SlideShare a Scribd company logo
1 of 1
Download to read offline
Figure	
  1:	
  Annotated	
  physiographic	
  map	
  of	
  northern	
  Bangladesh	
  from	
  Pickering	
  
et	
  al.,	
  2013,	
  with	
  loca>ons	
  of	
  sites	
  A	
  &	
  B	
  (see	
  Figure	
  2)	
  marked.	
  
Figure	
  2:	
  Results	
  from	
  numerical	
  model	
  for	
  the	
  early	
  Holocene	
  floods.	
  A)	
  At	
  this	
  loca>on,	
  
overtopping	
  and	
  spillover	
  is	
  plausible,	
  as	
  the	
  floodwaters	
  would	
  exceed	
  130%	
  of	
  bankfull	
  flow,	
  
possibly	
  leading	
  to	
  par>al	
  avulsions	
  into	
  Sylhet	
  Basin.	
  B)	
  In	
  contrast,	
  the	
  Jamuna	
  valley	
  
downstream	
  could	
  easily	
  accommodate	
  the	
  floods,	
  which	
  would	
  only	
  reach	
  40%	
  of	
  bankfull	
  	
  
flow	
  (45	
  m)	
  without	
  spillover	
  and	
  only	
  30%	
  when	
  accoun>ng	
  for	
  spillover	
  (shown).	
  
	
  
I)	
  Numerical	
  Modeling	
  Using	
  Manning’s	
  Equa=on:	
  	
  
	
  
Manning’s	
  equa>on	
  relates	
  discharge	
  to	
  channel	
  dimensions	
  and	
  parameters	
  
under	
  the	
  assump>ons	
  of	
  uniform	
  flow.	
  Manning’s	
  equa>on	
  is	
  given	
  by:	
  
	
  
Q	
  =	
  n-­‐1·∙A5/3·∙P-­‐2/3·∙S1/2	
  
	
  
where:	
  
•  Q	
  =	
  discharge	
  [m3/s]	
  
•  n	
  =	
  Manning’s	
  number	
  [dimensionless]	
  
•  A	
  =	
  channel	
  area	
  [m2]	
  
•  P	
  =	
  we[ed	
  perimeter	
  [m]	
  	
  
•  S	
  =	
  slope	
  [rad]	
  
	
  
Calcula>ons	
  were	
  run	
  assuming	
  a	
  discharge	
  of	
  5	
  x	
  106	
  m3/s.1	
  Valley	
  floor	
  
topography	
  was	
  es>mated	
  based	
  on	
  drill	
  core	
  evidence	
  from	
  Transect	
  A	
  (see	
  
map).2	
  Manning’s	
  n	
  of	
  .06	
  and	
  .05	
  for	
  the	
  valley	
  walls	
  and	
  floor,	
  respec>vely,	
  
were	
  chosen	
  to	
  reflect	
  roughness	
  due	
  to	
  abundant	
  vegeta>on	
  and	
  gravel.	
  
	
  
Height	
  above	
  valley	
  floor	
  (m)	
  
Distance	
  along	
  valley	
  floor	
  (m)	
  
Height	
  above	
  valley	
  floor	
  (m)	
  
68	
  m	
  
Distance	
  along	
  valley	
  floor	
  (m)	
  
40	
  m	
  
Poten=al	
  Impacts	
  of	
  Tsangpo	
  Lake-­‐burst	
  Megafloods	
  and	
  their	
  Preserva=on	
  in	
  the	
  Bengal	
  Basin	
  and	
  Delta	
  System	
  
Michael	
  Diamond1,	
  Steven	
  Goodbred1,	
  Luisa	
  Palamenghi2,	
  Saddam	
  Hossain3,	
  	
  
Jennifer	
  Pickering1,	
  Ryan	
  Sincavage1,	
  Volkhard	
  Spiess2,	
  Lauren	
  Williams4	
  
(1)	
  Earth	
  and	
  Environmental	
  Sciences,	
  Vanderbilt	
  University,	
  Nashville	
  TN,	
  USA	
  (2)	
  Department	
  of	
  Geosciences,	
  University	
  of	
  Bremen,	
  Bremen,	
  Germany,	
  
	
  (3)	
  Department	
  of	
  Geology,	
  Dhaka	
  University,	
  Dhaka,	
  Bangladesh,	
  (4)	
  Departhment	
  of	
  Earth	
  and	
  Environmental	
  Sciences,	
  University	
  of	
  Rochester,	
  Rochester	
  NY,	
  USA	
  
EP13B-­‐3511	
  
	
  
Abstract:	
  
	
  	
  
Large,	
  glacially-­‐dammed	
  lakes	
  formed	
  via	
  the	
  impoundment	
  of	
  the	
  Tsangpo	
  River	
  in	
  Tibet	
  led	
  to	
  lake-­‐burst	
  floods	
  during	
  the	
  late	
  Pleistocene	
  and	
  at	
  least	
  two	
  intervals	
  in	
  the	
  early	
  
and	
  late	
  Holocene.	
  We	
  present	
  the	
  first	
  cri>cal	
  examina>on	
  of	
  the	
  poten>al	
  effects	
  that	
  the	
  Holocene	
  lake	
  drainages	
  had	
  on	
  the	
  downstream	
  Bengal	
  delta	
  and	
  their	
  preserva>on	
  in	
  
the	
  geologic	
  record.	
  Based	
  on	
  stra>graphic	
  evidence	
  from	
  cores	
  drilled	
  across	
  the	
  delta,	
  digital	
  eleva>on	
  models,	
  seismic	
  data,	
  and	
  hydraulic	
  flow	
  calcula>ons,	
  we	
  propose	
  that	
  
lake-­‐burst	
  floods	
  could	
  be	
  responsible	
  for	
  I)	
  triggering	
  short-­‐lived	
  avulsion	
  events	
  of	
  the	
  Brahmaputra	
  River	
  into	
  the	
  Sylhet	
  basin,	
  II)	
  genera>on	
  of	
  a	
  10	
  m	
  thick	
  gravel	
  layer	
  flooring	
  
the	
  Jamuna	
  valley,	
  III)	
  the	
  forma>on	
  of	
  two	
  apparent	
  overflow	
  channels	
  on	
  the	
  Madhupur	
  Terrace,	
  and	
  IV)	
  the	
  deposi>on	
  of	
  a	
  large,	
  mass	
  transport	
  deposit	
  in	
  the	
  submarine	
  
Swatch	
  of	
  No	
  Ground	
  canyon	
  system.	
  Comparing	
  the	
  early	
  and	
  late	
  Holocene	
  events,	
  we	
  expect	
  the	
  distribu>on	
  of	
  the	
  floodwaters	
  and	
  their	
  deposits	
  in	
  the	
  two	
  intervals	
  to	
  differ	
  
sharply	
  owing	
  to	
  major	
  differences	
  in	
  flood	
  volume	
  and	
  the	
  paleotopography	
  of	
  the	
  delta.	
  Despite	
  much	
  higher	
  discharge,	
  the	
  early	
  Holocene	
  floods	
  were	
  largely	
  accommodated	
  
within	
  the	
  vast	
  lowstand	
  valley	
  of	
  the	
  Brahmaputra,	
  with	
  some	
  spillover	
  into	
  the	
  Sylhet	
  basin.	
  In	
  contrast,	
  the	
  late	
  Holocene	
  floods	
  likely	
  spread	
  over	
  a	
  larger	
  area	
  due	
  to	
  the	
  
rela>vely	
  even,	
  low-­‐gradient	
  topography.	
  Offshore,	
  a	
  40	
  m	
  thick,	
  chao>c,	
  semi-­‐transparent	
  seismic	
  facies	
  observed	
  in	
  the	
  canyon	
  corresponds	
  temporally	
  with	
  the	
  early	
  Holocene	
  
floods	
  and	
  is	
  interpreted	
  as	
  a	
  subaqueous	
  mass	
  debris	
  flow	
  generated	
  by	
  the	
  flood	
  pulse	
  directed	
  to	
  the	
  canyon	
  via	
  the	
  lowstand	
  river	
  valley.	
  
	
  
	
  
Methods:	
  	
  
	
  
Sediment	
  cores	
  were	
  drilled	
  in	
  16	
  transects	
  across	
  the	
  delta	
  using	
  a	
  local	
  drill	
  method	
  and	
  shipped	
  to	
  Vanderbilt	
  University	
  for	
  the	
  following	
  analyses:	
  	
  
•  Grain	
  size	
  was	
  measured	
  on	
  a	
  Malvern	
  Mastersizer	
  2000E	
  
•  Magne>c	
  suscep>bility	
  was	
  measured	
  on	
  a	
  Bar>ngton	
  MS2E	
  High	
  Resolu>on	
  Surface	
  Scanning	
  Sensor	
  
•  Stron>um	
  (Sr),	
  silica	
  (SiO2),	
  and	
  calcium	
  (CaO)	
  concentra>ons	
  were	
  measured	
  via	
  X-­‐ray	
  fluorescence	
  (XRF)	
  on	
  a	
  benchtop	
  Oxford	
  Instruments	
  MDX	
  1080	
  +	
  XRF	
  Spectrometer	
  
Digital	
  eleva>on	
  models	
  (DEMs)	
  were	
  used	
  for	
  visual	
  inspec>on	
  of	
  delta	
  morphology.	
  Enthought	
  Canopy,	
  a	
  Python	
  analysis	
  environment,	
  was	
  used	
  for	
  numerical	
  modeling	
  of	
  the	
  
floods.	
  Seismic	
  data	
  from	
  a	
  marine	
  mul>channel	
  seismic	
  survey	
  was	
  analyzed	
  using	
  the	
  HIS	
  Kingdom	
  suite	
  of	
  soqware	
  and	
  GEDCO	
  Vista.	
  
	
  
References:	
  	
  
1.  Montgomery,	
  David	
  R.,	
  et	
  al.	
  (2004),	
  Evidence	
  for	
  Holocene	
  megafloods	
  down	
  the	
  Tsangpo	
  River	
  gorge,	
  southeastern	
  Tibet,	
  Quaternary	
  Research	
  (vol.	
  62),	
  pp.	
  201–207.	
  
2.  Pickering,	
  J.L.,	
  et	
  al.	
  (2013),	
  Late	
  Quaternary	
  sediment	
  record	
  and	
  Holocene	
  channel	
  avulsions	
  of	
  the	
  Jamuna	
  and	
  Old	
  Brahmaputra	
  River	
  valleys	
  in	
  the	
  upper	
  Bengal	
  delta	
  plain,	
  
Geomorphology,	
  DOI:	
  10.1016/j.geomorph.2013.09.021.	
  
Acknowledgements	
  and	
  Correspondence:	
  	
  
We	
  would	
  like	
  to	
  thank	
  the	
  en>re	
  BanglaPIRE	
  team,	
  past	
  and	
  present,	
  for	
  their	
  support	
  and	
  assistance.	
  In	
  par>cular,	
  this	
  project	
  has	
  benefi[ed	
  immeasurably	
  from	
  conversa>ons	
  and	
  
correspondence	
  with	
  Carol	
  Wilson,	
  Jonathan	
  Gilligan,	
  Chris	
  Paola,	
  and	
  Jean-­‐Louis	
  Grimaud.	
  Financial	
  support	
  for	
  undergraduate	
  student	
  travel	
  was	
  generously	
  given	
  by	
  the	
  Vanderbilt	
  University	
  
College	
  of	
  Arts	
  and	
  Science.	
  BanglaPIRE	
  funded	
  by	
  NSF	
  Grant	
  #	
  0968354.	
  Correspondence	
  can	
  be	
  sent	
  to	
  Michael	
  Diamond	
  at	
  michael.s.diamond@vanderbilt.edu.	
  
10	
  m	
  
Bangladesh	
  
200	
  km	
  
Sylhet	
  Basin	
  
Madhupur	
  
Terrace	
  
Namche	
  Barwa	
  
India	
  
Swatch	
  of	
  No	
  Ground	
  canyon	
  
Tibet	
  
Burma	
  
Shillong	
  Massif	
  
30	
  
18	
  
6	
  
Loca=on	
   A	
   B	
  
Slope	
   .0002	
   .00025	
  
Valley	
  width	
   25	
  km	
   58.8	
  km	
  
Valley	
  depth	
  (max)	
   59	
  m	
   67	
  m	
  
Frac>on	
  of	
  	
  5	
  Sv	
  
flood	
  discharge	
  
accommodated	
  
77%	
   246%	
  
SONG	
  deposit	
  
Figure	
  5:	
  Stra>graphic	
  columns	
  of	
  boreholes	
  shown	
  in	
  Figure	
  4E.	
  
	
  
III)	
  Madhupur	
  Terrace:	
  	
  
	
  
Two	
  prominent,	
  symmetric	
  channels	
  (“scars”)	
  cut	
  through	
  the	
  Madhupur	
  Terrace.	
  	
  
	
  
Three	
  plausible	
  hypotheses	
  can	
  explain	
  their	
  forma>on:	
  	
  
1.  They	
  were	
  carved	
  by	
  the	
  Brahmaputra-­‐Jamuna	
  River	
  as	
  it	
  avulsed	
  across	
  the	
  delta;	
  	
  
2.  Megafloods	
  excavated	
  the	
  scars	
  in	
  discrete,	
  violent	
  events;	
  and	
  	
  
3.  Local	
  drainage	
  carved	
  the	
  channels	
  over	
  millennia.	
  
	
  
We	
  reject	
  the	
  first	
  hypothesis	
  because	
  there	
  are	
  not	
  meters	
  of	
  Holocene	
  sand	
  underlying	
  the	
  
modern	
  floodplain,	
  as	
  would	
  be	
  expected	
  with	
  a	
  Brahmaputra-­‐origin,	
  and	
  the	
  only	
  Holocene	
  
sand	
  underlying	
  the	
  modern	
  channel	
  has	
  a	
  Sr	
  concentra>on	
  of	
  ~80	
  ppm,	
  well	
  outside	
  the	
  
typical	
  Brahmaputra	
  range	
  of	
  140-­‐180	
  ppm.	
  The	
  sharpness	
  of	
  the	
  boundaries	
  between	
  terrace	
  
and	
  scar	
  and	
  the	
  size	
  of	
  the	
  incisions	
  are	
  difficult	
  to	
  explain	
  with	
  local	
  drainage	
  alone,	
  
sugges>ng	
  a	
  poten>al	
  role	
  for	
  floods	
  as	
  the	
  primary	
  morphological	
  agent.	
  
	
  
Key:	
  
Holocene-­‐Pleistocene	
  boundary	
  
10	
  m	
  
Figure	
  4:	
  A)	
  Bangladesh	
  in	
  context	
  of	
  south	
  Asia,	
  with	
  Namche	
  Barwa	
  indicated	
  (Google	
  Earth	
  image).	
  B)	
  DEM	
  image	
  of	
  Bangladesh	
  (scale	
  in	
  meters)	
  with	
  loca>ons	
  of	
  interest	
  labeled.	
  C)	
  
Reconstruc>on	
  of	
  Tsangpo	
  paleolake,	
  with	
  ice	
  dam	
  at	
  Namche	
  Barwa,	
  from	
  Montgomery	
  et	
  al.,	
  2004.	
  D)	
  Loca>ons	
  of	
  boreholes	
  drilled	
  for	
  Transect	
  A.	
  E)	
  Loca>ons	
  of	
  Transect	
  D	
  &	
  E	
  boreholes	
  
drilled	
  around	
  Madhupur	
  Terrace,	
  which	
  is	
  highlighted.	
  F)	
  Stra>graphic	
  cross-­‐sec>on	
  of	
  Transect	
  A	
  from	
  Pickering	
  et	
  al.,	
  2013.	
  Floods	
  may	
  have	
  had	
  a	
  role	
  in	
  carving	
  the	
  Old	
  Brahmaputra	
  Valleys’	
  
strikingly	
  different	
  dimensions	
  with	
  respect	
  to	
  the	
  main	
  Brahmaputra-­‐Jamuna	
  course.	
  
Shillong	
  
Madhupur	
  
	
  
II)	
  Gravel	
  Layer:	
  	
  
	
  
A	
  ~10	
  m	
  thick	
  gravel	
  layer	
  
extends	
  at	
  least	
  200	
  km	
  down	
  
the	
  delta.	
  Such	
  a	
  thick	
  gravel	
  
surface	
  is	
  rare	
  in	
  fluvial	
  systems	
  
––	
  it	
  requires	
  a	
  significantly	
  
different	
  hydrologic	
  regime	
  than	
  
what	
  is	
  present	
  today.	
  Since	
  it	
  is	
  
well-­‐established	
  that	
  monsoon	
  
discharge	
  was	
  reduced	
  during	
  
the	
  last	
  glacial,	
  it	
  is	
  implausible	
  
that	
  such	
  an	
  extensive	
  gravel	
  
layer	
  would	
  develop	
  from	
  the	
  
river	
  alone.	
  	
  
Figure	
  3:	
  A)	
  Seismic	
  data	
  taken	
  via	
  ship	
  along	
  the	
  northern	
  Jamuna	
  river	
  shows	
  a	
  ~10	
  m	
  gravel	
  layer,	
  which	
  has	
  been	
  corroborated	
  by	
  field	
  
evidence	
  from	
  the	
  local	
  drill	
  teams.	
  B)	
  Loca>on	
  of	
  seismic	
  cruise	
  in	
  rela>on	
  to	
  the	
  Shillong	
  massif	
  and	
  Madhupur	
  Terrace.	
  Scale	
  is	
  0	
  m	
  
(purple)	
  to	
  40	
  m	
  (red)	
  above	
  sea	
  level.	
  
100	
  m	
  below	
  water	
  level	
  (125	
  ms	
  TWT)	
  
50	
  m	
  below	
  water	
  level	
  (76	
  ms	
  TWT)	
  
Gravel	
  layer	
  (approximate)	
  
17.3	
  km	
  
15.2	
  km	
  
Madhupur	
  
Terrace	
  
Jamuna	
  River	
  
Jamuna	
  River	
  
Shillong	
  Massif	
  
Transect	
  E	
  
Transect	
  D	
  
Transect	
  A	
  
Pleistocene	
  sediments	
  
	
  
IV)	
  Swatch	
  of	
  No	
  Ground	
  Canyon:	
  	
  
	
  
There	
  is	
  a	
  ~40	
  m	
  thick	
  deposit	
  in	
  the	
  Swatch	
  of	
  No	
  Ground	
  canyon	
  characterized	
  by	
  oversized	
  event	
  beds	
  of	
  coarse	
  or	
  mixed	
  grain	
  size.	
  The	
  age	
  of	
  this	
  surface	
  could	
  be	
  es>mated	
  between	
  ca.	
  14	
  
ka	
  as	
  it	
  is	
  conformable	
  with	
  the	
  transgressive	
  surface	
  of	
  erosion	
  associated	
  with	
  early	
  deglacia>on	
  and	
  ca.	
  2	
  ky	
  from	
  the	
  surface	
  sedimenta>on	
  rate	
  (25	
  cm/yr),	
  with	
  ages	
  closer	
  to	
  the	
  former	
  
figure	
  more	
  likely.	
  Internal	
  reflec>ons	
  within	
  the	
  unit	
  suggest	
  it	
  was	
  deposited	
  in	
  a	
  >mescale	
  on	
  the	
  order	
  of	
  days,	
  which	
  would	
  be	
  expected	
  if	
  the	
  deposit	
  originated	
  as	
  a	
  subaqueous	
  mass	
  debris	
  
flow	
  from	
  the	
  early	
  Holocene	
  floods.	
  Isopach	
  images	
  of	
  the	
  deposit	
  reveal	
  it	
  to	
  be	
  much	
  thicker	
  and	
  more	
  extensive	
  than	
  ordinary	
  slumping	
  events	
  due	
  to	
  earthquakes	
  and	
  other	
  factors.	
  
Figure	
  6:	
  A)	
  Mapping	
  of	
  
units	
  in	
  the	
  Swatch	
  of	
  No	
  
Ground	
  canyon	
  from	
  
seismic	
  data.	
  The	
  unit	
  in	
  
red	
  corresponds	
  to	
  the	
  
mass	
  transport	
  deposit	
  
that	
  may	
  be	
  linked	
  to	
  the	
  
early	
  Holocene	
  
megafloods.	
  B)	
  Isopach	
  
map	
  of	
  mass	
  transport	
  
deposit	
  that	
  may	
  be	
  linked	
  
to	
  the	
  early	
  Holocene	
  
megafloods.	
  

More Related Content

What's hot

Tracing of palaeochannels of Bakulahi river system in Uttar Pradesh, India
Tracing of palaeochannels of Bakulahi river system in Uttar Pradesh, IndiaTracing of palaeochannels of Bakulahi river system in Uttar Pradesh, India
Tracing of palaeochannels of Bakulahi river system in Uttar Pradesh, IndiaMallikarjun Mishra
 
29+01+2016+Olga+Agafonova+presentation
29+01+2016+Olga+Agafonova+presentation29+01+2016+Olga+Agafonova+presentation
29+01+2016+Olga+Agafonova+presentationOlga Agafonova
 
Spatial Circulation Patterns Over Palmer Deep Canyon and the Effects on Adeli...
Spatial Circulation Patterns Over Palmer Deep Canyon and the Effects on Adeli...Spatial Circulation Patterns Over Palmer Deep Canyon and the Effects on Adeli...
Spatial Circulation Patterns Over Palmer Deep Canyon and the Effects on Adeli...Katherine Todoroff
 
2011 liongson-modeling studies flood control dams-professorial chair lecture
2011 liongson-modeling studies flood control dams-professorial chair lecture2011 liongson-modeling studies flood control dams-professorial chair lecture
2011 liongson-modeling studies flood control dams-professorial chair lectureleony1948
 
Groundwater movement
Groundwater movementGroundwater movement
Groundwater movementShambel Yideg
 
Groundwater modelling (an Introduction)
Groundwater modelling (an Introduction)Groundwater modelling (an Introduction)
Groundwater modelling (an Introduction)Putika Ashfar Khoiri
 
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...Alireza Babaee
 
IRJET- Hydrographic Survey Conducted on River Jhelum between Pampore and ...
IRJET-  	  Hydrographic Survey Conducted on River Jhelum between Pampore and ...IRJET-  	  Hydrographic Survey Conducted on River Jhelum between Pampore and ...
IRJET- Hydrographic Survey Conducted on River Jhelum between Pampore and ...IRJET Journal
 
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 2: h...
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 2: h...Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 2: h...
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 2: h...Alireza Babaee
 
A study of seepage through oba dam using finite element method
A study of seepage through oba dam using finite element methodA study of seepage through oba dam using finite element method
A study of seepage through oba dam using finite element methodAlexander Decker
 
Vulcanic flooding on_the_moon
Vulcanic flooding on_the_moonVulcanic flooding on_the_moon
Vulcanic flooding on_the_moonSérgio Sacani
 
Discharge and Sediment Transport Modeling Buck Creek Proposal
Discharge and Sediment Transport Modeling Buck Creek ProposalDischarge and Sediment Transport Modeling Buck Creek Proposal
Discharge and Sediment Transport Modeling Buck Creek ProposalJames Blumenschein
 
Konoplev_Lake_Constance_2002
Konoplev_Lake_Constance_2002Konoplev_Lake_Constance_2002
Konoplev_Lake_Constance_2002Alexey Konoplev
 

What's hot (20)

Ijirt148631 paper (1)
Ijirt148631 paper (1)Ijirt148631 paper (1)
Ijirt148631 paper (1)
 
Tracing of palaeochannels of Bakulahi river system in Uttar Pradesh, India
Tracing of palaeochannels of Bakulahi river system in Uttar Pradesh, IndiaTracing of palaeochannels of Bakulahi river system in Uttar Pradesh, India
Tracing of palaeochannels of Bakulahi river system in Uttar Pradesh, India
 
28. vinay raikwar and pramod pagare
28. vinay raikwar and pramod pagare28. vinay raikwar and pramod pagare
28. vinay raikwar and pramod pagare
 
Hydrogeology of the London Basin
Hydrogeology of the London BasinHydrogeology of the London Basin
Hydrogeology of the London Basin
 
75 76
75 7675 76
75 76
 
29+01+2016+Olga+Agafonova+presentation
29+01+2016+Olga+Agafonova+presentation29+01+2016+Olga+Agafonova+presentation
29+01+2016+Olga+Agafonova+presentation
 
Chapter 4 Fetter Principles of groundwater flow
Chapter 4 Fetter Principles of groundwater flowChapter 4 Fetter Principles of groundwater flow
Chapter 4 Fetter Principles of groundwater flow
 
T0 numtq0nzg=
T0 numtq0nzg=T0 numtq0nzg=
T0 numtq0nzg=
 
Spatial Circulation Patterns Over Palmer Deep Canyon and the Effects on Adeli...
Spatial Circulation Patterns Over Palmer Deep Canyon and the Effects on Adeli...Spatial Circulation Patterns Over Palmer Deep Canyon and the Effects on Adeli...
Spatial Circulation Patterns Over Palmer Deep Canyon and the Effects on Adeli...
 
2011 liongson-modeling studies flood control dams-professorial chair lecture
2011 liongson-modeling studies flood control dams-professorial chair lecture2011 liongson-modeling studies flood control dams-professorial chair lecture
2011 liongson-modeling studies flood control dams-professorial chair lecture
 
Groundwater movement
Groundwater movementGroundwater movement
Groundwater movement
 
Groundwater modelling (an Introduction)
Groundwater modelling (an Introduction)Groundwater modelling (an Introduction)
Groundwater modelling (an Introduction)
 
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 1: g...
 
IRJET- Hydrographic Survey Conducted on River Jhelum between Pampore and ...
IRJET-  	  Hydrographic Survey Conducted on River Jhelum between Pampore and ...IRJET-  	  Hydrographic Survey Conducted on River Jhelum between Pampore and ...
IRJET- Hydrographic Survey Conducted on River Jhelum between Pampore and ...
 
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 2: h...
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 2: h...Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 2: h...
Integrated hydro-geological risk for Mallero basin (Alpine Italy) – part 2: h...
 
A study of seepage through oba dam using finite element method
A study of seepage through oba dam using finite element methodA study of seepage through oba dam using finite element method
A study of seepage through oba dam using finite element method
 
Principles of groundwater flow
Principles of groundwater flowPrinciples of groundwater flow
Principles of groundwater flow
 
Vulcanic flooding on_the_moon
Vulcanic flooding on_the_moonVulcanic flooding on_the_moon
Vulcanic flooding on_the_moon
 
Discharge and Sediment Transport Modeling Buck Creek Proposal
Discharge and Sediment Transport Modeling Buck Creek ProposalDischarge and Sediment Transport Modeling Buck Creek Proposal
Discharge and Sediment Transport Modeling Buck Creek Proposal
 
Konoplev_Lake_Constance_2002
Konoplev_Lake_Constance_2002Konoplev_Lake_Constance_2002
Konoplev_Lake_Constance_2002
 

Similar to AGU_Poster

IRJET- Space Technology on Erosion Histories of Earth and Mars
IRJET-  	  Space Technology on Erosion Histories of Earth and Mars IRJET-  	  Space Technology on Erosion Histories of Earth and Mars
IRJET- Space Technology on Erosion Histories of Earth and Mars IRJET Journal
 
FINAL THESIS (December 2015)
FINAL THESIS (December 2015)FINAL THESIS (December 2015)
FINAL THESIS (December 2015)Dylan Babiracki
 
The stream power variation in a GIS environment as an index to evaluate the m...
The stream power variation in a GIS environment as an index to evaluate the m...The stream power variation in a GIS environment as an index to evaluate the m...
The stream power variation in a GIS environment as an index to evaluate the m...pierluigi de rosa
 
morphometry of drainage basin.pptx
morphometry of drainage basin.pptxmorphometry of drainage basin.pptx
morphometry of drainage basin.pptxsoja5
 
First approach for quantifying undiscovered petroleum initially in place on u...
First approach for quantifying undiscovered petroleum initially in place on u...First approach for quantifying undiscovered petroleum initially in place on u...
First approach for quantifying undiscovered petroleum initially in place on u...Mario Prince
 
18494_Guided Facies Modeling using 3D Seismic and Well
18494_Guided Facies Modeling using 3D Seismic and Well18494_Guided Facies Modeling using 3D Seismic and Well
18494_Guided Facies Modeling using 3D Seismic and WellRoy Cox
 
Integrated geophysical methods for groundwater exploration in a k
Integrated geophysical methods for groundwater exploration in a kIntegrated geophysical methods for groundwater exploration in a k
Integrated geophysical methods for groundwater exploration in a kBOURHEN EDDINE AFLI
 
Lacpec_ProductionGeology_Ven
Lacpec_ProductionGeology_VenLacpec_ProductionGeology_Ven
Lacpec_ProductionGeology_Venapicarelli
 
Dam Health assessment using geophysics.
Dam Health assessment using geophysics.Dam Health assessment using geophysics.
Dam Health assessment using geophysics.shubham shukla
 
TSherman Strat Poster
TSherman Strat PosterTSherman Strat Poster
TSherman Strat PosterTrent Sherman
 
Recent extensional tectonics_moon_revealed_lunar_reconnaissance_orbiter_camera
Recent extensional tectonics_moon_revealed_lunar_reconnaissance_orbiter_cameraRecent extensional tectonics_moon_revealed_lunar_reconnaissance_orbiter_camera
Recent extensional tectonics_moon_revealed_lunar_reconnaissance_orbiter_cameraSérgio Sacani
 
Presentation on lower guru(paniari-01and Fateh -01).
Presentation on lower guru(paniari-01and Fateh -01).Presentation on lower guru(paniari-01and Fateh -01).
Presentation on lower guru(paniari-01and Fateh -01).Luqman Ahmed
 
A deep groundwater origin for recurring slope lineae on Mars
A deep groundwater origin for recurring slope lineae on MarsA deep groundwater origin for recurring slope lineae on Mars
A deep groundwater origin for recurring slope lineae on MarsSérgio Sacani
 
2015 SEG NSAP conference_Vp in near waterbottom_Copyright
2015 SEG NSAP conference_Vp in near waterbottom_Copyright2015 SEG NSAP conference_Vp in near waterbottom_Copyright
2015 SEG NSAP conference_Vp in near waterbottom_CopyrightAlan FOLEY
 
DSD-INT 2016 Assessment of hydrologic alterations using floodplain connectivi...
DSD-INT 2016 Assessment of hydrologic alterations using floodplain connectivi...DSD-INT 2016 Assessment of hydrologic alterations using floodplain connectivi...
DSD-INT 2016 Assessment of hydrologic alterations using floodplain connectivi...Deltares
 
DSD-INT 2014 - Delft3D Users Meeting - Keynote Lecture 2014 - Dynamic Deltas,...
DSD-INT 2014 - Delft3D Users Meeting - Keynote Lecture 2014 - Dynamic Deltas,...DSD-INT 2014 - Delft3D Users Meeting - Keynote Lecture 2014 - Dynamic Deltas,...
DSD-INT 2014 - Delft3D Users Meeting - Keynote Lecture 2014 - Dynamic Deltas,...Deltares
 
Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)
Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)
Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)Subterra Ingenieria S.L.
 

Similar to AGU_Poster (20)

IRJET- Space Technology on Erosion Histories of Earth and Mars
IRJET-  	  Space Technology on Erosion Histories of Earth and Mars IRJET-  	  Space Technology on Erosion Histories of Earth and Mars
IRJET- Space Technology on Erosion Histories of Earth and Mars
 
FINAL THESIS (December 2015)
FINAL THESIS (December 2015)FINAL THESIS (December 2015)
FINAL THESIS (December 2015)
 
The stream power variation in a GIS environment as an index to evaluate the m...
The stream power variation in a GIS environment as an index to evaluate the m...The stream power variation in a GIS environment as an index to evaluate the m...
The stream power variation in a GIS environment as an index to evaluate the m...
 
morphometry of drainage basin.pptx
morphometry of drainage basin.pptxmorphometry of drainage basin.pptx
morphometry of drainage basin.pptx
 
First approach for quantifying undiscovered petroleum initially in place on u...
First approach for quantifying undiscovered petroleum initially in place on u...First approach for quantifying undiscovered petroleum initially in place on u...
First approach for quantifying undiscovered petroleum initially in place on u...
 
18494_Guided Facies Modeling using 3D Seismic and Well
18494_Guided Facies Modeling using 3D Seismic and Well18494_Guided Facies Modeling using 3D Seismic and Well
18494_Guided Facies Modeling using 3D Seismic and Well
 
Integrated geophysical methods for groundwater exploration in a k
Integrated geophysical methods for groundwater exploration in a kIntegrated geophysical methods for groundwater exploration in a k
Integrated geophysical methods for groundwater exploration in a k
 
Lacpec_ProductionGeology_Ven
Lacpec_ProductionGeology_VenLacpec_ProductionGeology_Ven
Lacpec_ProductionGeology_Ven
 
Dam Health assessment using geophysics.
Dam Health assessment using geophysics.Dam Health assessment using geophysics.
Dam Health assessment using geophysics.
 
TSherman Strat Poster
TSherman Strat PosterTSherman Strat Poster
TSherman Strat Poster
 
Recent extensional tectonics_moon_revealed_lunar_reconnaissance_orbiter_camera
Recent extensional tectonics_moon_revealed_lunar_reconnaissance_orbiter_cameraRecent extensional tectonics_moon_revealed_lunar_reconnaissance_orbiter_camera
Recent extensional tectonics_moon_revealed_lunar_reconnaissance_orbiter_camera
 
Nature_Somenath
Nature_SomenathNature_Somenath
Nature_Somenath
 
Presentation on lower guru(paniari-01and Fateh -01).
Presentation on lower guru(paniari-01and Fateh -01).Presentation on lower guru(paniari-01and Fateh -01).
Presentation on lower guru(paniari-01and Fateh -01).
 
2015-Ground water- dams Ikard
2015-Ground water- dams Ikard2015-Ground water- dams Ikard
2015-Ground water- dams Ikard
 
A deep groundwater origin for recurring slope lineae on Mars
A deep groundwater origin for recurring slope lineae on MarsA deep groundwater origin for recurring slope lineae on Mars
A deep groundwater origin for recurring slope lineae on Mars
 
2015 SEG NSAP conference_Vp in near waterbottom_Copyright
2015 SEG NSAP conference_Vp in near waterbottom_Copyright2015 SEG NSAP conference_Vp in near waterbottom_Copyright
2015 SEG NSAP conference_Vp in near waterbottom_Copyright
 
DSD-INT 2016 Assessment of hydrologic alterations using floodplain connectivi...
DSD-INT 2016 Assessment of hydrologic alterations using floodplain connectivi...DSD-INT 2016 Assessment of hydrologic alterations using floodplain connectivi...
DSD-INT 2016 Assessment of hydrologic alterations using floodplain connectivi...
 
sorsby_GSA_ppt
sorsby_GSA_pptsorsby_GSA_ppt
sorsby_GSA_ppt
 
DSD-INT 2014 - Delft3D Users Meeting - Keynote Lecture 2014 - Dynamic Deltas,...
DSD-INT 2014 - Delft3D Users Meeting - Keynote Lecture 2014 - Dynamic Deltas,...DSD-INT 2014 - Delft3D Users Meeting - Keynote Lecture 2014 - Dynamic Deltas,...
DSD-INT 2014 - Delft3D Users Meeting - Keynote Lecture 2014 - Dynamic Deltas,...
 
Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)
Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)
Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)
 

AGU_Poster

  • 1. Figure  1:  Annotated  physiographic  map  of  northern  Bangladesh  from  Pickering   et  al.,  2013,  with  loca>ons  of  sites  A  &  B  (see  Figure  2)  marked.   Figure  2:  Results  from  numerical  model  for  the  early  Holocene  floods.  A)  At  this  loca>on,   overtopping  and  spillover  is  plausible,  as  the  floodwaters  would  exceed  130%  of  bankfull  flow,   possibly  leading  to  par>al  avulsions  into  Sylhet  Basin.  B)  In  contrast,  the  Jamuna  valley   downstream  could  easily  accommodate  the  floods,  which  would  only  reach  40%  of  bankfull     flow  (45  m)  without  spillover  and  only  30%  when  accoun>ng  for  spillover  (shown).     I)  Numerical  Modeling  Using  Manning’s  Equa=on:       Manning’s  equa>on  relates  discharge  to  channel  dimensions  and  parameters   under  the  assump>ons  of  uniform  flow.  Manning’s  equa>on  is  given  by:     Q  =  n-­‐1·∙A5/3·∙P-­‐2/3·∙S1/2     where:   •  Q  =  discharge  [m3/s]   •  n  =  Manning’s  number  [dimensionless]   •  A  =  channel  area  [m2]   •  P  =  we[ed  perimeter  [m]     •  S  =  slope  [rad]     Calcula>ons  were  run  assuming  a  discharge  of  5  x  106  m3/s.1  Valley  floor   topography  was  es>mated  based  on  drill  core  evidence  from  Transect  A  (see   map).2  Manning’s  n  of  .06  and  .05  for  the  valley  walls  and  floor,  respec>vely,   were  chosen  to  reflect  roughness  due  to  abundant  vegeta>on  and  gravel.     Height  above  valley  floor  (m)   Distance  along  valley  floor  (m)   Height  above  valley  floor  (m)   68  m   Distance  along  valley  floor  (m)   40  m   Poten=al  Impacts  of  Tsangpo  Lake-­‐burst  Megafloods  and  their  Preserva=on  in  the  Bengal  Basin  and  Delta  System   Michael  Diamond1,  Steven  Goodbred1,  Luisa  Palamenghi2,  Saddam  Hossain3,     Jennifer  Pickering1,  Ryan  Sincavage1,  Volkhard  Spiess2,  Lauren  Williams4   (1)  Earth  and  Environmental  Sciences,  Vanderbilt  University,  Nashville  TN,  USA  (2)  Department  of  Geosciences,  University  of  Bremen,  Bremen,  Germany,    (3)  Department  of  Geology,  Dhaka  University,  Dhaka,  Bangladesh,  (4)  Departhment  of  Earth  and  Environmental  Sciences,  University  of  Rochester,  Rochester  NY,  USA   EP13B-­‐3511     Abstract:       Large,  glacially-­‐dammed  lakes  formed  via  the  impoundment  of  the  Tsangpo  River  in  Tibet  led  to  lake-­‐burst  floods  during  the  late  Pleistocene  and  at  least  two  intervals  in  the  early   and  late  Holocene.  We  present  the  first  cri>cal  examina>on  of  the  poten>al  effects  that  the  Holocene  lake  drainages  had  on  the  downstream  Bengal  delta  and  their  preserva>on  in   the  geologic  record.  Based  on  stra>graphic  evidence  from  cores  drilled  across  the  delta,  digital  eleva>on  models,  seismic  data,  and  hydraulic  flow  calcula>ons,  we  propose  that   lake-­‐burst  floods  could  be  responsible  for  I)  triggering  short-­‐lived  avulsion  events  of  the  Brahmaputra  River  into  the  Sylhet  basin,  II)  genera>on  of  a  10  m  thick  gravel  layer  flooring   the  Jamuna  valley,  III)  the  forma>on  of  two  apparent  overflow  channels  on  the  Madhupur  Terrace,  and  IV)  the  deposi>on  of  a  large,  mass  transport  deposit  in  the  submarine   Swatch  of  No  Ground  canyon  system.  Comparing  the  early  and  late  Holocene  events,  we  expect  the  distribu>on  of  the  floodwaters  and  their  deposits  in  the  two  intervals  to  differ   sharply  owing  to  major  differences  in  flood  volume  and  the  paleotopography  of  the  delta.  Despite  much  higher  discharge,  the  early  Holocene  floods  were  largely  accommodated   within  the  vast  lowstand  valley  of  the  Brahmaputra,  with  some  spillover  into  the  Sylhet  basin.  In  contrast,  the  late  Holocene  floods  likely  spread  over  a  larger  area  due  to  the   rela>vely  even,  low-­‐gradient  topography.  Offshore,  a  40  m  thick,  chao>c,  semi-­‐transparent  seismic  facies  observed  in  the  canyon  corresponds  temporally  with  the  early  Holocene   floods  and  is  interpreted  as  a  subaqueous  mass  debris  flow  generated  by  the  flood  pulse  directed  to  the  canyon  via  the  lowstand  river  valley.       Methods:       Sediment  cores  were  drilled  in  16  transects  across  the  delta  using  a  local  drill  method  and  shipped  to  Vanderbilt  University  for  the  following  analyses:     •  Grain  size  was  measured  on  a  Malvern  Mastersizer  2000E   •  Magne>c  suscep>bility  was  measured  on  a  Bar>ngton  MS2E  High  Resolu>on  Surface  Scanning  Sensor   •  Stron>um  (Sr),  silica  (SiO2),  and  calcium  (CaO)  concentra>ons  were  measured  via  X-­‐ray  fluorescence  (XRF)  on  a  benchtop  Oxford  Instruments  MDX  1080  +  XRF  Spectrometer   Digital  eleva>on  models  (DEMs)  were  used  for  visual  inspec>on  of  delta  morphology.  Enthought  Canopy,  a  Python  analysis  environment,  was  used  for  numerical  modeling  of  the   floods.  Seismic  data  from  a  marine  mul>channel  seismic  survey  was  analyzed  using  the  HIS  Kingdom  suite  of  soqware  and  GEDCO  Vista.     References:     1.  Montgomery,  David  R.,  et  al.  (2004),  Evidence  for  Holocene  megafloods  down  the  Tsangpo  River  gorge,  southeastern  Tibet,  Quaternary  Research  (vol.  62),  pp.  201–207.   2.  Pickering,  J.L.,  et  al.  (2013),  Late  Quaternary  sediment  record  and  Holocene  channel  avulsions  of  the  Jamuna  and  Old  Brahmaputra  River  valleys  in  the  upper  Bengal  delta  plain,   Geomorphology,  DOI:  10.1016/j.geomorph.2013.09.021.   Acknowledgements  and  Correspondence:     We  would  like  to  thank  the  en>re  BanglaPIRE  team,  past  and  present,  for  their  support  and  assistance.  In  par>cular,  this  project  has  benefi[ed  immeasurably  from  conversa>ons  and   correspondence  with  Carol  Wilson,  Jonathan  Gilligan,  Chris  Paola,  and  Jean-­‐Louis  Grimaud.  Financial  support  for  undergraduate  student  travel  was  generously  given  by  the  Vanderbilt  University   College  of  Arts  and  Science.  BanglaPIRE  funded  by  NSF  Grant  #  0968354.  Correspondence  can  be  sent  to  Michael  Diamond  at  michael.s.diamond@vanderbilt.edu.   10  m   Bangladesh   200  km   Sylhet  Basin   Madhupur   Terrace   Namche  Barwa   India   Swatch  of  No  Ground  canyon   Tibet   Burma   Shillong  Massif   30   18   6   Loca=on   A   B   Slope   .0002   .00025   Valley  width   25  km   58.8  km   Valley  depth  (max)   59  m   67  m   Frac>on  of    5  Sv   flood  discharge   accommodated   77%   246%   SONG  deposit   Figure  5:  Stra>graphic  columns  of  boreholes  shown  in  Figure  4E.     III)  Madhupur  Terrace:       Two  prominent,  symmetric  channels  (“scars”)  cut  through  the  Madhupur  Terrace.       Three  plausible  hypotheses  can  explain  their  forma>on:     1.  They  were  carved  by  the  Brahmaputra-­‐Jamuna  River  as  it  avulsed  across  the  delta;     2.  Megafloods  excavated  the  scars  in  discrete,  violent  events;  and     3.  Local  drainage  carved  the  channels  over  millennia.     We  reject  the  first  hypothesis  because  there  are  not  meters  of  Holocene  sand  underlying  the   modern  floodplain,  as  would  be  expected  with  a  Brahmaputra-­‐origin,  and  the  only  Holocene   sand  underlying  the  modern  channel  has  a  Sr  concentra>on  of  ~80  ppm,  well  outside  the   typical  Brahmaputra  range  of  140-­‐180  ppm.  The  sharpness  of  the  boundaries  between  terrace   and  scar  and  the  size  of  the  incisions  are  difficult  to  explain  with  local  drainage  alone,   sugges>ng  a  poten>al  role  for  floods  as  the  primary  morphological  agent.     Key:   Holocene-­‐Pleistocene  boundary   10  m   Figure  4:  A)  Bangladesh  in  context  of  south  Asia,  with  Namche  Barwa  indicated  (Google  Earth  image).  B)  DEM  image  of  Bangladesh  (scale  in  meters)  with  loca>ons  of  interest  labeled.  C)   Reconstruc>on  of  Tsangpo  paleolake,  with  ice  dam  at  Namche  Barwa,  from  Montgomery  et  al.,  2004.  D)  Loca>ons  of  boreholes  drilled  for  Transect  A.  E)  Loca>ons  of  Transect  D  &  E  boreholes   drilled  around  Madhupur  Terrace,  which  is  highlighted.  F)  Stra>graphic  cross-­‐sec>on  of  Transect  A  from  Pickering  et  al.,  2013.  Floods  may  have  had  a  role  in  carving  the  Old  Brahmaputra  Valleys’   strikingly  different  dimensions  with  respect  to  the  main  Brahmaputra-­‐Jamuna  course.   Shillong   Madhupur     II)  Gravel  Layer:       A  ~10  m  thick  gravel  layer   extends  at  least  200  km  down   the  delta.  Such  a  thick  gravel   surface  is  rare  in  fluvial  systems   ––  it  requires  a  significantly   different  hydrologic  regime  than   what  is  present  today.  Since  it  is   well-­‐established  that  monsoon   discharge  was  reduced  during   the  last  glacial,  it  is  implausible   that  such  an  extensive  gravel   layer  would  develop  from  the   river  alone.     Figure  3:  A)  Seismic  data  taken  via  ship  along  the  northern  Jamuna  river  shows  a  ~10  m  gravel  layer,  which  has  been  corroborated  by  field   evidence  from  the  local  drill  teams.  B)  Loca>on  of  seismic  cruise  in  rela>on  to  the  Shillong  massif  and  Madhupur  Terrace.  Scale  is  0  m   (purple)  to  40  m  (red)  above  sea  level.   100  m  below  water  level  (125  ms  TWT)   50  m  below  water  level  (76  ms  TWT)   Gravel  layer  (approximate)   17.3  km   15.2  km   Madhupur   Terrace   Jamuna  River   Jamuna  River   Shillong  Massif   Transect  E   Transect  D   Transect  A   Pleistocene  sediments     IV)  Swatch  of  No  Ground  Canyon:       There  is  a  ~40  m  thick  deposit  in  the  Swatch  of  No  Ground  canyon  characterized  by  oversized  event  beds  of  coarse  or  mixed  grain  size.  The  age  of  this  surface  could  be  es>mated  between  ca.  14   ka  as  it  is  conformable  with  the  transgressive  surface  of  erosion  associated  with  early  deglacia>on  and  ca.  2  ky  from  the  surface  sedimenta>on  rate  (25  cm/yr),  with  ages  closer  to  the  former   figure  more  likely.  Internal  reflec>ons  within  the  unit  suggest  it  was  deposited  in  a  >mescale  on  the  order  of  days,  which  would  be  expected  if  the  deposit  originated  as  a  subaqueous  mass  debris   flow  from  the  early  Holocene  floods.  Isopach  images  of  the  deposit  reveal  it  to  be  much  thicker  and  more  extensive  than  ordinary  slumping  events  due  to  earthquakes  and  other  factors.   Figure  6:  A)  Mapping  of   units  in  the  Swatch  of  No   Ground  canyon  from   seismic  data.  The  unit  in   red  corresponds  to  the   mass  transport  deposit   that  may  be  linked  to  the   early  Holocene   megafloods.  B)  Isopach   map  of  mass  transport   deposit  that  may  be  linked   to  the  early  Holocene   megafloods.