SlideShare a Scribd company logo
1 of 33
Performance Analysis Of OCT
Blade Using CFD(Ansys Fluent)
Name-Vishwendra
Corse-M.tech
Branch-NA & OE
Year/Sem-2nd/IVrth
Roll no-1504202008
Batch-2015-2017
Guide Information
Internal guide: External Guide(Co-Guide):
Name- Dr. K.V.K.R.K Patnaik Name- Mr. Prasad Dudhgaonkar
Designation- Faculty Designation-Scientist-D
Organization- Indian Maritime University Organization- NIOT
Campus- Visakhapatnam Department- Energy and Fresh Water
Place-Visakhapatnam Place- Chennai
Mail id- patnaikrk@gmail.com Mail id- prasad@niot.res.in
NIOT- National Institute Of Ocean Technology it’s a body working under Ministry of
Earth Sciences (MOES) and handles the ocean related projects of central
government.
Introduction
• Hydrokinetic turbine is used as wave energy device to take out energy
from wave exterior movement or else from force under surface and then
transform it to mechanical energy to produce electrical energy.
• Instream power generation technology is the ability to produce energy
without the need for dams, diversions, or reservoirs.
• Ocean currents are driven by solar heating and wind in the waters near
the equator, also by tides, salinity and density of the water. Current energy
can be cal using formula
Types Of TCT
Axial Flow Cross Flow
Horizontal Axis TCT Vertical Axis TCT
a. Darrieus Turbine
a. Submerged generator b. Gorlov turbine
Characteristics Affecting Blade Performance
• Blade profile: In terms of lift generated, symmetric airfoils (such as
NACA 0015 or NACA 0018) generate higher torque than asymmetric
airfoils when the angle of attack is negative.
• Solidity Ratio:
• Chord/Radius Ratio:
• Number Of Blades: The number of blades is directly proportional to
solidity. For any turbine, as the number of blades increases, the chord
length of a blade must be decreased to maintain a desired solidity ratio.
• Aspect Ratio: Aspect ratio (AR) refers to the ratio of turbine height to
diameter. And aspect ratio has also been defined for a Darrieus turbine as
ratio of blade length to chord length
Solidity Ratio
• Solidity ratio refers to the amount of turbine swept area that is solid material
versus that which is void space.
• A high solidity device (e.g., σ>0.3) will more easily self-start but will operate at a
lower tip speed ratio, whereas a low solidity device (e.g., σ< 0.15) may be more
difficult to self-start but operates at a higher tip speed ratio.
• As solidity decreases, the turbine peak efficiency moves to a higher tip speed
ratio.
• The lower solidity turbine also presents less of an obstruction to the free stream
flow, allowing for less momentum loss and higher stream-wise velocity at the
turbine, which allows it to operate at a higher tip speed ratio.
• The turbine generates smaller hydrodynamic lift forces and thus generates less
torque at lower speeds.
• Darrieus turbine, the best solidity for obtaining maximum power was 0.2-0.3. For
a helical turbine, the optimum solidity ratio is 0.3-0.4.
• Expression for solidity ratio is
Where ,
B=Number of blade
C= Chord length
D= Diameter of turbine
Topic Explanation
Objective- To carry out CFD analysis on ANSYS Fluent of different solidity ratio
with blade profiles. Optimum one is to be selected and further energy
generated by the turbine generator is to be calculated for a remote location.
Different Parameter Affecting Analysis:
Solidity Ratio:
Input Power: = ρ (1/2)
RPM(Rotation Per Minute): N=(T SR ∗ V ∗ 60)/ (D ∗ π)
Where, TSR is tip speed ratio it is the ratio between the tangential speed of
the tip of a blade and the actual speed of the water, v The tip-speed ratio is
related to efficiency, with the optimum varying with blade design
Angular velocity: w=(2* π *N)/60
Hydro kinetic torque(T): Obtained from the CFD analysis
Output power: Pout= T*w
Coefficient Of Power: =
It shows the part of the power the turbine extracts
Pin
NACA Profiles Used in Project
NACA 0018: It has the 18% width to thickness ratio and is having symmetricity which
balances the forces during rotation as it changes after 180 deg rotation. And it give
0 lift at 0 deg angle of attack.
NACA 0015: It has the 15% width to thickness ratio and is having symmetricity which
balances the forces during rotation as it changes after 180 deg rotation.
 Both the blade profile are lift based.
 0% camber at 0th position of the chord length.
 Both the profiles are used for Vertical Axis Wind/Ocean Turbine.
Geometry
From top left
1. Modified Geometry
2. Working Domain
3. Original Geometry
Domain
Meshing
Meshing of:
1. Top-Domain
2. Bottom left-Rotor
3. Bottom right- Blade
Analysis Results
The Results shown are of NACA 0015 & NACA 0018 for:
Solidity Ratio- 0.2
Chord length- 376.99mm
Flow-1.2m/s and 1.8m/s
RPM- Based on the TSR
TSR range for 1.2m/s and for 1.8m/s
1.0 to 3.0
• TSR range is used for predicting different RPM for
different analysis which act as loading conditions for
analysing the turbine(at most 8 values)
-100
0
100
200
300
400
500
600
0 50 100 150 200 250 300 350 400
HydrokineticTorque,N-m
Angle,degree
Hydrokinetic Torque vs Angle
22.28 RPM
25.46 RPM
28.64 RPM
31.83 RPM
19.09 RPM
NACA 0015
For Flow 1.2 m/s
Torque ripple for NACA 0015 with 1.2 m/s flow, chord 0.376m and Ø 1.8 x 5m
turbine
0
500
1000
1500
2000
2500
3000
3500
0 5 10 15 20 25 30 35
Power,Watt
Speed, RPM
Power vs Speed
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0 0.5 1 1.5 2 2.5 3
Cp
TSR
Cp vs TSR
Performance of NACA 0015 with 1.2 m/s flow, chord 0.376m and Ø 1.8 x 5 m turbine
TSR RPM Avg Torque/m (N-m) Total Torque(N-m) Power(Watt) Cp
1.5 19.09 221.814 1109.073 2107.238 0.26
1.75 22.28 226.799 1133.996 2608.181 0.32
2 25.46 226.178 1130.893 2940.322 0.36
2.25 28.64 186.727 933.638 2707.551 0.33
2.5 31.83 136.901 684.505 2258.87 0.28
Summary of Ø 1.8 x 5 m turbine with SR 0.2 of NACA 0015 at 1.2 m/s water
velocity
NACA 0015
For Flow 1.8 m/s
-200
0
200
400
600
800
1000
1200
1400
0 50 100 150 200 250 300 350 400
Hydrokinetictorque,N-m
Angle, degree
Hydrokinetic Torque vs Angle
28.64 RPM
33.42 RPM
38.19 RPM
47.74 RPM
42.97 RPM
Torque ripple for NACA 0015 with 1.8 m/s flow, chord 0.376m and Ø 1.8 x 5m turbine
0
500
1000
1500
2000
2500
3000
3500
0 5 10 15 20 25 30 35
Power,Watt
Speed, RPM
Power vs Speed
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0 0.5 1 1.5 2 2.5 3
Cp
TSR
Cp vs TSR
Performance of NACA 0015 with 1.8 m/s flow, chord 0.376m and Ø 1.8 x 5 m turbine
TSR RPM Avg Torque/m (N-m) Total Torque(N-m) Power(Watt) Cp
1.5 28.64 522.8895 2614.447 7843.342 0.29
1.75 33.42 531.3751 2656.875 9299.064 0.34
2 38.19 529.4892 2647.446 10589.78 0.39
2.25 42.97 433.0784 2165.392 9744.265 0.36
2.5 47.74 331.3635 1656.818 8284.088 0.3
Summary of Ø 1.8 x 5 m turbine with SR 0.2 of NACA 0015 at 1.8 m/s water velocity
NACA 0018
For Flow 1.2 m/s
-100
0
100
200
300
400
500
600
700
0 50 100 150 200 250 300 350 400
HydrokineticTorque
Angle(degree)
Hydro kinetic Torque vs Angle
15.91 RPM
19.09 RPM
22.28 RPM
25.46 RPM
28.64 RPM
31.83 RPM
Torque ripple for NACA 0018 with 1.2 m/s flow, chord 0.376m and Ø 1.8 x 5 m turbine
0
500
1000
1500
2000
2500
3000
3500
4000
0 5 10 15 20 25 30 35
Power
RPM
Power vs Speed
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0 0.5 1 1.5 2 2.5 3
Cp
TSR
Cp vs TSR
Performance of NACA 0018 with 1.2 m/s flow, chord 0.376m and Ø 1.8 x 5 m turbine
TSR RPM Avg Torque/m (N-m) Total Torque(N-m) Power(Watt) Cp
1.25 15.91 270.352 1351.76 2250 0.28
1.5 19.09 297.22 1486.142 2972.285 0.37
1.75 22.28 294.66 1470.322 3472.32 0.43
2 25.46 244.96 1224.803 3262.875 0.4
2.25 28.64 188.71 943.57 2830.717 0.35
2.5 31.83 122.46 612.318 2039.632 0.25
Summary of Ø 1.8 x 5 m turbine with SR 0.2 of NACA 0018 at 1.2 m/s water velocity
NACA 0018
For Flow 1.8 m/s
-200
0
200
400
600
800
1000
1200
1400
1600
0 50 100 150 200 250 300 350 400
HydroKineticTorque,N-m
Angle,degre
Hydro Kinetic Torque vs Angle
23.8 RPM
28.64 RPM
33.4 RPM
38.1 RPM
42.9 RPM
47.7 RPM
Torque ripple for NACA 0018 with 1.8 m/s flow, chord 0.376m and Ø 1.8 x 5m turbine
0
2000
4000
6000
8000
10000
12000
14000
0 10 20 30 40 50 60
Power,Watt
Speed,RPM
Power vs Speed
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0 0.5 1 1.5 2 2.5 3
Cp
TSR
Cp vs TSR
Performance of NACA 0018 with 1.8 m/s flow, chord 0.376m and Ø 1.8 x 5 m turbine
TSR RPM Avg Torque/m (N-m) Total Torque(N-m) Power(Watt) Cp
1.25 23.8 665.156 3325.78 8284.51 0.3
1.5 28.64 707.877 3539.38 10607.54 0.4
1.75 33.42 689.529 3447.64 11722 0.43
2 38.1 571.663 2858.31 11147.43 0.4
2.25 42.9 446.25 2231.27 9817.62 0.36
2.5 47.7 326.246 1631.23 7893.04 0.25
Summary of Ø 1.8 x 5 m turbine with SR 0.2 of NACA 0018 at 1.8 m/s water velocity
Contour Results of the selected profile
Pressure contour and velocity vector for
Ø1.8 m × 5 m turbine with 0.20 solidity
ratio at 0°, 120°&240° for NACA 0018
and flow 1.2m/s
NACA 0018
Pressure contour and velocity vector for
Ø1.8 m × 5 m turbine with 0.20 solidity
ratio at 0°, 120°&240° for NACA 0018 and
flow 1.8m/s
NACA 0018
Pressure contour and velocity vector for
Ø1.8 m × 5 m turbine with 0.20 solidity
ratio at 0°, 120°&240° for NACA 0015
and flow 1.2 m/s
NACA 0015
Pressure contour and velocity vector for
Ø1.8 m × 5 m turbine with 0.2 solidity
ratio at 0°, 120°&240° for NACA 0015
and flow 1.8m/s
NACA 0015
Profile SR CL(m) Flow(m/s) Max Torque(N-m) Min Torque(N-m) Avg Torque(N-m) R.F
NACA 0018 0.15 0.282 1.2 483.88 42.73 262.87 1.68
NACA 0018 0.2 0.376 1.2 537 54.88 294.66 1.64
NACA 0018 0.15 0.282 1.8 1053 135.01 585 1.57
NACA 0018 0.2 0.376 1.8 1226.71 146.39 689.52 1.55
NACA 0015 0.15 0.282 1.2 358.26 3.45 188.06 1.89
NACA 0015 0.2 0.376 1.2 439.22 10.36 226.17 1.9
NACA 0015 0.15 0.282 1.8 823 20.23 437.72 1.83
NACA 0015 0.2 0.376 1.8 1004.71 37 529.48 1.83
Ripple Factor Calculation
Calculation of ripple factor for turbine Ø 1.8 x 5 m with SR 0.2 & 0.15
of NACA 0015 and NACA 0018for flow 1.2 m/s & 1.8 m/s
0
2000
4000
6000
8000
10000
12000
14000
0 10 20 30 40 50 60 70
Power,Watt
Turbine Speed,RPM
Power vs Turbine Speed
NACA 0018(SR 0.15,CL-0.282m) 1.2m/s
NACA0018(SR 0.2,CL 0.376m) 1.2m/s
NACA 0018(SR 0.15,CL 0.282m) 1.8m/s
NACA 0018(SR 0.2,CL 0.376m) 1.8m/s
NACA 0015(SR 0.15,CL 0.282m) 1.2m/s
NACA 0015(SR 0.2,CL 0.376m) 1.2m/s
NACA 0015(SR 0.15,CL 0.282m) 1.8m/s
NACA 0015(SR 0.2,CL 0.376m) 1.8m/s
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0 0.5 1 1.5 2 2.5 3 3.5
Cp
TSR
Cp vs TSR
SR 0.15 naca 0015(1.2)
SR 0.2 naca 0015(1.2)
SR 0.15 naca 0018(1.2)
SR 0.2 naca 0018(1.2)
SR 0.15 naca 0018(1.8)
SR 0.2 naca 0018(1.8)
SR 0.15 naca 0015(1.8)
SR 0.2 naca 0015(1.8)
Performance prediction of Ø1.8 m × 5 m
turbine of NACA 0015 & NACA 0018 blade
profiles with solidity ratios 0.15 and 0.2 for
1.2 m/s & 1.8 m/s water velocity
0
2000
4000
6000
8000
10000
12000
14000
0 10 20 30 40 50 60
Power,Watt
Turbine Speed, RPM
Power vs Turbine Speed
NACA 0018 SR 0.15(CL-
0.282m)1.8m/s
NACA 0018 SR 0.2(CL 0.376
m)1.8m/s
NACA 0018 SR0.15(CL-
0.282m)1.2m/s
NACA 0018 SR 0.2(CL-
0.376m)1.2m/s
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0 0.5 1 1.5 2 2.5 3
Cp
TSR
Cp vs TSR
NACA 0018 SR 0.15(CL
0.282m)1.8m/s
NACA 0018 SR 0.2(CL
0.376m)1.8m/s
NACA 0018 SR0.15(CL-
0.282m)1.2m/s
NACA 0018 SR 0.2(CL-0.376)1.2m/s
Predicted coefficient of performance of Ø1.8
m × 5 m turbine for NACA 0018 profile with
0.20 and 0.15 solidity ratio for1.8 m/s water
velocity
Energy Calculation
Current Velocity
(Height/Total tidal
height)^(1/7)*(Peak current
velocity)
The calculation or the assessment of the annual energy generation is done on the basis of the
peak surface current and spring tidal data for about month.
Given data for calculation:
Cut in speed-0.5 m/s
Transmission efficiency- 0.75
Generator efficiency- 0.93
Peak Current velocity- 1.8m/s
For energy-
Transmission Efficiency = Power received from transmission/ Power Transmitted
Generator Efficiency = Generator power output/ Transmitted Power
Energy = Power*Time
For calculation of current velocity at different
height of tide along the month –
Note: In energy calculation correction factor of 0.75 is included to consider
bearing friction loss, mechanical seal loss, adverse velocity profile, axial flow
loss at ends, presence of shaft, uncertainties in flow direction etc This factor
is used for calculating the shaft power by multiplying it with turbine output
power and then to calculate the generator output power after multiplying it
with transmission power
Output Power, W
Shaft Power, W
Transmission Power, W
Generator Power, W
Cp*Input power by current speed
0.75*Output power given by turbine
0.93*Shaft power
0.75*Transmission power
-1.5
-1
-0.5
0
0.5
1
1.5
42830 42835 42840 42845 42850 42855 42860 42865 42870
TideHeight,meter
Time, dd/mm/yy hh:mm
Tide Height vs Time
Tidal data for month
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
05/04/2017 00:0010/04/2017 00:0015/04/2017 00:0020/04/2017 00:0025/04/2017 00:0030/04/2017 00:0005/05/2017 00:0010/05/2017 00:0015/05/2017 00:00
Currentspeed,m/s
Time,dd/mm/yyyy
Current Speed vs Time in day
Tide height data of each day along Port Blair coastline
(10/4/2017 to 11/5/2017)
Tidal speed at each day at Port Blair
(10/4/2017 to 11/5/2017)
-6000
-4000
-2000
0
2000
4000
6000
05/04/2017 00:0010/04/2017 00:0015/04/2017 00:0020/04/2017 00:0025/04/2017 00:0030/04/2017 00:0005/05/2017 00:0010/05/2017 00:0015/05/2017 00:00
Outputpower,Watt
Time,dd/mm/yyyy
Generator Output power vs Time in day
-3
-2
-1
0
1
2
3
05/04/2017 00:0010/04/2017 00:0015/04/2017 00:0020/04/2017 00:0025/04/2017 00:0030/04/2017 00:0005/05/2017 00:0010/05/2017 00:0015/05/2017 00:00
Energygeneration,kWh
Time,dd/mm/yyyy
Energy Generation vs Time in day
Predicted generator power output of
Ø 1.8 x 5 m turbine
Predicted Energy generation of Ø 1.8 x 5 m
turbine generator
Total energy generation in kWh/month 966.34
Total energy generation in MWh/month 0.966
Total energy generation in MWh/year 11.59
Energy Charges in Rs/unit in kWh 25
Energy Charges in Rs/unit in MWh 25000
Price To be paid For Energy Consumption in year 289750
Maintenance cost in a yr in Rs 10% Price of price of Energy Consumption 28975
Money saved in Rs 260775
Summary Of Energy Generation Calculation
THANKYOU

More Related Content

What's hot

rope brake dynamometer
rope brake dynamometerrope brake dynamometer
rope brake dynamometerjaimin kemkar
 
Solved Examples for Three - Phase Induction Motors
Solved  Examples for Three - Phase Induction MotorsSolved  Examples for Three - Phase Induction Motors
Solved Examples for Three - Phase Induction MotorsAli Altahir
 
Torque - Slip Characteristic of a three phase induction motor
Torque - Slip Characteristic of a three   phase induction motorTorque - Slip Characteristic of a three   phase induction motor
Torque - Slip Characteristic of a three phase induction motorAli Altahir
 
brakes and dynamometer
brakes and dynamometerbrakes and dynamometer
brakes and dynamometerGulfaraz alam
 
Torque Measurement Primer
Torque Measurement PrimerTorque Measurement Primer
Torque Measurement PrimerInterface
 
Rope brake dynamometer
Rope brake dynamometerRope brake dynamometer
Rope brake dynamometerpurvansh_v
 
Torque and Power Measurement; A Brief Overview
Torque and Power Measurement; A Brief OverviewTorque and Power Measurement; A Brief Overview
Torque and Power Measurement; A Brief OverviewBrian E. Carr
 
Unit 1 Introduction and Force Analysis
Unit 1 Introduction and Force AnalysisUnit 1 Introduction and Force Analysis
Unit 1 Introduction and Force AnalysisParrthipan B K
 
Electrical motor efficiency
Electrical motor efficiencyElectrical motor efficiency
Electrical motor efficiencysahiloct11969
 
Optical torsion meter
Optical torsion meterOptical torsion meter
Optical torsion meterDominicHendry
 
Design of transmission elements
Design of transmission elementsDesign of transmission elements
Design of transmission elementsshone john
 
Brakes and dynamometer knw
Brakes and dynamometer knwBrakes and dynamometer knw
Brakes and dynamometer knwKiran Wakchaure
 
Belt drives and chain drives
Belt drives and chain drivesBelt drives and chain drives
Belt drives and chain drivesdodi mulya
 
Brakes and dynamometers
Brakes and dynamometersBrakes and dynamometers
Brakes and dynamometersbinil babu
 

What's hot (20)

Measurement of torque
Measurement of torqueMeasurement of torque
Measurement of torque
 
rope brake dynamometer
rope brake dynamometerrope brake dynamometer
rope brake dynamometer
 
Solved Examples for Three - Phase Induction Motors
Solved  Examples for Three - Phase Induction MotorsSolved  Examples for Three - Phase Induction Motors
Solved Examples for Three - Phase Induction Motors
 
Torque - Slip Characteristic of a three phase induction motor
Torque - Slip Characteristic of a three   phase induction motorTorque - Slip Characteristic of a three   phase induction motor
Torque - Slip Characteristic of a three phase induction motor
 
brakes and dynamometer
brakes and dynamometerbrakes and dynamometer
brakes and dynamometer
 
Flywheel
FlywheelFlywheel
Flywheel
 
Torque Measurement Primer
Torque Measurement PrimerTorque Measurement Primer
Torque Measurement Primer
 
Rope brake dynamometer
Rope brake dynamometerRope brake dynamometer
Rope brake dynamometer
 
Torque and Power Measurement; A Brief Overview
Torque and Power Measurement; A Brief OverviewTorque and Power Measurement; A Brief Overview
Torque and Power Measurement; A Brief Overview
 
Turning moment diagrams
Turning moment diagramsTurning moment diagrams
Turning moment diagrams
 
Unit 1 Introduction and Force Analysis
Unit 1 Introduction and Force AnalysisUnit 1 Introduction and Force Analysis
Unit 1 Introduction and Force Analysis
 
Electrical motor efficiency
Electrical motor efficiencyElectrical motor efficiency
Electrical motor efficiency
 
Optical torsion meter
Optical torsion meterOptical torsion meter
Optical torsion meter
 
Shaft power measurement
Shaft power measurementShaft power measurement
Shaft power measurement
 
Design of transmission elements
Design of transmission elementsDesign of transmission elements
Design of transmission elements
 
Brakes and dynamometer knw
Brakes and dynamometer knwBrakes and dynamometer knw
Brakes and dynamometer knw
 
Belt drives and chain drives
Belt drives and chain drivesBelt drives and chain drives
Belt drives and chain drives
 
Brakes and dynamometers
Brakes and dynamometersBrakes and dynamometers
Brakes and dynamometers
 
FLYWHEELS
FLYWHEELSFLYWHEELS
FLYWHEELS
 
Force measurement
Force measurementForce measurement
Force measurement
 

Similar to Analysis and Electricity production by Ocean Current Turbine

Kollmorgen nema 23 t specsheet
Kollmorgen  nema 23 t  specsheetKollmorgen  nema 23 t  specsheet
Kollmorgen nema 23 t specsheetElectromate
 
Design of Adjustable Blade Wind Turbine for Constant Generated Power
Design of Adjustable Blade Wind Turbine for Constant Generated PowerDesign of Adjustable Blade Wind Turbine for Constant Generated Power
Design of Adjustable Blade Wind Turbine for Constant Generated PowerRajeev Kumar
 
Torque systems bnr3300_specsheet
Torque systems bnr3300_specsheetTorque systems bnr3300_specsheet
Torque systems bnr3300_specsheetElectromate
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir Morgulis
 
Torque systems bnl2300_specsheet
Torque systems bnl2300_specsheetTorque systems bnl2300_specsheet
Torque systems bnl2300_specsheetElectromate
 
Diganosis of pulley belt system faults using vibrations analysis
Diganosis of pulley belt system faults using vibrations analysisDiganosis of pulley belt system faults using vibrations analysis
Diganosis of pulley belt system faults using vibrations analysiskhalid muhsin
 
Cam actuated rotary pump
Cam actuated rotary pumpCam actuated rotary pump
Cam actuated rotary pumpIjrdt Journal
 
Torque systems 4100_series_specsheet
Torque systems 4100_series_specsheetTorque systems 4100_series_specsheet
Torque systems 4100_series_specsheetElectromate
 
Torque systems 3500_series_specsheet
Torque systems 3500_series_specsheetTorque systems 3500_series_specsheet
Torque systems 3500_series_specsheetElectromate
 
Study About Wind turbines
Study About Wind turbinesStudy About Wind turbines
Study About Wind turbinesElia Tohmé
 
EUREC-NTUA Projects - Carlos Silva
EUREC-NTUA Projects - Carlos SilvaEUREC-NTUA Projects - Carlos Silva
EUREC-NTUA Projects - Carlos SilvaCarlos Silva
 
Torque systems 2600_series_specsheet
Torque systems 2600_series_specsheetTorque systems 2600_series_specsheet
Torque systems 2600_series_specsheetElectromate
 
Kollmorgen n&k series_ nema_ 42_specsheet
Kollmorgen  n&k series_ nema_ 42_specsheetKollmorgen  n&k series_ nema_ 42_specsheet
Kollmorgen n&k series_ nema_ 42_specsheetElectromate
 
Torque systems bmr4400_specsheet
Torque systems bmr4400_specsheetTorque systems bmr4400_specsheet
Torque systems bmr4400_specsheetElectromate
 
Torque systems bnr3000_specsheet
Torque systems bnr3000_specsheetTorque systems bnr3000_specsheet
Torque systems bnr3000_specsheetElectromate
 
CFD analysis of a cycloid hydro-turbine
CFD analysis of a cycloid hydro-turbineCFD analysis of a cycloid hydro-turbine
CFD analysis of a cycloid hydro-turbineSaugata Chowdhury
 
Horizontal axis wind turbine
Horizontal axis wind turbineHorizontal axis wind turbine
Horizontal axis wind turbineRohil Kumar
 

Similar to Analysis and Electricity production by Ocean Current Turbine (20)

Kollmorgen nema 23 t specsheet
Kollmorgen  nema 23 t  specsheetKollmorgen  nema 23 t  specsheet
Kollmorgen nema 23 t specsheet
 
Design of Adjustable Blade Wind Turbine for Constant Generated Power
Design of Adjustable Blade Wind Turbine for Constant Generated PowerDesign of Adjustable Blade Wind Turbine for Constant Generated Power
Design of Adjustable Blade Wind Turbine for Constant Generated Power
 
Torque systems bnr3300_specsheet
Torque systems bnr3300_specsheetTorque systems bnr3300_specsheet
Torque systems bnr3300_specsheet
 
BI‐DIRECTIONAL MIXER
BI‐DIRECTIONAL MIXERBI‐DIRECTIONAL MIXER
BI‐DIRECTIONAL MIXER
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
 
Casement Type Wind Turbine
Casement Type Wind TurbineCasement Type Wind Turbine
Casement Type Wind Turbine
 
Torque systems bnl2300_specsheet
Torque systems bnl2300_specsheetTorque systems bnl2300_specsheet
Torque systems bnl2300_specsheet
 
Diganosis of pulley belt system faults using vibrations analysis
Diganosis of pulley belt system faults using vibrations analysisDiganosis of pulley belt system faults using vibrations analysis
Diganosis of pulley belt system faults using vibrations analysis
 
Cam actuated rotary pump
Cam actuated rotary pumpCam actuated rotary pump
Cam actuated rotary pump
 
Torque systems 4100_series_specsheet
Torque systems 4100_series_specsheetTorque systems 4100_series_specsheet
Torque systems 4100_series_specsheet
 
Torque systems 3500_series_specsheet
Torque systems 3500_series_specsheetTorque systems 3500_series_specsheet
Torque systems 3500_series_specsheet
 
Study About Wind turbines
Study About Wind turbinesStudy About Wind turbines
Study About Wind turbines
 
EUREC-NTUA Projects - Carlos Silva
EUREC-NTUA Projects - Carlos SilvaEUREC-NTUA Projects - Carlos Silva
EUREC-NTUA Projects - Carlos Silva
 
Torque systems 2600_series_specsheet
Torque systems 2600_series_specsheetTorque systems 2600_series_specsheet
Torque systems 2600_series_specsheet
 
Kollmorgen n&k series_ nema_ 42_specsheet
Kollmorgen  n&k series_ nema_ 42_specsheetKollmorgen  n&k series_ nema_ 42_specsheet
Kollmorgen n&k series_ nema_ 42_specsheet
 
Torque systems bmr4400_specsheet
Torque systems bmr4400_specsheetTorque systems bmr4400_specsheet
Torque systems bmr4400_specsheet
 
Torque systems bnr3000_specsheet
Torque systems bnr3000_specsheetTorque systems bnr3000_specsheet
Torque systems bnr3000_specsheet
 
Experiment 2 AC Machines
Experiment 2 AC MachinesExperiment 2 AC Machines
Experiment 2 AC Machines
 
CFD analysis of a cycloid hydro-turbine
CFD analysis of a cycloid hydro-turbineCFD analysis of a cycloid hydro-turbine
CFD analysis of a cycloid hydro-turbine
 
Horizontal axis wind turbine
Horizontal axis wind turbineHorizontal axis wind turbine
Horizontal axis wind turbine
 

Recently uploaded

Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 

Recently uploaded (20)

Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 

Analysis and Electricity production by Ocean Current Turbine

  • 1. Performance Analysis Of OCT Blade Using CFD(Ansys Fluent) Name-Vishwendra Corse-M.tech Branch-NA & OE Year/Sem-2nd/IVrth Roll no-1504202008 Batch-2015-2017
  • 2. Guide Information Internal guide: External Guide(Co-Guide): Name- Dr. K.V.K.R.K Patnaik Name- Mr. Prasad Dudhgaonkar Designation- Faculty Designation-Scientist-D Organization- Indian Maritime University Organization- NIOT Campus- Visakhapatnam Department- Energy and Fresh Water Place-Visakhapatnam Place- Chennai Mail id- patnaikrk@gmail.com Mail id- prasad@niot.res.in NIOT- National Institute Of Ocean Technology it’s a body working under Ministry of Earth Sciences (MOES) and handles the ocean related projects of central government.
  • 3. Introduction • Hydrokinetic turbine is used as wave energy device to take out energy from wave exterior movement or else from force under surface and then transform it to mechanical energy to produce electrical energy. • Instream power generation technology is the ability to produce energy without the need for dams, diversions, or reservoirs. • Ocean currents are driven by solar heating and wind in the waters near the equator, also by tides, salinity and density of the water. Current energy can be cal using formula
  • 4. Types Of TCT Axial Flow Cross Flow Horizontal Axis TCT Vertical Axis TCT a. Darrieus Turbine a. Submerged generator b. Gorlov turbine
  • 5. Characteristics Affecting Blade Performance • Blade profile: In terms of lift generated, symmetric airfoils (such as NACA 0015 or NACA 0018) generate higher torque than asymmetric airfoils when the angle of attack is negative. • Solidity Ratio: • Chord/Radius Ratio: • Number Of Blades: The number of blades is directly proportional to solidity. For any turbine, as the number of blades increases, the chord length of a blade must be decreased to maintain a desired solidity ratio. • Aspect Ratio: Aspect ratio (AR) refers to the ratio of turbine height to diameter. And aspect ratio has also been defined for a Darrieus turbine as ratio of blade length to chord length
  • 6. Solidity Ratio • Solidity ratio refers to the amount of turbine swept area that is solid material versus that which is void space. • A high solidity device (e.g., σ>0.3) will more easily self-start but will operate at a lower tip speed ratio, whereas a low solidity device (e.g., σ< 0.15) may be more difficult to self-start but operates at a higher tip speed ratio. • As solidity decreases, the turbine peak efficiency moves to a higher tip speed ratio. • The lower solidity turbine also presents less of an obstruction to the free stream flow, allowing for less momentum loss and higher stream-wise velocity at the turbine, which allows it to operate at a higher tip speed ratio. • The turbine generates smaller hydrodynamic lift forces and thus generates less torque at lower speeds. • Darrieus turbine, the best solidity for obtaining maximum power was 0.2-0.3. For a helical turbine, the optimum solidity ratio is 0.3-0.4. • Expression for solidity ratio is Where , B=Number of blade C= Chord length D= Diameter of turbine
  • 7. Topic Explanation Objective- To carry out CFD analysis on ANSYS Fluent of different solidity ratio with blade profiles. Optimum one is to be selected and further energy generated by the turbine generator is to be calculated for a remote location. Different Parameter Affecting Analysis: Solidity Ratio: Input Power: = ρ (1/2) RPM(Rotation Per Minute): N=(T SR ∗ V ∗ 60)/ (D ∗ π) Where, TSR is tip speed ratio it is the ratio between the tangential speed of the tip of a blade and the actual speed of the water, v The tip-speed ratio is related to efficiency, with the optimum varying with blade design Angular velocity: w=(2* π *N)/60 Hydro kinetic torque(T): Obtained from the CFD analysis Output power: Pout= T*w Coefficient Of Power: = It shows the part of the power the turbine extracts Pin
  • 8. NACA Profiles Used in Project NACA 0018: It has the 18% width to thickness ratio and is having symmetricity which balances the forces during rotation as it changes after 180 deg rotation. And it give 0 lift at 0 deg angle of attack. NACA 0015: It has the 15% width to thickness ratio and is having symmetricity which balances the forces during rotation as it changes after 180 deg rotation.  Both the blade profile are lift based.  0% camber at 0th position of the chord length.  Both the profiles are used for Vertical Axis Wind/Ocean Turbine.
  • 9. Geometry From top left 1. Modified Geometry 2. Working Domain 3. Original Geometry
  • 11. Meshing Meshing of: 1. Top-Domain 2. Bottom left-Rotor 3. Bottom right- Blade
  • 12. Analysis Results The Results shown are of NACA 0015 & NACA 0018 for: Solidity Ratio- 0.2 Chord length- 376.99mm Flow-1.2m/s and 1.8m/s RPM- Based on the TSR TSR range for 1.2m/s and for 1.8m/s 1.0 to 3.0 • TSR range is used for predicting different RPM for different analysis which act as loading conditions for analysing the turbine(at most 8 values)
  • 13. -100 0 100 200 300 400 500 600 0 50 100 150 200 250 300 350 400 HydrokineticTorque,N-m Angle,degree Hydrokinetic Torque vs Angle 22.28 RPM 25.46 RPM 28.64 RPM 31.83 RPM 19.09 RPM NACA 0015 For Flow 1.2 m/s Torque ripple for NACA 0015 with 1.2 m/s flow, chord 0.376m and Ø 1.8 x 5m turbine
  • 14. 0 500 1000 1500 2000 2500 3000 3500 0 5 10 15 20 25 30 35 Power,Watt Speed, RPM Power vs Speed 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.5 1 1.5 2 2.5 3 Cp TSR Cp vs TSR Performance of NACA 0015 with 1.2 m/s flow, chord 0.376m and Ø 1.8 x 5 m turbine TSR RPM Avg Torque/m (N-m) Total Torque(N-m) Power(Watt) Cp 1.5 19.09 221.814 1109.073 2107.238 0.26 1.75 22.28 226.799 1133.996 2608.181 0.32 2 25.46 226.178 1130.893 2940.322 0.36 2.25 28.64 186.727 933.638 2707.551 0.33 2.5 31.83 136.901 684.505 2258.87 0.28 Summary of Ø 1.8 x 5 m turbine with SR 0.2 of NACA 0015 at 1.2 m/s water velocity
  • 15. NACA 0015 For Flow 1.8 m/s -200 0 200 400 600 800 1000 1200 1400 0 50 100 150 200 250 300 350 400 Hydrokinetictorque,N-m Angle, degree Hydrokinetic Torque vs Angle 28.64 RPM 33.42 RPM 38.19 RPM 47.74 RPM 42.97 RPM Torque ripple for NACA 0015 with 1.8 m/s flow, chord 0.376m and Ø 1.8 x 5m turbine
  • 16. 0 500 1000 1500 2000 2500 3000 3500 0 5 10 15 20 25 30 35 Power,Watt Speed, RPM Power vs Speed 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.5 1 1.5 2 2.5 3 Cp TSR Cp vs TSR Performance of NACA 0015 with 1.8 m/s flow, chord 0.376m and Ø 1.8 x 5 m turbine TSR RPM Avg Torque/m (N-m) Total Torque(N-m) Power(Watt) Cp 1.5 28.64 522.8895 2614.447 7843.342 0.29 1.75 33.42 531.3751 2656.875 9299.064 0.34 2 38.19 529.4892 2647.446 10589.78 0.39 2.25 42.97 433.0784 2165.392 9744.265 0.36 2.5 47.74 331.3635 1656.818 8284.088 0.3 Summary of Ø 1.8 x 5 m turbine with SR 0.2 of NACA 0015 at 1.8 m/s water velocity
  • 17. NACA 0018 For Flow 1.2 m/s -100 0 100 200 300 400 500 600 700 0 50 100 150 200 250 300 350 400 HydrokineticTorque Angle(degree) Hydro kinetic Torque vs Angle 15.91 RPM 19.09 RPM 22.28 RPM 25.46 RPM 28.64 RPM 31.83 RPM Torque ripple for NACA 0018 with 1.2 m/s flow, chord 0.376m and Ø 1.8 x 5 m turbine
  • 18. 0 500 1000 1500 2000 2500 3000 3500 4000 0 5 10 15 20 25 30 35 Power RPM Power vs Speed 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.5 1 1.5 2 2.5 3 Cp TSR Cp vs TSR Performance of NACA 0018 with 1.2 m/s flow, chord 0.376m and Ø 1.8 x 5 m turbine TSR RPM Avg Torque/m (N-m) Total Torque(N-m) Power(Watt) Cp 1.25 15.91 270.352 1351.76 2250 0.28 1.5 19.09 297.22 1486.142 2972.285 0.37 1.75 22.28 294.66 1470.322 3472.32 0.43 2 25.46 244.96 1224.803 3262.875 0.4 2.25 28.64 188.71 943.57 2830.717 0.35 2.5 31.83 122.46 612.318 2039.632 0.25 Summary of Ø 1.8 x 5 m turbine with SR 0.2 of NACA 0018 at 1.2 m/s water velocity
  • 19. NACA 0018 For Flow 1.8 m/s -200 0 200 400 600 800 1000 1200 1400 1600 0 50 100 150 200 250 300 350 400 HydroKineticTorque,N-m Angle,degre Hydro Kinetic Torque vs Angle 23.8 RPM 28.64 RPM 33.4 RPM 38.1 RPM 42.9 RPM 47.7 RPM Torque ripple for NACA 0018 with 1.8 m/s flow, chord 0.376m and Ø 1.8 x 5m turbine
  • 20. 0 2000 4000 6000 8000 10000 12000 14000 0 10 20 30 40 50 60 Power,Watt Speed,RPM Power vs Speed 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.5 1 1.5 2 2.5 3 Cp TSR Cp vs TSR Performance of NACA 0018 with 1.8 m/s flow, chord 0.376m and Ø 1.8 x 5 m turbine TSR RPM Avg Torque/m (N-m) Total Torque(N-m) Power(Watt) Cp 1.25 23.8 665.156 3325.78 8284.51 0.3 1.5 28.64 707.877 3539.38 10607.54 0.4 1.75 33.42 689.529 3447.64 11722 0.43 2 38.1 571.663 2858.31 11147.43 0.4 2.25 42.9 446.25 2231.27 9817.62 0.36 2.5 47.7 326.246 1631.23 7893.04 0.25 Summary of Ø 1.8 x 5 m turbine with SR 0.2 of NACA 0018 at 1.8 m/s water velocity
  • 21. Contour Results of the selected profile Pressure contour and velocity vector for Ø1.8 m × 5 m turbine with 0.20 solidity ratio at 0°, 120°&240° for NACA 0018 and flow 1.2m/s NACA 0018
  • 22. Pressure contour and velocity vector for Ø1.8 m × 5 m turbine with 0.20 solidity ratio at 0°, 120°&240° for NACA 0018 and flow 1.8m/s NACA 0018
  • 23. Pressure contour and velocity vector for Ø1.8 m × 5 m turbine with 0.20 solidity ratio at 0°, 120°&240° for NACA 0015 and flow 1.2 m/s NACA 0015
  • 24. Pressure contour and velocity vector for Ø1.8 m × 5 m turbine with 0.2 solidity ratio at 0°, 120°&240° for NACA 0015 and flow 1.8m/s NACA 0015
  • 25. Profile SR CL(m) Flow(m/s) Max Torque(N-m) Min Torque(N-m) Avg Torque(N-m) R.F NACA 0018 0.15 0.282 1.2 483.88 42.73 262.87 1.68 NACA 0018 0.2 0.376 1.2 537 54.88 294.66 1.64 NACA 0018 0.15 0.282 1.8 1053 135.01 585 1.57 NACA 0018 0.2 0.376 1.8 1226.71 146.39 689.52 1.55 NACA 0015 0.15 0.282 1.2 358.26 3.45 188.06 1.89 NACA 0015 0.2 0.376 1.2 439.22 10.36 226.17 1.9 NACA 0015 0.15 0.282 1.8 823 20.23 437.72 1.83 NACA 0015 0.2 0.376 1.8 1004.71 37 529.48 1.83 Ripple Factor Calculation Calculation of ripple factor for turbine Ø 1.8 x 5 m with SR 0.2 & 0.15 of NACA 0015 and NACA 0018for flow 1.2 m/s & 1.8 m/s
  • 26. 0 2000 4000 6000 8000 10000 12000 14000 0 10 20 30 40 50 60 70 Power,Watt Turbine Speed,RPM Power vs Turbine Speed NACA 0018(SR 0.15,CL-0.282m) 1.2m/s NACA0018(SR 0.2,CL 0.376m) 1.2m/s NACA 0018(SR 0.15,CL 0.282m) 1.8m/s NACA 0018(SR 0.2,CL 0.376m) 1.8m/s NACA 0015(SR 0.15,CL 0.282m) 1.2m/s NACA 0015(SR 0.2,CL 0.376m) 1.2m/s NACA 0015(SR 0.15,CL 0.282m) 1.8m/s NACA 0015(SR 0.2,CL 0.376m) 1.8m/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.5 1 1.5 2 2.5 3 3.5 Cp TSR Cp vs TSR SR 0.15 naca 0015(1.2) SR 0.2 naca 0015(1.2) SR 0.15 naca 0018(1.2) SR 0.2 naca 0018(1.2) SR 0.15 naca 0018(1.8) SR 0.2 naca 0018(1.8) SR 0.15 naca 0015(1.8) SR 0.2 naca 0015(1.8) Performance prediction of Ø1.8 m × 5 m turbine of NACA 0015 & NACA 0018 blade profiles with solidity ratios 0.15 and 0.2 for 1.2 m/s & 1.8 m/s water velocity
  • 27. 0 2000 4000 6000 8000 10000 12000 14000 0 10 20 30 40 50 60 Power,Watt Turbine Speed, RPM Power vs Turbine Speed NACA 0018 SR 0.15(CL- 0.282m)1.8m/s NACA 0018 SR 0.2(CL 0.376 m)1.8m/s NACA 0018 SR0.15(CL- 0.282m)1.2m/s NACA 0018 SR 0.2(CL- 0.376m)1.2m/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.5 1 1.5 2 2.5 3 Cp TSR Cp vs TSR NACA 0018 SR 0.15(CL 0.282m)1.8m/s NACA 0018 SR 0.2(CL 0.376m)1.8m/s NACA 0018 SR0.15(CL- 0.282m)1.2m/s NACA 0018 SR 0.2(CL-0.376)1.2m/s Predicted coefficient of performance of Ø1.8 m × 5 m turbine for NACA 0018 profile with 0.20 and 0.15 solidity ratio for1.8 m/s water velocity
  • 28. Energy Calculation Current Velocity (Height/Total tidal height)^(1/7)*(Peak current velocity) The calculation or the assessment of the annual energy generation is done on the basis of the peak surface current and spring tidal data for about month. Given data for calculation: Cut in speed-0.5 m/s Transmission efficiency- 0.75 Generator efficiency- 0.93 Peak Current velocity- 1.8m/s For energy- Transmission Efficiency = Power received from transmission/ Power Transmitted Generator Efficiency = Generator power output/ Transmitted Power Energy = Power*Time For calculation of current velocity at different height of tide along the month –
  • 29. Note: In energy calculation correction factor of 0.75 is included to consider bearing friction loss, mechanical seal loss, adverse velocity profile, axial flow loss at ends, presence of shaft, uncertainties in flow direction etc This factor is used for calculating the shaft power by multiplying it with turbine output power and then to calculate the generator output power after multiplying it with transmission power Output Power, W Shaft Power, W Transmission Power, W Generator Power, W Cp*Input power by current speed 0.75*Output power given by turbine 0.93*Shaft power 0.75*Transmission power
  • 30. -1.5 -1 -0.5 0 0.5 1 1.5 42830 42835 42840 42845 42850 42855 42860 42865 42870 TideHeight,meter Time, dd/mm/yy hh:mm Tide Height vs Time Tidal data for month -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 05/04/2017 00:0010/04/2017 00:0015/04/2017 00:0020/04/2017 00:0025/04/2017 00:0030/04/2017 00:0005/05/2017 00:0010/05/2017 00:0015/05/2017 00:00 Currentspeed,m/s Time,dd/mm/yyyy Current Speed vs Time in day Tide height data of each day along Port Blair coastline (10/4/2017 to 11/5/2017) Tidal speed at each day at Port Blair (10/4/2017 to 11/5/2017)
  • 31. -6000 -4000 -2000 0 2000 4000 6000 05/04/2017 00:0010/04/2017 00:0015/04/2017 00:0020/04/2017 00:0025/04/2017 00:0030/04/2017 00:0005/05/2017 00:0010/05/2017 00:0015/05/2017 00:00 Outputpower,Watt Time,dd/mm/yyyy Generator Output power vs Time in day -3 -2 -1 0 1 2 3 05/04/2017 00:0010/04/2017 00:0015/04/2017 00:0020/04/2017 00:0025/04/2017 00:0030/04/2017 00:0005/05/2017 00:0010/05/2017 00:0015/05/2017 00:00 Energygeneration,kWh Time,dd/mm/yyyy Energy Generation vs Time in day Predicted generator power output of Ø 1.8 x 5 m turbine Predicted Energy generation of Ø 1.8 x 5 m turbine generator
  • 32. Total energy generation in kWh/month 966.34 Total energy generation in MWh/month 0.966 Total energy generation in MWh/year 11.59 Energy Charges in Rs/unit in kWh 25 Energy Charges in Rs/unit in MWh 25000 Price To be paid For Energy Consumption in year 289750 Maintenance cost in a yr in Rs 10% Price of price of Energy Consumption 28975 Money saved in Rs 260775 Summary Of Energy Generation Calculation