgnberg principle, energy levels &amp; atomic spectraHeisgnberg principle, energy levels &amp; atomic spectra
Heisgnberg principle, energy levels &amp; atomic spectra
 
Quantum Entanglement
Quantum EntanglementQuantum Entanglement
Quantum Entanglement
 
The Double Split Experiment & The Nature Of Reality
The Double Split Experiment & The Nature Of RealityThe Double Split Experiment & The Nature Of Reality
The Double Split Experiment & The Nature Of Reality
 
Origin of Quantum Mechanics: Scratching the back of quantum world
Origin of Quantum Mechanics: Scratching the back of quantum worldOrigin of Quantum Mechanics: Scratching the back of quantum world
Origin of Quantum Mechanics: Scratching the back of quantum world
 
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
 
Quantum Entanglement
Quantum EntanglementQuantum Entanglement
Quantum Entanglement
 
Quantum entanglement is one of the most intriguing and counterintuitive pheno...
Quantum entanglement is one of the most intriguing and counterintuitive pheno...Quantum entanglement is one of the most intriguing and counterintuitive pheno...
Quantum entanglement is one of the most intriguing and counterintuitive pheno...
 
Quantum theory
Quantum theoryQuantum theory
Quantum theory
 
Relativity and Quantum Mechanics Are Not "Incompatible"
Relativity and Quantum Mechanics Are Not "Incompatible"Relativity and Quantum Mechanics Are Not "Incompatible"
Relativity and Quantum Mechanics Are Not "Incompatible"
 
project draft.pdf
project draft.pdfproject draft.pdf
project draft.pdf
 
Quantum Mechanics and Computing
Quantum Mechanics and ComputingQuantum Mechanics and Computing
Quantum Mechanics and Computing
 
“MISSING HIGGS BIGBANG & PARTICLE STUDY”
“MISSING HIGGS BIGBANG & PARTICLE STUDY”“MISSING HIGGS BIGBANG & PARTICLE STUDY”
“MISSING HIGGS BIGBANG & PARTICLE STUDY”
 
Quantum Information
Quantum Information Quantum Information
Quantum Information
 
Beyond and across space: entanglement
Beyond and across space: entanglementBeyond and across space: entanglement
Beyond and across space: entanglement
 
Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equation
 
Elaborato torrieri andrea_5_e_esame di stato 20.21
Elaborato torrieri andrea_5_e_esame di stato 20.21Elaborato torrieri andrea_5_e_esame di stato 20.21
Elaborato torrieri andrea_5_e_esame di stato 20.21
 
natsci1report (2007version)
natsci1report (2007version)natsci1report (2007version)
natsci1report (2007version)
 
Active information in quantum physics, biology and beyond. Argumenta lecture
Active information in quantum physics, biology and beyond. Argumenta lectureActive information in quantum physics, biology and beyond. Argumenta lecture
Active information in quantum physics, biology and beyond. Argumenta lecture
 

Recently uploaded

call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 

Recently uploaded (20)

call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 

Transactional Boskone_0402.pptx

  • 1. The Blind Men and the Quantum: Adding Vision to the Quantum World John G. Cramer Dept. of Physics, Univ. of Washington Seattle, Washington, 98195 1st Hal Clement Memorial Lecture Boskone 41, Boston, MA, February 15, 2004 Quantum Mechanics
  • 2. A Quantum Metaphor (With apologies to Americans with Disabilities)
  • 3. The Blind Men and the Elephant by John Godfrey Saxe (1816-1887) It was six men of Indostan, To learning much inclined, Who went to see the Elephant, (Though all of them were blind), That each by observation, Might satisfy his mind. . The First approached the Elephant, And happening to fall, Against his broad and sturdy side, At once began to bawl: “God bless me! but the Elephant, Is very like a wall!” The Second, feeling of the tusk, Cried, “Ho! what have we here, So very round and smooth and sharp? To me ’tis mighty clear, This wonder of an Elephant, Is very like a spear!” The Third approached the animal, And happening to take, The squirming trunk within his hands, Thus boldly up and spake: “I see,” quoth he, “the Elephant, Is very like a snake!” The Fourth reached out an eager hand, And felt about the knee. “What most this wondrous beast is like, Is mighty plain,” quoth he; “ ‘Tis clear enough the Elephant, Is very like a tree!” The Fifth, who chanced to touch the ear, Said: “E’en the blindest man, Can tell what this resembles most; Deny the fact who can, This marvel of an Elephant, Is very like a fan!” The Sixth no sooner had begun, About the beast to grope, Than, seizing on the swinging tail, That fell within his scope, I see,” quoth he, “the Elephant, Is very like a rope!”
  • 5. What is Quantum Mechanics? Quantum mechanics is a theory. It is our current “standard model” for describing the behavior of matter and energy at the smallest scales (photons, atoms, nuclei, quarks, gluons, leptons, …). Like all theories, it consists of a mathematical formalism, plus an interpretation of that formalism. However, quantum mechanics differs from other physical theories because, while its formalism of has been accepted and used for 80 years, its interpretation remains a matter of controversy and debate. Like the opinions of the 6 blind men, there are many rival QM interpretations on the market. Today we’ll consider three QM interpretations (including mine), and we’ll talk about ways for choosing between them. Quantum Mechanics
  • 6. The Role of an Interpretation The interpretation of a formalism should: • Provide links between the mathematical symbols of the formalism and elements of the physical world; • Neutralize the paradoxes; all of them; • Provide tools for visualization or for speculation and extension. • It should not have its own sub-formalism! • It should not make its own testable predictions, (but it may be falsifiable, if it is found to be inconsistent with the formalism and experiment)!
  • 7. Interpretation Example: Newton’s 2nd Law • Formalism: • What this interpretation does: • It relates the formalism to physical observables. • It avoids the paradoxes that would arise if m<0. • It insures that F||a. • Interpretation: “The vector force on a body is proportional to the product of its scalar mass, which is positive, and the 2nd time derivative of its vector position.”
  • 9. Paradox 1 (non-locality): Einstein’s Bubble Situation: A photon is emitted from an isotropic source.
  • 10. Paradox 1 (non-locality): Einstein’s Bubble Situation: A photon is emitted from an isotropic source. Its spherical wave function Ψ expands like an inflating bubble.
  • 11. Paradox 1 (non-locality): Einstein’s Bubble Question (Albert Einstein): If a photon is detected at Detector A, how does the photon’s wave function Ψ at the location of Detectors B & C know that it should vanish? Situation: A photon is emitted from an isotropic source. Its spherical wave function Ψ expands like an inflating bubble. It reaches a detector, and the Ψ bubble “pops” and disappears.
  • 12. It is as if one throws a beer bottle into Boston Harbor. It disappears, and its quantum ripples spread all over the Atlantic. Then in Copenhagen, the beer bottle suddenly jumps onto the dock, and the ripples disappear everywhere else. That’s what quantum mechanics says happens to electrons and photons when they move from place to place. Paradox 1 (non-locality): Einstein’s Bubble
  • 13. Experiment: A cat is placed in a sealed box containing a device that has a 50% chance of killing the cat. Question 1: What is the wave function of the cat just before the box is opened? When does the wave function collapse? Paradox 2 (Ψ collapse): Schrödinger’s Cat
  • 14. Experiment: A cat is placed in a sealed box containing a device that has a 50% chance of killing the cat. Question 1: What is the wave function of the cat just before the box is opened? When does the wave function collapse? Paradox 2 (Ψ collapse): Schrödinger’s Cat Question 2: If we observe Schrödinger, what is his wave function during the experiment? When does it collapse?
  • 15. Paradox 2 (Ψ collapse): Schrödinger’s Cat The question is, when and how does the wave function collapse. • What event collapses it? • How does the collapse spread to remote locations?
  • 16. Paradox 3 (wave vs. particle): Wheeler’s Delayed Choice A source emits one photon. Its wave function passes through slits 1 and 2, making interference beyond the slits. The observer can choose to either: (a) measure the interference pattern at plane σ1, requiring that the photon travels through both slits. or (b) measure at plane σ2 which slit image it appears in, indicating that it has passed only through slit 2. The observer waits until after the photon has passed the slits to decide which measurement to do. * * *
  • 17. Thus, the photon does not decide if it is a particle or a wave until after it passes the slits, even though a particle must pass through only one slit and a wave must pass through both slits. Apparently the measurement choice determines whether the photon is a particle or a wave retroactively! Paradox 3 (wave vs. particle): Wheeler’s Delayed Choice
  • 18. Paradox 4 (non-locality): EPR Experiments Malus and Furry An EPR Experiment measures the correlated polarizations of a pair of entangled photons, obeying Malus’ Law [P(θrel) = Cos2θrel]
  • 19. Paradox 4 (non-locality): EPR Experiments Malus and Furry An EPR Experiment measures the correlated polarizations of a pair of entangled photons, obeying Malus’ Law [P(θrel) = Cos2θrel] The measurement gives the same result as if both filters were in the same arm.
  • 20. Paradox 4 (non-locality): EPR Experiments Malus and Furry An EPR Experiment measures the correlated polarizations of a pair of entangled photons, obeying Malus’ Law [P(θrel) = Cos2θrel] The measurement gives the same result as if both filters were in the same arm. Furry proposed to place both photons in the same random polarization state. This gives a different and weaker correlation.
  • 21. Paradox 4 (non-locality): EPR Experiments Malus and Furry Apparently, the measurement on the right side of the apparatus causes (in some sense of the word cause) the photon on the left side to be in the same quantum mechanical state, and this does not happen until well after they have left the source. This EPR “influence across space time” works even if the measurements are light years apart. Could that be used for FTL signaling? Sorry, SF fans, the answer is No!
  • 23. Heisenberg’s uncertainty principle: Wave-particle duality, conjugate variables, e.g., x and p, E and t; The impossibility of simultaneous conjugate measurements Born’s statistical interpretation: The meaning of the wave function ψ as probability: P = ψ ψ*; Quantum mechanics predicts only the average behavior of a system. Bohr’s complementarity: The “wholeness” of the system and the measurement apparatus; Complementary nature of wave-particle duality: a particle OR a wave; The uncertainty principle is property of nature, not of measurement. Heisenberg’s "knowledge" interpretation: Identification of ψ with knowledge of an observer; ψ collapse and non-locality reflect changing knowledge of observer. Heisenberg’s positivism: “Don’t-ask/Don’t tell” about the meaning or reality behind formalism; Focus exclusively on observables and measurements. The Copenhagen Interpretation Quantum Mechanics
  • 24. Retain Heisenberg’s uncertainty principle and Born’s statistical interpretation from the Copenhagen Interpretation. No Collapse. The wave function ψ never collapses; it splits into new wave functions that reflect the different possible outcomes of measurements. The split off wave functions reside in physically distinguishable “worlds”. No Observer: Our preception of wave function collapse is because our consciousness has followed a particular pattern of wave function splits. Interference between “Worlds”: Observation of quantum interference occurs because wave functions in several “worlds” have not been separated because they lead to the same physical outcomes. The Many-Worlds Interpretation Quantum Mechanics
  • 25. Heisenberg’s uncertainty principle and Born’s statistical interpretation are not postulates, because they can be derived from the Transactional Interpretation.. Offer Wave: The initial wave function ψ is interpreted as a retarded-wave offer to form a quantum event. Confirmation wave: The response wave function ψ* (present in the QM formalism) is interpreted as an advanced-wave confirmation to proceed with the quantum event. Transaction – the Quantum Handshake: A forward/back-in-time ψ ψ* standing wave forms, transferring energy, momentum, and other conserved quantities, and the event becomes real. No Observers: Transactions involving observers are no different from other transactions; Observers and their knowledge play no special roles. No Paraoxes: Transactions are intrinsically nonlocal, and all paradoxes are resolved. The Transactional Interpretation (JGC)
  • 26. Summary of QM Interpretations Copenhagen Many Worlds Transactional Uses “observer knowledge” to explain wave function collapse and non-locality. Advises “don’t-ask/don’t tell” about reality. Uses “world-splitting” to explain wave function collapse. Has problems with non- locality. Useful in quantum computing. Uses “advanced-retarded handshake” to explain wave function collapse and non-locality. Provides a way of “visualizing” quantum events.
  • 28. “Listening” to the Formalism of Quantum Mechanics Consider a quantum matrix element: <S> = ∫v ψ* S ψ dr3 = <f | S | i> … a ψ* - ψ “sandwich”. What does this suggest? Hint: The complex conjugation in ψ* is the Wigner operator for time reversal. If ψ is a retarded wave, then ψ* is an advanced wave. If ψ = Α ei(kr-ωt) then ψ* = Α ei(-kr+ωt) (retarded) (advanced)
  • 29. Maxwell’s Electromagnetic Wave Equation (Classical) ∇2 Fi = 1/c2 ∂2Fi /∂t2 This is a 2nd order differential equation, which has two time solutions, retarded and advanced. Wheeler-Feynman Approach: Use ½ retarded and ½ advanced (time symmetry). Conventional Approach: Choose only the retarded solution (a “causality” boundary condition).
  • 30. A Classical Wheeler-Feynman Electromagnetic “Transaction” • The emitter sends retarded and advanced waves. It “offers” to transfer energy.
  • 31. A Classical Wheeler-Feynman Electromagnetic “Transaction” • The emitter sends retarded and advanced waves. It “offers” to transfer energy. • The absorber responds with an advanced wave that “confirms” the transaction.
  • 32. A Classical Wheeler-Feynman Electromagnetic “Transaction” • The emitter sends retarded and advanced waves. It “offers” to transfer energy. • The absorber responds with an advanced wave that “confirms” the transaction. • The loose ends cancel and disappear, and energy is transferred.
  • 33. The Quantum Transactional Model Step 1: The emitter sends out an “offer wave” Ψ.
  • 34. The Quantum Transactional Model Step 1: The emitter sends out an “offer wave” Ψ. Step 2: The absorber responds with a “confirmation wave” Ψ*.
  • 35. The Quantum Transactional Model Step 1: The emitter sends out an “offer wave” Ψ. Step 2: The absorber responds with a “confirmation wave” Ψ*. Step 3: The process repeats until energy and momentum is transferred and the transaction is completed (wave function collapse).
  • 36. The Transactional Interpretation and Wave-Particle Duality • The completed transaction projects out only that part of the offer wave that had been reinforced by the confirmation wave. • Therefore, the transaction is, in effect, a projection operator. • This explains wave-particle duality.
  • 37. The Transactional Interpretation and the Born Probability Law • Starting from E&M and the Wheeler- Feynman approach, the E-field “echo” that the emitter receives from the absorber is the product of the retarded-wave E-field at the absorber and the advanced- wave E-field at the emitter. • Translating this to quantum mechanical terms, the “echo” that the emitter receives from each potential absorber is ΨΨ*, leading to the Born Probability Law.
  • 38. The Role of the Observer in the Transactional Interpretation • In the Copenhagen interpretation, observers have a special role as the collapsers of wave functions. This leads to problems, e.g., in quantum cosmology where no observers are present. • In the transactional interpretation, transactions involving an observer are the same as any other transactions. • Thus, the observer-centric aspects of the Copenhagen interpretation are avoided.
  • 40. Can Interpretations of QM be Tested? • The simple answer is “No!”. It is the formalism of quantum mechanics that makes the testable predictions. • As long as an interpretation is consistent with the formalism, it will make the same predictions as any other interpretation, and no experimental tests are possible. • However, there is a new experiment (Afshar), which suggests that the Copenhagen and Many-Worlds Interpretations may be inconsistent with the quantum mechanical formalism. • If this is true, then these interpretations can be falsified. • The Transactional Interpretation is consistent with the Afshar results and does not have this problem.
  • 41. Wheeler’s Delayed Choice Experiment One can choose to either: • Measure at σ1 the interference pattern, giving the wavelength and momentum of the photon, or • Measure at σ2 which slit the particle passed through, giving its position.
  • 42. Wheeler’s Delayed Choice Experiment Thus, one observes either: • Wave-like behavior with the interference pattern or • Particle-like behavior in determining which slit the photon passed through.
  • 43. The Afshar Experiment • Put wires with 6% opacity at the positions of the interference minima at σ1, and • Place detector at 2’ on plane σ2 and observe the particles passing through slit 2. • Question: What fraction of the light is blocked by the grid and not transmitted? (i.e., is the interference pattern still there when one measures particle behavior?)
  • 44. The Afshar Experiment Copenhagen-influenced expectation: The measurement-type forces particle-like behavior, so there should be no interference, and no minima. Therefore, 6% of the particles should be intercepted.
  • 45. The Afshar Experiment Many-Worlds-influenced expectation: The universe splits, and we are in a universe in which the photon goes to 2. Therefore, there should be no interference, and no minima. Consequently, 6% of the particles should be intercepted.
  • 46. The Afshar Experiment Transactional-influenced expectation: The initial offer waves pass through both slits on their way to possible absorbers. At the wires, the offer waves cancel in first order, so that no transactions can form and no photons can be intercepted by the wires. Therefore, the absorption by the wires should be very small (<<6%).
  • 47. Afshar Experiment Results Grid + 1 Slit 6% Loss Grid + 2 Slits <0.1% Loss No Grid No Loss
  • 48. Afshar Test Results Copenhagen Many Worlds Transactional Predicts no interference. Predicts no interference. Predicts interference, as does the QM formalism.
  • 49. Afshar Test Results Transactional Thus, it appears that the Transactional Interpretation is the only interpretation of the three discussed that has survived the Afshar test. It also appears that other interpretations on the market (Decoherence, Consistent- Histories, etc.) fail the Afshar Test. However, quantum interpretational theorists are fairly slippery characters. It remains to be seen if they will find some way to save their pet interpretations.
  • 50. References Transactional The Transactional Interpretation of Quantum Mechanics: http://www.npl.washington.edu/TI “Schroedinger’s Kittens” by John Gribbin (1995). The PowerPoint version of this talk will soon be available at: http://faculty.washington.edu/jcramer