SlideShare a Scribd company logo
1 of 17
ANALIYSIS AND SYNTHESIS
OF AN ELECTROHYDRAULIC CLOSED LOOP CONTROL
SYSTEM FOR THE VIBRATIONAL TESTING MACHINE
TECHNICAL UNIVERSITY OF SOFIA
Department: Hydro-aero-dynamics and hydraulic machines
Prof. dr. Ilcho Angelov
Dipl. eng. Nikola Stanchev
Dipl. eng. Cvetozar Ivanov
INTRODUCTION
The article presents research and development of electro-hydraulic closed loop
system for vibration test unit for the needs of the Faculty of Industrial Technology (FIT) at
the Technical University of Sofia. The synthesis of the hydraulic system is accomplished
in accordance with pre-set technical requirements as follows:
- spatial direction of testing, 2 axes : horizontal and vertical;
- driven mass of the test object and design of the platform: m = 1500 kg;
- acceleration of the test object: a ≤ 30 m/s2;
- frequency range with acceleration a = 30 m/s2: f0 = 1 ÷ 30 Hz;
- maximum amplitude for both directions : X ≥ 3 mm;
- drive power: ≤ 30 kW;
OVERVIEW – HYDRAULIC TEST BENCHES
 Simulation of road conditions
 Realistic real-time simulation
 6 DOF (Degree Of Freedom)
 Big drive forces, up to 60 kN
 Big velocities, up to1,7 m/s
 Big accelerations, up to100 m/s2
 Very big frequencies with big
drive forces, up to 100 Hz
 Big stiffness of the drive with big
frequencies, independent
from the driven load
ADVANTAGES OF ELECTROHYDRAULIC TEST BENCHES
HYDRAULIC DRAFT OF THE ELECTROHYDRAULIC SYSTEM
HYDRAULIC DRAFT OF THE ELECTROHYDRAULIC SYSTEM
HYDRAULIC DRAFT OF THE ELECTROHYDRAULIC SYSTEM
CALCULATION OF THE BASIC WORK PARAMETERS
 Drive force of the cylinder…………….…………………………………………….
 Active area of the cylinder…..……………………………………………………..
 Work pressure of the cylinder………………………………..…………………….
 Velocity of the cylinder.…………………………………………………………….
 Acceleration of the cylinder…………………….…………………………………
 Maximum velocity of the cylinder………………………………………………..
 Maximum acceleration of the cylinder………………………………………….
 Maximum flow of the pump……...………………………………………………...
c c
F p .A 
 2 2
c P A
A D d
4

 
c W Е ХСК
p p p   
   v t x t
.
 a x t &&
v 2 fA 
2 2
a 4 f A 
q vA
CALCULATION AND SIMULATION OF THE WORK PARAMETERS
CALCULATION AND SIMULATION OF THE WORK PARAMETERS
 In sinusoidal input impact in
the frequency range from
1 to 12 Hz desired acceleration
of 3g can not be reached!
fi, Hz a, m/s2 х, mm q, l/min v, m/s P, kW
1 2 60 58 0,38 26
2 5 30 58 0,38 26
3 7 20 58 0,38 26
4 9 15 58 0,38 26
5 12 12 58 0,38 26
6 14 10 58 0,38 26
7 16 8,5 58 0,37 26
8 19 7,5 58 0,38 26
9 21 6,7 58 0,38 26
10 24 6 58 0,38 26
11 26 5,4 58 0,37 26
12 28 5 58 0,38 26
13 30 4,5 57 0,37 25
14 30 3,9 53 0,34 23
15 30 3,4 49 0,32 21
16 30 3 47 0,3 19
17 30 2,6 43 0,28 17
18 30 2,35 41 0,27 16
19 30 2,1 39 0,25 18
20 30 1,9 37 0,24 17
21 30 1,7 35 0,22 15
22 30 1,55 33 0,21 14
23 30 1,45 32 0,21 14
24 30 1,3 30 0,2 13
25 30 1,2 29 0,19 12
26 30 1,14 29 0,19 12
27 30 1,05 27 0,18 11
28 30 0,97 26 0,17 11
29 30 0,9 25 0,16 10
30 30 0,85 25 0,16 10
PHYSICAL PARAMETERS OF THE HORIZONTAL CYLINDER
3g
 Frequency 13 Hz and amplitude 4,5 mm
DYNAMIC BEHAVIOR OF THE HORIZONTAL CYLINDER
t, s0
S, mm
0,077 (13 Hz)
4,54,5
3g
3g
0
S, mm
0,033 (30 Hz)
0,850,85
t, s
3g
3g
3g
3g
3g
 Frequency 30 Hz and amplitude 0,85 mm
3g ► 1 ÷ 12 Hz
DYNAMIC BEHAVIOR OF THE HORIZONTAL CYLINDER
DYNAMIC BEHAVIOR OF THE HORIZONTAL CYLINDER
 Frequency 12 Hz and amplitude 2,1 mm
t, s0
S, mm
2,12,1
0,0833 (12 Hz)
3g
0,012 tПР
2
a.t
A
2

2
2А
а
t

 Calculated physical parameters for horizontal cylinder in intermittent
treatment with transition process in the range 0,005 – 0,013 s and restriction
of the maximum flow that the servo valve can give (qmax = 60 l/min),
a, m/s2 tПР, s х, m v, m/s q, m3/s q, l/min fi,max Hz
30 0,005 0,00038 0,15 0,00038 23 50
30 0,006 0,00054 0,18 0,00046 27,6 41,6
30 0,007 0,00074 0,21 0,00054 32,2 35,7
30 0,008 0,00096 0,24 0,00061 37 31,2
30 0,009 0,00122 0,27 0,00069 41,5 27,7
30 0,01 0,0015 0,3 0,00077 46 25
30 0,011 0,00182 0,33 0,00084 50,7 22,7
30 0,012 0,00216 0,36 0,00092 55,3 20,8
30 0,013 0,00254 0,39 0,001 59,9 19,2
PHYSICAL PARAMETERS OF THE HORIZONTAL CYLINDER
Horizontal servocylinder
Vertical servocylinders
RESULTS- 3D MODEL OF THE TEST BENCH
 The design was tested with simulation at operating frequencies above 50 Hz,
there is no danger of resonance (3D CAD SolidWorks)
TU – SOFIA, Department: HAD and HM
THANK YOU FOR
THE ATTENTION!

More Related Content

What's hot

Top 3 Causes of Aircraft Vibration
Top 3 Causes of Aircraft VibrationTop 3 Causes of Aircraft Vibration
Top 3 Causes of Aircraft VibrationDynaVibe
 
Presentation on condition monitoring iut
Presentation on condition monitoring iutPresentation on condition monitoring iut
Presentation on condition monitoring iutSanjit Devnath
 
DC Motor Simulation using PSpice
DC Motor Simulation using PSpiceDC Motor Simulation using PSpice
DC Motor Simulation using PSpiceTsuyoshi Horigome
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料Tsuyoshi Horigome
 
B. basic of vibration
B. basic of vibrationB. basic of vibration
B. basic of vibrationDương Phúc
 
Voltage control of Induction Motor
Voltage control of Induction MotorVoltage control of Induction Motor
Voltage control of Induction MotorCitharthan Durairaj
 
2015 HAP PRODUCT LINE BROCHURE
2015 HAP PRODUCT LINE BROCHURE2015 HAP PRODUCT LINE BROCHURE
2015 HAP PRODUCT LINE BROCHUREtaufiq rahardjo
 
Iai rcp2 w_grls_specsheet
Iai rcp2 w_grls_specsheetIai rcp2 w_grls_specsheet
Iai rcp2 w_grls_specsheetElectromate
 
Voltage Source Inverter VSI - Pulse Width Modulation (PWM)
Voltage Source Inverter VSI - Pulse Width Modulation (PWM)Voltage Source Inverter VSI - Pulse Width Modulation (PWM)
Voltage Source Inverter VSI - Pulse Width Modulation (PWM)Citharthan Durairaj
 
Dtafile2011923105530890
Dtafile2011923105530890Dtafile2011923105530890
Dtafile2011923105530890maianhbao_6519
 
Introduction to Vibration Qualification Testing
Introduction to Vibration Qualification TestingIntroduction to Vibration Qualification Testing
Introduction to Vibration Qualification TestingASQ Reliability Division
 
Case history : Vibration monitoring identifies steam turbine seal rub
Case history : Vibration monitoring identifies steam turbine seal rubCase history : Vibration monitoring identifies steam turbine seal rub
Case history : Vibration monitoring identifies steam turbine seal rubGE Measurement & Control
 
42 MW vibration. You can download and practice by enter at any "letter blocks...
42 MW vibration. You can download and practice by enter at any "letter blocks...42 MW vibration. You can download and practice by enter at any "letter blocks...
42 MW vibration. You can download and practice by enter at any "letter blocks...Manorom Chiewpanich
 
Iai rcp2 grls_specsheet
Iai rcp2 grls_specsheetIai rcp2 grls_specsheet
Iai rcp2 grls_specsheetElectromate
 

What's hot (20)

Top 3 Causes of Aircraft Vibration
Top 3 Causes of Aircraft VibrationTop 3 Causes of Aircraft Vibration
Top 3 Causes of Aircraft Vibration
 
Presentation on condition monitoring iut
Presentation on condition monitoring iutPresentation on condition monitoring iut
Presentation on condition monitoring iut
 
Dbl2000
Dbl2000Dbl2000
Dbl2000
 
DC Motor Simulation using PSpice
DC Motor Simulation using PSpiceDC Motor Simulation using PSpice
DC Motor Simulation using PSpice
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料
 
Thông số kĩ thuật siemens MCCB 3VL
Thông số kĩ thuật siemens MCCB 3VLThông số kĩ thuật siemens MCCB 3VL
Thông số kĩ thuật siemens MCCB 3VL
 
B. basic of vibration
B. basic of vibrationB. basic of vibration
B. basic of vibration
 
Kikusui fuel cell_meter_kfm2150_print
Kikusui fuel cell_meter_kfm2150_printKikusui fuel cell_meter_kfm2150_print
Kikusui fuel cell_meter_kfm2150_print
 
Voltage control of Induction Motor
Voltage control of Induction MotorVoltage control of Induction Motor
Voltage control of Induction Motor
 
Oraye
OrayeOraye
Oraye
 
Oraye
OrayeOraye
Oraye
 
2015 HAP PRODUCT LINE BROCHURE
2015 HAP PRODUCT LINE BROCHURE2015 HAP PRODUCT LINE BROCHURE
2015 HAP PRODUCT LINE BROCHURE
 
Iai rcp2 w_grls_specsheet
Iai rcp2 w_grls_specsheetIai rcp2 w_grls_specsheet
Iai rcp2 w_grls_specsheet
 
Voltage Source Inverter VSI - Pulse Width Modulation (PWM)
Voltage Source Inverter VSI - Pulse Width Modulation (PWM)Voltage Source Inverter VSI - Pulse Width Modulation (PWM)
Voltage Source Inverter VSI - Pulse Width Modulation (PWM)
 
Dtafile2011923105530890
Dtafile2011923105530890Dtafile2011923105530890
Dtafile2011923105530890
 
Introduction to Vibration Qualification Testing
Introduction to Vibration Qualification TestingIntroduction to Vibration Qualification Testing
Introduction to Vibration Qualification Testing
 
Case history : Vibration monitoring identifies steam turbine seal rub
Case history : Vibration monitoring identifies steam turbine seal rubCase history : Vibration monitoring identifies steam turbine seal rub
Case history : Vibration monitoring identifies steam turbine seal rub
 
Thông số kĩ thuật schneider surge arrester
Thông số kĩ thuật schneider surge arresterThông số kĩ thuật schneider surge arrester
Thông số kĩ thuật schneider surge arrester
 
42 MW vibration. You can download and practice by enter at any "letter blocks...
42 MW vibration. You can download and practice by enter at any "letter blocks...42 MW vibration. You can download and practice by enter at any "letter blocks...
42 MW vibration. You can download and practice by enter at any "letter blocks...
 
Iai rcp2 grls_specsheet
Iai rcp2 grls_specsheetIai rcp2 grls_specsheet
Iai rcp2 grls_specsheet
 

Similar to Vibrational Stand - EN

Diganosis of pulley belt system faults using vibrations analysis
Diganosis of pulley belt system faults using vibrations analysisDiganosis of pulley belt system faults using vibrations analysis
Diganosis of pulley belt system faults using vibrations analysiskhalid muhsin
 
Eet3082 binod kumar sahu lecture_26
Eet3082 binod kumar sahu lecture_26Eet3082 binod kumar sahu lecture_26
Eet3082 binod kumar sahu lecture_26BinodKumarSahu5
 
Optimal turn on and turn-off angles for torque ripple minimization of switche...
Optimal turn on and turn-off angles for torque ripple minimization of switche...Optimal turn on and turn-off angles for torque ripple minimization of switche...
Optimal turn on and turn-off angles for torque ripple minimization of switche...eSAT Journals
 
Harmonic rh dc_servo_specsheet
Harmonic rh dc_servo_specsheetHarmonic rh dc_servo_specsheet
Harmonic rh dc_servo_specsheetElectromate
 
Induction Machine electrical and electronics
Induction Machine electrical and electronicsInduction Machine electrical and electronics
Induction Machine electrical and electronicsprakashpacet
 
Induction Machines electrical machines electrical and electronics
Induction Machines electrical machines electrical and electronicsInduction Machines electrical machines electrical and electronics
Induction Machines electrical machines electrical and electronicsprakashpacet
 
Design Calculation of Three Phase Self Excited Induction Generator Driven by ...
Design Calculation of Three Phase Self Excited Induction Generator Driven by ...Design Calculation of Three Phase Self Excited Induction Generator Driven by ...
Design Calculation of Three Phase Self Excited Induction Generator Driven by ...ijtsrd
 
160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...
160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...
160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...Serena Fu
 
Analysis and Electricity production by Ocean Current Turbine
Analysis and Electricity production by Ocean Current TurbineAnalysis and Electricity production by Ocean Current Turbine
Analysis and Electricity production by Ocean Current TurbineVishwendra Srivastav
 
Mod mag m3000 datasheet badger meter electromagnetic flow meter_m-series
 Mod mag m3000 datasheet badger meter electromagnetic flow meter_m-series Mod mag m3000 datasheet badger meter electromagnetic flow meter_m-series
Mod mag m3000 datasheet badger meter electromagnetic flow meter_m-seriesENVIMART
 
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...IAES-IJPEDS
 
Valve_Spring_Fault_Detection_Final_1.pdf
Valve_Spring_Fault_Detection_Final_1.pdfValve_Spring_Fault_Detection_Final_1.pdf
Valve_Spring_Fault_Detection_Final_1.pdfandreikeino1
 
Обзорный каталог Brinkmann Pumps -2017
Обзорный каталог Brinkmann Pumps -2017Обзорный каталог Brinkmann Pumps -2017
Обзорный каталог Brinkmann Pumps -2017Arve
 
Faulhaber 2342l012cr Datasheet
Faulhaber 2342l012cr DatasheetFaulhaber 2342l012cr Datasheet
Faulhaber 2342l012cr DatasheetHugito Connor
 
Kollmorgen nema 23 t specsheet
Kollmorgen  nema 23 t  specsheetKollmorgen  nema 23 t  specsheet
Kollmorgen nema 23 t specsheetElectromate
 

Similar to Vibrational Stand - EN (20)

ME461 Final Presentation
ME461 Final PresentationME461 Final Presentation
ME461 Final Presentation
 
A.C Drives
A.C DrivesA.C Drives
A.C Drives
 
Diganosis of pulley belt system faults using vibrations analysis
Diganosis of pulley belt system faults using vibrations analysisDiganosis of pulley belt system faults using vibrations analysis
Diganosis of pulley belt system faults using vibrations analysis
 
Eet3082 binod kumar sahu lecture_26
Eet3082 binod kumar sahu lecture_26Eet3082 binod kumar sahu lecture_26
Eet3082 binod kumar sahu lecture_26
 
Optimal turn on and turn-off angles for torque ripple minimization of switche...
Optimal turn on and turn-off angles for torque ripple minimization of switche...Optimal turn on and turn-off angles for torque ripple minimization of switche...
Optimal turn on and turn-off angles for torque ripple minimization of switche...
 
Harmonic rh dc_servo_specsheet
Harmonic rh dc_servo_specsheetHarmonic rh dc_servo_specsheet
Harmonic rh dc_servo_specsheet
 
Induction Machine electrical and electronics
Induction Machine electrical and electronicsInduction Machine electrical and electronics
Induction Machine electrical and electronics
 
Induction Machines electrical machines electrical and electronics
Induction Machines electrical machines electrical and electronicsInduction Machines electrical machines electrical and electronics
Induction Machines electrical machines electrical and electronics
 
Design Calculation of Three Phase Self Excited Induction Generator Driven by ...
Design Calculation of Three Phase Self Excited Induction Generator Driven by ...Design Calculation of Three Phase Self Excited Induction Generator Driven by ...
Design Calculation of Three Phase Self Excited Induction Generator Driven by ...
 
ZIPP Wireless torque transducer operation manual
ZIPP Wireless torque transducer operation manualZIPP Wireless torque transducer operation manual
ZIPP Wireless torque transducer operation manual
 
160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...
160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...
160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...
 
Analysis and Electricity production by Ocean Current Turbine
Analysis and Electricity production by Ocean Current TurbineAnalysis and Electricity production by Ocean Current Turbine
Analysis and Electricity production by Ocean Current Turbine
 
Mod mag m3000 datasheet badger meter electromagnetic flow meter_m-series
 Mod mag m3000 datasheet badger meter electromagnetic flow meter_m-series Mod mag m3000 datasheet badger meter electromagnetic flow meter_m-series
Mod mag m3000 datasheet badger meter electromagnetic flow meter_m-series
 
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
 
Valve_Spring_Fault_Detection_Final_1.pdf
Valve_Spring_Fault_Detection_Final_1.pdfValve_Spring_Fault_Detection_Final_1.pdf
Valve_Spring_Fault_Detection_Final_1.pdf
 
Обзорный каталог Brinkmann Pumps -2017
Обзорный каталог Brinkmann Pumps -2017Обзорный каталог Brinkmann Pumps -2017
Обзорный каталог Brinkmann Pumps -2017
 
Drives
DrivesDrives
Drives
 
Faulhaber 2342l012cr Datasheet
Faulhaber 2342l012cr DatasheetFaulhaber 2342l012cr Datasheet
Faulhaber 2342l012cr Datasheet
 
David Clark: 2013 Sandia National Laboratoies Wind Plant Reliability Workshop
David Clark: 2013 Sandia National Laboratoies Wind Plant Reliability WorkshopDavid Clark: 2013 Sandia National Laboratoies Wind Plant Reliability Workshop
David Clark: 2013 Sandia National Laboratoies Wind Plant Reliability Workshop
 
Kollmorgen nema 23 t specsheet
Kollmorgen  nema 23 t  specsheetKollmorgen  nema 23 t  specsheet
Kollmorgen nema 23 t specsheet
 

Vibrational Stand - EN

  • 1. ANALIYSIS AND SYNTHESIS OF AN ELECTROHYDRAULIC CLOSED LOOP CONTROL SYSTEM FOR THE VIBRATIONAL TESTING MACHINE TECHNICAL UNIVERSITY OF SOFIA Department: Hydro-aero-dynamics and hydraulic machines Prof. dr. Ilcho Angelov Dipl. eng. Nikola Stanchev Dipl. eng. Cvetozar Ivanov
  • 2. INTRODUCTION The article presents research and development of electro-hydraulic closed loop system for vibration test unit for the needs of the Faculty of Industrial Technology (FIT) at the Technical University of Sofia. The synthesis of the hydraulic system is accomplished in accordance with pre-set technical requirements as follows: - spatial direction of testing, 2 axes : horizontal and vertical; - driven mass of the test object and design of the platform: m = 1500 kg; - acceleration of the test object: a ≤ 30 m/s2; - frequency range with acceleration a = 30 m/s2: f0 = 1 ÷ 30 Hz; - maximum amplitude for both directions : X ≥ 3 mm; - drive power: ≤ 30 kW;
  • 3. OVERVIEW – HYDRAULIC TEST BENCHES  Simulation of road conditions
  • 4.  Realistic real-time simulation  6 DOF (Degree Of Freedom)  Big drive forces, up to 60 kN  Big velocities, up to1,7 m/s  Big accelerations, up to100 m/s2  Very big frequencies with big drive forces, up to 100 Hz  Big stiffness of the drive with big frequencies, independent from the driven load ADVANTAGES OF ELECTROHYDRAULIC TEST BENCHES
  • 5. HYDRAULIC DRAFT OF THE ELECTROHYDRAULIC SYSTEM
  • 6. HYDRAULIC DRAFT OF THE ELECTROHYDRAULIC SYSTEM
  • 7. HYDRAULIC DRAFT OF THE ELECTROHYDRAULIC SYSTEM
  • 8. CALCULATION OF THE BASIC WORK PARAMETERS  Drive force of the cylinder…………….…………………………………………….  Active area of the cylinder…..……………………………………………………..  Work pressure of the cylinder………………………………..…………………….  Velocity of the cylinder.…………………………………………………………….  Acceleration of the cylinder…………………….…………………………………  Maximum velocity of the cylinder………………………………………………..  Maximum acceleration of the cylinder………………………………………….  Maximum flow of the pump……...………………………………………………... c c F p .A   2 2 c P A A D d 4    c W Е ХСК p p p       v t x t .  a x t && v 2 fA  2 2 a 4 f A  q vA
  • 9. CALCULATION AND SIMULATION OF THE WORK PARAMETERS
  • 10. CALCULATION AND SIMULATION OF THE WORK PARAMETERS
  • 11.  In sinusoidal input impact in the frequency range from 1 to 12 Hz desired acceleration of 3g can not be reached! fi, Hz a, m/s2 х, mm q, l/min v, m/s P, kW 1 2 60 58 0,38 26 2 5 30 58 0,38 26 3 7 20 58 0,38 26 4 9 15 58 0,38 26 5 12 12 58 0,38 26 6 14 10 58 0,38 26 7 16 8,5 58 0,37 26 8 19 7,5 58 0,38 26 9 21 6,7 58 0,38 26 10 24 6 58 0,38 26 11 26 5,4 58 0,37 26 12 28 5 58 0,38 26 13 30 4,5 57 0,37 25 14 30 3,9 53 0,34 23 15 30 3,4 49 0,32 21 16 30 3 47 0,3 19 17 30 2,6 43 0,28 17 18 30 2,35 41 0,27 16 19 30 2,1 39 0,25 18 20 30 1,9 37 0,24 17 21 30 1,7 35 0,22 15 22 30 1,55 33 0,21 14 23 30 1,45 32 0,21 14 24 30 1,3 30 0,2 13 25 30 1,2 29 0,19 12 26 30 1,14 29 0,19 12 27 30 1,05 27 0,18 11 28 30 0,97 26 0,17 11 29 30 0,9 25 0,16 10 30 30 0,85 25 0,16 10 PHYSICAL PARAMETERS OF THE HORIZONTAL CYLINDER 3g
  • 12.  Frequency 13 Hz and amplitude 4,5 mm DYNAMIC BEHAVIOR OF THE HORIZONTAL CYLINDER t, s0 S, mm 0,077 (13 Hz) 4,54,5 3g 3g
  • 13. 0 S, mm 0,033 (30 Hz) 0,850,85 t, s 3g 3g 3g 3g 3g  Frequency 30 Hz and amplitude 0,85 mm 3g ► 1 ÷ 12 Hz DYNAMIC BEHAVIOR OF THE HORIZONTAL CYLINDER
  • 14. DYNAMIC BEHAVIOR OF THE HORIZONTAL CYLINDER  Frequency 12 Hz and amplitude 2,1 mm t, s0 S, mm 2,12,1 0,0833 (12 Hz) 3g 0,012 tПР 2 a.t A 2  2 2А а t 
  • 15.  Calculated physical parameters for horizontal cylinder in intermittent treatment with transition process in the range 0,005 – 0,013 s and restriction of the maximum flow that the servo valve can give (qmax = 60 l/min), a, m/s2 tПР, s х, m v, m/s q, m3/s q, l/min fi,max Hz 30 0,005 0,00038 0,15 0,00038 23 50 30 0,006 0,00054 0,18 0,00046 27,6 41,6 30 0,007 0,00074 0,21 0,00054 32,2 35,7 30 0,008 0,00096 0,24 0,00061 37 31,2 30 0,009 0,00122 0,27 0,00069 41,5 27,7 30 0,01 0,0015 0,3 0,00077 46 25 30 0,011 0,00182 0,33 0,00084 50,7 22,7 30 0,012 0,00216 0,36 0,00092 55,3 20,8 30 0,013 0,00254 0,39 0,001 59,9 19,2 PHYSICAL PARAMETERS OF THE HORIZONTAL CYLINDER
  • 16. Horizontal servocylinder Vertical servocylinders RESULTS- 3D MODEL OF THE TEST BENCH  The design was tested with simulation at operating frequencies above 50 Hz, there is no danger of resonance (3D CAD SolidWorks)
  • 17. TU – SOFIA, Department: HAD and HM THANK YOU FOR THE ATTENTION!