SlideShare a Scribd company logo
1 of 49
Download to read offline
MAGNETIC NANO & MICRO WIRES
Manuel Vazquez
Group of Magnetic Wires
.
Institute of Materials Science of Madrid, CSIC. Spain
1.5 mm metallic diameter
AUTOR/ES TÍTULO FECHA TIPO REVISTA CAPÍTULO PÁGINAS COMENTARIO
C. Bran, E.M. Palmero, Zi-An Li, R.P.
del Real, M Spasova, M Farle and M
Vázquez
Correlation between structure and magnetic
properties in CoxFe100-x nanowires: the
roles of composition and wire diameter
2015 Article J. Phys. D: Appl. Phys. 48 145304 (7pp)
Col. Duisburg-Essen
Univ.
C. Bran, A.P. Espejo, E.M. Palmero, J.
Escrig and M. Vázquez
Angular dependence of coercivity with
temperature in Co-based Nanowires
2015 Article
J. Magn. Magn.
Mater.
396 327–332
Col. Santiago Chile
Univ.
J.G. Ovejero, C. Bran, M.P. Morales
and M. Vazquez
Electrochemical synthesis of core–shell
magnetic nanowires
2015 Article J. Magn.Magn. Mater. 389 144–147 Letter to the Editor
Belén Sanz, Ester M. Palmero, Rafael
P. del Real, Manuel Vázquez and
Carmen Mijangos
Arrays of Magnetic Ni Nanowires Grown
Inside Polystyrene Nanotubes
2015 Article Ind. Eng. Chem. Res. 54 13005−13008 Coll. ICPM/CSIC
M. Vazquez, R. ElKammouni, G.V.
Kurlyandskaya, V. Rodionova and L.
Kraus
Bimagnetic Microwires, Magnetic Properties
and High-Frequency Behavior
2016 Book Chapter
“Novel Functional
Magnetic Materials”,
A. Zhukov (ed.)
7 29 pag.
Springer Series in
Materials Science
231, DOI
10.1007/978-3-319-
26106-5_7, Springer
International
Publishing
Switzerland) 2016
M.S. Arshad, M.P. Proença, S.
Trafela, V. Neu, U. Wolff, S. Stienen,
M. Vazquez, S. Kobe and K.Ž.
Rožman
An oblivious growth mechanism for high-
magnetic-anisotropy hcp Co-Pt nanowire
arrays: the role of the crystal orientation in
the switching-field distribution and the
magnetic-domain configuration
2016 Article J. Phys. D: Appl. Phys.
in the press Coll.
Slovenia Univ
Alejandro Jiménez, Peter Klein,
Rastislav Varga, Rafael Pérez and
Manuel Vázquez
On the induced voltage by the domain wall
propagation in cylindrical magnetic
microwire
2016 Article IEEE Magn Letters
Submittted Coll.
Kosiçe Univ
M P Proenca, C T Sousa, J Ventura, J
Garcia, MVazquez and J P Araujo
Identifying less-interacting single domain
states in Ninanowire arrays by FORC
2016 Article J. Phys. D: Appl. Phys.
Submitted; Coll.
Porto Univ.
Lei Shao,Yangyong Zhao, Alejandro
Jiménez, Manuel Vázquez, Yong
Zhang
Shape memory and huge superelasticity in
Ni-Mn-Ga microwires
2016 Article Metals
Submmitted; Col.
University of
Science and
Technology Beijing
AUTOR/ES TÍTULO TIPO CONFERENCE FECHA LUGAR
A. Jimenez, R.
Varga and M.
Vazquez
Electromotive force indiced by
domain wall propagation in
magnetic microwire
Oral
Presentation
INTERMAG'2015 13/05/2015 Beijing, China
M. Vázquez, C.
Bran, A. Asenjo, R.
Perez, E. Palmero,
Y. Ivanov and O.
Chubykalo-Fesenko
On the magnetization reversal of
Co based nanowires
Invited
Presentation
Int. Worksh. Magnetic
Nanowire and
Nanotubes
19/05/2015
Meersburg,
Germany
A. Jimenez, R.
Varga, R. Perez and
M. Vazquez
Controlled motion of single
Domain Walls in magnetic
microwires
Invited
Presentation
7th
Int. Workshop on
Magnetic Wires
02/07/2015 Ordizia, Spain
M. Vazquez
Program
Committee
Chair
International Conf. on
Magnetism, ICM
5-10 / 07 /
2015
Barcelona, Spain
C. Bran, E. Palmero,
E. Berganza, R.P. del
Real, A. Asenjo and
M. Vazquez
Co-based cylindrical nanowires:
from applications of their arrays to
the spin reversal of individual
nanowires
Invited
Presentation
NanoPyme Workshop
on Rare-earth free
permanent magnets
and applications
14/09/2015 Madrid
M. Vazquez, C.
Bran, E. Palmero, E.
Berganza, R.P. del
Real, A. Asenjo
Magnetization reversal of Co and
CoFe-based cylindrical nanowires
Invited
Presentation
Amorphous and
Nanostructured
Magnetic Materials,
ANMM’15
23/09/2015 Iasi, Romania
R. Perez, E.M.
Palmero, C. Bran
and M. Vazquez
Magnetic nanowires used in
magnetic pick-up senswors
Oral
Presentation
2016
MMM/INTERMAG
Conf.
12/01/2016 San Diego, USA
M. Vazquez
CoFe based nanowires and their
technological applications
Inaugural
Invited Talk
3rd. Int. Conf. on
Recent Trends in
Physics, ICRTP,
13/02/2016 Indore, India
AUTOR/ES TÍTULO FECHA
TIPO
PUBLICACIÓN
DIRECTOR/
ES COMENTARIO
Rhimou El
Kammouni
Single and Biphase Magnetic
Microwires: Microwave
behavior and temperature
dependence
2015 (Abril) PhD Thesis, UAM M. Vazquez
Tutor: M.A.
Ramos
Sobresaliente
cum laude
unanimidad
Alejandro
Jimenez Villada
Dinámica de la propagación de
una única pared de dominio y
procesos de imanación en
microhilos magnéticos
2016 (22
Enero)
PhD Thesis, UAM M. Vazquez
Tutor: M.
Hernández-
Vélez
Sobresaliente
cum laude
unanimidad
Ester M.
Rodriguez
Palmero
2016
(Noviembre)
M. Vazquez
& R. Perez
Joe Angel
Fernandez
2018 (Mayo)
M.Vazquez
& R. Perez
& O.
Chubykalo
MAGNETIC NANO & MICRO WIRES
1.- Magnetic Nanowires:
Synthesis of CoFe with controlled anisotropy
Nanowires with modulated diameter & Core/shell nanowires
2.- Magnetic Mcrowires:
FMR in biphase microwires
Controlled motion of single Domain-Wall in single phase microwires
1.5 mm metallic diameter
-Looking for specific cylindrical nanowires & arrays
- Arrays ar relevant for 3D magnetic architectures,
sensor devices, novel magnets, biomagnetic
functionalization and beyond
- Individual nanowires are nearly ideal systems for
fundamental studies on magnetization & reversal
- Why Electrochemical route of fabrication?
Less-expensive technique
Ability to grow various cylindrical nanowires with
designed geometry and composition periodical modulations
- Why cylindrical symmetry nanowires?
Nanoscale systems profiting of strong shape anisotropy
(Diameter: 15nm to 200nm; Length: 100nm to 50mm)
Nanocolumns,Nanotubes,Multilayer,Diameter-Modulated, Core@Shell
- Combining magnetic (Co, Fe) elements & alloys
to tailor structure and magnetocrystalline anisotropy so
magnetic response
Designed Cylindrical Nanowires: Overall Motivation
Self-assembled pore
template
CoFe nanowire array
1.- Uniform/straight Nanowires:
Nanodots, Nanowires (reduced diameter)
2.- Modulated Nanowires :
a) Longitudinal
Multisegmented, Multilayer
b) Radial
Nanotubes, Core/Shell
c) Diameter Modulated
Co/Cu
multisegmented
Ni
nanotubes Fe&Au core&shell
CoFe diameter
modulated
Families of magnetic nanowires
prepared by electrochemical route at ICMM/CSIC, Madrid
CoFe homogneous
Removal of
alumina
Au layer sputtering
NWs
growth
Removal of
barrier layer
Al foil
Removal of
Al layer
1st
anodization
2nd
anodization
Potentiostatic
electrodeposition
Synthesis procedure: AAO template + metals electroplating
Al disk and inner
electroplated region
NWs released from
the membrane
Anodic Aluminium Oxide,
AAO, membrane
FeCo NWs
Correlation Magnetic to Structure characterizatics
FeCo alloy
nanowires
40nm diam.
20 nm diam.
For 40 nm wires, structure evolves from bcc to fcc as the Co% increases
For 20 nm wires, it evolves as bcc->fcc->hcp
Role of Composition and Nanowire Diameter
HRTEM characterisation of individual Co nanowires
Single crystal [111] fcc
Co nanorod
X.X. Zhang, KAUST
Single crystal hcp
Co nanorod
fixed diameter, D=35nm and length, L=3mm
Textured along different directions in
hcp-phases with pH of synthesis
Co nanowires: Crystal structure and Magnetic Anisotropy
TEM study of Co nanowires prepared under different electrolyte pH:
(a) – pH 3.5, (b) - pH 5.0, (c) – pH 6.0
The insets show the corresponding electron diffraction patterns and HRTEM images
The green arrows show the orientation of the c-axis.
The white arrows indicate the crystal orientation
Co nanowires: Crystal structure and Magnetic Anisotropy
Yu.P. Ivanov et al. Nanotechnology 2014
Hysteresis loops & Spin imaging: VSM & SQUID vs. VF-MFM & MTXM
-100 -80 -60 -40 -20 0 20 40 60 80 100
-1.0
-0.5
0.0
0.5
1.0
Mr/Ms
B(mT)
Ciclo SQUID
Ciclo MFM
MFM imaging of Ni nanowires
(d=180 nm, L = 2 mm)
A. Asenjo et al. PRB 2007
Vazquez et al. Eur.J. Phys. 2005
-3000 -2000 -1000 0 1000 2000 3000
-1.0
-0.5
0.0
0.5
1.0
M/MS
Magnetic Field (Oe)
H paralelo
diámetro 35nm
VSM
loop
LorTEM images in over- (a) and under-focused (b)
conditions of an array Co NWs 45 nm in diameter
and 55-nm long at remanence.
The arrows show the transverse direction and the
clockwise (red) and anticlockwise (blue) rotation of
NW magnetization.
As schematically shown on (c), the magnetic vortex
acts as a convex or a concave lens, depending on its
chirality, which creates a focus above or below the
sample. Looking at these planes, we detect uniquely
the presence of a vortex state and determine its
chirality.
On the hologram image (d) the high- and low-phase
values are represented by two different color
sequences that correspond to the clockwise and
anticlockwise rotation of NW magnetization and (e)
shows the contour lines corresponding to the B┴.
Lorentz microscopy & electron holography: Co nanowires
Electron holography directly measures the phase shift of
the electron wave passing through the sample by measuring
the phase shifts on the interferogramIvanov et al.
(Submt. Sc. Reports)
Coercivity Hc as a function of NW
diameter for single crystal hcp Co NWs
and different easy axis orientations
(defined by the angle θ with NW axis)
Modeling: role of diameter & crystal symmetry
hcp Co nanowires (2 mm long)
Changing the reversal mode with
Anisotropy easy axis
Regions (1), (2), (3) correspond
to applied fields at which a
vortex is formed, at the
remanence, and when the
vortex core is switched
Uniform
Alloy NW
Multisegmented
in composition
Modulated
in diameter
Individual FeCoCu Nanowires:
artifially designed to control the reversal process
MFM image of
uniform alloy Nanowire
Grown inside Hard-Mild pulsed anodized templates
Growing nanowires with modulated diameter (Co & CoFe)
Co nanowires
Fine control over shape of nanopores
is hard to achieve
Diagram with two
types of modulations
Kerr effect in individual modulated nanowires (Fe27Co68Cu5)
The presence of single and several Barkhausen
jumps are detected depending on geometry
E. Palmero, C. Bran et al Nanotechnology (2015)
D1=150nm
D1=150nm, L1=800nm
D2=170nm, L2= 50 nm
D1=130nm, L1=1000nm
D2=100nm, L2= 300 nm
D1=150nm, L1=800nm
D2=170nm, L2= 50 nm
AxialprofileofKerrloops
Angular dependence of Coercivity
Local MOKE loops
along the nanowires
Fitting to vortex-like
DW propagation mode
SEM images of modulated FeCoCu wires dispersed on Si substrate.
FeCo modulated nanowires show bcc structure with a (110) orientation.
Due to the small magnetocrystalline anisotropy, shape anisotropy, dominates
Co nanowires show hcp structure with c-axis nearly perpendicular,
magnetocrystalline anisotropy dominates
FeCoCu & Co modulated (bamboo-like) nanowires
FeCo MFM imaging: uniform vs. modulated nanowires
PEEM –XMCD results
XMCD contrast in a single FeCoCu modulated nanowire.
- Direct photoemission (magnetic contrast from the top few nm, surface information)
- Transmission data (shadow, x-rays partially transmitted through the wires, bulk information)
FeCoCu & Co bamboo-like modulated nanowires
XMCD images of CoFe and Co nanowires are
recorded at the Fe and Co L3 and L2 edges reversing
the photon helicity using the PEEM end-station
Synchrotron
Light Facility, Barcelona
Co nanowires
Axial anisotropy Perpendicular anisotropy
Axial spins at the core
Vortex at the end
FeCoCu nanowires
PEEM –XMCD in bamboo-like modulated nanowires:
information on surface and bulk spin configuration
MFM
MFM
Remanent spin configurations of
(a) FeCoCu and (b) Co bamboo
nanowires
A half wire length is shown (1
micron) containing an edge and two
modulations marked by the green
arrows.
Inserts show the transversal cross
sections at the marked regions along
the length:
Black arrows denote the spin
orientation in the corresponding
section
Red-White-Blue color contrast at
background corresponds to axial
magnetization.
J.A. Fdez-Roldán, mumag code
Simulations in CoFeCu and Co bamboo-like Nanowires at Remanence
Multisegmented nanowires: Structural data [FeCoCu/Cu]n
TEM images of FeCoCu(300 nm)/Cu(15 nm) nanowires: (a) Bright field image of an individual nanowire, (b) HRTEM
image of a Cu spacer, (c) and d) Fast Fourier Transform at Cu and FeCoCu regions of the HRTEM image
Cu layers perfectly segregated
from the FeCoCu; irregular and
rough->the polycrystalline nature
of the wires, the large grain size
and inhomogeneities in the
growth.
Proenca et al, Phys. Rev. B, 2013
Exchange coupling through oxidation of the inner walls
Core–Shell magnetic nanowires as new class of systems with
composition and microstructure radial profile
.
Core/Shell nanowires & nanotubes at ICMM/CSIC
Ni –Polystere core/shell nanowires
Alumina Membrane + PVA + Fe3O4 Mijangos et al, (I&EC research 2016)
Martin et al, J Nanosci.Nanotechn 2010
Magneto-polymeric
hybrid systems
Fe/Fe3O4
core/shell
nanowire
Growing of Nanotube and Core@Shell Nanowire Arrays
Nanotubes: Single Electrodeposition
Core@Shell: Double Electrodeposition
500 nm
Outer diameter ~ 300 nm
Wall thickness ~ 30 nm
Length ~ 15 mm 500 nm
FESEM
Controlled production of ordered arrays of Ni nanotubes
Outer diameter ~ 50 nm
Wall thickness ~ 10 nm
Length ~ 50 mm
50 nm diameter
10 nm wall thickness
50 mm length
105 nm intertube distance
Empty AAO membrane (a),
Au nanotubes (b),
TM@Au core/shell nanowires (c),
contact removed TM@Au nanowires
prepared for releasing (d).
Fe@Au core/shell nanowires:
Au grown under different potentials:
0.35 (a), 0.8 (b), 1.0 (c) and 1.25V (d)
Two-step electrodeposition process
to obtain core@shell nanowires
TM
Au
Cross-sectional
view of core-shell
Ovejero et al. (letter to JMMM)
From NW arrays to individual core@shell NWs
SEM images of Au nanotube arrays (a),
and after filling with Fe (b), CoFe (c) and Ni (d).
Fe@Au individual nanowires after released from
the template (e).
Au Fe@Au
CoFe@Au Ni@Au
D. Magnin et al., Biomacromolecules 2008
Magneto-Biological functionalization: Nanowires vs. Nanoparticles ?
Non-chemotoxic induction of cancer cell
death using magnetic NWs
Contreras et al,
Int. J. Nanomedicine 2015
Osteosarcoma Cell Control with
Ni/Au segmented nanowires
B.Stadler et al.
Nanotechnology (2015)
CoPt/Au Multisegment Nanowires
Functionalization for DNA detection
Ramulu et al. J. Electrochem. Sci. (2012)
MAGNETIC NANO & MICRO WIRES
2.- Magnetic Mcrowires:
FMR in biphase microwires
Controlled motion of single Domain-Wall in single phase microwires
1.5 mm metallic diameter
Single and Bimagnetic Microwires: Preparation & Magnetics
An outer magnetic layer is grown by combined electroplating & sputtering
• Magnetic character is controlled by the choice of:
Alloys composition (soft/hard, hard/soft)
Internal/External phases thickness
Magnetostatic Bias + Magnetoelastic Interaction
Nucleus (amorphous)
Shell (polycrystalline)
BI-MAGNETIC
MICROWIRE
-40 -20 0 20 40
-1,2
-0,6
0,0
0,6
1,2
1 mm CoNi
M(x10
-3
emu) H (kA/m)
Single CoFeSiB (Soft) CoFeSiB/NiFe (Soft/Soft) FeSiB/CoNi (Soft/Hard)
Network Analyser-FMR in microwires
The sample holder based on commercial SMA
connectors provides reliable data up to 12 GHz
Simpler and more versatile technique than those
based in µwires as part of the TL
DUT
Irf
8 mm
Hdc
µwire Calibration: 50 Ω SMD resistor
(electrical delay= 77 ps)
Collaboration V. Raposo
(Un Salamanca)
Power Supply
Network
Analyzer
SMA Cable
Helmholtz &
Solenoid
Sample Holder
Computer control
Metallic diameter Dmet= 17 mm
Total diameter D = (a) 42 mm, (b) 34 mm, (c) 20 mm
FMR CoFe-base single microwires: single absorption
Various Pyrex
thickness
CoFeSiB non-magnetostrictive microwire, l ≈ -1x10-7
FMR CoFe-base biphase microwires: three absorption peaks
CoFeSiB soft non-magnetostrictive core, l ≈ -1x10-7
NiFe ultrasoft polycrystalline shell
Metallic diameter Dmet= 17 mm
Met. + Pyr. diameter D = (a) 42 mm, (b) 34 mm, (c) 20 mm
NiFe thickness t= 2 mm
Various Pyrex thickness
FMR CoFe-base biphase microwires: two absorption peaks
Various Pyrex
thickness
CoFeSiB non-magnetostrictive microwire, l ≈ -1x10-7
CoNi semi-hard polycrystalline shell Metallic diameter Dmet= 17 mm
Met. + Pyr. diameter D = (a) 42 mm, (b) 34 mm, (c) 20 mm
CoNi thickness t= 2 mm
CoNi shell was non
magnetically saturated, is this
the origin of the low f
absorption?
Multiple absorption FMR in bimagnetic wires: summarizing
0 1 2 3 4 5 6 7 8 9 10
40
80
120
160
200
240
280
R()
f (GHz)
4.9 kA/m
19.9 kA/m
35.1 kA/m
CoFe-FeNi (2-3 mm FeNi)
0,0 0,1 0,2 0,3 0,4 0,5 0,6
0
10
20
30
40
50f
2
(GHz
2
)
H (kOe)
FMR 1
FMR 2 (CoFe nucleus)
FMR 3 (FeNi shell)
CoFe glass-coated
linear fit
linear fit
4πMS= 11.5 kOe
4πMS= 6.9 kOe
??
• Soft/soft biphase system: CoFe/FeNi
• Soft/hard biphase system: CoFe/CoNi
FeNi shell was saturated, then a
third absorption is observed
0 1 2 3 4 5
-100
-50
0
50
100
150
200
R,X()
f (GHz)
16 kA/m
R
X
??
Scheme of nucleation & depinning & propagation of a single Domain Wall
(Magnetostrictive Fe rich microwires)
++ --
-
+
+
+ +
++
+
-
-
--
- -
++
+
-
- -
-
-
-
-
-
+
-
-
+
-
-
+
+
+
-
--
+
+
+
-400 -200 0 200 400
-0,8
-0,4
0,0
0,4
0,8
M(emu)x10
 H (A/m)
Hsw ~ (1/m0MsVcr) { aEg+ bEsf}
DW
Reversal spontaneously begins at one end of the wire at a critical switching field
1.5 mm metallic diameter
-Fluxmetric induction magnetometer (Home-designed),
based on Butta, Infante et al. Rev Sci Instrm 2009
For high sensitivity hysteresis loops and single DW dynamics
Magnetic Measurements
Voltage peaks induced at pick up coils as DW passes
t
Domain Wall velocity
Sixtus-Tonks like experiment
A single domain wall depins
from one end
propagating along the entire wire
tdv  /
1.55 1.60 1.65 1.70
-0.10
-0.05
0.00
0.05
0.10
dM/dt(a.u.)
t (ms)
v = S(H − H0)
be - eddy currents
br - spin relaxation
bs - structure relaxation
b reflects the
interaction DW with
defects
Single Domain Wall & Dynamics
Profiting of having a Single domain wall
for fundamental dynamics studies
Damping mechanisms
DW motion equation
Exp. 1.-Trapping a Domain Wall: Sixtus & Tonks–like
- Homogeneous drive field, Hdr (solenoid)
- Local field, HL
- Two symmetric pick-up coils
- Asymmetric positioning of the microwire:
essential for the depinning of the standard wall, DWst,
at the left wire’s end and its rigthward propagation
Under applied drive field by the solenoid,
a reverse domain nucleates at the left wire’s end, and
a “standard” wall depins and propagates along the wire
FeSiB microwire,
10 mm metallic diameter
Scheme of domain structure after a standard Domain Wall, DWst, moves
under drive field, Hdr, plus “small-amplitude” antiparallel local field
Antiparallel local-field configuration:
the Local field opposes the motion of DW by the Drive field
Braking and Trapping a Domain Wall
Braking &Trapping a domain wall: Antiparallel local-field configuration
DWst trapped at 4.27 mm
to the left of the local coil
Experimental (blue) & calculated (red)
Pick up 1 Pick up 2
0,000 0,001 0,002 0,003 0,004
-200
-100
0
100
200
320 360 400 440 480
0
2
4
6
H(A/m)
t (m s)
B
t (m s)
e.m.f(a.u.)
Drive field
Local field
HL>HLtrap
Drive, Hdr (blue) and Local, HL (green) fields and emf responses recorded in rigth (black) and left (red) sensing coils
HL < HLtrap
Velocity, v, of the standard wall, DWst,
under drive field Hdr= 170 A/m, as a
function of the antiparallel local field, HL.
The wall gets trapped at HL=610 A/m
Vázquez et al.
Phys. Rev. Letters 108,037201 (2012)
Exp. 2.-Playing with the propagation of Single DW
The sequence of colored peaks confirms
a Rightwards motion of the Single DW
for rightwards (bottom) and
leftwards (upper)
applied field
Fe79Si10B8C3 microwire
(dmet=20.5 mm, Dtot=30.5 mm)
- Multiple-coil system (2000 turns, 2 mm wide)
- Extended length: 40 cm long wires
- Square shaped 40 Hz field
A. Jimenez et al., Eur Phys J B 86, 113 (2013)
invited JEMS 2012
microwire
S1
yellow
S2
blue
S3
pink
S4
greenPick-up coils Si
“Small” Applied Field, H = ± 213 A/m
H
H
“Medium” Applied Field = ± 262 A/m
H
S4S3S2S1
DWst1
v
S4S3S2S1
0H 
S4S3S2S1
DWst2
v
H
v
DWrev
Single DW rightwards motion (bottom)
Two DWs moving in opposite directions (upper)
microwire
S1
yellow
S2
blue
S3
pink
S4
green
For Happ=-262 A/m, the signal at S4 (green) is
received before the one in S3 (pink) denoting
the presence of a second reverse wall, DWrev,
propagating in the opposite direction
H
H
The appearance of a second DW moving opposite
“Large” Applied Field = ± 281 A/m
H
S4S3S2S1
DWst1
v
S4S3S2S1
0H 
S4S3S2S1
DWst2
v
H
v
DWrev
DWst2 and DWrev arrive to S3 simultaneously:
microwire
S1
yellow
S2
blue
S3
pink
S4
green
For Happ=-281 A/m, signals at S2 (blue) and S4
(green) are picked up simultaneously.
Also, signal in S3 (pink) has higher amplitude
and reduced width.
Observing the collapse of 2 single DWs moving in opposite directions
www.icmm.csic.es/gnmp/
Inst. Materials Science of Madrid
David Trabada
Rafael P. del Real
Jose Miguel García
Cristina Bran
Laura Vivas
Rhimou ElKammouni
Ester Palmero
Oksana Chubykalo Yurii Ivanov
Agustina Asenjo
Group of Nanomagnetism
and Magnetization Processes
the scientific team in winter excursion by the
mountains in Segovia looking for the roasted lambPatones de Arriba,
Dec. 2015

More Related Content

What's hot

Tem Crams of Distinctive NLO Material (Second Harmonic Generative Type) Bariu...
Tem Crams of Distinctive NLO Material (Second Harmonic Generative Type) Bariu...Tem Crams of Distinctive NLO Material (Second Harmonic Generative Type) Bariu...
Tem Crams of Distinctive NLO Material (Second Harmonic Generative Type) Bariu...msejjournal
 
Matteo Correnti: Constraining Globular Clusters Properties Using IR Photometr...
Matteo Correnti: Constraining Globular Clusters Properties Using IR Photometr...Matteo Correnti: Constraining Globular Clusters Properties Using IR Photometr...
Matteo Correnti: Constraining Globular Clusters Properties Using IR Photometr...JeremyHeyl
 
Synthesis, structure and room temperature ferromagnetism of Mn and or Co dope...
Synthesis, structure and room temperature ferromagnetism of Mn and or Co dope...Synthesis, structure and room temperature ferromagnetism of Mn and or Co dope...
Synthesis, structure and room temperature ferromagnetism of Mn and or Co dope...saad yakout
 
Nanomaterials and nanoparticles
Nanomaterials and nanoparticlesNanomaterials and nanoparticles
Nanomaterials and nanoparticlessaivikas26
 
Vitality of Physics In Nanoscience and Nanotechnology
Vitality of Physics In Nanoscience and NanotechnologyVitality of Physics In Nanoscience and Nanotechnology
Vitality of Physics In Nanoscience and NanotechnologyIOSR Journals
 
Properties of Nano-materials
Properties of Nano-materialsProperties of Nano-materials
Properties of Nano-materialsPartha P. Mishra
 
Quantum dots and application in medical science
Quantum dots and application in medical scienceQuantum dots and application in medical science
Quantum dots and application in medical sciencekeyhan *
 
Nanotechnology ict ppt
Nanotechnology ict pptNanotechnology ict ppt
Nanotechnology ict pptMehatabGadag
 
Characterization of Nanoparticles.
Characterization of Nanoparticles.Characterization of Nanoparticles.
Characterization of Nanoparticles.Manish Rajput
 

What's hot (18)

Thesis
ThesisThesis
Thesis
 
Connecting theory with experiment: A survey to understand the behaviour of mu...
Connecting theory with experiment: A survey to understand the behaviour of mu...Connecting theory with experiment: A survey to understand the behaviour of mu...
Connecting theory with experiment: A survey to understand the behaviour of mu...
 
Tem Crams of Distinctive NLO Material (Second Harmonic Generative Type) Bariu...
Tem Crams of Distinctive NLO Material (Second Harmonic Generative Type) Bariu...Tem Crams of Distinctive NLO Material (Second Harmonic Generative Type) Bariu...
Tem Crams of Distinctive NLO Material (Second Harmonic Generative Type) Bariu...
 
5444443
54444435444443
5444443
 
Organic solar cells probed in situ
Organic solar cells probed in situOrganic solar cells probed in situ
Organic solar cells probed in situ
 
Matteo Correnti: Constraining Globular Clusters Properties Using IR Photometr...
Matteo Correnti: Constraining Globular Clusters Properties Using IR Photometr...Matteo Correnti: Constraining Globular Clusters Properties Using IR Photometr...
Matteo Correnti: Constraining Globular Clusters Properties Using IR Photometr...
 
Magnetotactic bacteria.
Magnetotactic bacteria.Magnetotactic bacteria.
Magnetotactic bacteria.
 
Synthesis, structure and room temperature ferromagnetism of Mn and or Co dope...
Synthesis, structure and room temperature ferromagnetism of Mn and or Co dope...Synthesis, structure and room temperature ferromagnetism of Mn and or Co dope...
Synthesis, structure and room temperature ferromagnetism of Mn and or Co dope...
 
Vs Dang Cv
Vs Dang CvVs Dang Cv
Vs Dang Cv
 
Nanomaterials and nanoparticles
Nanomaterials and nanoparticlesNanomaterials and nanoparticles
Nanomaterials and nanoparticles
 
Vitality of Physics In Nanoscience and Nanotechnology
Vitality of Physics In Nanoscience and NanotechnologyVitality of Physics In Nanoscience and Nanotechnology
Vitality of Physics In Nanoscience and Nanotechnology
 
SSD_15_Sanli
SSD_15_SanliSSD_15_Sanli
SSD_15_Sanli
 
Properties of Nano-materials
Properties of Nano-materialsProperties of Nano-materials
Properties of Nano-materials
 
Quantum dots and application in medical science
Quantum dots and application in medical scienceQuantum dots and application in medical science
Quantum dots and application in medical science
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Nanotechnology ict ppt
Nanotechnology ict pptNanotechnology ict ppt
Nanotechnology ict ppt
 
Characterization of Nanoparticles.
Characterization of Nanoparticles.Characterization of Nanoparticles.
Characterization of Nanoparticles.
 
Euser_pub_list
Euser_pub_listEuser_pub_list
Euser_pub_list
 

Viewers also liked

Viewers also liked (15)

nano wire
nano wirenano wire
nano wire
 
2016.06.21 gqt uam NanoFrontMag
2016.06.21 gqt uam NanoFrontMag2016.06.21 gqt uam NanoFrontMag
2016.06.21 gqt uam NanoFrontMag
 
2016.06.21 ima NanoFrontMag
2016.06.21 ima NanoFrontMag2016.06.21 ima NanoFrontMag
2016.06.21 ima NanoFrontMag
 
2016.06.21 lab287 NanoFrontMag NanoFrontMag
2016.06.21 lab287 NanoFrontMag NanoFrontMag2016.06.21 lab287 NanoFrontMag NanoFrontMag
2016.06.21 lab287 NanoFrontMag NanoFrontMag
 
2016.06.21 gbe csic NanoFrontMag
2016.06.21 gbe csic NanoFrontMag2016.06.21 gbe csic NanoFrontMag
2016.06.21 gbe csic NanoFrontMag
 
Tanmoy CV
Tanmoy CVTanmoy CV
Tanmoy CV
 
Quantum formula sheet
Quantum formula sheetQuantum formula sheet
Quantum formula sheet
 
tifr report
tifr reporttifr report
tifr report
 
TIFR_Report
TIFR_ReportTIFR_Report
TIFR_Report
 
Czeroc ppt slideshow
Czeroc ppt slideshowCzeroc ppt slideshow
Czeroc ppt slideshow
 
ASBTE_poster_march20-final (1)
ASBTE_poster_march20-final (1)ASBTE_poster_march20-final (1)
ASBTE_poster_march20-final (1)
 
Nano Whiskers
Nano WhiskersNano Whiskers
Nano Whiskers
 
nanowires
nanowires nanowires
nanowires
 
Nanowires presentation
Nanowires presentationNanowires presentation
Nanowires presentation
 
Ferrites
Ferrites Ferrites
Ferrites
 

Similar to 2016.06.21 gmm csic NanoFrontMag

Cristina_Azuara_REU2015_poster
Cristina_Azuara_REU2015_posterCristina_Azuara_REU2015_poster
Cristina_Azuara_REU2015_posterCristina Azuara
 
Graphene plasmonic couple to metallic antenna
Graphene plasmonic couple to metallic antennaGraphene plasmonic couple to metallic antenna
Graphene plasmonic couple to metallic antennaxingangahu
 
1 s2.0-s0022460 x17307472-main
1 s2.0-s0022460 x17307472-main1 s2.0-s0022460 x17307472-main
1 s2.0-s0022460 x17307472-mainMesfin Demise
 
Laboratory Raman spectroscopy ISP NASU
Laboratory Raman spectroscopy ISP NASULaboratory Raman spectroscopy ISP NASU
Laboratory Raman spectroscopy ISP NASUЮлия Деева
 
Analysis and simulations of optimal geometry shapes of the 4 and 9 nano hole ...
Analysis and simulations of optimal geometry shapes of the 4 and 9 nano hole ...Analysis and simulations of optimal geometry shapes of the 4 and 9 nano hole ...
Analysis and simulations of optimal geometry shapes of the 4 and 9 nano hole ...IJECEIAES
 
Aip pg book of abstracts
Aip pg book of abstractsAip pg book of abstracts
Aip pg book of abstractsSiddartha Verma
 
1 s2.0-s2352864817301992-main
1 s2.0-s2352864817301992-main1 s2.0-s2352864817301992-main
1 s2.0-s2352864817301992-mainAkshaya Rath
 
Site-specific measurement of the giant magnetoresistance (GMR) of individual ...
Site-specific measurement of the giant magnetoresistance (GMR) of individual ...Site-specific measurement of the giant magnetoresistance (GMR) of individual ...
Site-specific measurement of the giant magnetoresistance (GMR) of individual ...iosrjce
 
Neutron Refractometry - B Kreimer
Neutron Refractometry - B KreimerNeutron Refractometry - B Kreimer
Neutron Refractometry - B Kreimernirupam12
 
Angular and position stability of a nanorod trapped in an optical tweezers
Angular and position stability of a nanorod trapped in an optical tweezersAngular and position stability of a nanorod trapped in an optical tweezers
Angular and position stability of a nanorod trapped in an optical tweezersAmélia Moreira
 
PNAS-2013-Man-15886-91
PNAS-2013-Man-15886-91PNAS-2013-Man-15886-91
PNAS-2013-Man-15886-91Devin Liner
 
2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.ppt2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.pptHoca26
 
Atomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular DichroismAtomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular DichroismRiccardo Di Stefano
 
Introduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnologyIntroduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnologyaimanmukhtar1
 

Similar to 2016.06.21 gmm csic NanoFrontMag (20)

Cnt flow-sensorss
Cnt flow-sensorssCnt flow-sensorss
Cnt flow-sensorss
 
Cristina_Azuara_REU2015_poster
Cristina_Azuara_REU2015_posterCristina_Azuara_REU2015_poster
Cristina_Azuara_REU2015_poster
 
Enano newsletter issue 23
Enano newsletter issue 23Enano newsletter issue 23
Enano newsletter issue 23
 
Graphene plasmonic couple to metallic antenna
Graphene plasmonic couple to metallic antennaGraphene plasmonic couple to metallic antenna
Graphene plasmonic couple to metallic antenna
 
1 s2.0-s0022460 x17307472-main
1 s2.0-s0022460 x17307472-main1 s2.0-s0022460 x17307472-main
1 s2.0-s0022460 x17307472-main
 
Laboratory Raman spectroscopy ISP NASU
Laboratory Raman spectroscopy ISP NASULaboratory Raman spectroscopy ISP NASU
Laboratory Raman spectroscopy ISP NASU
 
Analysis and simulations of optimal geometry shapes of the 4 and 9 nano hole ...
Analysis and simulations of optimal geometry shapes of the 4 and 9 nano hole ...Analysis and simulations of optimal geometry shapes of the 4 and 9 nano hole ...
Analysis and simulations of optimal geometry shapes of the 4 and 9 nano hole ...
 
Aip pg book of abstracts
Aip pg book of abstractsAip pg book of abstracts
Aip pg book of abstracts
 
Nmr modulo
Nmr moduloNmr modulo
Nmr modulo
 
1 s2.0-s2352864817301992-main
1 s2.0-s2352864817301992-main1 s2.0-s2352864817301992-main
1 s2.0-s2352864817301992-main
 
Site-specific measurement of the giant magnetoresistance (GMR) of individual ...
Site-specific measurement of the giant magnetoresistance (GMR) of individual ...Site-specific measurement of the giant magnetoresistance (GMR) of individual ...
Site-specific measurement of the giant magnetoresistance (GMR) of individual ...
 
Neutron Refractometry - B Kreimer
Neutron Refractometry - B KreimerNeutron Refractometry - B Kreimer
Neutron Refractometry - B Kreimer
 
Angular and position stability of a nanorod trapped in an optical tweezers
Angular and position stability of a nanorod trapped in an optical tweezersAngular and position stability of a nanorod trapped in an optical tweezers
Angular and position stability of a nanorod trapped in an optical tweezers
 
s41566-021-00813-y.pdf
s41566-021-00813-y.pdfs41566-021-00813-y.pdf
s41566-021-00813-y.pdf
 
PNAS-2013-Man-15886-91
PNAS-2013-Man-15886-91PNAS-2013-Man-15886-91
PNAS-2013-Man-15886-91
 
2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.ppt2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.ppt
 
Atomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular DichroismAtomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular Dichroism
 
Study of Optical Character of Nano-antenna
Study of Optical Character of Nano-antennaStudy of Optical Character of Nano-antenna
Study of Optical Character of Nano-antenna
 
Introduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnologyIntroduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnology
 
CV_Nihar
CV_NiharCV_Nihar
CV_Nihar
 

More from NanoFrontMag-cm

2018.06.12 isabel guillamon uam
2018.06.12 isabel guillamon uam2018.06.12 isabel guillamon uam
2018.06.12 isabel guillamon uamNanoFrontMag-cm
 
2018.06.12 jairo sinova jgu
2018.06.12 jairo sinova jgu2018.06.12 jairo sinova jgu
2018.06.12 jairo sinova jguNanoFrontMag-cm
 
2018.06.12 olivier fruchart spintec
2018.06.12 olivier fruchart spintec2018.06.12 olivier fruchart spintec
2018.06.12 olivier fruchart spintecNanoFrontMag-cm
 
2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMag2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMagNanoFrontMag-cm
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMagNanoFrontMag-cm
 
2018.06.12 cristina bran icmmcsic NanoFrontMag
2018.06.12 cristina bran icmmcsic NanoFrontMag2018.06.12 cristina bran icmmcsic NanoFrontMag
2018.06.12 cristina bran icmmcsic NanoFrontMagNanoFrontMag-cm
 
2018.06.12 antonio lara uam NanoFrontMag
2018.06.12 antonio lara uam NanoFrontMag2018.06.12 antonio lara uam NanoFrontMag
2018.06.12 antonio lara uam NanoFrontMagNanoFrontMag-cm
 
2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMagNanoFrontMag-cm
 
2016.06.21 lab282 NanoFrontMag
2016.06.21 lab282 NanoFrontMag2016.06.21 lab282 NanoFrontMag
2016.06.21 lab282 NanoFrontMagNanoFrontMag-cm
 
2016.06.21 magnetrans uam NanoFrontMag
2016.06.21 magnetrans uam NanoFrontMag 2016.06.21 magnetrans uam NanoFrontMag
2016.06.21 magnetrans uam NanoFrontMag NanoFrontMag-cm
 
2016.06.21 lbt uam NanoFrontMag
2016.06.21 lbt uam NanoFrontMag 2016.06.21 lbt uam NanoFrontMag
2016.06.21 lbt uam NanoFrontMag NanoFrontMag-cm
 
2016.06.21 mano ucm NanoFrontMag
2016.06.21 mano ucm NanoFrontMag2016.06.21 mano ucm NanoFrontMag
2016.06.21 mano ucm NanoFrontMagNanoFrontMag-cm
 
2016.06.21 lab287 2 NanoFrontMag
2016.06.21 lab287 2 NanoFrontMag2016.06.21 lab287 2 NanoFrontMag
2016.06.21 lab287 2 NanoFrontMagNanoFrontMag-cm
 
2016.06.21 gnb imdea NanoFrontMag
2016.06.21 gnb imdea NanoFrontMag2016.06.21 gnb imdea NanoFrontMag
2016.06.21 gnb imdea NanoFrontMagNanoFrontMag-cm
 

More from NanoFrontMag-cm (14)

2018.06.12 isabel guillamon uam
2018.06.12 isabel guillamon uam2018.06.12 isabel guillamon uam
2018.06.12 isabel guillamon uam
 
2018.06.12 jairo sinova jgu
2018.06.12 jairo sinova jgu2018.06.12 jairo sinova jgu
2018.06.12 jairo sinova jgu
 
2018.06.12 olivier fruchart spintec
2018.06.12 olivier fruchart spintec2018.06.12 olivier fruchart spintec
2018.06.12 olivier fruchart spintec
 
2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMag2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMag
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag
 
2018.06.12 cristina bran icmmcsic NanoFrontMag
2018.06.12 cristina bran icmmcsic NanoFrontMag2018.06.12 cristina bran icmmcsic NanoFrontMag
2018.06.12 cristina bran icmmcsic NanoFrontMag
 
2018.06.12 antonio lara uam NanoFrontMag
2018.06.12 antonio lara uam NanoFrontMag2018.06.12 antonio lara uam NanoFrontMag
2018.06.12 antonio lara uam NanoFrontMag
 
2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag
 
2016.06.21 lab282 NanoFrontMag
2016.06.21 lab282 NanoFrontMag2016.06.21 lab282 NanoFrontMag
2016.06.21 lab282 NanoFrontMag
 
2016.06.21 magnetrans uam NanoFrontMag
2016.06.21 magnetrans uam NanoFrontMag 2016.06.21 magnetrans uam NanoFrontMag
2016.06.21 magnetrans uam NanoFrontMag
 
2016.06.21 lbt uam NanoFrontMag
2016.06.21 lbt uam NanoFrontMag 2016.06.21 lbt uam NanoFrontMag
2016.06.21 lbt uam NanoFrontMag
 
2016.06.21 mano ucm NanoFrontMag
2016.06.21 mano ucm NanoFrontMag2016.06.21 mano ucm NanoFrontMag
2016.06.21 mano ucm NanoFrontMag
 
2016.06.21 lab287 2 NanoFrontMag
2016.06.21 lab287 2 NanoFrontMag2016.06.21 lab287 2 NanoFrontMag
2016.06.21 lab287 2 NanoFrontMag
 
2016.06.21 gnb imdea NanoFrontMag
2016.06.21 gnb imdea NanoFrontMag2016.06.21 gnb imdea NanoFrontMag
2016.06.21 gnb imdea NanoFrontMag
 

Recently uploaded

Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayZachary Labe
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantadityabhardwaj282
 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsCharlene Llagas
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |aasikanpl
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsHajira Mahmood
 

Recently uploaded (20)

Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work Day
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are important
 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of Traits
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutions
 

2016.06.21 gmm csic NanoFrontMag

  • 1. MAGNETIC NANO & MICRO WIRES Manuel Vazquez Group of Magnetic Wires . Institute of Materials Science of Madrid, CSIC. Spain 1.5 mm metallic diameter
  • 2. AUTOR/ES TÍTULO FECHA TIPO REVISTA CAPÍTULO PÁGINAS COMENTARIO C. Bran, E.M. Palmero, Zi-An Li, R.P. del Real, M Spasova, M Farle and M Vázquez Correlation between structure and magnetic properties in CoxFe100-x nanowires: the roles of composition and wire diameter 2015 Article J. Phys. D: Appl. Phys. 48 145304 (7pp) Col. Duisburg-Essen Univ. C. Bran, A.P. Espejo, E.M. Palmero, J. Escrig and M. Vázquez Angular dependence of coercivity with temperature in Co-based Nanowires 2015 Article J. Magn. Magn. Mater. 396 327–332 Col. Santiago Chile Univ. J.G. Ovejero, C. Bran, M.P. Morales and M. Vazquez Electrochemical synthesis of core–shell magnetic nanowires 2015 Article J. Magn.Magn. Mater. 389 144–147 Letter to the Editor Belén Sanz, Ester M. Palmero, Rafael P. del Real, Manuel Vázquez and Carmen Mijangos Arrays of Magnetic Ni Nanowires Grown Inside Polystyrene Nanotubes 2015 Article Ind. Eng. Chem. Res. 54 13005−13008 Coll. ICPM/CSIC M. Vazquez, R. ElKammouni, G.V. Kurlyandskaya, V. Rodionova and L. Kraus Bimagnetic Microwires, Magnetic Properties and High-Frequency Behavior 2016 Book Chapter “Novel Functional Magnetic Materials”, A. Zhukov (ed.) 7 29 pag. Springer Series in Materials Science 231, DOI 10.1007/978-3-319- 26106-5_7, Springer International Publishing Switzerland) 2016 M.S. Arshad, M.P. Proença, S. Trafela, V. Neu, U. Wolff, S. Stienen, M. Vazquez, S. Kobe and K.Ž. Rožman An oblivious growth mechanism for high- magnetic-anisotropy hcp Co-Pt nanowire arrays: the role of the crystal orientation in the switching-field distribution and the magnetic-domain configuration 2016 Article J. Phys. D: Appl. Phys. in the press Coll. Slovenia Univ Alejandro Jiménez, Peter Klein, Rastislav Varga, Rafael Pérez and Manuel Vázquez On the induced voltage by the domain wall propagation in cylindrical magnetic microwire 2016 Article IEEE Magn Letters Submittted Coll. Kosiçe Univ M P Proenca, C T Sousa, J Ventura, J Garcia, MVazquez and J P Araujo Identifying less-interacting single domain states in Ninanowire arrays by FORC 2016 Article J. Phys. D: Appl. Phys. Submitted; Coll. Porto Univ. Lei Shao,Yangyong Zhao, Alejandro Jiménez, Manuel Vázquez, Yong Zhang Shape memory and huge superelasticity in Ni-Mn-Ga microwires 2016 Article Metals Submmitted; Col. University of Science and Technology Beijing
  • 3. AUTOR/ES TÍTULO TIPO CONFERENCE FECHA LUGAR A. Jimenez, R. Varga and M. Vazquez Electromotive force indiced by domain wall propagation in magnetic microwire Oral Presentation INTERMAG'2015 13/05/2015 Beijing, China M. Vázquez, C. Bran, A. Asenjo, R. Perez, E. Palmero, Y. Ivanov and O. Chubykalo-Fesenko On the magnetization reversal of Co based nanowires Invited Presentation Int. Worksh. Magnetic Nanowire and Nanotubes 19/05/2015 Meersburg, Germany A. Jimenez, R. Varga, R. Perez and M. Vazquez Controlled motion of single Domain Walls in magnetic microwires Invited Presentation 7th Int. Workshop on Magnetic Wires 02/07/2015 Ordizia, Spain M. Vazquez Program Committee Chair International Conf. on Magnetism, ICM 5-10 / 07 / 2015 Barcelona, Spain C. Bran, E. Palmero, E. Berganza, R.P. del Real, A. Asenjo and M. Vazquez Co-based cylindrical nanowires: from applications of their arrays to the spin reversal of individual nanowires Invited Presentation NanoPyme Workshop on Rare-earth free permanent magnets and applications 14/09/2015 Madrid M. Vazquez, C. Bran, E. Palmero, E. Berganza, R.P. del Real, A. Asenjo Magnetization reversal of Co and CoFe-based cylindrical nanowires Invited Presentation Amorphous and Nanostructured Magnetic Materials, ANMM’15 23/09/2015 Iasi, Romania R. Perez, E.M. Palmero, C. Bran and M. Vazquez Magnetic nanowires used in magnetic pick-up senswors Oral Presentation 2016 MMM/INTERMAG Conf. 12/01/2016 San Diego, USA M. Vazquez CoFe based nanowires and their technological applications Inaugural Invited Talk 3rd. Int. Conf. on Recent Trends in Physics, ICRTP, 13/02/2016 Indore, India
  • 4. AUTOR/ES TÍTULO FECHA TIPO PUBLICACIÓN DIRECTOR/ ES COMENTARIO Rhimou El Kammouni Single and Biphase Magnetic Microwires: Microwave behavior and temperature dependence 2015 (Abril) PhD Thesis, UAM M. Vazquez Tutor: M.A. Ramos Sobresaliente cum laude unanimidad Alejandro Jimenez Villada Dinámica de la propagación de una única pared de dominio y procesos de imanación en microhilos magnéticos 2016 (22 Enero) PhD Thesis, UAM M. Vazquez Tutor: M. Hernández- Vélez Sobresaliente cum laude unanimidad Ester M. Rodriguez Palmero 2016 (Noviembre) M. Vazquez & R. Perez Joe Angel Fernandez 2018 (Mayo) M.Vazquez & R. Perez & O. Chubykalo
  • 5. MAGNETIC NANO & MICRO WIRES 1.- Magnetic Nanowires: Synthesis of CoFe with controlled anisotropy Nanowires with modulated diameter & Core/shell nanowires 2.- Magnetic Mcrowires: FMR in biphase microwires Controlled motion of single Domain-Wall in single phase microwires 1.5 mm metallic diameter
  • 6. -Looking for specific cylindrical nanowires & arrays - Arrays ar relevant for 3D magnetic architectures, sensor devices, novel magnets, biomagnetic functionalization and beyond - Individual nanowires are nearly ideal systems for fundamental studies on magnetization & reversal - Why Electrochemical route of fabrication? Less-expensive technique Ability to grow various cylindrical nanowires with designed geometry and composition periodical modulations - Why cylindrical symmetry nanowires? Nanoscale systems profiting of strong shape anisotropy (Diameter: 15nm to 200nm; Length: 100nm to 50mm) Nanocolumns,Nanotubes,Multilayer,Diameter-Modulated, Core@Shell - Combining magnetic (Co, Fe) elements & alloys to tailor structure and magnetocrystalline anisotropy so magnetic response Designed Cylindrical Nanowires: Overall Motivation Self-assembled pore template CoFe nanowire array
  • 7. 1.- Uniform/straight Nanowires: Nanodots, Nanowires (reduced diameter) 2.- Modulated Nanowires : a) Longitudinal Multisegmented, Multilayer b) Radial Nanotubes, Core/Shell c) Diameter Modulated Co/Cu multisegmented Ni nanotubes Fe&Au core&shell CoFe diameter modulated Families of magnetic nanowires prepared by electrochemical route at ICMM/CSIC, Madrid CoFe homogneous
  • 8. Removal of alumina Au layer sputtering NWs growth Removal of barrier layer Al foil Removal of Al layer 1st anodization 2nd anodization Potentiostatic electrodeposition Synthesis procedure: AAO template + metals electroplating Al disk and inner electroplated region NWs released from the membrane Anodic Aluminium Oxide, AAO, membrane FeCo NWs
  • 9. Correlation Magnetic to Structure characterizatics FeCo alloy nanowires 40nm diam. 20 nm diam. For 40 nm wires, structure evolves from bcc to fcc as the Co% increases For 20 nm wires, it evolves as bcc->fcc->hcp Role of Composition and Nanowire Diameter
  • 10. HRTEM characterisation of individual Co nanowires Single crystal [111] fcc Co nanorod X.X. Zhang, KAUST Single crystal hcp Co nanorod
  • 11. fixed diameter, D=35nm and length, L=3mm Textured along different directions in hcp-phases with pH of synthesis Co nanowires: Crystal structure and Magnetic Anisotropy
  • 12. TEM study of Co nanowires prepared under different electrolyte pH: (a) – pH 3.5, (b) - pH 5.0, (c) – pH 6.0 The insets show the corresponding electron diffraction patterns and HRTEM images The green arrows show the orientation of the c-axis. The white arrows indicate the crystal orientation Co nanowires: Crystal structure and Magnetic Anisotropy Yu.P. Ivanov et al. Nanotechnology 2014
  • 13. Hysteresis loops & Spin imaging: VSM & SQUID vs. VF-MFM & MTXM -100 -80 -60 -40 -20 0 20 40 60 80 100 -1.0 -0.5 0.0 0.5 1.0 Mr/Ms B(mT) Ciclo SQUID Ciclo MFM MFM imaging of Ni nanowires (d=180 nm, L = 2 mm) A. Asenjo et al. PRB 2007 Vazquez et al. Eur.J. Phys. 2005 -3000 -2000 -1000 0 1000 2000 3000 -1.0 -0.5 0.0 0.5 1.0 M/MS Magnetic Field (Oe) H paralelo diámetro 35nm VSM loop
  • 14. LorTEM images in over- (a) and under-focused (b) conditions of an array Co NWs 45 nm in diameter and 55-nm long at remanence. The arrows show the transverse direction and the clockwise (red) and anticlockwise (blue) rotation of NW magnetization. As schematically shown on (c), the magnetic vortex acts as a convex or a concave lens, depending on its chirality, which creates a focus above or below the sample. Looking at these planes, we detect uniquely the presence of a vortex state and determine its chirality. On the hologram image (d) the high- and low-phase values are represented by two different color sequences that correspond to the clockwise and anticlockwise rotation of NW magnetization and (e) shows the contour lines corresponding to the B┴. Lorentz microscopy & electron holography: Co nanowires Electron holography directly measures the phase shift of the electron wave passing through the sample by measuring the phase shifts on the interferogramIvanov et al. (Submt. Sc. Reports)
  • 15. Coercivity Hc as a function of NW diameter for single crystal hcp Co NWs and different easy axis orientations (defined by the angle θ with NW axis) Modeling: role of diameter & crystal symmetry hcp Co nanowires (2 mm long) Changing the reversal mode with Anisotropy easy axis Regions (1), (2), (3) correspond to applied fields at which a vortex is formed, at the remanence, and when the vortex core is switched
  • 16. Uniform Alloy NW Multisegmented in composition Modulated in diameter Individual FeCoCu Nanowires: artifially designed to control the reversal process MFM image of uniform alloy Nanowire
  • 17. Grown inside Hard-Mild pulsed anodized templates Growing nanowires with modulated diameter (Co & CoFe) Co nanowires Fine control over shape of nanopores is hard to achieve
  • 18. Diagram with two types of modulations Kerr effect in individual modulated nanowires (Fe27Co68Cu5) The presence of single and several Barkhausen jumps are detected depending on geometry E. Palmero, C. Bran et al Nanotechnology (2015) D1=150nm D1=150nm, L1=800nm D2=170nm, L2= 50 nm D1=130nm, L1=1000nm D2=100nm, L2= 300 nm D1=150nm, L1=800nm D2=170nm, L2= 50 nm
  • 19. AxialprofileofKerrloops Angular dependence of Coercivity Local MOKE loops along the nanowires Fitting to vortex-like DW propagation mode
  • 20. SEM images of modulated FeCoCu wires dispersed on Si substrate. FeCo modulated nanowires show bcc structure with a (110) orientation. Due to the small magnetocrystalline anisotropy, shape anisotropy, dominates Co nanowires show hcp structure with c-axis nearly perpendicular, magnetocrystalline anisotropy dominates FeCoCu & Co modulated (bamboo-like) nanowires
  • 21. FeCo MFM imaging: uniform vs. modulated nanowires
  • 22. PEEM –XMCD results XMCD contrast in a single FeCoCu modulated nanowire. - Direct photoemission (magnetic contrast from the top few nm, surface information) - Transmission data (shadow, x-rays partially transmitted through the wires, bulk information) FeCoCu & Co bamboo-like modulated nanowires XMCD images of CoFe and Co nanowires are recorded at the Fe and Co L3 and L2 edges reversing the photon helicity using the PEEM end-station Synchrotron Light Facility, Barcelona
  • 23. Co nanowires Axial anisotropy Perpendicular anisotropy Axial spins at the core Vortex at the end FeCoCu nanowires PEEM –XMCD in bamboo-like modulated nanowires: information on surface and bulk spin configuration MFM MFM
  • 24. Remanent spin configurations of (a) FeCoCu and (b) Co bamboo nanowires A half wire length is shown (1 micron) containing an edge and two modulations marked by the green arrows. Inserts show the transversal cross sections at the marked regions along the length: Black arrows denote the spin orientation in the corresponding section Red-White-Blue color contrast at background corresponds to axial magnetization. J.A. Fdez-Roldán, mumag code Simulations in CoFeCu and Co bamboo-like Nanowires at Remanence
  • 25. Multisegmented nanowires: Structural data [FeCoCu/Cu]n TEM images of FeCoCu(300 nm)/Cu(15 nm) nanowires: (a) Bright field image of an individual nanowire, (b) HRTEM image of a Cu spacer, (c) and d) Fast Fourier Transform at Cu and FeCoCu regions of the HRTEM image Cu layers perfectly segregated from the FeCoCu; irregular and rough->the polycrystalline nature of the wires, the large grain size and inhomogeneities in the growth.
  • 26. Proenca et al, Phys. Rev. B, 2013 Exchange coupling through oxidation of the inner walls Core–Shell magnetic nanowires as new class of systems with composition and microstructure radial profile . Core/Shell nanowires & nanotubes at ICMM/CSIC Ni –Polystere core/shell nanowires Alumina Membrane + PVA + Fe3O4 Mijangos et al, (I&EC research 2016) Martin et al, J Nanosci.Nanotechn 2010 Magneto-polymeric hybrid systems Fe/Fe3O4 core/shell nanowire
  • 27. Growing of Nanotube and Core@Shell Nanowire Arrays Nanotubes: Single Electrodeposition Core@Shell: Double Electrodeposition
  • 28.
  • 29. 500 nm Outer diameter ~ 300 nm Wall thickness ~ 30 nm Length ~ 15 mm 500 nm FESEM Controlled production of ordered arrays of Ni nanotubes Outer diameter ~ 50 nm Wall thickness ~ 10 nm Length ~ 50 mm 50 nm diameter 10 nm wall thickness 50 mm length 105 nm intertube distance
  • 30. Empty AAO membrane (a), Au nanotubes (b), TM@Au core/shell nanowires (c), contact removed TM@Au nanowires prepared for releasing (d). Fe@Au core/shell nanowires: Au grown under different potentials: 0.35 (a), 0.8 (b), 1.0 (c) and 1.25V (d) Two-step electrodeposition process to obtain core@shell nanowires TM Au Cross-sectional view of core-shell Ovejero et al. (letter to JMMM)
  • 31. From NW arrays to individual core@shell NWs SEM images of Au nanotube arrays (a), and after filling with Fe (b), CoFe (c) and Ni (d). Fe@Au individual nanowires after released from the template (e). Au Fe@Au CoFe@Au Ni@Au
  • 32. D. Magnin et al., Biomacromolecules 2008 Magneto-Biological functionalization: Nanowires vs. Nanoparticles ? Non-chemotoxic induction of cancer cell death using magnetic NWs Contreras et al, Int. J. Nanomedicine 2015 Osteosarcoma Cell Control with Ni/Au segmented nanowires B.Stadler et al. Nanotechnology (2015) CoPt/Au Multisegment Nanowires Functionalization for DNA detection Ramulu et al. J. Electrochem. Sci. (2012)
  • 33. MAGNETIC NANO & MICRO WIRES 2.- Magnetic Mcrowires: FMR in biphase microwires Controlled motion of single Domain-Wall in single phase microwires 1.5 mm metallic diameter
  • 34. Single and Bimagnetic Microwires: Preparation & Magnetics An outer magnetic layer is grown by combined electroplating & sputtering • Magnetic character is controlled by the choice of: Alloys composition (soft/hard, hard/soft) Internal/External phases thickness Magnetostatic Bias + Magnetoelastic Interaction Nucleus (amorphous) Shell (polycrystalline) BI-MAGNETIC MICROWIRE -40 -20 0 20 40 -1,2 -0,6 0,0 0,6 1,2 1 mm CoNi M(x10 -3 emu) H (kA/m) Single CoFeSiB (Soft) CoFeSiB/NiFe (Soft/Soft) FeSiB/CoNi (Soft/Hard)
  • 35. Network Analyser-FMR in microwires The sample holder based on commercial SMA connectors provides reliable data up to 12 GHz Simpler and more versatile technique than those based in µwires as part of the TL DUT Irf 8 mm Hdc µwire Calibration: 50 Ω SMD resistor (electrical delay= 77 ps) Collaboration V. Raposo (Un Salamanca) Power Supply Network Analyzer SMA Cable Helmholtz & Solenoid Sample Holder Computer control
  • 36. Metallic diameter Dmet= 17 mm Total diameter D = (a) 42 mm, (b) 34 mm, (c) 20 mm FMR CoFe-base single microwires: single absorption Various Pyrex thickness CoFeSiB non-magnetostrictive microwire, l ≈ -1x10-7
  • 37. FMR CoFe-base biphase microwires: three absorption peaks CoFeSiB soft non-magnetostrictive core, l ≈ -1x10-7 NiFe ultrasoft polycrystalline shell Metallic diameter Dmet= 17 mm Met. + Pyr. diameter D = (a) 42 mm, (b) 34 mm, (c) 20 mm NiFe thickness t= 2 mm Various Pyrex thickness
  • 38. FMR CoFe-base biphase microwires: two absorption peaks Various Pyrex thickness CoFeSiB non-magnetostrictive microwire, l ≈ -1x10-7 CoNi semi-hard polycrystalline shell Metallic diameter Dmet= 17 mm Met. + Pyr. diameter D = (a) 42 mm, (b) 34 mm, (c) 20 mm CoNi thickness t= 2 mm
  • 39. CoNi shell was non magnetically saturated, is this the origin of the low f absorption? Multiple absorption FMR in bimagnetic wires: summarizing 0 1 2 3 4 5 6 7 8 9 10 40 80 120 160 200 240 280 R() f (GHz) 4.9 kA/m 19.9 kA/m 35.1 kA/m CoFe-FeNi (2-3 mm FeNi) 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0 10 20 30 40 50f 2 (GHz 2 ) H (kOe) FMR 1 FMR 2 (CoFe nucleus) FMR 3 (FeNi shell) CoFe glass-coated linear fit linear fit 4πMS= 11.5 kOe 4πMS= 6.9 kOe ?? • Soft/soft biphase system: CoFe/FeNi • Soft/hard biphase system: CoFe/CoNi FeNi shell was saturated, then a third absorption is observed 0 1 2 3 4 5 -100 -50 0 50 100 150 200 R,X() f (GHz) 16 kA/m R X ??
  • 40. Scheme of nucleation & depinning & propagation of a single Domain Wall (Magnetostrictive Fe rich microwires) ++ -- - + + + + ++ + - - -- - - ++ + - - - - - - - - + - - + - - + + + - -- + + + -400 -200 0 200 400 -0,8 -0,4 0,0 0,4 0,8 M(emu)x10  H (A/m) Hsw ~ (1/m0MsVcr) { aEg+ bEsf} DW Reversal spontaneously begins at one end of the wire at a critical switching field 1.5 mm metallic diameter
  • 41. -Fluxmetric induction magnetometer (Home-designed), based on Butta, Infante et al. Rev Sci Instrm 2009 For high sensitivity hysteresis loops and single DW dynamics Magnetic Measurements Voltage peaks induced at pick up coils as DW passes t Domain Wall velocity Sixtus-Tonks like experiment A single domain wall depins from one end propagating along the entire wire tdv  / 1.55 1.60 1.65 1.70 -0.10 -0.05 0.00 0.05 0.10 dM/dt(a.u.) t (ms)
  • 42. v = S(H − H0) be - eddy currents br - spin relaxation bs - structure relaxation b reflects the interaction DW with defects Single Domain Wall & Dynamics Profiting of having a Single domain wall for fundamental dynamics studies Damping mechanisms DW motion equation
  • 43. Exp. 1.-Trapping a Domain Wall: Sixtus & Tonks–like - Homogeneous drive field, Hdr (solenoid) - Local field, HL - Two symmetric pick-up coils - Asymmetric positioning of the microwire: essential for the depinning of the standard wall, DWst, at the left wire’s end and its rigthward propagation Under applied drive field by the solenoid, a reverse domain nucleates at the left wire’s end, and a “standard” wall depins and propagates along the wire FeSiB microwire, 10 mm metallic diameter
  • 44. Scheme of domain structure after a standard Domain Wall, DWst, moves under drive field, Hdr, plus “small-amplitude” antiparallel local field Antiparallel local-field configuration: the Local field opposes the motion of DW by the Drive field Braking and Trapping a Domain Wall
  • 45. Braking &Trapping a domain wall: Antiparallel local-field configuration DWst trapped at 4.27 mm to the left of the local coil Experimental (blue) & calculated (red) Pick up 1 Pick up 2 0,000 0,001 0,002 0,003 0,004 -200 -100 0 100 200 320 360 400 440 480 0 2 4 6 H(A/m) t (m s) B t (m s) e.m.f(a.u.) Drive field Local field HL>HLtrap Drive, Hdr (blue) and Local, HL (green) fields and emf responses recorded in rigth (black) and left (red) sensing coils HL < HLtrap Velocity, v, of the standard wall, DWst, under drive field Hdr= 170 A/m, as a function of the antiparallel local field, HL. The wall gets trapped at HL=610 A/m Vázquez et al. Phys. Rev. Letters 108,037201 (2012)
  • 46. Exp. 2.-Playing with the propagation of Single DW The sequence of colored peaks confirms a Rightwards motion of the Single DW for rightwards (bottom) and leftwards (upper) applied field Fe79Si10B8C3 microwire (dmet=20.5 mm, Dtot=30.5 mm) - Multiple-coil system (2000 turns, 2 mm wide) - Extended length: 40 cm long wires - Square shaped 40 Hz field A. Jimenez et al., Eur Phys J B 86, 113 (2013) invited JEMS 2012 microwire S1 yellow S2 blue S3 pink S4 greenPick-up coils Si “Small” Applied Field, H = ± 213 A/m H H
  • 47. “Medium” Applied Field = ± 262 A/m H S4S3S2S1 DWst1 v S4S3S2S1 0H  S4S3S2S1 DWst2 v H v DWrev Single DW rightwards motion (bottom) Two DWs moving in opposite directions (upper) microwire S1 yellow S2 blue S3 pink S4 green For Happ=-262 A/m, the signal at S4 (green) is received before the one in S3 (pink) denoting the presence of a second reverse wall, DWrev, propagating in the opposite direction H H The appearance of a second DW moving opposite
  • 48. “Large” Applied Field = ± 281 A/m H S4S3S2S1 DWst1 v S4S3S2S1 0H  S4S3S2S1 DWst2 v H v DWrev DWst2 and DWrev arrive to S3 simultaneously: microwire S1 yellow S2 blue S3 pink S4 green For Happ=-281 A/m, signals at S2 (blue) and S4 (green) are picked up simultaneously. Also, signal in S3 (pink) has higher amplitude and reduced width. Observing the collapse of 2 single DWs moving in opposite directions
  • 49. www.icmm.csic.es/gnmp/ Inst. Materials Science of Madrid David Trabada Rafael P. del Real Jose Miguel García Cristina Bran Laura Vivas Rhimou ElKammouni Ester Palmero Oksana Chubykalo Yurii Ivanov Agustina Asenjo Group of Nanomagnetism and Magnetization Processes the scientific team in winter excursion by the mountains in Segovia looking for the roasted lambPatones de Arriba, Dec. 2015