SlideShare a Scribd company logo
1 of 72
Download to read offline
PERTURBING THE INTERACTOME
MULTI-OMICS AND PERSONALIZED METHODS FOR NETWORK
MEDICINE
Marc Santolini

Center for Complex Network Research (CCNR)
Asthma
Parkinson’s
Leukemia
MS
Hypertension
Rheumatoidarthritis
Crohn’s disease
Type 2 diabetes
Glioblastoma
Ulcerative colitis
Heart failure
Network	Clustering	Means	Explainable	Biology
AIF1
ZBTB12
NFKBIZ
MERTK
HHEX
CFB
Diseases As Local Neighborhoods
DIAM
DISEASE MODULES VS COMMUNITIES
−1.00.00.51.0
Fold-Change
BXD−14/TyJ
BXA16/PgnJ
DBA/2J
BXA24/PgnJ
BXD32/TyJ
BXD−32/TyJ
BXHB2
KK/HlJ
AXB19/PgnJ
CXB−3/ByJ
AXB−20/PgnJ
BXD75
BUB/BnJ
LG/J
NOD/LtJ
BXD−11/TyJ
FVB/NJ
PL/J
CXB−12/HiAJ
BXA−4/PgnJ
BXD66
BXD62
SJL/J
CXBH
BXD50
BXH−19/TyJ
BXD87
RIIIS/J
SEA/GnJ
129X1/SvJ
BXD56
SM/J
BXH−9/TyJ
BXD48
BALB/cByJ
BXA−2/PgnJ
C3H/HeJ
CBA/J
BXD45
BXD−38/TyJ
CXB−7/ByJ
AXB−6/PgnJ
BXD49
BALB/cJ
BXD73
BXD40/TyJ
BXD−40/TyJ
BXD43
AKR/J
CXB−6/ByJ
BXA14/PgnJ
C57BLKS/J
BXD64
BXD61
AXB10/PgnJ
BXA−8/PgnJ
BXD21/TyJ
BXA−1/PgnJ
NZB/BlNJ
BXD68
NON/LtJ
SWR/J
BXD84
BXD74
BXD71
BXD79
BXD−5/TyJ
BXA−7/PgnJ
BXA−11/PgnJ
BXD55
BXD−12/TyJ
BXD85
AXB18
BXD44
CE/J
AXB8/PgnJ
NZW/LacJ
BXD−24/TyJ
BXD70
BXD39/TyJ
LP/J
CXB−11/HiAJ
BXH−6/TyJ
CXB−13/HiAJ
1.01.31.6
Fold-Change(log2)
Hes1
Heart mass
Hes1 downregulation
Mild hypertrophy
Hes1 upregulation
Strong hypertrophy
I. Topology vs dynamics
in perturbation
spreading
II. Network
perturbation by
miRNAs
III. Personalized
response to a
perturbation
OVERVIEW
PART I
TOPOLOGY VS DYNAMICS IN PERTURBATION
SPREADING
Marc Santolini, Albert-László Barabási, “Predicting Perturbation Patterns From The Topology Of
Biological Networks”
EDGE TYPES
undirected
PPI
directed
Kinase/substrate
Gene regulation
Metabolic
miRNA
A
B
signed
activation / inhibition
B
A
B
A
weighted
kinetic parameters
˙xi = f(xi, xj, ✓ij)
BA BA
Perturbation
(variant, drug
target)
Perturbation
(variant, drug
target)
Perturbation
(variant, drug
target)
Perturbation
(variant, drug
target)
Perturbation
(variant, drug
target)
Perturbation
(variant, drug
target)
Perturbation
(variant, drug
target)
Perturbation
pattern in the
network
full network
dynamical system
topology
backbone
full network
dynamical system
topology
backbone
full network
dynamical system
topology
backbone
full network
dynamical system
topology
backbone
full network
dynamical system
topology
backbone
‣How much network complexity do we
need to predict perturbation patterns?
full network
dynamical system
topology
backbone
‣87 dynamical systems of biological processes of size > 10
EXAMPLE
RETRIEVING BIOCHEMICAL NETWORKS
Weighted signed
directed network
System of differential equations
b
c
a
... ...
...
...
...
8
>><
>>:
˙xa = k1xc
˙xb = k2
xc
k3+xa
k4xb
˙xc = k5xb k6xc
. . .
Influence networkJacobian matrix
J =
2
6
6
6
4
0 0 k1 . . .
k2
x⇤
c
(k3+x⇤
a)2 k4
k2
k3+x⇤
a
. . .
0 k5 k6 . . .
...
...
...
...
3
7
7
7
5
how a change in a node
concentration directly
influences another node
at steady state
Biochemical network
“Onion-peeling” strategy: how much each layer of complexity
adds to the accuracy of perturbation patterns
Biochemical Topological
Weight (kinetic parameters)
+
+
+
+
+
+
+
-
+
+
-
-
+
-
-
-
Topology (interaction)
Direction (irreversibility)
Sign (activation/inhibition)
ONION-PEELING
J sign(J) |sign(J)| (|sign(J)| + |sign(JT
)|)
2
ONION-PEELING
PPI
Biochemical Topological
Weight (kinetic parameters)
+
+
+
+
+
+
+
-
+
+
-
-
+
-
-
-
Topology (interaction)
Direction (irreversibility)
Sign (activation/inhibition)
J sign(J) |sign(J)| (|sign(J)| + |sign(JT
)|)
2
ONION-PEELING
PPI
Integration with
kinome,
metabolome,
miRnome, gene
regulatory network
Biochemical Topological
Weight (kinetic parameters)
+
+
+
+
+
+
+
-
+
+
-
-
+
-
-
-
Topology (interaction)
Direction (irreversibility)
Sign (activation/inhibition)
J sign(J) |sign(J)| (|sign(J)| + |sign(JT
)|)
2
ONION-PEELING
Literature,
genetic
interactions
Integration with
kinome,
metabolome,
miRnome, gene
regulatory network
Biochemical Topological
Weight (kinetic parameters)
+
+
+
+
+
+
+
-
+
+
-
-
+
-
-
-
Topology (interaction)
Direction (irreversibility)
Sign (activation/inhibition)
J sign(J) |sign(J)| (|sign(J)| + |sign(JT
)|)
2
PPI
ONION-PEELING
Bottleneck
Literature,
genetic
interactions
Integration with
kinome,
metabolome,
miRnome, gene
regulatory network
Biochemical Topological
Weight (kinetic parameters)
+
+
+
+
+
+
+
-
+
+
-
-
+
-
-
-
Topology (interaction)
Direction (irreversibility)
Sign (activation/inhibition)
J sign(J) |sign(J)| (|sign(J)| + |sign(JT
)|)
2
PPI
PERTURBATION PATTERNS
Perturbation spread computed from the Jacobian matrix
(Barzel, Barabasi, Nat Biotech 2013)
S = (1 J) 1
D(
1
(1 J) 1
)
Perturbation patterns
(long distance correlations)
Jacobian
(direct influence)
Sij =
dxi/xi
dxj/xj
Jij =
@xi/xi
@xj/xj
‣ Similar to PRINCE algorithm for unweighted network
(Vanunu et al, PLoS Comp Biol 2009)
Biochemical
Perturbed node
Effect
Network
Perturbed nodePerturbed node
Effect
Biochemical
Network
ACCURACIES ACROSS 87 MODELS
Accuracy of
perturbation patterns
ACCURACIES ACROSS 87 MODELS
(dashed line: Z=2 random
expectation)
Topology
Direction
Sign
Kinetics
+
+
+
+
+
+
+
-
+
+
-
-
+
-
-
-
Accuracyofperturbationpatterns
Biochemical
Diffusion(d+s)
Distance(d)
Firstneighbors(d+s)
Influencestrengthrecovery
0.00.20.40.60.81.0
Accuracy of
perturbation patterns
Biochemical
Perturbed node
Effect
Network
Perturbed nodePerturbed node
Effect
Biochemical
Network
ACCURACIES ACROSS 87 MODELS
‣ 65% recovery rate without kinetics
(80% when just looking at sign recovery)
(dashed line: Z=2 random
expectation)
Topology
Direction
Sign
Kinetics
+
+
+
+
+
+
+
-
+
+
-
-
+
-
-
-
Accuracyofperturbationpatterns
Biochemical
Diffusion(d+s)
Distance(d)
Firstneighbors(d+s)
Influencestrengthrecovery
0.00.20.40.60.81.0
Accuracy of
perturbation patterns
Biochemical
Perturbed node
Effect
Network
Perturbed nodePerturbed node
Effect
Biochemical
Network
kinetics
OTHER FEATURES
Best models are modular, sparse and have fewer hubs
Number of structural holes
Edge density
Mean degree
Mean Jacobian value
Mean eigenvector centrality
Number of reversible equations
Model size
Mean betweenness centrality
Number of strong connected components
Correlation with network model accuracy
−1.0 −0.5 0.0 0.5 1.0
●
●
●
●
●
●
●
●
●
MODULARITY BUFFERS PERTURBATIONS
INSIGHTS | PERSPECTIVES
:A.KITTERMAN/SCIENCE
By Marta Sales-Pardo
I
n the 1970s, ecologists began to specu-
late that modular systems—which are
organized into blocks or modules—can
better contain perturbations and are
therefore more resilient against exter-
nal damage (1). This simple concept can
be applied to any networked system, be it
an ecosystem, cellular metabolism, traffic
flows, human disease contagion, a power
grid, or an economy (2, 3). However, experi-
mental evidence has been lacking (4). On
page 199 of this issue, Gilarranz et al. (5)
provide empirical evidence showing that
modular networked systems do indeed have
an advantage over nonmodular systems
when faced with external perturbations.
The authors designed an elegant meta-
population experiment with the arthro-
pod Folsomia candida. In the experiment,
habitat patches (nodes) were connected in
a modular fashion; specimens could freely
move between patches. Initially, the au-
thors inoculated all patches with the same
number of specimens. Once the whole sys-
tem had reached a stable population, they
continuously removed specimens from one
of the nodes for a sustained period of time.
The results show that modular systems can
contain the spread of such a perturbation
more effectively than a nonmodular system
would, so that only the populations of nodes
within the same module as the perturbed
node is affected (see the figure).
Gilarranz et al. also show that the capac-
ity to contain perturbations comes with a
cost. The more modular the system, the
larger the overall population in the presence
of even strong perturbations, but that is not
the case in the absence of a perturbation. In
the latter case, the overall population levels
are higher in nonmodular systems. These
results not only align with theoretical ex-
pectations, they also help explain the large-
scale organization of complex systems.
To further put this result in historical con-
text, we should cast our minds back more
than 10 years. At that time, the definition
of module in a networked system was still a
loose concept, especially for large systems (6).
Based on commonalities in the systems-level
organization of large networked systems, net-
work scientists proposed to define a module
as a set of nodes that are densely connected
among themselves but loosely connected
to other parts of the network (7, 8). This is
the definition that Gilarranz et al. use. The
modularity of a network then quantifies how
well-defined these densely connected groups
of nodes are within the network.
Using this definition of modules, scien-
tists soon found that the vast majority of
large-scale networked systems in any con-
text—including social, biological, ecologi-
cal, and engineering systems—have a strong
modular component (9, 10). The question
arose why this was the case. In engineered
systems, modularity is arguably a useful
design principle because modular systems
are easy to fix and update (11). However, the
justification for the modularity of natural
networked systems mostly hinged on the
aforementioned theoretical stability consid-
erations. The results reported by Gilarranz
et al. show that the need to contain pertur-
bations can plausibly explain the modular-
ity of at least some natural systems.
NETWORKS
The importance of being modular
An experiment proves the value of modularity in complex systems under perturbation
Department of Chemical Engineering, Universitat Rovira i
Virgili, 43007 Tarragona, Spain. Email: marta.sales@urv.cat
System state
RealityRandomModular
Perturbation starts Perturbation spreads
Contained
in a module
Perturbed
node
Node
Module
Spread?
Spread?
Uncontained
spread
Interconnected
network
How to contain perturbations
In modular systems,perturbations can be contained in one module,whereas they spread throughout randomly connected systems.Real systems could be
represented as a combination of the two types,making it difficult to predict the effects of perturbations.
onSeptember14,2017http://science.sciencemag.org/Downloadedfrom
128 14 JULY 2017 • VOL 357 ISSUE 6347 sciencemag.org SCIENCE
GRAPHIC:A.KITTERMAN/SCIENCE
be applied to any networked system, be it
an ecosystem, cellular metabolism, traffic
flows, human disease contagion, a power
grid, or an economy (2, 3). However, experi-
mental evidence has been lacking (4). On
page 199 of this issue, Gilarranz et al. (5)
provide empirical evidence showing that
modular networked systems do indeed have
an advantage over nonmodular systems
when faced with external perturbations.
The authors designed an elegant meta-
population experiment with the arthro-
pod Folsomia candida. In the experiment,
habitat patches (nodes) were connected in
a modular fashion; specimens could freely
move between patches. Initially, the au-
would, so that only the populations of nodes
within the same module as the perturbed
node is affected (see the figure).
Gilarranz et al. also show that the capac-
ity to contain perturbations comes with a
cost. The more modular the system, the
larger the overall population in the presence
of even strong perturbations, but that is not
the case in the absence of a perturbation. In
the latter case, the overall population levels
are higher in nonmodular systems. These
results not only align with theoretical ex-
pectations, they also help explain the large-
scale organization of complex systems.
To further put this result in historical con-
text, we should cast our minds back more
than 10 years. At that time, the definition
of module in a networked system was still a
loose concept, especially for large systems (6).
well-defined these densely connected groups
of nodes are within the network.
Using this definition of modules, scien-
tists soon found that the vast majority of
large-scale networked systems in any con-
text—including social, biological, ecologi-
cal, and engineering systems—have a strong
modular component (9, 10). The question
arose why this was the case. In engineered
systems, modularity is arguably a useful
design principle because modular systems
are easy to fix and update (11). However, the
justification for the modularity of natural
networked systems mostly hinged on the
aforementioned theoretical stability consid-
erations. The results reported by Gilarranz
et al. show that the need to contain pertur-
bations can plausibly explain the modular-
ity of at least some natural systems.
Department of Chemical Engineering, Universitat Rovira i
Virgili, 43007 Tarragona, Spain. Email: marta.sales@urv.cat
System state
RealityRandomModular
Perturbation starts Perturbation spreads
Contained
in a module
Perturbed
node
Node
Module
Spread?
Spread?
Uncontained
spread
Unperturbed nodes in modular systems Unperturbed nodes in randomly connected systems Perturbed nodes
Interconnected
network
How to contain perturbations
In modular systems,perturbations can be contained in one module,whereas they spread throughout randomly connected systems.Real systems could be
represented as a combination of the two types,making it difficult to predict the effects of perturbations.
Published by AAAS
onSeptember14,2017http://science.sciencemag.org/Downloadedfrom
Science, 2017
CHEMOTAXIS
Molecular Biology of the Cell
Vol. 4, 469-482, May 1993
Computer Simulation of the Phosphorylation Cascade
Controlling Bacterial Chemotaxis
Dennis Bray,* Robert B. Bourret,t# and Melvin I. Simont
*Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom; and
tDivision of Biology, California Institute of Technology, Pasadena, California 91125
Submitted January 22, 1993; Accepted March 5, 1993
We have developed a computer program that simulates the intracellular reactions mediating
the rapid (nonadaptive) chemotactic response of Escherichia coli bacteria to the attractant
aspartate and the repellent Ni2+ ions. The model is built from modular units representing
the molecular components involved, which are each assigned a known value of intracellular
concentration and enzymatic rate constant wherever possible. The components are linked
into a network of coupled biochemical reactions based on a compilation of widely accepted
mechanisms but incorporating several novel features. The computer motor shows the same
pattern of runs, tumbles and pauses seen in actual bacteria and responds in the same way
as living bacteria to sudden changes in concentration of aspartate or Ni2+. The simulated
network accurately reproduces the phenotype of more than 30 mutants in which com-
ponents of the chemotactic pathway are deleted and/or expressed in excess amounts and
shows a rapidity of response to a step change in aspartate concentration similar to living
bacteria. Discrepancies between the simulation and real bacteria in the phenotype of certain
mutants and in the gain of the chemotactic response to aspartate suggest the existence of
additional as yet unidentified interactions in the in vivo signal processing pathway.
INTRODUCTION
Coupled protein phosphorylations are a universal
mechanism of intracellular signaling and the basis of
many complex nets of reactions in eucaryotic cells. Such
networks are poorly understood, despite their impor-
tance, because of the large number of components in-
volved, and the multiple links that exist between them.
Not only are quantitative data on the individual reac-
tions lacking, but we also lack a vehicle by which we
can comprehend the implications of such data and verify
the overall performance of the entire network. Without
making many detailed calculations, it will be difficult
to predict how the network performs under a particular
set of starting conditions, whether it will ever show os-
cillatory or chaotic behavior, and how the performance
of the network will be affected by genetic modifications.
The rational solution to this problem is to employ a
computer simulation that can be used to catalogue bio-
chemical data, test current hypotheses of mechanism,
and make predictions of performance under a virtually
f Present address: Department of Microbiology and Immunology,
University of North Carolina, Chapel Hill, NC 27599.
limitless variety of conditions. However, there have
been very few attempts to develop quantitative models
of this sort for cell signaling pathways involving coupled
phosphorylation reactions. Early steps in this direction
include models of the spatial propagation of oscillations
in Ca2+ concentration in a variety of cells (reviewed by
Dupont and Goldbeter, 1992) and the initial response
to light of vertebrate photoreceptors (Lamb and Pugh,
1992). For the vast majority of cell signaling pathways,
there is insufficient information to construct a mean-
ingful simulation. Without knowing most of the relevant
intracellular concentrations and enzymatic rate con-
stants in a pathway, computer simulations can only be
phenomenological representations having little analyt-
ical power or predictive force at the molecular level.
One of the few signaling pathways for which there
is presently sufficient information to attempt a detailed
computer simulation is that underlying the chemotactic
response in coliform bacteria. This entails a small and
defined set of intracellular proteins which, through
coupled phosphorylation and methylation reactions,
enable the bacterium to respond in an informed, if not
intelligent, way to its chemical environment. All of the
intracellular proteins involved in this response have
©) 1993 by The American Society for Cell Biology 469
Table 5. Comparison of simulated and observed chemotactic behavior of mutant bacteria
Bias
Genotype Simulated Observed Interpretation in terms of bct 1.1 model References
sm sm Most Yp made by TW-stimulated A
tm tm More p flows to Y in absence of B
sm sm Most Yp made by TW-stimulated Y
sm sm No Yp
sm sm No Yp
tm tm Yp increases in absence of Z
wt wt Unstimulated A makes enough Yp in absence of Z
tm ? More p flows to Y in absence of B and Z
tm ? More p flows to Y in absence of B and Z
wt wt Unstimulated A makes enough Yp in absence of Z
wt wt Unstim"lated A makes enough Yp in absence of Z
sm sm No Yp, even in absence of Z
sm sm No Yp
sm sm No Yp
smc sm T overproduction sequesters A and TA complex
sm sm B removes phosphate from A, thus reducing Yp
sm sm W overproduction sequesters A in AW complex
tmd
tm
sm
wt'
tm
T2+A2+
y2+z2+
B2+y2+
"Gutted" mutantsa
(gutted)
A+ (gutted)
Y+ (gutted)
y2+ (gutted)
Y3+ (gutted)
W+Y+ (gutted)
T+W+Y+ (gutted)
A+Y+ (gutted)
A2`Y+ (gutted)
W+A+Y+ (gutted)
T+A+Y+ (gutted)
T+W+A+Y+ (gutted)
Mixed overproduction/
null mutants
'2+Z-
B2+Z-
W2+Z
A2+Z-
Y2+z-
Y2+B-Z-
T2+W-Z-
w2+B-
Z2+B-
Y2+T-
sm A overproduction leads to more Yp
tm Y overproduction leads to more Yp
sm Z stimulates loss of Yp
wt T & W form a complex to restore balance
sm W overproduction doesn't turn off enough A
tm ? A overproduction leads to more Yp
wt' wt Z overproduction balances Y overproduction
sm' sm p flows preferentially through B rather than Y
sm sm No Yp
sm ? No Yp
sm sm No Yp, even in absence of Z
sm' sm No YP when Y moderately overproduced
tm tm Very high levels of CheY cause CW rotation
sm sm No Yp, even in absence of Z
sm sm No Yp, even in absence of Z
tm sm Unstimulated A makes too much Yp in absence of Z
tm ? A overproduction leads to more Yp
tm sm Unstimulated A makes too much Yp in absence of Z
tm sm Unstimulated A makes too much Yp in absence of Z
tm tm Stimulated A makes Yp
tm wt T overproduction doesn't turn off enough A
tm sm B overproduction doesn't remove enough p from A
tm sm W overproduction doesn't turn off enough A
tm tm A overproduction and absence of Z lead to more Yp
tm ? Y o,verproduction and absence of Z lead to more Yp
tm tm More p flows to Y in absence of B and Z
smc sm T overproduction turns off unstimulated A
sm sm W overproduction sequesters A, converting B- to sm
sm sm Z overproduction reduces Yp, converting B- to sm
tm tm Unstimulated A makes Yp when Y overproduced
Liu and Parkinson (1989)
Parkinson (1978)
Parkinson (1978)
Parkinson (1978)
Parkinson (1978)
Parkinson (1978)
Liu and Parkinson (1989)
Liu and Parkinson (1989)
Liu and Parkinson (1989)
Liu and Parkinson (1989)
Liu and Parkinson (1989)
Wolfe et al. (1987)
Liu and Parkinson (1989)
Stewart et al. (1988)
Liu and Parkinson (1989),
Sanders et al. (1989)
Stewart et al. (1988)
Clegg and Koshland (1984)
Kuo and Koshland (1987)
Liu and Parkinson (1989)
Liu and Parkinson (1989),
This work
This work
Stewart et al. (1988)
Wolfe et al. (1988)
Wolfe et al. (1988)
Wolfe et al. (1988)
Barak and Eisenbach (1992)
Conley et al. (1989)
Conley et al. (1989)
Conley et al. (1989)
Conley et al. (1989)
Conley et al. (1989)
Conley et al. (1989)
Liu and Parkinson (1989)
This work
Liu and Parkinson (1989),
Sanders et al. (1989)
This work
Wolfe et al. (1987)
Liu and Parkinson (1989)
Sanders et al. (1989)
Kuo and Koshland (1987)
Clegg and Koshland (1984)
a "y'+ (gutted)" refers to a strain in which CheY is expressed at wild-type concentration in the absence of Tar or other Che proteins. Swimming
behavior predicted by the simulation is characterized as tm = tumble (bias < 0.6), wt = wild type (bias 0.6-0.8), or sm = smooth (bias > 0.8).
b
The bct 1.1 model contains only one transducer (Tar), whereas E. coli actually has four transducer species. Thus, the behavior of modeled T-
Single null mutants
T- b
B-
W-
A-
Y-
Z-
Multiple null mutants
T-Z-
B-Z-
T-B-Z-
W-z-
T-W-Z-
A-Z-
Y-z-
B-Y-Z-
Overproduction mutants
T2+ b
B2+
w2+
“The simulated network accurately
reproduces the phenotype of more
than 30 mutants in which components
of the chemotactic pathway are deleted
and/or expressed in excess amounts”
of the enzymatic
alyzed kinetically.
ither singly or in
arge numbers and
ted. There is, in
e set of data, un-
g system, against
simulate the bio-
axis in a computer
ally reproduce all
behavioral obser-
e first step toward
simulation of the
ce receptor to the
id, excitatory re-
llents. The slower
ptor methylation,
deled previously
kura and Honda,
l.
ibed in this paper, we
carry the chemotactic
ellar motor.
ria such as Escherichia
he ability to modulate
imuli. This is achieved
, which carry signals
otor (Figure 1) (Bourret
h many details are still
n attractant or repellent
phosphorylation of an
Borkovich et al., 1989;
. The phosphorylated
te group to a second
1988). The product of
racts with the flagellar
ch produces "tumble"
otor in the absence of
lts in "run" swimming
Two other components
are CheW, which ap-
CheA phosphorylation
(sp)
Figure 1. Signal transduction pathway in bacterial chemotaxis.
Symbols within circles denote the Che proteins, in some cases phos-
phorylated, which carry the chemotactic signals from the receptor
protein Tar to the flagellar motor. Solid arrows represent phosphor-
ylation reactions. Dashed arrows indicate regulatory interactions. The
methylation reactions catalyzed by CheR and CheB (open arrows)
are not included in the computer simulation.
basis of the adaptation of this response. In consequence, we do not
expect the model to show the slow recovery of swimming behavior
characteristic of wild-type bacteria, but it should be able to reproduce
the short-term, impulsive responses of wild-type and mutant bacteria.
It should also reflect the short-term behavior of mutants in which the
demethylating enzyme CheB has been removed or overexpressed,
because the latter protein forms part of the flux of phosphate groups
in the excitatory pathway.
Theory
In this section we present the algorithms used to represent the signaling
reactions and the assumptions inherent in their use.
Information on the binding of aspartate or Ni2" to the Tar receptor
is relayed through the cytoplasm by changes in the concentrations of
various phosphorylated protein species. It is convenient to divide the
individual steps in this cascade into binding steps, in which two mo-
lecular components associate or disassociate, and reaction steps in
which a phosphate group is added or removed from a protein. Each
step is represented by an equation which is evaluated repeatedly at
intervals of time At, which is typically 5 ms.
Experimentally, the response of bacteria to a step change in attractant
or repellant concentration occurs in -0.2 s (Segall et al., 1982) and
evidence of a delay due to diffusion has been obtained only in ab-
ation of
rations
X [Lo]}
ins (see
At and
tein au-
tionship
ecies in
] is the
nd Km is
, 1984).
reacting
by
motor is
lt from
wise or
ss when
1). The
of CheY
iM, and
eraction
ransfer
simple
binding
uns and
complex
alculate
0.6 -
0
0
*~0.4-
coLo 10 20 30
CheYp (nM)
Figure 3. Proportion of time spent in run (l), tumble (0), and pause
(A) modes predicted for the flagellar motor model, with the resting
concentration of CheYp in a wild-type bacterium set to 9 nM.
tumbles of the flagellar motor. In the present simulation, this model
has been extended to incorporate two additional features. One is the
cooperativity between CheY levels and flagellar motor response seen
in mutant strains in which CheY is over-expressed to different levels
(Kuo and Koshland, 1989). The effective species is now thought to
be CheYp. The other feature added to the motor model is the capacity
for pausing, which has been reported by Eisenbach and colleagues
to be an inherent part of the behavioral repertoire of coliform bacteria
(Lapidus et al., 1988; Eisenbach et al., 1990).
These observations are incorporated into a model in which the motor
complex, denoted M, binds sequentially up to four CheYp molecules
thereby producing five distinct molecular species. Two of these (M
and MYp) rotate counterclockwise, another two (MYpYpYp and
MYpYpYpYp) rotate clockwise, and one species (MYpYp) is stationary,
corresponding to the pausing of the motor (Figure 2). In a population
of bacteria, the rotational bias (defined as the fraction of time spent
in the counterclockwise mode) is therefore given by the following:
bias = M + MYp
M + MYp + MYpYp + MYpYpYp + MYpYpYpYp
As in the earlier model of Block et al. (1982, 1983), transitions between
each pair of states are governed by paired first-order rate constants,
such as kl, and k2rYp (which is pseudo first-order at a given concen-
tration of Yp). For an individual motor, these rate constants represent
the probabilities per unit time of terminating the current state.
The Adair-Pauling model of a multisite allosteric enzyme allows
dissociation constants for each binding step to be calculated from two
parameters-the dissociation constant of binding of the first binding
site (K) and the factor (a) by which the affinity of successive binding
sites change (Segel, 1975). We have assumed that the flagellar motor
is similarly well-behaved and calculated K and a from an arbitrarily
assigned value for the resting (unstimulated) concentration of CheYp
and from the observed proportion of time spent in runs, pauses, and
tumbles of an unstimulated, wild-type bacterium (Lapidus et al., 1988;
Eisenbach et al., 1990). In trial simulations we found that the resting
concentration of CheYp could be varied over a wide range without
affecting overall performance. In the absence of experimental data
bearing on this value, we selected 9 nM, which in combination with
the best available values of reaction rates, produces an approximately
wild-type rotational bias for mutant strains lacking either Tar, CheW,
CHEMOTAXIS NETWORK FROM BIOMODELS
Biochemical
Diffusion(d+s)
Distance(d)
Adjacency(d+s)
Correlation(spearman)
0.00.20.40.60.81.0
First
neighbors
DistanceDiffusion
Topology
Direction
Sign
Kinetics
+
+
+
+
+
+
+
-
+
+
-
-
+
-
-
-
~90% accuracy of network models
Biochemical
Diffusion(d+s)
Distance(d)
Adjacency(d+s)
Correlation(spearman)
0.00.20.40.60.81.0
Accuracy
EXPERIMENTAL EVIDENCE
Phenotype
Gene
expression
A
-
,Yp
Y
-
,Yp
Z
-
,Yp
A
-
Z
-
,Yp
Y
-
Z
-
,Yp
B
-
Y
-
Z
-
,Yp
A2+
,Yp
T2+
,A
T2+
,TA
B2+
,Ap
B2+
,Yp
W2+
,A
W2+
,WA
Z2+
,Yp
Y2+
,Yp
Biochemical
Network
A
-
Y
-
Z
-
A
-
Z
-
Y
-
Z
-
B
-
Y
-
Z
-
A2+
T2+
B2+
W2+
Z2+
Y2+
Biochemical
Network
Sign
-1 0 1
Comparing predictions with experimental assays in bacterial chemotaxis
Perturbation of
gene X
Expression of gene Y
random
walk
biased
walk
a Wild-type
Phenotype
Observed
change
b c
86%
correct
75%
correct
Bacterial Chemotaxis Simulation
[Ro] and [Lo] are the total concentrations of receptor and ligand,
ively, [RL] is the concentration of the protein-ligand complex,
d is the dissociation constant of the complex.
ther binding steps in the simulation involve the association of
asmic proteins at comparable, and usually low, concentrations
r this we use the relationship:
0.5{[Ro] + [Lo] + Kd - V([Ro] + [Lo] + Kd)2 - 4[Ro] X [Lo]}
[Ro] and [Lo] are arbitrarily assigned to the two proteins (see
1975).
tion steps are not assumed to run to completion within At and
egrated by successive steps of the simulation. For protein au-
phorylations we use the simple Michaelis-Menten relationship
V J=[lkcat X [ATP]l
] [ATP] + Km
J
v is the rate of formation of the phosphorylated species in
per second, [E] is the free enzyme concentration, [ATP] is the
tration of ATP, k_cat is the catalytic rate constant and Km is
haelis constant (Michaelis and Menten, 1913; Fersht, 1984).
other reactions we assume that the concentrations of reacting
are small, so that the reactions are simply described by
v = (k.cat/Km) [E] X [S]
autodephosphorylations
v = klcat [E]
llar Motor
all other components of the simulation, the flagellar motor is
ingle molecular species. It is a complex structure, built from
imately 40 distinct proteins that rotates either clockwise or
rclockwise at speeds of .300 cycles/s (significantly less when
terium is tethered to a surface) (Jones and Aizawa, 1991). The
on of rotation is controlled by the phosphorylated form of CheY
h an interaction with the switch components (FliG, FliM, and
oteins) of the motor Uones and Aizawa, 1991). The interaction
s to be a simple binding of CheYp rather than a phosphotransfer
n (Bourret et al., 1990).
s shown previously by Block et al. (1982, 1983) that a simple
te model in which run and tumble states differ in the binding
ngle ligand has similar stochastic properties to the runs and
Different states ofthe flagellar motor (M) are
determined by the binding of CheYp (Yp):
State 'T M
State '3' MYp
State '5' MYpYp
State '7' MYpYpYp
State '9' MYpYpYpYp
ccw rotation
ccw rotation
zero rotation
cw rotation
cw rotation
(run)
(run)
(pause)
(tumble)
(tumble)
Occupation of the different states is governed by
reversible equilibria:
M + Yp q-b MYp
MYp + Yp W MYpYp
MYpYp + Yp W MYpYpYp
Ki = kil/klr
K2 = k2l/k2r
K3 = k3d/k3r
1.0
0.6 -
0
0
*~0.4-
coLo 10 20 30
CheYp (nM)
Figure 3. Proportion of time spent in run (l), tumble (0), and pause
(A) modes predicted for the flagellar motor model, with the resting
concentration of CheYp in a wild-type bacterium set to 9 nM.
tumbles of the flagellar motor. In the present simulation, this model
has been extended to incorporate two additional features. One is the
cooperativity between CheY levels and flagellar motor response seen
in mutant strains in which CheY is over-expressed to different levels
(Kuo and Koshland, 1989). The effective species is now thought to
be CheYp. The other feature added to the motor model is the capacity
for pausing, which has been reported by Eisenbach and colleagues
to be an inherent part of the behavioral repertoire of coliform bacteria
(Lapidus et al., 1988; Eisenbach et al., 1990).
These observations are incorporated into a model in which the motor
complex, denoted M, binds sequentially up to four CheYp molecules
thereby producing five distinct molecular species. Two of these (M
and MYp) rotate counterclockwise, another two (MYpYpYp and
MYpYpYpYp) rotate clockwise, and one species (MYpYp) is stationary,
corresponding to the pausing of the motor (Figure 2). In a population
of bacteria, the rotational bias (defined as the fraction of time spent
in the counterclockwise mode) is therefore given by the following:
bias = M + MYp
M + MYp + MYpYp + MYpYpYp + MYpYpYpYp
As in the earlier model of Block et al. (1982, 1983), transitions between
each pair of states are governed by paired first-order rate constants,
such as kl, and k2rYp (which is pseudo first-order at a given concen-
tration of Yp). For an individual motor, these rate constants represent
the probabilities per unit time of terminating the current state.
The Adair-Pauling model of a multisite allosteric enzyme allows
dissociation constants for each binding step to be calculated from two
parameters-the dissociation constant of binding of the first binding
site (K) and the factor (a) by which the affinity of successive binding
sites change (Segel, 1975). We have assumed that the flagellar motor
is similarly well-behaved and calculated K and a from an arbitrarily
I. TAKE HOME MESSAGE
1/3
kinetics
Marc Santolini - CCNR
Topology
Direction
Sign
Kinetics
+
+
+
+
+
+
+
-
+
+
-
-
+
-
-
-
Accuracyofperturbationpatterns
Biochemical
Diffusion(d+s)
Distance(d)
Firstneighbors(d+s)
Influencestrengthrecovery
0.00.20.40.60.81.0
2/3
interactome
PART II
NETWORK PERTURBATION BY MIRNAS
Ayşe Kılıç, Marc Santolini, Taiji Nakano, Matthias Schiller, Mizue Teranishi, Pascal Gellert, Yuliya
Ponomareva, Thomas Braun, Shizuka Uchida, Scott T. Weiss, Amitabh Sharma And Harald Renz, “A
Novel Systems Immunology Approach Identifies The Collective Impact Of Five Mirnas In Th2
Inflammation"
R E V I E W S
mathematical properties of random networks14
.Their
much-investigated random network model assumes that
a fixed number of nodes are connected randomly to each
other(BOX2).Themostremarkablepropertyof themodel
is its‘democratic’or uniform character,characterizing the
degree,orconnectivity(k;BOX1),of theindividualnodes.
Because, in the model, the links are placed randomly
among the nodes,it is expected that some nodes collect
only a few links whereas others collect many more.In a
random network, the nodes degrees follow a Poisson
distribution, which indicates that most nodes have
roughly the same number of links,approximately equal
to the network’s average degree,<k> (where <> denotes
the average); nodes that have significantly more or less
linksthan<k>areabsentorveryrare(BOX2).
Despite its elegance, a series of recent findings indi-
cate that the random network model cannot explain
the topological properties of real networks. The
deviations from the random model have several key
signatures, the most striking being the finding that, in
contrast to the Poisson degree distribution, for many
social and technological networks the number of nodes
with a given degree follows a power law. That is, the
probability that a chosen node has exactly k links
follows P(k) ~ k –γ
, where γ is the degree exponent, with
its value for most networks being between 2 and 3
(REF.15).Networks that are characterized by a power-law
degree distribution are highly non-uniform, most of
the nodes have only a few links.A few nodes with a very
large number of links,which are often called hubs,hold
these nodes together. Networks with a power degree
distribution are called scale-free15
,a name that is rooted
Figure 2 | Yeast protein interaction network. A map of protein–protein interactions18
in
Saccharomyces cerevisiae, which is based on early yeast two-hybrid measurements23
, illustrates
that a few highly connected nodes (which are also known as hubs) hold the network together.
The largest cluster, which contains ~78% of all proteins, is shown. The colour of a node indicates
the phenotypic effect of removing the corresponding protein (red = lethal, green = non-lethal,
orange = slow growth, yellow = unknown). Reproduced with permission from REF.18 ©
Macmillan Magazines Ltd.
Jeong et al., “Lethality and centrality in protein networks“ Nature 2001
LETHALITY-CENTRALITY RULE
MIRNA TARGETS IN THE INTERACTOME
MULTI-INTERACTOME
EXPRESSION DATA FROM ASTHMA MODEL
Naive
Th1-
acute
Th1-
chronic
Th2-
acute
Th2-
chronic
miRNA	matrix mRNA	matrix Protein	matrix
Meta-dimensional	analysis	using	human	Interactome
Model: female BALB/c mice aged 6–8 weeks
Mice were sensitized by injections of 10 µg OVA grade VI
WORKFLOW
mRNA and miRNA
mice expression data
Th2 disease module
Human interactome and
miRNA network
5 highest impact
miRNAs
Validation in mouse
IDEAL approach
naive
early stable early stable
Th1 Th2
Low High
con-miR
isotype
miR-cocktail
IL-13
MFI
mRNA and miRNA
mice expression data
Th2 disease module
Human interactome and
miRNA network
5 highest impact
miRNAs
Validation in mouse
IDEAL approach
1 2 5 10 20 50 100
012345
Number of miRNAs attacking
CollectiveImpact(CI)
RSBN1
LRP8
TSC1
AKAP8L
PRKCD
PRR11
IFNA4
BNIP3
MCPH1
MAFK
CCL17
DLG2
hsa-let-7e
PPP2R5E
ASTE1
ARNT2
ZNF276
XRCC4
TRIM24
ZNF277INPPL1
PILRA
LDHB
PDE1BC14orf1
RPL8
GCC2
C5
PCDH19
BACE2
BATF
CDON
INPP5A
DNAJB14
SH3RF2
CAMK2N1
C1orf94
hsa-mir-200c
HMOX2
SMARCD1
CPSF7
CNN3
POLI
SLC25A25
LTB
XRN2
SIAH2
TINF2
RAPGEF6
PBX3
hsa-let-7b
hsa-mir-107
SEC63
ATF7
CCR8
PTPN3
GRP
TMEM62
SMURF1
RPS10
RPS21
MAP3K12
ARMC8
ANXA4
CDK10
INPP4A
FBXW8
FBXL6
MAML3
MLEC
EPB41
MAPRE1
ELF2
BMPR1A
hsa-mir-138
DTL
RAG1
ATRN
hsa-mir-340
TAPT1
NARS2
MIPOL1PTGS2
LY75
RPS13
GALNT3USP24
ZCCHC2
ZNF653
CCR4
ERF
ENTPD6
PIGF
PARD3
ZBTB34
RIPK1RAPGEF1 KIAA1462
hsa-let-7a
UPF3A
hsa-mir-607
CA2
IL9RGAPVD1
FANCL
TKT
SMARCA5
GNPDA1
LAMC1
RXRA
NEK1
hsa-mir-575
AURKC
TNFRSF8NRBP1
COBLL1
hsa-mir-106b
SPINT1
ALDH3A2
SH3BGRL FBXL2
PSME1
STK25
H1F0
LAMA5
hsa-mir-665
ERN1
hsa-let-7i
STAT5A
TPI1
SLC25A46
HSD17B7
hsa-mir-194
FRMD6
ASH1L
AP1S2
DUSP2
MBTD1
DGKI
CHST11
F2RL1
MLKL
HMGXB3
GNB4
ANKRD29
LITAF
KLHL3
hsa-let-7d
FUCA2
CCDC101
PBX2
FRMD4B
hsa-mir-580
ADNP
LIMK1
P2RY1
ATG4B
GATA2
hsa-mir-18b
PCYT2
RGS9
RPS12
hsa-mir-15b
RNF24
IRF8
ETNK1
hsa-mir-21
EIF4G3
PLEKHO1
LFNG
BCL2L15DNAJB9
CA1
PRDM2
SAT1
BHLHB9 GAS7
FLRT2
RPL17 HPSE
STX11
MEOX2
IGF1RCCDC22CGGBP1
RPS16
USP14
CPSF3
MYO1D
ZMYND11
TRIM44
hsa-let-7c
hsa-mir-516a-5p
HDAC7
NEK7
ITGB8
TNFRSF14ZNF605
DCP2
PRDM4
AQP9
MEPCE
HMCN1
CTNNA1
TNFSF10
TCF12SDCCAG3
ZFYVE16
DIP2C
DUSP19
ASXL2
CHST15
hsa-mir-203
AXIN1
CAMKK2
VEZTBCL7B
MEF2A
FHL3
ANKRD17
hsa-mir-494
IL24
RASSF5
DENND4A
CREB3L2
PUM2
RNF130
TRIM8
UNKL
PHF20L1
SCMH1
hsa-mir-552
PYGM
NRP1
BRPF1
SERINC3
EIF5B
RANBP3
hsa-mir-149
CSK
NPAT GNB2L1LY9
CARM1
PCNA
hsa-mir-150
ST3GAL4
RB1 RREB1
HSPA2
CNOT1
RPL23
hsa-mir-17
F11R
ATP11C
hsa-mir-135b
MPP7
SRF
SMYD3
NOTCH1
NEDD8
ITM2A
hsa-mir-33b
STAR
LRIG1
ATP2B1
CCR7 TIGIT
CD84
RPL31
YWHAZ
TESK1
RNLS
C21orf91
CENPT
XPC
DYNLT3
ACTR6
LPIN2
RUNX2
KLKB1
CSGALNACT1
CHCHD3MIF4GD
PLEKHA1
EHMT1
RPL27A
SAMSN1
PSMD7
RORA
AKAP8
VTI1A
EPAS1
AKR1B1
DAPK1ZDHHC23
FBXW7
CCL1
IL1RN
GAPDHS
DEK
ADAM19
TDG
PLCB4
HSD3B1
WHSC1
MRPL30
RBM6
MDK
PPP4R1
SUV420H1
HSPA8
hsa-mir-623
RNF44
AMPH
LILRB4
USP9X
BZW2
RBM28
EDEM3
MYO10
GLDC
ASAP1
CHRM2 QTRT1
hsa-mir-383
KLHL6
VAT1
CDK6
ITPR1
KIAA1598
ATXN1
UBL3
hsa-let-7f
STOM
VDR
THADA
ZBTB44
KLHDC10
ARHGEF2
IPMK
YLPM1IFNG
STT3B
CTDSPL2
WDR82UBR1
hsa-mir-517a
QSER1
BRF1
SLC39A10
RALY
GRSF1
FN1
NCOR2
CDK12
GNAQ
ZNF654
GALC
UBE2D1
FFAR2
H2AFZ
TOM1
NCKAP1
GSRhsa-mir-220b
SERF2
GNG2RAF1
RGS19
SETD1A
IMPA2FGF18
ERAP1
STAG1
IKZF4
ELMOD2
PROS1
PLB1
STAMBPL1
ERC1
STXBP4PPARG
hsa-mir-154
ACVR2A
NEU1
TMTC2RPL18
IL9RPAP2 DCBLD2
IL19
HEPHL1
MID2
GIMAP8
CAMK2D
MYH9
TERF2DHRS7
KIFC1 hsa-mir-380
CYP1A1
ADH5
SRRT
EPN1
GNG4
PTPN4
PER1
ABCB8
DHX9
RGS3
hsa-mir-545
SLC48A1
PCGF2
RGS1
TXK
ADARB1
ASB13
AURKB
MPZL1
OVGP1
RHOH
TPD52
hsa-mir-143
RPS23
hsa-mir-99b
CNOT10
RAB11B
ATRNL1
USP15
WDFY2
RAB9A
hsa-mir-571
NAV2
ZRSR2
PHOX2A
ATXN7L2
RABGGTA
FGFR1OP2
NCLN
RAB8A
TTLL4
FOXJ3
ZMIZ2
ETS2
LAG3
EGLN3
ZNF318
UXT
CLDND1
TTBK1
CYCS
CRTAM
hsa-mir-30b
PCYT1A hsa-mir-200bATRIP DYRK2hsa-mir-328
NDUFA10
hsa-mir-505
TMEM159
hsa-mir-379
SMC5
RNF19A
GPRASP1
GABARAP
hsa-mir-24
EIF3K
SLC17A6
RPL19
CMPK1
TMEM30A
GRN
HIC1
TNFSF8
hsa-mir-30c
NBN
IL10
MAPK8
ADORA2B
CSNK1G3
MYO1E
LRP12
COIL
hsa-mir-603
FUT8
PPFIA1
hsa-mir-155
RPS6KA1
KPNA1
SIDT2
TRIM25
FDFT1
UBE2F
CTLA4
KIF3A
TARS2
hsa-mir-760
CCR3
LXN
KHDRBS1
MECR
PLCD1
HIVEP2
GLB1
RPL13A
GRIPAP1
MTOR
hsa-mir-148b
CHD7
DMXL1
TMOD4
INADL
NFX1
hsa-mir-422a
SH2D1A
DAG1
DOCK11
CLSTN1
INTS4
GZF1
RPL9
PARP4
RPS15A
SKP1
PLP2
ATP10A
hsa-mir-452
TAF8
HIPK1
MSH3
KLRG1
PDE2A
MLLT10
hsa-mir-181c
CCDC90B
SETX
CEP55
CNIH2
FRS2
FBXL5
MARS2
WDR33
U2AF2
TANK
PTPN12
ZBTB32
SPN
SLC25A27
IPCEF1
EP400
RGS13
hsa-mir-206ZNF592
PEX10
CWC15
hsa-mir-220c
PARD6G
DUSP4SUFU
JPH1
SH3PXD2A
S100A1
SLC44A1
SERPINF1
CYFIP1
USP28
FOXF2PRKAR2A VAMP4
GTF3C2 IL1R2
BAZ1Ahsa-mir-181a
MOCOS
FOXN2
ABCC1
MYO1C LSM1 hsa-mir-922
ETV5
PAN3 RBM41
STK24
SETD7
SPHK2
MLF1
RTN3
ANXA2
SLC7A8
EZR
RC3H1
hsa-mir-548a-3p
RPE
PCGF5
LPXN
TREX1 LYN
MED13
RBM38
MKL2
RPS9
MAP3K5hsa-mir-620
MCL1
CD5PTPN6
ARL14MAPKAPK5 VCL
LCORL
CSNK1E
SUV39H1
NEB
RPL10
hsa-mir-497
PTPRJ
APLP1
HIST1H3B
DDX11
ARL6
DVL1 RPL13
RNPC3
ARL5A
DDX28
RPSAZMYM4
hsa-mir-487a
ZBTB38
DICER1
PTGER2
ARHGEF3
hsa-mir-520h
THRAP3
IL1R1
ABL2
NDUFA3
IL23R
LAT
HIPK2
hsa-mir-103
ARFGEF1
ZRANB1
KIAA2026
PTPN13
hsa-mir-29b
CRMP1
APBB3
IPO9
hsa-mir-488
ARHGEF12
SPP1
RPLP2
LLGL1
EIF3F
LZTFL1
FAM91A1
RPS5
DDX19B
PLXNC1
GIT1
TPBG
UHRF2
INHBA
hsa-mir-211
S100A11
ACTN1
ACVR1
HIST1H4C
CNTNAP4
GYPC
POLR3F
GMNN
TAOK2
ARG1
THOC1
KIF16B
PHF20
TIPARP
PPM1F
PTP4A3
SFN
OLR1
SIN3A
BCL2L11
RAPH1
ICOS
hsa-mir-374b IKBKE
SAP130
AHR
TOP2A
GNPTAB
PJA1
FGL2
ADAM9
EFR3A
SETBP1
HN1L
NUMA1
STUB1
SLK
GAD1
SERTAD2
GJB3
PALLD
C19orf66
GRM5
SLCO3A1
PIK3CB
ESYT2
KAT2A
FBXW11hsa-mir-520f
SUSD2
CNOT2
PAIP2
TRAM1 NCAPH
ANKRD13C
S100A16
HIRA
AQR
NR3C1
hsa-mir-222
CA8
ZDHHC3
CAPG
MTMR2
hsa-mir-551b
ZBTB10
MKNK1
PTPRC
ADAP1
RHOQ
PTPLAD1
CA5B
DAXX
MPHOSPH8hsa-mir-200a
UGP2
EBAG9
IKBKB
RAB11FIP4
IPPK
PRDX6
CYP11A1
RXRB
ZNF25
RNF146
ITGAD
RAB11FIP1
RNF216
PLAUR
CAP2
CYP17A1
TEX2
PLK2
TIMP3
SMAD1
TIMP1
RASSF8
DUSP14
RASA3
IGF2R
MKRN2
ITGB2
DDX46
TRA2A ZBTB11
CRY2
RPS28
PPAP2B
STARD13
RNF31
GLUD1
SESN3
CDK11APRICKLE3
CMAS LEF1
PHACTR4
MFHAS1
SMAD3OSBPL3
MUS81
CASP6
MYCBP2
MYLIP
USP34
hsa-let-7g
PSIP1
MAPKAPK2
NUP153
CASP4
TRPS1
QRICH1
KIF2C
PRKCH
SVIL
AXL
CTCF
CD2AP
EYA1
SRSF2
RPTOR
hsa-mir-214
ITGA2DUSP16
INTS7
MPI
MARK3
SMARCD3BNC1
PARP8
ACBD5
RNF111
HBS1L
ICAM2
MTMR10
GNPAT
RCOR1
hsa-mir-18a
PHC1
SRXN1
CCR1
B4GALT5
CAPNS1
MAPK8IP3
MSC
CDC27
GPR126
IER3
QPCTL
GATM
HSF1
MFNG
hsa-mir-93PKD2
GATA3
TOR1AIP2
KLRD1
GRAMD3
RRAS2
CASP1
KBTBD2
CREBL2
CABIN1
RASL11A
IGBP1
SPRED2HIST1H3C
AMMECR1
hsa-mir-554
RYK
MIA3
COX7A2L
CABYR
PPFIBP1EPS15L1
MAX
hsa-mir-182
TEC
RPS7
STK38
LGALS3
LRRFIP1
RPL30
BMPR2
CD80
PTDSS1
LGALS1
TNKS2
FARP2
SLC24A3
MRAS
PTPN9
SDC4
TSC2
CAPN2
PIK3AP1
CD44
CYTH3
NEK6MED26
ERCC4
FAM57A
TAF4B
HEG1
UTRN
BCAS2
ARHGAP29
GAPDH
HLF
DPM1hsa-mir-181b
NEO1
LTN1 ZC3H12C
hsa-mir-25
hsa-mir-152PDCD10
IL5 RBPJ
RALGDS
FOXP4
hsa-mir-610
CBLB
BCAR3
PDSS1
NDUFB1
ATR
ENY2
GIGYF2
PICK1
hsa-mir-19a TRAF3IP3
KIF13A
POGZ
AKAP6
hsa-mir-326
ATP10B
IL13
ITGB1BP1
hsa-mir-192
PRPF38B
SERPINA3
IL2RB
CLCN5
hsa-mir-195
IRF3
SSFA2
VASP
CDK4
ENAH
TADA2B
MAP3K14
hsa-mir-649
TRIM35
PJA2
NCAPG2
PBRM1
EPN2
SMC4REV1
GPR45
PACSIN1
PUM1
hsa-mir-874
SFRP4
MAP2K7
TMEM132B
hsa-mir-26a
DIAPH3
CD200R1
CDO1
BCL9
F2R
HS3ST3B1
hsa-mir-106a
FOXP3
NT5E
LSRATG4D
ARHGEF7
hsa-mir-23a
CEP68
TXNDC17
CHRAC1MLXIP
ATP2B4 YTHDC2AHNAK SLC2A3
LCOR IFI16
ADCY3
JAG1
RAB31
PLCL1
RALGPS2
NPY
SUOX
SF3B4IGFBP7
CD27
hsa-mir-921
NDOR1
PHF3
RPL26hsa-mir-29a
XPO7
TAF7
TOP3A
CSTA
IMPDH1
hsa-mir-378
TAGAP
PCID2
NUP107
DGCR2
FBXL12
SOCS2
CSF1
CENPO
CRY1
CST3
KSR1
FGF2CNKSR3
MMP25
hsa-mir-32
UGCG
GTF2I
CLTA
SUCLG2
hsa-mir-625
IRF2BP1
FKBP3
hsa-mir-608
MAST1 SEMA4D
DCUN1D4
ERO1L
ZCCHC7
ST6GAL1
NDUFV2
GPM6B
MRPS24
STRBPRBM12
ZYG11B
RFK
CXCL10
hsa-mir-23bUBE2H
SLC35C1
TAGLN
APBB1IPMVP
GPATCH8
HLA-A
hsa-mir-132
NCK1
KIAA0922
POLD2
VPS54
CYP1B1
PIP4K2A
IRAK3
IKZF2
PANK4
hsa-mir-19b
STX1A
hsa-mir-425
ADPGK
UCHL3
AMBRA1
ID2
RPS29
ENTPD1
STAB1
hsa-mir-765
PLOD2FBXO4
TAF1D
UBP1
PRMT8
TSC22D4
hsa-mir-26b
PLCXD2
PRPF39
GAS2
PTPN5
MYNN
ATXN7L3
LTB4R
HS2ST1
ME1
NFIL3
DET1
hsa-mir-29c
NPNT
BTLA
HSPB1
R3HDM1
hsa-mir-448
GOT1
DHRS3
RAD50
SELL
ZFAND3
MAF
FLOT1
ETV6
DSTN
SCN1B
HOOK1
PDLIM5CHKA
CDKN2C
LYRM2
hsa-mir-636
MED1
hsa-mir-504
SLC4A2
hsa-mir-204
LGMN
ORMDL3
DOCK6
FNDC3A
KDSR
RAB20
ANGEL1
EML2
GNA15
IL22
NYNRIN
DIS3
hsa-mir-181d
TAF4
TBX21
MED18 GSN
RAB39B
FURIN
FES
hsa-mir-98
TASP1
CPNE1
SETDB2 CTDP1
ATG16L1
hsa-mir-30e
MPHOSPH9ZNF644
FAU
hsa-mir-216aTLE4
hsa-mir-27b
C2orf42
NDUFB6PEX13
ALDOA
RPL12
KLK3
KRTAP11-1
ELK3
DYRK1B
hsa-mir-936
SP1
EIF5
KLF12
PTK2Bhsa-mir-637
EDN1
IL17RBDCAF6
KCNK6
ANKRD12
ZNF281
PRR5L
CUL4B
ERGIC1
ZPBP2
PPP1R2 DENND5AKHSRP
TNFRSF1ACA13
ADAMTS6
HIP1
TMEM43
TRRAP
TSC22D1
XAB2
CASZ1
hsa-mir-593
hsa-mir-22
HSF2
SENP2
ATXN7L1
PTPN1
ACIN1
BTG2
STXBP1
hsa-mir-657
USP7
HAVCR2
IL12RB1
BOLL
RRM2
PICALM
CDK2
hsa-mir-20b
CD9
hsa-mir-449b RBBP9
PDSS2RASL11B
AGTPBP1 MBP
N4BP2 hsa-mir-372
GTF2A1
CCL19
MPRIP
GCNT1
SLC20A1
RNF138
N4BP1
SLC11A1
hsa-mir-766
DMXL2
NLRP3
ELL2LIN9
SMAD2
EZH2
DLG4
MYD88
ATP1B1GLRX
hsa-mir-7
DNAJC5B
WBP11DGKD
hsa-mir-301a
hsa-mir-363SF3B1
ARSB
FNTB
RNH1
hsa-mir-146a
BRWD1
CBFA2T2
SFPQIL6ST
IL10RA
ANGPTL2
B3GALT2
USP22
IL1RL1
RAB3GAP1
USE1
ID3
CBX7
CENPJ
DGKZ
PSME2
IFITM2
hsa-mir-302b
VRK2
PRDM1
CLCF1
NCKAP5
GOLGA1
ARL6IP6
hsa-mir-30a
PLCD4
TYMS
OGDH
STAT3
FBXW2
S100A6
ELK4
TIAM1
SDC1
hsa-mir-34a
RPL35A
FEZ2 PRSS8
SEC11A
NRF1
TWISTNB
FNBP4
EXOSC5
CRIM1
KLC1
C1GALT1
PKN2
HIST1H3HSUB1
VPS37A
LPHN2
KIF2A
AHDC1
PFKL
EMP1
ST6GALNAC2
TUBA4A
CD74
BACH2
ING2
FUNDC2
SRGAP3
MGRN1
EXOC6
TRAK2
DTYMK
PCSK1
SCGB1A1
CPD
RIOK3
CUL4A
CD38
hsa-mir-27a
PTBP2
CCR5
RNF128
hsa-mir-891b
GTF3A
CD79A
CTSH
NCOA3
FYN
CNOT6
IKZF3
PITPNM2
NKIRAS1
BCL3
NFS1
VAV1CLK2
ATXN2
SMG1
con-miR
isotype
miR-cocktail
IL-13
MFI mRNA and miRNA
mice expression data
Th2 disease module
Human interactome and
miRNA network
5 highest impact
miRNAs
Validation in mouse
IDEAL approach
1 2 5 10 20 50 100
012345
Number of miRNAs attacking
CollectiveImpact(CI)
RSBN1
LRP8
TSC1
AKAP8L
PRKCD
PRR11
IFNA4
BNIP3
MCPH1
MAFK
CCL17
DLG2
hsa-let-7e
PPP2R5E
ASTE1
ARNT2
ZNF276
XRCC4
TRIM24
ZNF277INPPL1
PILRA
LDHB
PDE1BC14orf1
RPL8
GCC2
C5
PCDH19
BACE2
BATF
CDON
INPP5A
DNAJB14
SH3RF2
CAMK2N1
C1orf94
hsa-mir-200c
HMOX2
SMARCD1
CPSF7
CNN3
POLI
SLC25A25
LTB
XRN2
SIAH2
TINF2
RAPGEF6
PBX3
hsa-let-7b
hsa-mir-107
SEC63
ATF7
CCR8
PTPN3
GRP
TMEM62
SMURF1
RPS10
RPS21
MAP3K12
ARMC8
ANXA4
CDK10
INPP4A
FBXW8
FBXL6
MAML3
MLEC
EPB41
MAPRE1
ELF2
BMPR1A
hsa-mir-138
DTL
RAG1
ATRN
hsa-mir-340
TAPT1
NARS2
MIPOL1PTGS2
LY75
RPS13
GALNT3USP24
ZCCHC2
ZNF653
CCR4
ERF
ENTPD6
PIGF
PARD3
ZBTB34
RIPK1RAPGEF1 KIAA1462
hsa-let-7a
UPF3A
hsa-mir-607
CA2
IL9RGAPVD1
FANCL
TKT
SMARCA5
GNPDA1
LAMC1
RXRA
NEK1
hsa-mir-575
AURKC
TNFRSF8NRBP1
COBLL1
hsa-mir-106b
SPINT1
ALDH3A2
SH3BGRL FBXL2
PSME1
STK25
H1F0
LAMA5
hsa-mir-665
ERN1
hsa-let-7i
STAT5A
TPI1
SLC25A46
HSD17B7
hsa-mir-194
FRMD6
ASH1L
AP1S2
DUSP2
MBTD1
DGKI
CHST11
F2RL1
MLKL
HMGXB3
GNB4
ANKRD29
LITAF
KLHL3
hsa-let-7d
FUCA2
CCDC101
PBX2
FRMD4B
hsa-mir-580
ADNP
LIMK1
P2RY1
ATG4B
GATA2
hsa-mir-18b
PCYT2
RGS9
RPS12
hsa-mir-15b
RNF24
IRF8
ETNK1
hsa-mir-21
EIF4G3
PLEKHO1
LFNG
BCL2L15DNAJB9
CA1
PRDM2
SAT1
BHLHB9 GAS7
FLRT2
RPL17 HPSE
STX11
MEOX2
IGF1RCCDC22CGGBP1
RPS16
USP14
CPSF3
MYO1D
ZMYND11
TRIM44
hsa-let-7c
hsa-mir-516a-5p
HDAC7
NEK7
ITGB8
TNFRSF14ZNF605
DCP2
PRDM4
AQP9
MEPCE
HMCN1
CTNNA1
TNFSF10
TCF12SDCCAG3
ZFYVE16
DIP2C
DUSP19
ASXL2
CHST15
hsa-mir-203
AXIN1
CAMKK2
VEZTBCL7B
MEF2A
FHL3
ANKRD17
hsa-mir-494
IL24
RASSF5
DENND4A
CREB3L2
PUM2
RNF130
TRIM8
UNKL
PHF20L1
SCMH1
hsa-mir-552
PYGM
NRP1
BRPF1
SERINC3
EIF5B
RANBP3
hsa-mir-149
CSK
NPAT GNB2L1LY9
CARM1
PCNA
hsa-mir-150
ST3GAL4
RB1 RREB1
HSPA2
CNOT1
RPL23
hsa-mir-17
F11R
ATP11C
hsa-mir-135b
MPP7
SRF
SMYD3
NOTCH1
NEDD8
ITM2A
hsa-mir-33b
STAR
LRIG1
ATP2B1
CCR7 TIGIT
CD84
RPL31
YWHAZ
TESK1
RNLS
C21orf91
CENPT
XPC
DYNLT3
ACTR6
LPIN2
RUNX2
KLKB1
CSGALNACT1
CHCHD3MIF4GD
PLEKHA1
EHMT1
RPL27A
SAMSN1
PSMD7
RORA
AKAP8
VTI1A
EPAS1
AKR1B1
DAPK1ZDHHC23
FBXW7
CCL1
IL1RN
GAPDHS
DEK
ADAM19
TDG
PLCB4
HSD3B1
WHSC1
MRPL30
RBM6
MDK
PPP4R1
SUV420H1
HSPA8
hsa-mir-623
RNF44
AMPH
LILRB4
USP9X
BZW2
RBM28
EDEM3
MYO10
GLDC
ASAP1
CHRM2 QTRT1
hsa-mir-383
KLHL6
VAT1
CDK6
ITPR1
KIAA1598
ATXN1
UBL3
hsa-let-7f
STOM
VDR
THADA
ZBTB44
KLHDC10
ARHGEF2
IPMK
YLPM1IFNG
STT3B
CTDSPL2
WDR82UBR1
hsa-mir-517a
QSER1
BRF1
SLC39A10
RALY
GRSF1
FN1
NCOR2
CDK12
GNAQ
ZNF654
GALC
UBE2D1
FFAR2
H2AFZ
TOM1
NCKAP1
GSRhsa-mir-220b
SERF2
GNG2RAF1
RGS19
SETD1A
IMPA2FGF18
ERAP1
STAG1
IKZF4
ELMOD2
PROS1
PLB1
STAMBPL1
ERC1
STXBP4PPARG
hsa-mir-154
ACVR2A
NEU1
TMTC2RPL18
IL9RPAP2 DCBLD2
IL19
HEPHL1
MID2
GIMAP8
CAMK2D
MYH9
TERF2DHRS7
KIFC1 hsa-mir-380
CYP1A1
ADH5
SRRT
EPN1
GNG4
PTPN4
PER1
ABCB8
DHX9
RGS3
hsa-mir-545
SLC48A1
PCGF2
RGS1
TXK
ADARB1
ASB13
AURKB
MPZL1
OVGP1
RHOH
TPD52
hsa-mir-143
RPS23
hsa-mir-99b
CNOT10
RAB11B
ATRNL1
USP15
WDFY2
RAB9A
hsa-mir-571
NAV2
ZRSR2
PHOX2A
ATXN7L2
RABGGTA
FGFR1OP2
NCLN
RAB8A
TTLL4
FOXJ3
ZMIZ2
ETS2
LAG3
EGLN3
ZNF318
UXT
CLDND1
TTBK1
CYCS
CRTAM
hsa-mir-30b
PCYT1A hsa-mir-200bATRIP DYRK2hsa-mir-328
NDUFA10
hsa-mir-505
TMEM159
hsa-mir-379
SMC5
RNF19A
GPRASP1
GABARAP
hsa-mir-24
EIF3K
SLC17A6
RPL19
CMPK1
TMEM30A
GRN
HIC1
TNFSF8
hsa-mir-30c
NBN
IL10
MAPK8
ADORA2B
CSNK1G3
MYO1E
LRP12
COIL
hsa-mir-603
FUT8
PPFIA1
hsa-mir-155
RPS6KA1
KPNA1
SIDT2
TRIM25
FDFT1
UBE2F
CTLA4
KIF3A
TARS2
hsa-mir-760
CCR3
LXN
KHDRBS1
MECR
PLCD1
HIVEP2
GLB1
RPL13A
GRIPAP1
MTOR
hsa-mir-148b
CHD7
DMXL1
TMOD4
INADL
NFX1
hsa-mir-422a
SH2D1A
DAG1
DOCK11
CLSTN1
INTS4
GZF1
RPL9
PARP4
RPS15A
SKP1
PLP2
ATP10A
hsa-mir-452
TAF8
HIPK1
MSH3
KLRG1
PDE2A
MLLT10
hsa-mir-181c
CCDC90B
SETX
CEP55
CNIH2
FRS2
FBXL5
MARS2
WDR33
U2AF2
TANK
PTPN12
ZBTB32
SPN
SLC25A27
IPCEF1
EP400
RGS13
hsa-mir-206ZNF592
PEX10
CWC15
hsa-mir-220c
PARD6G
DUSP4SUFU
JPH1
SH3PXD2A
S100A1
SLC44A1
SERPINF1
CYFIP1
USP28
FOXF2PRKAR2A VAMP4
GTF3C2 IL1R2
BAZ1Ahsa-mir-181a
MOCOS
FOXN2
ABCC1
MYO1C LSM1 hsa-mir-922
ETV5
PAN3 RBM41
STK24
SETD7
SPHK2
MLF1
RTN3
ANXA2
SLC7A8
EZR
RC3H1
hsa-mir-548a-3p
RPE
PCGF5
LPXN
TREX1 LYN
MED13
RBM38
MKL2
RPS9
MAP3K5hsa-mir-620
MCL1
CD5PTPN6
ARL14MAPKAPK5 VCL
LCORL
CSNK1E
SUV39H1
NEB
RPL10
hsa-mir-497
PTPRJ
APLP1
HIST1H3B
DDX11
ARL6
DVL1 RPL13
RNPC3
ARL5A
DDX28
RPSAZMYM4
hsa-mir-487a
ZBTB38
DICER1
PTGER2
ARHGEF3
hsa-mir-520h
THRAP3
IL1R1
ABL2
NDUFA3
IL23R
LAT
HIPK2
hsa-mir-103
ARFGEF1
ZRANB1
KIAA2026
PTPN13
hsa-mir-29b
CRMP1
APBB3
IPO9
hsa-mir-488
ARHGEF12
SPP1
RPLP2
LLGL1
EIF3F
LZTFL1
FAM91A1
RPS5
DDX19B
PLXNC1
GIT1
TPBG
UHRF2
INHBA
hsa-mir-211
S100A11
ACTN1
ACVR1
HIST1H4C
CNTNAP4
GYPC
POLR3F
GMNN
TAOK2
ARG1
THOC1
KIF16B
PHF20
TIPARP
PPM1F
PTP4A3
SFN
OLR1
SIN3A
BCL2L11
RAPH1
ICOS
hsa-mir-374b IKBKE
SAP130
AHR
TOP2A
GNPTAB
PJA1
FGL2
ADAM9
EFR3A
SETBP1
HN1L
NUMA1
STUB1
SLK
GAD1
SERTAD2
GJB3
PALLD
C19orf66
GRM5
SLCO3A1
PIK3CB
ESYT2
KAT2A
FBXW11hsa-mir-520f
SUSD2
CNOT2
PAIP2
TRAM1 NCAPH
ANKRD13C
S100A16
HIRA
AQR
NR3C1
hsa-mir-222
CA8
ZDHHC3
CAPG
MTMR2
hsa-mir-551b
ZBTB10
MKNK1
PTPRC
ADAP1
RHOQ
PTPLAD1
CA5B
DAXX
MPHOSPH8hsa-mir-200a
UGP2
EBAG9
IKBKB
RAB11FIP4
IPPK
PRDX6
CYP11A1
RXRB
ZNF25
RNF146
ITGAD
RAB11FIP1
RNF216
PLAUR
CAP2
CYP17A1
TEX2
PLK2
TIMP3
SMAD1
TIMP1
RASSF8
DUSP14
RASA3
IGF2R
MKRN2
ITGB2
DDX46
TRA2A ZBTB11
CRY2
RPS28
PPAP2B
STARD13
RNF31
GLUD1
SESN3
CDK11APRICKLE3
CMAS LEF1
PHACTR4
MFHAS1
SMAD3OSBPL3
MUS81
CASP6
MYCBP2
MYLIP
USP34
hsa-let-7g
PSIP1
MAPKAPK2
NUP153
CASP4
TRPS1
QRICH1
KIF2C
PRKCH
SVIL
AXL
CTCF
CD2AP
EYA1
SRSF2
RPTOR
hsa-mir-214
ITGA2DUSP16
INTS7
MPI
MARK3
SMARCD3BNC1
PARP8
ACBD5
RNF111
HBS1L
ICAM2
MTMR10
GNPAT
RCOR1
hsa-mir-18a
PHC1
SRXN1
CCR1
B4GALT5
CAPNS1
MAPK8IP3
MSC
CDC27
GPR126
IER3
QPCTL
GATM
HSF1
MFNG
hsa-mir-93PKD2
GATA3
TOR1AIP2
KLRD1
GRAMD3
RRAS2
CASP1
KBTBD2
CREBL2
CABIN1
RASL11A
IGBP1
SPRED2HIST1H3C
AMMECR1
hsa-mir-554
RYK
MIA3
COX7A2L
CABYR
PPFIBP1EPS15L1
MAX
hsa-mir-182
TEC
RPS7
STK38
LGALS3
LRRFIP1
RPL30
BMPR2
CD80
PTDSS1
LGALS1
TNKS2
FARP2
SLC24A3
MRAS
PTPN9
SDC4
TSC2
CAPN2
PIK3AP1
CD44
CYTH3
NEK6MED26
ERCC4
FAM57A
TAF4B
HEG1
UTRN
BCAS2
ARHGAP29
GAPDH
HLF
DPM1hsa-mir-181b
NEO1
LTN1 ZC3H12C
hsa-mir-25
hsa-mir-152PDCD10
IL5 RBPJ
RALGDS
FOXP4
hsa-mir-610
CBLB
BCAR3
PDSS1
NDUFB1
ATR
ENY2
GIGYF2
PICK1
hsa-mir-19a TRAF3IP3
KIF13A
POGZ
AKAP6
hsa-mir-326
ATP10B
IL13
ITGB1BP1
hsa-mir-192
PRPF38B
SERPINA3
IL2RB
CLCN5
hsa-mir-195
IRF3
SSFA2
VASP
CDK4
ENAH
TADA2B
MAP3K14
hsa-mir-649
TRIM35
PJA2
NCAPG2
PBRM1
EPN2
SMC4REV1
GPR45
PACSIN1
PUM1
hsa-mir-874
SFRP4
MAP2K7
TMEM132B
hsa-mir-26a
DIAPH3
CD200R1
CDO1
BCL9
F2R
HS3ST3B1
hsa-mir-106a
FOXP3
NT5E
LSRATG4D
ARHGEF7
hsa-mir-23a
CEP68
TXNDC17
CHRAC1MLXIP
ATP2B4 YTHDC2AHNAK SLC2A3
LCOR IFI16
ADCY3
JAG1
RAB31
PLCL1
RALGPS2
NPY
SUOX
SF3B4IGFBP7
CD27
hsa-mir-921
NDOR1
PHF3
RPL26hsa-mir-29a
XPO7
TAF7
TOP3A
CSTA
IMPDH1
hsa-mir-378
TAGAP
PCID2
NUP107
DGCR2
FBXL12
SOCS2
CSF1
CENPO
CRY1
CST3
KSR1
FGF2CNKSR3
MMP25
hsa-mir-32
UGCG
GTF2I
CLTA
SUCLG2
hsa-mir-625
IRF2BP1
FKBP3
hsa-mir-608
MAST1 SEMA4D
DCUN1D4
ERO1L
ZCCHC7
ST6GAL1
NDUFV2
GPM6B
MRPS24
STRBPRBM12
ZYG11B
RFK
CXCL10
hsa-mir-23bUBE2H
SLC35C1
TAGLN
APBB1IPMVP
GPATCH8
HLA-A
hsa-mir-132
NCK1
KIAA0922
POLD2
VPS54
CYP1B1
PIP4K2A
IRAK3
IKZF2
PANK4
hsa-mir-19b
STX1A
hsa-mir-425
ADPGK
UCHL3
AMBRA1
ID2
RPS29
ENTPD1
STAB1
hsa-mir-765
PLOD2FBXO4
TAF1D
UBP1
PRMT8
TSC22D4
hsa-mir-26b
PLCXD2
PRPF39
GAS2
PTPN5
MYNN
ATXN7L3
LTB4R
HS2ST1
ME1
NFIL3
DET1
hsa-mir-29c
NPNT
BTLA
HSPB1
R3HDM1
hsa-mir-448
GOT1
DHRS3
RAD50
SELL
ZFAND3
MAF
FLOT1
ETV6
DSTN
SCN1B
HOOK1
PDLIM5CHKA
CDKN2C
LYRM2
hsa-mir-636
MED1
hsa-mir-504
SLC4A2
hsa-mir-204
LGMN
ORMDL3
DOCK6
FNDC3A
KDSR
RAB20
ANGEL1
EML2
GNA15
IL22
NYNRIN
DIS3
hsa-mir-181d
TAF4
TBX21
MED18 GSN
RAB39B
FURIN
FES
hsa-mir-98
TASP1
CPNE1
SETDB2 CTDP1
ATG16L1
hsa-mir-30e
MPHOSPH9ZNF644
FAU
hsa-mir-216aTLE4
hsa-mir-27b
C2orf42
NDUFB6PEX13
ALDOA
RPL12
KLK3
KRTAP11-1
ELK3
DYRK1B
hsa-mir-936
SP1
EIF5
KLF12
PTK2Bhsa-mir-637
EDN1
IL17RBDCAF6
KCNK6
ANKRD12
ZNF281
PRR5L
CUL4B
ERGIC1
ZPBP2
PPP1R2 DENND5AKHSRP
TNFRSF1ACA13
ADAMTS6
HIP1
TMEM43
TRRAP
TSC22D1
XAB2
CASZ1
hsa-mir-593
hsa-mir-22
HSF2
SENP2
ATXN7L1
PTPN1
ACIN1
BTG2
STXBP1
hsa-mir-657
USP7
HAVCR2
IL12RB1
BOLL
RRM2
PICALM
CDK2
hsa-mir-20b
CD9
hsa-mir-449b RBBP9
PDSS2RASL11B
AGTPBP1 MBP
N4BP2 hsa-mir-372
GTF2A1
CCL19
MPRIP
GCNT1
SLC20A1
RNF138
N4BP1
SLC11A1
hsa-mir-766
DMXL2
NLRP3
ELL2LIN9
SMAD2
EZH2
DLG4
MYD88
ATP1B1GLRX
hsa-mir-7
DNAJC5B
WBP11DGKD
hsa-mir-301a
hsa-mir-363SF3B1
ARSB
FNTB
RNH1
hsa-mir-146a
BRWD1
CBFA2T2
SFPQIL6ST
IL10RA
ANGPTL2
B3GALT2
USP22
IL1RL1
RAB3GAP1
USE1
ID3
CBX7
CENPJ
DGKZ
PSME2
IFITM2
hsa-mir-302b
VRK2
PRDM1
CLCF1
NCKAP5
GOLGA1
ARL6IP6
hsa-mir-30a
PLCD4
TYMS
OGDH
STAT3
FBXW2
S100A6
ELK4
TIAM1
SDC1
hsa-mir-34a
RPL35A
FEZ2 PRSS8
SEC11A
NRF1
TWISTNB
FNBP4
EXOSC5
CRIM1
KLC1
C1GALT1
PKN2
HIST1H3HSUB1
VPS37A
LPHN2
KIF2A
AHDC1
PFKL
EMP1
ST6GALNAC2
TUBA4A
CD74
BACH2
ING2
FUNDC2
SRGAP3
MGRN1
EXOC6
TRAK2
DTYMK
PCSK1
SCGB1A1
CPD
RIOK3
CUL4A
CD38
hsa-mir-27a
PTBP2
CCR5
RNF128
hsa-mir-891b
GTF3A
CD79A
CTSH
NCOA3
FYN
CNOT6
IKZF3
PITPNM2
NKIRAS1
BCL3
NFS1
VAV1CLK2
ATXN2
SMG1
con-miR
isotype
miR-cocktail
IL-13
MFI
mRNA and miRNA
mice expression data
Th2 disease module
Human interactome and
miRNA network
5 highest impact
miRNAs
Validation in mouse
IDEAL approach
1 2 5 10 20 50 100
012345
Number of miRNAs attacking
CollectiveImpact(CI)
RSBN1
LRP8
TSC1
AKAP8L
PRKCD
PRR11
IFNA4
BNIP3
MCPH1
MAFK
CCL17
DLG2
hsa-let-7e
PPP2R5E
ASTE1
ARNT2
ZNF276
XRCC4
TRIM24
ZNF277INPPL1
PILRA
LDHB
PDE1BC14orf1
RPL8
GCC2
C5
PCDH19
BACE2
BATF
CDON
INPP5A
DNAJB14
SH3RF2
CAMK2N1
C1orf94
hsa-mir-200c
HMOX2
SMARCD1
CPSF7
CNN3
POLI
SLC25A25
LTB
XRN2
SIAH2
TINF2
RAPGEF6
PBX3
hsa-let-7b
hsa-mir-107
SEC63
ATF7
CCR8
PTPN3
GRP
TMEM62
SMURF1
RPS10
RPS21
MAP3K12
ARMC8
ANXA4
CDK10
INPP4A
FBXW8
FBXL6
MAML3
MLEC
EPB41
MAPRE1
ELF2
BMPR1A
hsa-mir-138
DTL
RAG1
ATRN
hsa-mir-340
TAPT1
NARS2
MIPOL1PTGS2
LY75
RPS13
GALNT3USP24
ZCCHC2
ZNF653
CCR4
ERF
ENTPD6
PIGF
PARD3
ZBTB34
RIPK1RAPGEF1 KIAA1462
hsa-let-7a
UPF3A
hsa-mir-607
CA2
IL9RGAPVD1
FANCL
TKT
SMARCA5
GNPDA1
LAMC1
RXRA
NEK1
hsa-mir-575
AURKC
TNFRSF8NRBP1
COBLL1
hsa-mir-106b
SPINT1
ALDH3A2
SH3BGRL FBXL2
PSME1
STK25
H1F0
LAMA5
hsa-mir-665
ERN1
hsa-let-7i
STAT5A
TPI1
SLC25A46
HSD17B7
hsa-mir-194
FRMD6
ASH1L
AP1S2
DUSP2
MBTD1
DGKI
CHST11
F2RL1
MLKL
HMGXB3
GNB4
ANKRD29
LITAF
KLHL3
hsa-let-7d
FUCA2
CCDC101
PBX2
FRMD4B
hsa-mir-580
ADNP
LIMK1
P2RY1
ATG4B
GATA2
hsa-mir-18b
PCYT2
RGS9
RPS12
hsa-mir-15b
RNF24
IRF8
ETNK1
hsa-mir-21
EIF4G3
PLEKHO1
LFNG
BCL2L15DNAJB9
CA1
PRDM2
SAT1
BHLHB9 GAS7
FLRT2
RPL17 HPSE
STX11
MEOX2
IGF1RCCDC22CGGBP1
RPS16
USP14
CPSF3
MYO1D
ZMYND11
TRIM44
hsa-let-7c
hsa-mir-516a-5p
HDAC7
NEK7
ITGB8
TNFRSF14ZNF605
DCP2
PRDM4
AQP9
MEPCE
HMCN1
CTNNA1
TNFSF10
TCF12SDCCAG3
ZFYVE16
DIP2C
DUSP19
ASXL2
CHST15
hsa-mir-203
AXIN1
CAMKK2
VEZTBCL7B
MEF2A
FHL3
ANKRD17
hsa-mir-494
IL24
RASSF5
DENND4A
CREB3L2
PUM2
RNF130
TRIM8
UNKL
PHF20L1
SCMH1
hsa-mir-552
PYGM
NRP1
BRPF1
SERINC3
EIF5B
RANBP3
hsa-mir-149
CSK
NPAT GNB2L1LY9
CARM1
PCNA
hsa-mir-150
ST3GAL4
RB1 RREB1
HSPA2
CNOT1
RPL23
hsa-mir-17
F11R
ATP11C
hsa-mir-135b
MPP7
SRF
SMYD3
NOTCH1
NEDD8
ITM2A
hsa-mir-33b
STAR
LRIG1
ATP2B1
CCR7 TIGIT
CD84
RPL31
YWHAZ
TESK1
RNLS
C21orf91
CENPT
XPC
DYNLT3
ACTR6
LPIN2
RUNX2
KLKB1
CSGALNACT1
CHCHD3MIF4GD
PLEKHA1
EHMT1
RPL27A
SAMSN1
PSMD7
RORA
AKAP8
VTI1A
EPAS1
AKR1B1
DAPK1ZDHHC23
FBXW7
CCL1
IL1RN
GAPDHS
DEK
ADAM19
TDG
PLCB4
HSD3B1
WHSC1
MRPL30
RBM6
MDK
PPP4R1
SUV420H1
HSPA8
hsa-mir-623
RNF44
AMPH
LILRB4
USP9X
BZW2
RBM28
EDEM3
MYO10
GLDC
ASAP1
CHRM2 QTRT1
hsa-mir-383
KLHL6
VAT1
CDK6
ITPR1
KIAA1598
ATXN1
UBL3
hsa-let-7f
STOM
VDR
THADA
ZBTB44
KLHDC10
ARHGEF2
IPMK
YLPM1IFNG
STT3B
CTDSPL2
WDR82UBR1
hsa-mir-517a
QSER1
BRF1
SLC39A10
RALY
GRSF1
FN1
NCOR2
CDK12
GNAQ
ZNF654
GALC
UBE2D1
FFAR2
H2AFZ
TOM1
NCKAP1
GSRhsa-mir-220b
SERF2
GNG2RAF1
RGS19
SETD1A
IMPA2FGF18
ERAP1
STAG1
IKZF4
ELMOD2
PROS1
PLB1
STAMBPL1
ERC1
STXBP4PPARG
hsa-mir-154
ACVR2A
NEU1
TMTC2RPL18
IL9RPAP2 DCBLD2
IL19
HEPHL1
MID2
GIMAP8
CAMK2D
MYH9
TERF2DHRS7
KIFC1 hsa-mir-380
CYP1A1
ADH5
SRRT
EPN1
GNG4
PTPN4
PER1
ABCB8
DHX9
RGS3
hsa-mir-545
SLC48A1
PCGF2
RGS1
TXK
ADARB1
ASB13
AURKB
MPZL1
OVGP1
RHOH
TPD52
hsa-mir-143
RPS23
hsa-mir-99b
CNOT10
RAB11B
ATRNL1
USP15
WDFY2
RAB9A
hsa-mir-571
NAV2
ZRSR2
PHOX2A
ATXN7L2
RABGGTA
FGFR1OP2
NCLN
RAB8A
TTLL4
FOXJ3
ZMIZ2
ETS2
LAG3
EGLN3
ZNF318
UXT
CLDND1
TTBK1
CYCS
CRTAM
hsa-mir-30b
PCYT1A hsa-mir-200bATRIP DYRK2hsa-mir-328
NDUFA10
hsa-mir-505
TMEM159
hsa-mir-379
SMC5
RNF19A
GPRASP1
GABARAP
hsa-mir-24
EIF3K
SLC17A6
RPL19
CMPK1
TMEM30A
GRN
HIC1
TNFSF8
hsa-mir-30c
NBN
IL10
MAPK8
ADORA2B
CSNK1G3
MYO1E
LRP12
COIL
hsa-mir-603
FUT8
PPFIA1
hsa-mir-155
RPS6KA1
KPNA1
SIDT2
TRIM25
FDFT1
UBE2F
CTLA4
KIF3A
TARS2
hsa-mir-760
CCR3
LXN
KHDRBS1
MECR
PLCD1
HIVEP2
GLB1
RPL13A
GRIPAP1
MTOR
hsa-mir-148b
CHD7
DMXL1
TMOD4
INADL
NFX1
hsa-mir-422a
SH2D1A
DAG1
DOCK11
CLSTN1
INTS4
GZF1
RPL9
PARP4
RPS15A
SKP1
PLP2
ATP10A
hsa-mir-452
TAF8
HIPK1
MSH3
KLRG1
PDE2A
MLLT10
hsa-mir-181c
CCDC90B
SETX
CEP55
CNIH2
FRS2
FBXL5
MARS2
WDR33
U2AF2
TANK
PTPN12
ZBTB32
SPN
SLC25A27
IPCEF1
EP400
RGS13
hsa-mir-206ZNF592
PEX10
CWC15
hsa-mir-220c
PARD6G
DUSP4SUFU
JPH1
SH3PXD2A
S100A1
SLC44A1
SERPINF1
CYFIP1
USP28
FOXF2PRKAR2A VAMP4
GTF3C2 IL1R2
BAZ1Ahsa-mir-181a
MOCOS
FOXN2
ABCC1
MYO1C LSM1 hsa-mir-922
ETV5
PAN3 RBM41
STK24
SETD7
SPHK2
MLF1
RTN3
ANXA2
SLC7A8
EZR
RC3H1
hsa-mir-548a-3p
RPE
PCGF5
LPXN
TREX1 LYN
MED13
RBM38
MKL2
RPS9
MAP3K5hsa-mir-620
MCL1
CD5PTPN6
ARL14MAPKAPK5 VCL
LCORL
CSNK1E
SUV39H1
NEB
RPL10
hsa-mir-497
PTPRJ
APLP1
HIST1H3B
DDX11
ARL6
DVL1 RPL13
RNPC3
ARL5A
DDX28
RPSAZMYM4
hsa-mir-487a
ZBTB38
DICER1
PTGER2
ARHGEF3
hsa-mir-520h
THRAP3
IL1R1
ABL2
NDUFA3
IL23R
LAT
HIPK2
hsa-mir-103
ARFGEF1
ZRANB1
KIAA2026
PTPN13
hsa-mir-29b
CRMP1
APBB3
IPO9
hsa-mir-488
ARHGEF12
SPP1
RPLP2
LLGL1
EIF3F
LZTFL1
FAM91A1
RPS5
DDX19B
PLXNC1
GIT1
TPBG
UHRF2
INHBA
hsa-mir-211
S100A11
ACTN1
ACVR1
HIST1H4C
CNTNAP4
GYPC
POLR3F
GMNN
TAOK2
ARG1
THOC1
KIF16B
PHF20
TIPARP
PPM1F
PTP4A3
SFN
OLR1
SIN3A
BCL2L11
RAPH1
ICOS
hsa-mir-374b IKBKE
SAP130
AHR
TOP2A
GNPTAB
PJA1
FGL2
ADAM9
EFR3A
SETBP1
HN1L
NUMA1
STUB1
SLK
GAD1
SERTAD2
GJB3
PALLD
C19orf66
GRM5
SLCO3A1
PIK3CB
ESYT2
KAT2A
FBXW11hsa-mir-520f
SUSD2
CNOT2
PAIP2
TRAM1 NCAPH
ANKRD13C
S100A16
HIRA
AQR
NR3C1
hsa-mir-222
CA8
ZDHHC3
CAPG
MTMR2
hsa-mir-551b
ZBTB10
MKNK1
PTPRC
ADAP1
RHOQ
PTPLAD1
CA5B
DAXX
MPHOSPH8hsa-mir-200a
UGP2
EBAG9
IKBKB
RAB11FIP4
IPPK
PRDX6
CYP11A1
RXRB
ZNF25
RNF146
ITGAD
RAB11FIP1
RNF216
PLAUR
CAP2
CYP17A1
TEX2
PLK2
TIMP3
SMAD1
TIMP1
RASSF8
DUSP14
RASA3
IGF2R
MKRN2
ITGB2
DDX46
TRA2A ZBTB11
CRY2
RPS28
PPAP2B
STARD13
RNF31
GLUD1
SESN3
CDK11APRICKLE3
CMAS LEF1
PHACTR4
MFHAS1
SMAD3OSBPL3
MUS81
CASP6
MYCBP2
MYLIP
USP34
hsa-let-7g
PSIP1
MAPKAPK2
NUP153
CASP4
TRPS1
QRICH1
KIF2C
PRKCH
SVIL
AXL
CTCF
CD2AP
EYA1
SRSF2
RPTOR
hsa-mir-214
ITGA2DUSP16
INTS7
MPI
MARK3
SMARCD3BNC1
PARP8
ACBD5
RNF111
HBS1L
ICAM2
MTMR10
GNPAT
RCOR1
hsa-mir-18a
PHC1
SRXN1
CCR1
B4GALT5
CAPNS1
MAPK8IP3
MSC
CDC27
GPR126
IER3
QPCTL
GATM
HSF1
MFNG
hsa-mir-93PKD2
GATA3
TOR1AIP2
KLRD1
GRAMD3
RRAS2
CASP1
KBTBD2
CREBL2
CABIN1
RASL11A
IGBP1
SPRED2HIST1H3C
AMMECR1
hsa-mir-554
RYK
MIA3
COX7A2L
CABYR
PPFIBP1EPS15L1
MAX
hsa-mir-182
TEC
RPS7
STK38
LGALS3
LRRFIP1
RPL30
BMPR2
CD80
PTDSS1
LGALS1
TNKS2
FARP2
SLC24A3
MRAS
PTPN9
SDC4
TSC2
CAPN2
PIK3AP1
CD44
CYTH3
NEK6MED26
ERCC4
FAM57A
TAF4B
HEG1
UTRN
BCAS2
ARHGAP29
GAPDH
HLF
DPM1hsa-mir-181b
NEO1
LTN1 ZC3H12C
hsa-mir-25
hsa-mir-152PDCD10
IL5 RBPJ
RALGDS
FOXP4
hsa-mir-610
CBLB
BCAR3
PDSS1
NDUFB1
ATR
ENY2
GIGYF2
PICK1
hsa-mir-19a TRAF3IP3
KIF13A
POGZ
AKAP6
hsa-mir-326
ATP10B
IL13
ITGB1BP1
hsa-mir-192
PRPF38B
SERPINA3
IL2RB
CLCN5
hsa-mir-195
IRF3
SSFA2
VASP
CDK4
ENAH
TADA2B
MAP3K14
hsa-mir-649
TRIM35
PJA2
NCAPG2
PBRM1
EPN2
SMC4REV1
GPR45
PACSIN1
PUM1
hsa-mir-874
SFRP4
MAP2K7
TMEM132B
hsa-mir-26a
DIAPH3
CD200R1
CDO1
BCL9
F2R
HS3ST3B1
hsa-mir-106a
FOXP3
NT5E
LSRATG4D
ARHGEF7
hsa-mir-23a
CEP68
TXNDC17
CHRAC1MLXIP
ATP2B4 YTHDC2AHNAK SLC2A3
LCOR IFI16
ADCY3
JAG1
RAB31
PLCL1
RALGPS2
NPY
SUOX
SF3B4IGFBP7
CD27
hsa-mir-921
NDOR1
PHF3
RPL26hsa-mir-29a
XPO7
TAF7
TOP3A
CSTA
IMPDH1
hsa-mir-378
TAGAP
PCID2
NUP107
DGCR2
FBXL12
SOCS2
CSF1
CENPO
CRY1
CST3
KSR1
FGF2CNKSR3
MMP25
hsa-mir-32
UGCG
GTF2I
CLTA
SUCLG2
hsa-mir-625
IRF2BP1
FKBP3
hsa-mir-608
MAST1 SEMA4D
DCUN1D4
ERO1L
ZCCHC7
ST6GAL1
NDUFV2
GPM6B
MRPS24
STRBPRBM12
ZYG11B
RFK
CXCL10
hsa-mir-23bUBE2H
SLC35C1
TAGLN
APBB1IPMVP
GPATCH8
HLA-A
hsa-mir-132
NCK1
KIAA0922
POLD2
VPS54
CYP1B1
PIP4K2A
IRAK3
IKZF2
PANK4
hsa-mir-19b
STX1A
hsa-mir-425
ADPGK
UCHL3
AMBRA1
ID2
RPS29
ENTPD1
STAB1
hsa-mir-765
PLOD2FBXO4
TAF1D
UBP1
PRMT8
TSC22D4
hsa-mir-26b
PLCXD2
PRPF39
GAS2
PTPN5
MYNN
ATXN7L3
LTB4R
HS2ST1
ME1
NFIL3
DET1
hsa-mir-29c
NPNT
BTLA
HSPB1
R3HDM1
hsa-mir-448
GOT1
DHRS3
RAD50
SELL
ZFAND3
MAF
FLOT1
ETV6
DSTN
SCN1B
HOOK1
PDLIM5CHKA
CDKN2C
LYRM2
hsa-mir-636
MED1
hsa-mir-504
SLC4A2
hsa-mir-204
LGMN
ORMDL3
DOCK6
FNDC3A
KDSR
RAB20
ANGEL1
EML2
GNA15
IL22
NYNRIN
DIS3
hsa-mir-181d
TAF4
TBX21
MED18 GSN
RAB39B
FURIN
FES
hsa-mir-98
TASP1
CPNE1
SETDB2 CTDP1
ATG16L1
hsa-mir-30e
MPHOSPH9ZNF644
FAU
hsa-mir-216aTLE4
hsa-mir-27b
C2orf42
NDUFB6PEX13
ALDOA
RPL12
KLK3
KRTAP11-1
ELK3
DYRK1B
hsa-mir-936
SP1
EIF5
KLF12
PTK2Bhsa-mir-637
EDN1
IL17RBDCAF6
KCNK6
ANKRD12
ZNF281
PRR5L
CUL4B
ERGIC1
ZPBP2
PPP1R2 DENND5AKHSRP
TNFRSF1ACA13
ADAMTS6
HIP1
TMEM43
TRRAP
TSC22D1
XAB2
CASZ1
hsa-mir-593
hsa-mir-22
HSF2
SENP2
ATXN7L1
PTPN1
ACIN1
BTG2
STXBP1
hsa-mir-657
USP7
HAVCR2
IL12RB1
BOLL
RRM2
PICALM
CDK2
hsa-mir-20b
CD9
hsa-mir-449b RBBP9
PDSS2RASL11B
AGTPBP1 MBP
N4BP2 hsa-mir-372
GTF2A1
CCL19
MPRIP
GCNT1
SLC20A1
RNF138
N4BP1
SLC11A1
hsa-mir-766
DMXL2
NLRP3
ELL2LIN9
SMAD2
EZH2
DLG4
MYD88
ATP1B1GLRX
hsa-mir-7
DNAJC5B
WBP11DGKD
hsa-mir-301a
hsa-mir-363SF3B1
ARSB
FNTB
RNH1
hsa-mir-146a
BRWD1
CBFA2T2
SFPQIL6ST
IL10RA
ANGPTL2
B3GALT2
USP22
IL1RL1
RAB3GAP1
USE1
ID3
CBX7
CENPJ
DGKZ
PSME2
IFITM2
hsa-mir-302b
VRK2
PRDM1
CLCF1
NCKAP5
GOLGA1
ARL6IP6
hsa-mir-30a
PLCD4
TYMS
OGDH
STAT3
FBXW2
S100A6
ELK4
TIAM1
SDC1
hsa-mir-34a
RPL35A
FEZ2 PRSS8
SEC11A
NRF1
TWISTNB
FNBP4
EXOSC5
CRIM1
KLC1
C1GALT1
PKN2
HIST1H3HSUB1
VPS37A
LPHN2
KIF2A
AHDC1
PFKL
EMP1
ST6GALNAC2
TUBA4A
CD74
BACH2
ING2
FUNDC2
SRGAP3
MGRN1
EXOC6
TRAK2
DTYMK
PCSK1
SCGB1A1
CPD
RIOK3
CUL4A
CD38
hsa-mir-27a
PTBP2
CCR5
RNF128
hsa-mir-891b
GTF3A
CD79A
CTSH
NCOA3
FYN
CNOT6
IKZF3
PITPNM2
NKIRAS1
BCL3
NFS1
VAV1CLK2
ATXN2
SMG1
con-miR
isotype
miR-cocktail
IL-13
MFI
mRNA and miRNA
mice expression data
Th2 disease module
Human interactome and
miRNA network
5 highest impact
miRNAs
Validation in mouse
IDEAL approach
1 2 5 10 20 50 100
012345
Number of miRNAs attacking
CollectiveImpact(CI)
RSBN1
LRP8
TSC1
AKAP8L
PRKCD
PRR11
IFNA4
BNIP3
MCPH1
MAFK
CCL17
DLG2
hsa-let-7e
PPP2R5E
ASTE1
ARNT2
ZNF276
XRCC4
TRIM24
ZNF277INPPL1
PILRA
LDHB
PDE1BC14orf1
RPL8
GCC2
C5
PCDH19
BACE2
BATF
CDON
INPP5A
DNAJB14
SH3RF2
CAMK2N1
C1orf94
hsa-mir-200c
HMOX2
SMARCD1
CPSF7
CNN3
POLI
SLC25A25
LTB
XRN2
SIAH2
TINF2
RAPGEF6
PBX3
hsa-let-7b
hsa-mir-107
SEC63
ATF7
CCR8
PTPN3
GRP
TMEM62
SMURF1
RPS10
RPS21
MAP3K12
ARMC8
ANXA4
CDK10
INPP4A
FBXW8
FBXL6
MAML3
MLEC
EPB41
MAPRE1
ELF2
BMPR1A
hsa-mir-138
DTL
RAG1
ATRN
hsa-mir-340
TAPT1
NARS2
MIPOL1PTGS2
LY75
RPS13
GALNT3USP24
ZCCHC2
ZNF653
CCR4
ERF
ENTPD6
PIGF
PARD3
ZBTB34
RIPK1RAPGEF1 KIAA1462
hsa-let-7a
UPF3A
hsa-mir-607
CA2
IL9RGAPVD1
FANCL
TKT
SMARCA5
GNPDA1
LAMC1
RXRA
NEK1
hsa-mir-575
AURKC
TNFRSF8NRBP1
COBLL1
hsa-mir-106b
SPINT1
ALDH3A2
SH3BGRL FBXL2
PSME1
STK25
H1F0
LAMA5
hsa-mir-665
ERN1
hsa-let-7i
STAT5A
TPI1
SLC25A46
HSD17B7
hsa-mir-194
FRMD6
ASH1L
AP1S2
DUSP2
MBTD1
DGKI
CHST11
F2RL1
MLKL
HMGXB3
GNB4
ANKRD29
LITAF
KLHL3
hsa-let-7d
FUCA2
CCDC101
PBX2
FRMD4B
hsa-mir-580
ADNP
LIMK1
P2RY1
ATG4B
GATA2
hsa-mir-18b
PCYT2
RGS9
RPS12
hsa-mir-15b
RNF24
IRF8
ETNK1
hsa-mir-21
EIF4G3
PLEKHO1
LFNG
BCL2L15DNAJB9
CA1
PRDM2
SAT1
BHLHB9 GAS7
FLRT2
RPL17 HPSE
STX11
MEOX2
IGF1RCCDC22CGGBP1
RPS16
USP14
CPSF3
MYO1D
ZMYND11
TRIM44
hsa-let-7c
hsa-mir-516a-5p
HDAC7
NEK7
ITGB8
TNFRSF14ZNF605
DCP2
PRDM4
AQP9
MEPCE
HMCN1
CTNNA1
TNFSF10
TCF12SDCCAG3
ZFYVE16
DIP2C
DUSP19
ASXL2
CHST15
hsa-mir-203
AXIN1
CAMKK2
VEZTBCL7B
MEF2A
FHL3
ANKRD17
hsa-mir-494
IL24
RASSF5
DENND4A
CREB3L2
PUM2
RNF130
TRIM8
UNKL
PHF20L1
SCMH1
hsa-mir-552
PYGM
NRP1
BRPF1
SERINC3
EIF5B
RANBP3
hsa-mir-149
CSK
NPAT GNB2L1LY9
CARM1
PCNA
hsa-mir-150
ST3GAL4
RB1 RREB1
HSPA2
CNOT1
RPL23
hsa-mir-17
F11R
ATP11C
hsa-mir-135b
MPP7
SRF
SMYD3
NOTCH1
NEDD8
ITM2A
hsa-mir-33b
STAR
LRIG1
ATP2B1
CCR7 TIGIT
CD84
RPL31
YWHAZ
TESK1
RNLS
C21orf91
CENPT
XPC
DYNLT3
ACTR6
LPIN2
RUNX2
KLKB1
CSGALNACT1
CHCHD3MIF4GD
PLEKHA1
EHMT1
RPL27A
SAMSN1
PSMD7
RORA
AKAP8
VTI1A
EPAS1
AKR1B1
DAPK1ZDHHC23
FBXW7
CCL1
IL1RN
GAPDHS
DEK
ADAM19
TDG
PLCB4
HSD3B1
WHSC1
MRPL30
RBM6
MDK
PPP4R1
SUV420H1
HSPA8
hsa-mir-623
RNF44
AMPH
LILRB4
USP9X
BZW2
RBM28
EDEM3
MYO10
GLDC
ASAP1
CHRM2 QTRT1
hsa-mir-383
KLHL6
VAT1
CDK6
ITPR1
KIAA1598
ATXN1
UBL3
hsa-let-7f
STOM
VDR
THADA
ZBTB44
KLHDC10
ARHGEF2
IPMK
YLPM1IFNG
STT3B
CTDSPL2
WDR82UBR1
hsa-mir-517a
QSER1
BRF1
SLC39A10
RALY
GRSF1
FN1
NCOR2
CDK12
GNAQ
ZNF654
GALC
UBE2D1
FFAR2
H2AFZ
TOM1
NCKAP1
GSRhsa-mir-220b
SERF2
GNG2RAF1
RGS19
SETD1A
IMPA2FGF18
ERAP1
STAG1
IKZF4
ELMOD2
PROS1
PLB1
STAMBPL1
ERC1
STXBP4PPARG
hsa-mir-154
ACVR2A
NEU1
TMTC2RPL18
IL9RPAP2 DCBLD2
IL19
HEPHL1
MID2
GIMAP8
CAMK2D
MYH9
TERF2DHRS7
KIFC1 hsa-mir-380
CYP1A1
ADH5
SRRT
EPN1
GNG4
PTPN4
PER1
ABCB8
DHX9
RGS3
hsa-mir-545
SLC48A1
PCGF2
RGS1
TXK
ADARB1
ASB13
AURKB
MPZL1
OVGP1
RHOH
TPD52
hsa-mir-143
RPS23
hsa-mir-99b
CNOT10
RAB11B
ATRNL1
USP15
WDFY2
RAB9A
hsa-mir-571
NAV2
ZRSR2
PHOX2A
ATXN7L2
RABGGTA
FGFR1OP2
NCLN
RAB8A
TTLL4
FOXJ3
ZMIZ2
ETS2
LAG3
EGLN3
ZNF318
UXT
CLDND1
TTBK1
CYCS
CRTAM
hsa-mir-30b
PCYT1A hsa-mir-200bATRIP DYRK2hsa-mir-328
NDUFA10
hsa-mir-505
TMEM159
hsa-mir-379
SMC5
RNF19A
GPRASP1
GABARAP
hsa-mir-24
EIF3K
SLC17A6
RPL19
CMPK1
TMEM30A
GRN
HIC1
TNFSF8
hsa-mir-30c
NBN
IL10
MAPK8
ADORA2B
CSNK1G3
MYO1E
LRP12
COIL
hsa-mir-603
FUT8
PPFIA1
hsa-mir-155
RPS6KA1
KPNA1
SIDT2
TRIM25
FDFT1
UBE2F
CTLA4
KIF3A
TARS2
hsa-mir-760
CCR3
LXN
KHDRBS1
MECR
PLCD1
HIVEP2
GLB1
RPL13A
GRIPAP1
MTOR
hsa-mir-148b
CHD7
DMXL1
TMOD4
INADL
NFX1
hsa-mir-422a
SH2D1A
DAG1
DOCK11
CLSTN1
INTS4
GZF1
RPL9
PARP4
RPS15A
SKP1
PLP2
ATP10A
hsa-mir-452
TAF8
HIPK1
MSH3
KLRG1
PDE2A
MLLT10
hsa-mir-181c
CCDC90B
SETX
CEP55
CNIH2
FRS2
FBXL5
MARS2
WDR33
U2AF2
TANK
PTPN12
ZBTB32
SPN
SLC25A27
IPCEF1
EP400
RGS13
hsa-mir-206ZNF592
PEX10
CWC15
hsa-mir-220c
PARD6G
DUSP4SUFU
JPH1
SH3PXD2A
S100A1
SLC44A1
SERPINF1
CYFIP1
USP28
FOXF2PRKAR2A VAMP4
GTF3C2 IL1R2
BAZ1Ahsa-mir-181a
MOCOS
FOXN2
ABCC1
MYO1C LSM1 hsa-mir-922
ETV5
PAN3 RBM41
STK24
SETD7
SPHK2
MLF1
RTN3
ANXA2
SLC7A8
EZR
RC3H1
hsa-mir-548a-3p
RPE
PCGF5
LPXN
TREX1 LYN
MED13
RBM38
MKL2
RPS9
MAP3K5hsa-mir-620
MCL1
CD5PTPN6
ARL14MAPKAPK5 VCL
LCORL
CSNK1E
SUV39H1
NEB
RPL10
hsa-mir-497
PTPRJ
APLP1
HIST1H3B
DDX11
ARL6
DVL1 RPL13
RNPC3
ARL5A
DDX28
RPSAZMYM4
hsa-mir-487a
ZBTB38
DICER1
PTGER2
ARHGEF3
hsa-mir-520h
THRAP3
IL1R1
ABL2
NDUFA3
IL23R
LAT
HIPK2
hsa-mir-103
ARFGEF1
ZRANB1
KIAA2026
PTPN13
hsa-mir-29b
CRMP1
APBB3
IPO9
hsa-mir-488
ARHGEF12
SPP1
RPLP2
LLGL1
EIF3F
LZTFL1
FAM91A1
RPS5
DDX19B
PLXNC1
GIT1
TPBG
UHRF2
INHBA
hsa-mir-211
S100A11
ACTN1
ACVR1
HIST1H4C
CNTNAP4
GYPC
POLR3F
GMNN
TAOK2
ARG1
THOC1
KIF16B
PHF20
TIPARP
PPM1F
PTP4A3
SFN
OLR1
SIN3A
BCL2L11
RAPH1
ICOS
hsa-mir-374b IKBKE
SAP130
AHR
TOP2A
GNPTAB
PJA1
FGL2
ADAM9
EFR3A
SETBP1
HN1L
NUMA1
STUB1
SLK
GAD1
SERTAD2
GJB3
PALLD
C19orf66
GRM5
SLCO3A1
PIK3CB
ESYT2
KAT2A
FBXW11hsa-mir-520f
SUSD2
CNOT2
PAIP2
TRAM1 NCAPH
ANKRD13C
S100A16
HIRA
AQR
NR3C1
hsa-mir-222
CA8
ZDHHC3
CAPG
MTMR2
hsa-mir-551b
ZBTB10
MKNK1
PTPRC
ADAP1
RHOQ
PTPLAD1
CA5B
DAXX
MPHOSPH8hsa-mir-200a
UGP2
EBAG9
IKBKB
RAB11FIP4
IPPK
PRDX6
CYP11A1
RXRB
ZNF25
RNF146
ITGAD
RAB11FIP1
RNF216
PLAUR
CAP2
CYP17A1
TEX2
PLK2
TIMP3
SMAD1
TIMP1
RASSF8
DUSP14
RASA3
IGF2R
MKRN2
ITGB2
DDX46
TRA2A ZBTB11
CRY2
RPS28
PPAP2B
STARD13
RNF31
GLUD1
SESN3
CDK11APRICKLE3
CMAS LEF1
PHACTR4
MFHAS1
SMAD3OSBPL3
MUS81
CASP6
MYCBP2
MYLIP
USP34
hsa-let-7g
PSIP1
MAPKAPK2
NUP153
CASP4
TRPS1
QRICH1
KIF2C
PRKCH
SVIL
AXL
CTCF
CD2AP
EYA1
SRSF2
RPTOR
hsa-mir-214
ITGA2DUSP16
INTS7
MPI
MARK3
SMARCD3BNC1
PARP8
ACBD5
RNF111
HBS1L
ICAM2
MTMR10
GNPAT
RCOR1
hsa-mir-18a
PHC1
SRXN1
CCR1
B4GALT5
CAPNS1
MAPK8IP3
MSC
CDC27
GPR126
IER3
QPCTL
GATM
HSF1
MFNG
hsa-mir-93PKD2
GATA3
TOR1AIP2
KLRD1
GRAMD3
RRAS2
CASP1
KBTBD2
CREBL2
CABIN1
RASL11A
IGBP1
SPRED2HIST1H3C
AMMECR1
hsa-mir-554
RYK
MIA3
COX7A2L
CABYR
PPFIBP1EPS15L1
MAX
hsa-mir-182
TEC
RPS7
STK38
LGALS3
LRRFIP1
RPL30
BMPR2
CD80
PTDSS1
LGALS1
TNKS2
FARP2
SLC24A3
MRAS
PTPN9
SDC4
TSC2
CAPN2
PIK3AP1
CD44
CYTH3
NEK6MED26
ERCC4
FAM57A
TAF4B
HEG1
UTRN
BCAS2
ARHGAP29
GAPDH
HLF
DPM1hsa-mir-181b
NEO1
LTN1 ZC3H12C
hsa-mir-25
hsa-mir-152PDCD10
IL5 RBPJ
RALGDS
FOXP4
hsa-mir-610
CBLB
BCAR3
PDSS1
NDUFB1
ATR
ENY2
GIGYF2
PICK1
hsa-mir-19a TRAF3IP3
KIF13A
POGZ
AKAP6
hsa-mir-326
ATP10B
IL13
ITGB1BP1
hsa-mir-192
PRPF38B
SERPINA3
IL2RB
CLCN5
hsa-mir-195
IRF3
SSFA2
VASP
CDK4
ENAH
TADA2B
MAP3K14
hsa-mir-649
TRIM35
PJA2
NCAPG2
PBRM1
EPN2
SMC4REV1
GPR45
PACSIN1
PUM1
hsa-mir-874
SFRP4
MAP2K7
TMEM132B
hsa-mir-26a
DIAPH3
CD200R1
CDO1
BCL9
F2R
HS3ST3B1
hsa-mir-106a
FOXP3
NT5E
LSRATG4D
ARHGEF7
hsa-mir-23a
CEP68
TXNDC17
CHRAC1MLXIP
ATP2B4 YTHDC2AHNAK SLC2A3
LCOR IFI16
ADCY3
JAG1
RAB31
PLCL1
RALGPS2
NPY
SUOX
SF3B4IGFBP7
CD27
hsa-mir-921
NDOR1
PHF3
RPL26hsa-mir-29a
XPO7
TAF7
TOP3A
CSTA
IMPDH1
hsa-mir-378
TAGAP
PCID2
NUP107
DGCR2
FBXL12
SOCS2
CSF1
CENPO
CRY1
CST3
KSR1
FGF2CNKSR3
MMP25
hsa-mir-32
UGCG
GTF2I
CLTA
SUCLG2
hsa-mir-625
IRF2BP1
FKBP3
hsa-mir-608
MAST1 SEMA4D
DCUN1D4
ERO1L
ZCCHC7
ST6GAL1
NDUFV2
GPM6B
MRPS24
STRBPRBM12
ZYG11B
RFK
CXCL10
hsa-mir-23bUBE2H
SLC35C1
TAGLN
APBB1IPMVP
GPATCH8
HLA-A
hsa-mir-132
NCK1
KIAA0922
POLD2
VPS54
CYP1B1
PIP4K2A
IRAK3
IKZF2
PANK4
hsa-mir-19b
STX1A
hsa-mir-425
ADPGK
UCHL3
AMBRA1
ID2
RPS29
ENTPD1
STAB1
hsa-mir-765
PLOD2FBXO4
TAF1D
UBP1
PRMT8
TSC22D4
hsa-mir-26b
PLCXD2
PRPF39
GAS2
PTPN5
MYNN
ATXN7L3
LTB4R
HS2ST1
ME1
NFIL3
DET1
hsa-mir-29c
NPNT
BTLA
HSPB1
R3HDM1
hsa-mir-448
GOT1
DHRS3
RAD50
SELL
ZFAND3
MAF
FLOT1
ETV6
DSTN
SCN1B
HOOK1
PDLIM5CHKA
CDKN2C
LYRM2
hsa-mir-636
MED1
hsa-mir-504
SLC4A2
hsa-mir-204
LGMN
ORMDL3
DOCK6
FNDC3A
KDSR
RAB20
ANGEL1
EML2
GNA15
IL22
NYNRIN
DIS3
hsa-mir-181d
TAF4
TBX21
MED18 GSN
RAB39B
FURIN
FES
hsa-mir-98
TASP1
CPNE1
SETDB2 CTDP1
ATG16L1
hsa-mir-30e
MPHOSPH9ZNF644
FAU
hsa-mir-216aTLE4
hsa-mir-27b
C2orf42
NDUFB6PEX13
ALDOA
RPL12
KLK3
KRTAP11-1
ELK3
DYRK1B
hsa-mir-936
SP1
EIF5
KLF12
PTK2Bhsa-mir-637
EDN1
IL17RBDCAF6
KCNK6
ANKRD12
ZNF281
PRR5L
CUL4B
ERGIC1
ZPBP2
PPP1R2 DENND5AKHSRP
TNFRSF1ACA13
ADAMTS6
HIP1
TMEM43
TRRAP
TSC22D1
XAB2
CASZ1
hsa-mir-593
hsa-mir-22
HSF2
SENP2
ATXN7L1
PTPN1
ACIN1
BTG2
STXBP1
hsa-mir-657
USP7
HAVCR2
IL12RB1
BOLL
RRM2
PICALM
CDK2
hsa-mir-20b
CD9
hsa-mir-449b RBBP9
PDSS2RASL11B
AGTPBP1 MBP
N4BP2 hsa-mir-372
GTF2A1
CCL19
MPRIP
GCNT1
SLC20A1
RNF138
N4BP1
SLC11A1
hsa-mir-766
DMXL2
NLRP3
ELL2LIN9
SMAD2
EZH2
DLG4
MYD88
ATP1B1GLRX
hsa-mir-7
DNAJC5B
WBP11DGKD
hsa-mir-301a
hsa-mir-363SF3B1
ARSB
FNTB
RNH1
hsa-mir-146a
BRWD1
CBFA2T2
SFPQIL6ST
IL10RA
ANGPTL2
B3GALT2
USP22
IL1RL1
RAB3GAP1
USE1
ID3
CBX7
CENPJ
DGKZ
PSME2
IFITM2
hsa-mir-302b
VRK2
PRDM1
CLCF1
NCKAP5
GOLGA1
ARL6IP6
hsa-mir-30a
PLCD4
TYMS
OGDH
STAT3
FBXW2
S100A6
ELK4
TIAM1
SDC1
hsa-mir-34a
RPL35A
FEZ2 PRSS8
SEC11A
NRF1
TWISTNB
FNBP4
EXOSC5
CRIM1
KLC1
C1GALT1
PKN2
HIST1H3HSUB1
VPS37A
LPHN2
KIF2A
AHDC1
PFKL
EMP1
ST6GALNAC2
TUBA4A
CD74
BACH2
ING2
FUNDC2
SRGAP3
MGRN1
EXOC6
TRAK2
DTYMK
PCSK1
SCGB1A1
CPD
RIOK3
CUL4A
CD38
hsa-mir-27a
PTBP2
CCR5
RNF128
hsa-mir-891b
GTF3A
CD79A
CTSH
NCOA3
FYN
CNOT6
IKZF3
PITPNM2
NKIRAS1
BCL3
NFS1
VAV1CLK2
ATXN2
SMG1
BUILDING THE TH2 DISEASE MODULE
Maximize Largest Connected Component (LCC)
size compare to random (Z-score)
● ●
●
●
●
●
●
●
● ● ●
●
●
●
●
● ●
●
● ●
1.0 1.5 2.0 2.5
012345
Choosing a FC cutoff for mRNAs
Fold−change cutoff
LCCZscore
Optimal	FC=1.3
stable
● ●
●
●
●
●
●
1.0 1.5
01234
Choosing a
Fold
LCCZscore
O
F
MIRNAS IMPACT
• LCC Z score after removal of miRNA targets
• Compare to random targets
Th2 stableTh2 early
123456
e(r)
cute
c(r)
onic
Assessing the collective attack of miRNA
LCCZscore
miRNAs impact on
Th2 disease module
random
observed
ITERATIVE IMPACT
COLLECTIVE IMPACT
Th2 stable
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●
●
●
●
●●
●
●●
●
●
1 2 5 10 20 50 100
−2−101234
Number of miRNAs attacking
CollectiveImpact(CI)
●
●
●
●
●
●
●
● ● ●
●
●
●
● ●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
Ranking
by FC
Ranking
by LCC
impact
mir-27b
mir-206
mir-106b
mir-203
mir-23b
High
Collective
Impact
●
1 2
−0.50.00.51.01.52.02.5
Nu
CollectiveImpact(CI)
●
●
●
Compare observed impact with random expectation (Z-score)
Target candidates for screeningTARGET CANDIDATES FOR SCREENING
EFFECT OF MIRNA ON TARGET EXPRESSION
MUTATING PREDICTED TARGET BINDING SITE
Nucleofection of Th2 cells followed by flow cytometry
PHENOTYPE VALIDATION
II. TAKE HOME MESSAGE
Marc Santolini - CCNR
IDEAL
PART III
PERSONALIZED RESPONSE TO A
PERTURBATION
Marc Santolini, Milagros C. Romay, Clara L. Yukhtman, Christoph D. Rau, Shuxun Ren, Jeffrey J.
Saucerman, Jessica J. Wang, James N. Weiss, Yibin Wang, Aldons J. Lusis, Alain Karma, “A
Personalized, Multi-Omics Approach Identifies Genes Involved In Cardiac Hypertrophy And
Heart Failure”
Hybrid Mouse Diversity Panel
100+ strains of mice
DNA variants (500k+ SNPs)
Heart Failure HMDP: Overview of the Study
Isoproterenol
Induced
Phenotypic
Spectrum
Compensated
Heart
Decompensated
Heart
Hybrid Mouse Diversity Panel
Treat with 20 mg/kg body
weight/day ISO for 3
weeks
Collected phenotypes
Weights
Heart (total and
each chamber)
Liver Lung
Adrenal Body
Echocardiography
Ejection Fraction
& Fractional
Shortening
LV chamber
diameter
(diastolic and
systolic)
Posterior Wall
Thickness (diastolic
and systolic)
E/A Ratio LV mass Ejection Time
Other
Plasma Lipids Fibrosis
% Death in
Response to
Isoproternol
Mitochondrial
DNA content
RNA Transcriptomes
THE HYBRID MOUSE DIVERSITY PANEL (HMDP)
Ghazalpour et al, Mamm Genome (2012)
Combines genetic and phenotypic diversity
Spectrum of phenotypes
42 traits pre/post ISO
mRNAs microarrays
+ISO
Isoproterenol-induced
heart failure (3 weeks)
List of collected phenotypes
Weights
Heart (total and each chamber) Body%
Adrenal Liver Lung
Echocardiography
Ejection
Fraction
& Fractional
Shortening
LV chamber
diameter
(diastolic and
systolic)
Posterior Wall
Thickness
(diastolic and
systolic)
E/A Ratio LV mass Ejection Time
Other
Myocyte Cross-
section Area
Fibrosis Apoptosis
Mitochondrial
DNA content
RNA Transcriptomes
GLOBAL VS PERSONALIZED RESPONSES
Spectrum of responses
Heart mass
h
Fold-Change
PHENOTYPE LEVEL
BXD−14/TyJ
BXA16/PgnJ
DBA/2J
BXA24/PgnJ
BXD32/TyJ
BXD−32/TyJ
BXHB2
KK/HlJ
AXB19/PgnJ
CXB−3/ByJ
AXB−20/PgnJ
BXD75
BUB/BnJ
LG/J
NOD/LtJ
BXD−11/TyJ
FVB/NJ
PL/J
CXB−12/HiAJ
BXA−4/PgnJ
BXD66
BXD62
SJL/J
CXBH
BXD50
BXH−19/TyJ
BXD87
RIIIS/J
SEA/GnJ
129X1/SvJ
BXD56
SM/J
BXH−9/TyJ
BXD48
BALB/cByJ
BXA−2/PgnJ
C3H/HeJ
CBA/J
BXD45
BXD−38/TyJ
CXB−7/ByJ
AXB−6/PgnJ
BXD49
BALB/cJ
BXD73
BXD40/TyJ
BXD−40/TyJ
BXD43
AKR/J
CXB−6/ByJ
BXA14/PgnJ
C57BLKS/J
BXD64
BXD61
AXB10/PgnJ
BXA−8/PgnJ
BXD21/TyJ
BXA−1/PgnJ
NZB/BlNJ
BXD68
NON/LtJ
SWR/J
BXD84
BXD74
BXD71
BXD79
BXD−5/TyJ
BXA−7/PgnJ
BXA−11/PgnJ
BXD55
BXD−12/TyJ
BXD85
AXB18
BXD44
CE/J
AXB8/PgnJ
NZW/LacJ
BXD−24/TyJ
BXD70
BXD39/TyJ
LP/J
CXB−11/HiAJ
BXH−6/TyJ
CXB−13/HiAJ
1.01.31.6
Heart mass
Global / Uncorrelated
Serpina3n
FC = 3.9
r = -0.06
i
Fold-Change(log2)
GENE LEVEL CORRELATIONS
j
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
−2 0 2 4
1.01.21.41.6
r = −0.058 (p=0.6)
Expression FC
TotalHeartFCHeartmassFC
−1012345
Serpina3n
Individual / Correlated
Kcnip2
FC = 0.85
r = 0.41
k
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
−2 −1 0 1 2
1.01.21.41.6
r = 0.41 (p=0.00011)
Expression FC
TotalHeartFC
Expression FC (log2)
−1.5−0.50.51.5
Fold-Change(log2)
HeartmassFC
l
Kcnip2
●
SAM
FC
0.00.10.20.30.4
CorrelationwithHypertrophy(abs.)
AXB10/PgnJ_ISO
BXD39/TyJ_ISO
BXH−19/TyJ_ISO
BXD−20/TyJ_ISO
BXA16/PgnJ_ISO
BXA14/PgnJ_ISO
BUB/BnJ_ISO
−3 0 2
Fold−Change (log2)
Fold-Change (log2)
-3 0 -3
HeartmassFC
Bclaf1
AW549877
Scara5
Mkrn3
Corin
Akap9
Zfp523
Ttc13
Klhl23
Pcdhgc4
Rffl
Cab39l
Ppp1r9a
Tnni2
Tspan17
9430041O17Rik
Ankrd1
Kcnip2
Fgf16
Kremen
Prnpip1
Ptrf
Ehd2
Nppb
Lrrc1
Dtr
Hes1
Atp6v0a1
Gss
4930504E06Rik
Nipsnap3b
Dedd
Nfatc1
2310022B05Rik
Wdr1
Eif4a1
AXB18_ISO
PL/J_ISO.1
BXD−5/TyJ_ISO
BXA−8/PgnJ_ISO
129X1/SvJ_ISO
129X1/SvJ.1_ISO
NZB/BlNJ_ISO
BXD70_ISO
BXD44_ISO
BXA−7/PgnJ_ISO
C57BL/6J_ISO.1
C57BL/6J.1_ISO.1
CXB−3/ByJ_ISO
BXH−6/TyJ_ISO
PL/J_ISO
CE/J_ISO
BXD49_ISO
BXD85_ISO
BXD−40/TyJ_ISO
BXD62_ISO
BXD73_ISO
BXD68_ISO
BALB/cJ_ISO
BXD−12/TyJ_ISO
CXB−13/HiAJ_ISO
AXB19/PgnJ_ISO
RIIIS/J_ISO
SWR/J_ISO
LP/J_ISO
NON/LtJ_ISO
CBA/J_ISO
BXA−11/PgnJ_ISO
BXD45_ISO
BXD84_ISO
BXD55_ISO
BXD61_ISO
CBA/J.1_ISO
SM/J_ISO
NZW/LacJ_ISO
DBA/2J.1_ISO
BXD−24/TyJ_ISO
BXD74_ISO
BXD64_ISO
BXA−2/PgnJ_ISO
BXD79_ISO
LG/J_ISO
BALB/cByJ_ISO
BXD−38/TyJ_ISO
C57BLKS/J_ISO
BXD87_ISO
BXD48_ISO
AXB8/PgnJ_ISO
C3H/HeJ_ISO
BXD50_ISO
BXD43_ISO
KK/HlJ_ISO
BXD71_ISO
BXD75_ISO
BXD56_ISO
AKR/J_ISO
FVB/NJ_ISO
BXD66_ISO
BXD40/TyJ_ISO
NOD/LtJ_ISO
NOD/LtJ_ISO.1
DBA/2J.1_ISO.1
DBA/2J_ISO.1
FVB/NJ_ISO.1
BXA−4/PgnJ_ISO
SJL/J_ISO
DBA/2J_ISO
BXD21/TyJ_ISO
AXB−20/PgnJ_ISO
BXD−14/TyJ_ISO
A/J_ISO.1
CXB−12/HiAJ_ISO
CXB−6/ByJ_ISO
CXB−11/HiAJ_ISO
BXH−19/TyJ_ISO
BXHB2_ISO
BXD−32/TyJ_ISO
BUB/BnJ.1_ISO
BXD39/TyJ_ISO
AXB10/PgnJ_ISO
BXD−20/TyJ_ISO
CXB−7/ByJ_ISO
BXA24/PgnJ_ISO
SEA/GnJ_ISO
BXD32/TyJ_ISO
BXA16/PgnJ_ISO
BXA14/PgnJ_ISO
BUB/BnJ_ISO
CXBH_ISO
BXA−1/PgnJ_ISO
AXB−6/PgnJ_ISO
BXD−11/TyJ_ISO
BXH−9/TyJ_ISO
FC genes
Correlation with Hypertrophy (abs.)
Frequency
0.0 0.1 0.2 0.3 0.4 0.5
01234567
Observed
Randomized
HYPERTROPHIC GENES IDENTIFICATION
a b
c d
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
−2 −1 0 1 2
1.01.21.41.6
r = 0.41 (p=0.00011)
Expression FC
TotalHeartFC
36 best FC
genes selected
GLOBAL VS PERSONALIZED RESPONSES
DISEASE GENES ENRICHMENT
GWAS genes from HuGE database (2,747 diseases)
MOST ENRICHED DISEASE GENES SETS
HeartValveDiseases
TricuspidAtresia
Hypertension,Malignant
VentricularDysfunction
Hypertension,Renovascular
RenalArteryObstruction
Cardiomyopathy,Hypertrophic
HeartDiseases
Arthrogryposis
AorticValveStenosis
HeartArrest
HeartFailure,Systolic
PulmonaryValveStenosis
CardiovascularDiseases
Hypotension,Orthostatic
FC
SAM
Significant diseases for FC
p−value(−log10)
0.01.02.0
Cardiac Hypertrophy /
Heart Failure
NeuropsychologicalTests
CognitionDisorders
PsychologicalTests
PersonalityTests
AcuteDisease
Disease
JointDiseases
HeartDiseases
RheumaticDiseases
Taste
Fibrosis
Inflammation
Hypersensitivity
NasalPolyps
AtrialFibrillation
FC
SAM
Significant diseases for SAM
p−value(−log10)
0123
Fibrosis
(Remodeling)
e f
TWO DISTINCT CO-EXPRESSION MODULES
Ttc13
Kcnip2
Ankrd1
Cab39l
Prnpip1
Rffl
AW549877
Fgf16
Ehd2
2310022B05Rik
Bclaf1
Ptrf
Wdr1
Gss
Nipsnap3b
Kremen
Polydom
Acot1
Pacrg
Col14a1
Scara5
BC020188
Tnc
Timp1
Arpc3 Ms4a7
Clec4n Lox
DctTnc Arhgdig
Catnal1
Mfap5 Clecsf8
2610028H24Rik
Slc1a2Ces3
Fhl1
Fhl1
Panx1
Adamts2
Snai3
Adamts2
Nppb
Klhl23
Tnni2
9430041O17Rik
Dtr
Pcdhgc4
Eif4a1
Akap9
Ppp1r9a
Zfp523
Nfatc1
Hes1
4930504E06Rik
Atp6v0a1
Dedd
BC020188
Timp1
AI593442
Serpina3n
Cysltr1
Lgals3
Retnla
Rpp25Gp38
Corin
Lrrc1
BC025833
Mkrn3
Tspan17
CO-EXPRESSION NETWORKS
Tspan17
Fgf16
Wdr1
Kcnip2
Klhl23
Ehd2
Arpc3
Panx1
Timp1
Acot1
Arhgdig
Snai3
Lox
Rpp25
Serpina3n
BC025833
Rffl
Akap9
Prnpip1
AW549877
Cab39l
Atp6v0a1
Ttc13
4930504E06Rik
Hes1
Bclaf1
Dedd
9430041O17Rik
Nipsnap3b
Pcdhgc4
2310022B05Rik
Nfatc1Lrrc1
Zfp523
Lgals3
Timp1
Mfap5
Fhl1
Retnla
Adamts2
BC020188
Slc1a2
Gp38
AI593442
Ms4a7
Clecsf8
Adamts2
Clec4n
BC020188
Tnc
Polydom
Col14a1
Tnc
Nppb
Ppp1r9a
Corin Ptrf
Gss
Kremen
Cysltr1
Eif4a1
Ankrd1
Dtr
Tnni2
Fhl1
Dct
2610028H24Rik
Catnal1
Pacrg
Ces3
Scara5
FC
SAM
pre-ISO
post-ISO
Healthy ISO
FC module
SAM module
Inter modules
EdgedensityZscore
−50510
TWO DENSE, DISJOINT MODULES
a b
PREDICTED UPSTREAM TFs FOR FC GENES
1. Snai3
(#3 SAM gene)
2. Vdr
3. Gabpa 4. Srebf1
5. Mxd4 6. Hes1
(#10 FC gene)
c
TWO DISTINCT CO-EXPRESSION MODULES
Ttc13
Kcnip2
Ankrd1
Cab39l
Prnpip1
Rffl
AW549877
Fgf16
Ehd2
2310022B05Rik
Bclaf1
Ptrf
Wdr1
Gss
Nipsnap3b
Kremen
Polydom
Acot1
Pacrg
Col14a1
Scara5
BC020188
Tnc
Timp1
Arpc3 Ms4a7
Clec4n Lox
DctTnc Arhgdig
Catnal1
Mfap5 Clecsf8
2610028H24Rik
Slc1a2Ces3
Fhl1
Fhl1
Panx1
Adamts2
Snai3
Adamts2
Nppb
Klhl23
Tnni2
9430041O17Rik
Dtr
Pcdhgc4
Eif4a1
Akap9
Ppp1r9a
Zfp523
Nfatc1
Hes1
4930504E06Rik
Atp6v0a1
Dedd
BC020188
Timp1
AI593442
Serpina3n
Cysltr1
Lgals3
Retnla
Rpp25Gp38
Corin
Lrrc1
BC025833
Mkrn3
Tspan17
CO-EXPRESSION NETWORKS
Tspan17
Fgf16
Wdr1
Kcnip2
Klhl23
Ehd2
Arpc3
Panx1
Timp1
Acot1
Arhgdig
Snai3
Lox
Rpp25
Serpina3n
BC025833
Rffl
Akap9
Prnpip1
AW549877
Cab39l
Atp6v0a1
Ttc13
4930504E06Rik
Hes1
Bclaf1
Dedd
9430041O17Rik
Nipsnap3b
Pcdhgc4
2310022B05Rik
Nfatc1Lrrc1
Zfp523
Lgals3
Timp1
Mfap5
Fhl1
Retnla
Adamts2
BC020188
Slc1a2
Gp38
AI593442
Ms4a7
Clecsf8
Adamts2
Clec4n
BC020188
Tnc
Polydom
Col14a1
Tnc
Nppb
Ppp1r9a
Corin Ptrf
Gss
Kremen
Cysltr1
Eif4a1
Ankrd1
Dtr
Tnni2
Fhl1
Dct
2610028H24Rik
Catnal1
Pacrg
Ces3
Scara5
FC
SAM
pre-ISO
post-ISO
Healthy ISO
FC module
SAM module
Inter modules
EdgedensityZscore
−50510
TWO DENSE, DISJOINT MODULES
a b
PREDICTED UPSTREAM TFs FOR FC GENES
1. Snai3
(#3 SAM gene)
2. Vdr
3. Gabpa 4. Srebf1
5. Mxd4 6. Hes1
(#10 FC gene)
c
TWO DISTINCT CO-EXPRESSION MODULES
Ttc13
Kcnip2
Ankrd1
Cab39l
Prnpip1
Rffl
AW549877
Fgf16
Ehd2
2310022B05Rik
Bclaf1
Ptrf
Wdr1
Gss
Nipsnap3b
Kremen
Polydom
Acot1
Pacrg
Col14a1
Scara5
BC020188
Tnc
Timp1
Arpc3 Ms4a7
Clec4n Lox
DctTnc Arhgdig
Catnal1
Mfap5 Clecsf8
2610028H24Rik
Slc1a2Ces3
Fhl1
Fhl1
Panx1
Adamts2
Snai3
Adamts2
Nppb
Klhl23
Tnni2
9430041O17Rik
Dtr
Pcdhgc4
Eif4a1
Akap9
Ppp1r9a
Zfp523
Nfatc1
Hes1
4930504E06Rik
Atp6v0a1
Dedd
BC020188
Timp1
AI593442
Serpina3n
Cysltr1
Lgals3
Retnla
Rpp25Gp38
Corin
Lrrc1
BC025833
Mkrn3
Tspan17
CO-EXPRESSION NETWORKS
Tspan17
Fgf16
Wdr1
Kcnip2
Klhl23
Ehd2
Arpc3
Panx1
Timp1
Acot1
Arhgdig
Snai3
Lox
Rpp25
Serpina3n
BC025833
Rffl
Akap9
Prnpip1
AW549877
Cab39l
Atp6v0a1
Ttc13
4930504E06Rik
Hes1
Bclaf1
Dedd
9430041O17Rik
Nipsnap3b
Pcdhgc4
2310022B05Rik
Nfatc1Lrrc1
Zfp523
Lgals3
Timp1
Mfap5
Fhl1
Retnla
Adamts2
BC020188
Slc1a2
Gp38
AI593442
Ms4a7
Clecsf8
Adamts2
Clec4n
BC020188
Tnc
Polydom
Col14a1
Tnc
Nppb
Ppp1r9a
Corin Ptrf
Gss
Kremen
Cysltr1
Eif4a1
Ankrd1
Dtr
Tnni2
Fhl1
Dct
2610028H24Rik
Catnal1
Pacrg
Ces3
Scara5
FC
SAM
pre-ISO
post-ISO
Healthy ISO
FC module
SAM module
Inter modules
EdgedensityZscore
−50510
TWO DENSE, DISJOINT MODULES
a b
PREDICTED UPSTREAM TFs FOR FC GENES
1. Snai3
(#3 SAM gene)
2. Vdr
3. Gabpa 4. Srebf1
5. Mxd4 6. Hes1
(#10 FC gene)
c
PATHWAY ENRICHMENT OF NEIGHBORS IN THE INTERACTOME
8,693 pathways from mSigDb & wikipathways
d
INTERACTION WITH THE CARDIAC HYPERTROPHIC SIGNALING NETWORK (CHSN)
e
Proportion of PPI neighbors in CHSN
Expectedfrequency
0.00 0.05 0.10 0.15
050100150200
FC
Z = 4
SAM
Z = 1.2
FC gene
HES1 AS A CANDIDATE
−1.00.00.51.0
Fold-Change
BXD−14/TyJ
BXA16/PgnJ
DBA/2J
BXA24/PgnJ
BXD32/TyJ
BXD−32/TyJ
BXHB2
KK/HlJ
AXB19/PgnJ
CXB−3/ByJ
AXB−20/PgnJ
BXD75
BUB/BnJ
LG/J
NOD/LtJ
BXD−11/TyJ
FVB/NJ
PL/J
CXB−12/HiAJ
BXA−4/PgnJ
BXD66
BXD62
SJL/J
CXBH
BXD50
BXH−19/TyJ
BXD87
RIIIS/J
SEA/GnJ
129X1/SvJ
BXD56
SM/J
BXH−9/TyJ
BXD48
BALB/cByJ
BXA−2/PgnJ
C3H/HeJ
CBA/J
BXD45
BXD−38/TyJ
CXB−7/ByJ
AXB−6/PgnJ
BXD49
BALB/cJ
BXD73
BXD40/TyJ
BXD−40/TyJ
BXD43
AKR/J
CXB−6/ByJ
BXA14/PgnJ
C57BLKS/J
BXD64
BXD61
AXB10/PgnJ
BXA−8/PgnJ
BXD21/TyJ
BXA−1/PgnJ
NZB/BlNJ
BXD68
NON/LtJ
SWR/J
BXD84
BXD74
BXD71
BXD79
BXD−5/TyJ
BXA−7/PgnJ
BXA−11/PgnJ
BXD55
BXD−12/TyJ
BXD85
AXB18
BXD44
CE/J
AXB8/PgnJ
NZW/LacJ
BXD−24/TyJ
BXD70
BXD39/TyJ
LP/J
CXB−11/HiAJ
BXH−6/TyJ
CXB−13/HiAJ
1.01.31.6
Fold-Change(log2)
Hes1
Heart mass
Hes1 downregulation
Mild hypertrophy
Hes1 upregulation
Strong hypertrophy
a
b
Hes1 expression FC in the HMDP
Hes1 is a FC gene, a predicted TF and interacts with cardiac hypertrophy pathway
HES1 VALIDATION
a
VALIDATION OF HES1 AS A NEW CARDIAC HYPERTROPHY REGULATOR
b Effect on known hypertrophic markersHes1 expression 48h after
siRNA transfection
c Effect on cardiac
cell size
0
0.2
0.4
0.6
0.8
1
1.2
TransfectionControl
Hes1siRNA-1
Hes1siRNA-2
TransfectionControl
Hes1siRNA-1
Hes1siRNA-2
TransfectionControl
Hes1siRNA-1
Hes1siRNA-2
Control Isoproterenol Phenylepherine
FoldChangeRelativetoControl
0
0.5
1
1.5
2
2.5
Control
Isoproterenol
Phenylepherine
Control
Isoproterenol
Phenylepherine
Control
Isoproterenol
Phenylepherine
Transfection	
Control
Hes1	siRNA	1 Hes1	siRNA	2
Fold	Change	Relative	To	Control
***
***
***
***
0
2
4
6
8
10
12
14
Control
Isoproterenol
Phenylepherine	
Control
Isoproterenol
Phenylepherine	
Control
Isoproterenol
Phenylepherine	
Transfection	
Control
Hes1	siRNA	- 1 Hes1	siRNA	- 2
Fold	Change	Relative	To	Control
***
***
***
***
Nppa
0
2
4
6
8
10
12
14
16
Control
Isoproterenol
Phenylepherine
Control
Isoproterenol
Phenylepherine
Control
Isoproterenol
Phenylepherine
Transfection
Control
Hes1 siRNA - 1 Hes1 siRNA - 2FoldChangeRelativetoControl
*
***
***
***
Nppb
III. TAKE HOME MESSAGE
−1012345
−1.5−0.50.51.5
a
b
INTERACTION WITH THE CARDIAC HYPERTROPHIC SIGNALING NETWORK (CHSN)
FC gene
predicted TF
Proportion of PPI neighbors in cardiac hypertrophic pathway
Expectedfrequency
0.00 0.05 0.10 0.15
050100150
FC
Z = 4.8
SAM
Z = −0.21
Proportion of PPI neighbors in CHSN
BXD−14/TyJ
BXA16/PgnJ
DBA/2J
BXA24/PgnJ
BXD32/TyJ
BXD−32/TyJ
BXHB2
KK/HlJ
AXB19/PgnJ
CXB−3/ByJ
AXB−20/PgnJ
BXD75
BUB/BnJ
LG/J
NOD/LtJ
BXD−11/TyJ
FVB/NJ
PL/J
CXB−12/HiAJ
BXA−4/PgnJ
BXD66
BXD62
SJL/J
CXBH
BXD50
BXH−19/TyJ
BXD87
RIIIS/J
SEA/GnJ
129X1/SvJ
BXD56
SM/J
BXH−9/TyJ
BXD48
BALB/cByJ
BXA−2/PgnJ
C3H/HeJ
CBA/J
BXD45
BXD−38/TyJ
CXB−7/ByJ
AXB−6/PgnJ
BXD49
BALB/cJ
BXD73
BXD40/TyJ
BXD−40/TyJ
BXD43
AKR/J
CXB−6/ByJ
BXA14/PgnJ
C57BLKS/J
BXD64
BXD61
AXB10/PgnJ
BXA−8/PgnJ
BXD21/TyJ
BXA−1/PgnJ
NZB/BlNJ
BXD68
NON/LtJ
SWR/J
BXD84
BXD74
BXD71
BXD79
BXD−5/TyJ
BXA−7/PgnJ
BXA−11/PgnJ
BXD55
BXD−12/TyJ
BXD85
AXB18
BXD44
CE/J
AXB8/PgnJ
NZW/LacJ
BXD−24/TyJ
BXD70
BXD39/TyJ
LP/J
CXB−11/HiAJ
BXH−6/TyJ
CXB−13/HiAJ
1.01.31.6
FC SAM
hypertrophy spectrum
Ttc13
Kcnip2
Ankrd1
Cab39l
Prnpip1
Rffl
AW549877
Fgf16
Ehd2
2310022B05Rik
Bclaf1
Ptrf
Wdr1
Gss
Nipsnap3b
Kremen
Polydom
Acot1
Pacrg
Col14a1
Scara5
BC020188
Tnc
Timp1
Arpc3 Ms4a7
Clec4n Lox
DctTnc Arhgdig
Catnal1
Mfap5 Clecsf8
2610028H24Rik
Slc1a2Ces3
Fhl1
Fhl1
Panx1
Adamts2
Snai3
Adamts2
Nppb
Klhl23
Tnni2
9430041O17Rik
Dtr
Pcdhgc4
Eif4a1
Akap9
Ppp1r9a
Zfp523
Nfatc1
Hes1
4930504E06Rik
Atp6v0a1
Dedd
BC020188
Timp1
AI593442
Serpina3n
Cysltr1
Lgals3
Retnla
Rpp25Gp38
Corin
Lrrc1
BC025833
Mkrn3
Tspan17
Global response
Method also used to find genes associated to drug
response and classify responders vs non-responders
THANKS!
−1.00.00.51.0
Fold-Change
BXD−14/TyJ
BXA16/PgnJ
DBA/2J
BXA24/PgnJ
BXD32/TyJ
BXD−32/TyJ
BXHB2
KK/HlJ
AXB19/PgnJ
CXB−3/ByJ
AXB−20/PgnJ
BXD75
BUB/BnJ
LG/J
NOD/LtJ
BXD−11/TyJ
FVB/NJ
PL/J
CXB−12/HiAJ
BXA−4/PgnJ
BXD66
BXD62
SJL/J
CXBH
BXD50
BXH−19/TyJ
BXD87
RIIIS/J
SEA/GnJ
129X1/SvJ
BXD56
SM/J
BXH−9/TyJ
BXD48
BALB/cByJ
BXA−2/PgnJ
C3H/HeJ
CBA/J
BXD45
BXD−38/TyJ
CXB−7/ByJ
AXB−6/PgnJ
BXD49
BALB/cJ
BXD73
BXD40/TyJ
BXD−40/TyJ
BXD43
AKR/J
CXB−6/ByJ
BXA14/PgnJ
C57BLKS/J
BXD64
BXD61
AXB10/PgnJ
BXA−8/PgnJ
BXD21/TyJ
BXA−1/PgnJ
NZB/BlNJ
BXD68
NON/LtJ
SWR/J
BXD84
BXD74
BXD71
BXD79
BXD−5/TyJ
BXA−7/PgnJ
BXA−11/PgnJ
BXD55
BXD−12/TyJ
BXD85
AXB18
BXD44
CE/J
AXB8/PgnJ
NZW/LacJ
BXD−24/TyJ
BXD70
BXD39/TyJ
LP/J
CXB−11/HiAJ
BXH−6/TyJ
CXB−13/HiAJ
1.01.31.6
Fold-Change(log2)
Hes1
Heart mass
Hes1 downregulation
Mild hypertrophy
Hes1 upregulation
Strong hypertrophy
I. Topology vs dynamics
in perturbation
spreading
II. Network
perturbation by
miRNAs
III. Personalized
response to a
perturbation
PERTURBATION PATTERNS
Perturbation patterns can be exactly computed from the Jacobian matrix
(Barzel, Barabasi, Nat Biotech 2013)
S = (1 J) 1
D(
1
(1 J) 1
)
Perturbation patterns
(long distance correlations)
Jacobian
(direct influence)
Sij =
dxi/xi
dxj/xj
Jij =
@xi/xi
@xj/xj
(Vanunu et al, PLoS Comp Biol 2009)
The requirements on F can be expressed in linea
follows:
F~aW’Fz(1{a)YuF~(I{aW’){1
(1{a)Y
where W’ is a jVj|jVj matrix whose values are given b
F and Y are viewed here as vectors of size jVj. We re
eigenvalues of W’ to be in ½{1,1Š. Since a[(0,1), the ei
of (I{aW’) are positive and, hence, (I{aW’){1
exist
While the above linear system can be solved exactly
networks an iterative propagation-based algorithm works
is guaranteed to converge to the system’s solution. Speci
use the algorithm of Zhou et al. [21] which at iteration t
Ft
: ~aW’Ft{1
z(1{a)Y
where F1
: ~Y. This iterative algorithm can be best und
simulating a process where nodes for which prior informa
PLoS Computational Biology | www.ploscompbiol.or
weighted adjacency
matrix (normalized by
degrees of end-points)
prioritization
function
origin of impact
PRINCE algorithm
Network model
Biochemical model
THE DISEASE MODULE

More Related Content

What's hot

A Multiset Rule Based Petri net Algorithm for the Synthesis and Secretary Pat...
A Multiset Rule Based Petri net Algorithm for the Synthesis and Secretary Pat...A Multiset Rule Based Petri net Algorithm for the Synthesis and Secretary Pat...
A Multiset Rule Based Petri net Algorithm for the Synthesis and Secretary Pat...ijsc
 
proteomics and system biology
proteomics and system biologyproteomics and system biology
proteomics and system biologyNawfal Aldujaily
 
Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...
Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...
Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...David Cook
 
Neuroinformatics conference 2012
Neuroinformatics conference 2012Neuroinformatics conference 2012
Neuroinformatics conference 2012Nicolas Le Novère
 
Network motifs in integrated cellular networks of transcription–regulation an...
Network motifs in integrated cellular networks of transcription–regulation an...Network motifs in integrated cellular networks of transcription–regulation an...
Network motifs in integrated cellular networks of transcription–regulation an...Samuel Sattath
 
Cytoscape: Gene coexppression and PPI networks
Cytoscape: Gene coexppression and PPI networksCytoscape: Gene coexppression and PPI networks
Cytoscape: Gene coexppression and PPI networksBITS
 
scRNA-Seq Workshop Presentation - Stem Cell Network 2018
scRNA-Seq Workshop Presentation - Stem Cell Network 2018scRNA-Seq Workshop Presentation - Stem Cell Network 2018
scRNA-Seq Workshop Presentation - Stem Cell Network 2018David Cook
 
Cimetta et al., 2013
Cimetta et al., 2013Cimetta et al., 2013
Cimetta et al., 2013Fran Flores
 
20042016_pizzaclub_part2
20042016_pizzaclub_part220042016_pizzaclub_part2
20042016_pizzaclub_part2RSG Luxembourg
 
Protein interaction networks
Protein interaction networksProtein interaction networks
Protein interaction networksLars Juhl Jensen
 
Genomics and proteomics ppt
Genomics and proteomics pptGenomics and proteomics ppt
Genomics and proteomics pptPatelSupriya
 
protein-protein interaction
protein-protein  interactionprotein-protein  interaction
protein-protein interactionZeshan Haider
 
Sequence alignment 1
Sequence alignment 1Sequence alignment 1
Sequence alignment 1SumatiHajela
 
Proteomics and protein-protein interaction
Proteomics  and protein-protein interactionProteomics  and protein-protein interaction
Proteomics and protein-protein interactionSenthilkumarV25
 

What's hot (20)

Systems biology
Systems biologySystems biology
Systems biology
 
A Multiset Rule Based Petri net Algorithm for the Synthesis and Secretary Pat...
A Multiset Rule Based Petri net Algorithm for the Synthesis and Secretary Pat...A Multiset Rule Based Petri net Algorithm for the Synthesis and Secretary Pat...
A Multiset Rule Based Petri net Algorithm for the Synthesis and Secretary Pat...
 
proteomics and system biology
proteomics and system biologyproteomics and system biology
proteomics and system biology
 
Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...
Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...
Resolving transcriptional dynamics of the epithelial-mesenchymal transition u...
 
evolutionary game theory presentation
evolutionary game theory presentationevolutionary game theory presentation
evolutionary game theory presentation
 
Neuroinformatics conference 2012
Neuroinformatics conference 2012Neuroinformatics conference 2012
Neuroinformatics conference 2012
 
Network motifs in integrated cellular networks of transcription–regulation an...
Network motifs in integrated cellular networks of transcription–regulation an...Network motifs in integrated cellular networks of transcription–regulation an...
Network motifs in integrated cellular networks of transcription–regulation an...
 
Cytoscape: Gene coexppression and PPI networks
Cytoscape: Gene coexppression and PPI networksCytoscape: Gene coexppression and PPI networks
Cytoscape: Gene coexppression and PPI networks
 
scRNA-Seq Workshop Presentation - Stem Cell Network 2018
scRNA-Seq Workshop Presentation - Stem Cell Network 2018scRNA-Seq Workshop Presentation - Stem Cell Network 2018
scRNA-Seq Workshop Presentation - Stem Cell Network 2018
 
Cimetta et al., 2013
Cimetta et al., 2013Cimetta et al., 2013
Cimetta et al., 2013
 
20042016_pizzaclub_part2
20042016_pizzaclub_part220042016_pizzaclub_part2
20042016_pizzaclub_part2
 
222397 lecture 16 17
222397 lecture 16 17222397 lecture 16 17
222397 lecture 16 17
 
Protein interaction networks
Protein interaction networksProtein interaction networks
Protein interaction networks
 
Rudge2012
Rudge2012Rudge2012
Rudge2012
 
Genomics and proteomics ppt
Genomics and proteomics pptGenomics and proteomics ppt
Genomics and proteomics ppt
 
protein-protein interaction
protein-protein  interactionprotein-protein  interaction
protein-protein interaction
 
Sequence alignment 1
Sequence alignment 1Sequence alignment 1
Sequence alignment 1
 
Gdt 2-126 (1)
Gdt 2-126 (1)Gdt 2-126 (1)
Gdt 2-126 (1)
 
Proteomics and protein-protein interaction
Proteomics  and protein-protein interactionProteomics  and protein-protein interaction
Proteomics and protein-protein interaction
 
2018 Modern Math Workshop - Modeling the Cytoskeleton Roads in Intracellular ...
2018 Modern Math Workshop - Modeling the Cytoskeleton Roads in Intracellular ...2018 Modern Math Workshop - Modeling the Cytoskeleton Roads in Intracellular ...
2018 Modern Math Workshop - Modeling the Cytoskeleton Roads in Intracellular ...
 

Similar to Perturbing The Interactome: Multi-Omics And Personalized Methods For Network Medicine

A statistical physics approach to system biology
A statistical physics approach to system biologyA statistical physics approach to system biology
A statistical physics approach to system biologySamir Suweis
 
American Statistical Association October 23 2009 Presentation Part 1
American Statistical Association October 23 2009 Presentation Part 1American Statistical Association October 23 2009 Presentation Part 1
American Statistical Association October 23 2009 Presentation Part 1Double Check ĆŐNSULTING
 
Navigating through disease maps
Navigating through disease mapsNavigating through disease maps
Navigating through disease mapsJoaquin Dopazo
 
Thesis def
Thesis defThesis def
Thesis defJay Vyas
 
Network Biology: A paradigm for modeling biological complex systems
Network Biology: A paradigm for modeling biological complex systemsNetwork Biology: A paradigm for modeling biological complex systems
Network Biology: A paradigm for modeling biological complex systemsGanesh Bagler
 
Introduction to biocomputing
 Introduction to biocomputing Introduction to biocomputing
Introduction to biocomputingNatalio Krasnogor
 
Bascompte lab talk131106
Bascompte lab talk131106Bascompte lab talk131106
Bascompte lab talk131106Juan C. Rocha
 
How to quantify hierarchy?
How to quantify hierarchy?How to quantify hierarchy?
How to quantify hierarchy?Dániel Czégel
 
Talk at the Nice Spring School on ASSB
Talk at the Nice Spring School on ASSBTalk at the Nice Spring School on ASSB
Talk at the Nice Spring School on ASSBTung Nguyen
 
Liver_Cancer_f_CIN-6-Fung_1624
Liver_Cancer_f_CIN-6-Fung_1624Liver_Cancer_f_CIN-6-Fung_1624
Liver_Cancer_f_CIN-6-Fung_1624David Fung
 
Stephen Friend MIT 2011-10-20
Stephen Friend MIT 2011-10-20Stephen Friend MIT 2011-10-20
Stephen Friend MIT 2011-10-20Sage Base
 
Community Finding with Applications on Phylogenetic Networks [Extended Abstract]
Community Finding with Applications on Phylogenetic Networks [Extended Abstract]Community Finding with Applications on Phylogenetic Networks [Extended Abstract]
Community Finding with Applications on Phylogenetic Networks [Extended Abstract]Luís Rita
 
Friend harvard 2013-01-30
Friend harvard 2013-01-30Friend harvard 2013-01-30
Friend harvard 2013-01-30Sage Base
 
Technology R&D Theme 1: Differential Networks
Technology R&D Theme 1: Differential NetworksTechnology R&D Theme 1: Differential Networks
Technology R&D Theme 1: Differential NetworksAlexander Pico
 
Pharmacopsychiatry Bmsystems Max Planck Publication Biomarkers Cns
Pharmacopsychiatry Bmsystems Max Planck Publication Biomarkers CnsPharmacopsychiatry Bmsystems Max Planck Publication Biomarkers Cns
Pharmacopsychiatry Bmsystems Max Planck Publication Biomarkers CnsManuel GEA - Bio-Modeling Systems
 
Huwang-2-7.ppt
Huwang-2-7.pptHuwang-2-7.ppt
Huwang-2-7.pptkobra22
 
Serine Integrases in Genetic Circuit Design
Serine Integrases in Genetic Circuit DesignSerine Integrases in Genetic Circuit Design
Serine Integrases in Genetic Circuit DesignDylan MacPhail
 

Similar to Perturbing The Interactome: Multi-Omics And Personalized Methods For Network Medicine (20)

A statistical physics approach to system biology
A statistical physics approach to system biologyA statistical physics approach to system biology
A statistical physics approach to system biology
 
American Statistical Association October 23 2009 Presentation Part 1
American Statistical Association October 23 2009 Presentation Part 1American Statistical Association October 23 2009 Presentation Part 1
American Statistical Association October 23 2009 Presentation Part 1
 
Navigating through disease maps
Navigating through disease mapsNavigating through disease maps
Navigating through disease maps
 
Thesis def
Thesis defThesis def
Thesis def
 
Network Biology: A paradigm for modeling biological complex systems
Network Biology: A paradigm for modeling biological complex systemsNetwork Biology: A paradigm for modeling biological complex systems
Network Biology: A paradigm for modeling biological complex systems
 
Introduction to biocomputing
 Introduction to biocomputing Introduction to biocomputing
Introduction to biocomputing
 
Bascompte lab talk131106
Bascompte lab talk131106Bascompte lab talk131106
Bascompte lab talk131106
 
How to quantify hierarchy?
How to quantify hierarchy?How to quantify hierarchy?
How to quantify hierarchy?
 
Talk at the Nice Spring School on ASSB
Talk at the Nice Spring School on ASSBTalk at the Nice Spring School on ASSB
Talk at the Nice Spring School on ASSB
 
Liver_Cancer_f_CIN-6-Fung_1624
Liver_Cancer_f_CIN-6-Fung_1624Liver_Cancer_f_CIN-6-Fung_1624
Liver_Cancer_f_CIN-6-Fung_1624
 
Stephen Friend MIT 2011-10-20
Stephen Friend MIT 2011-10-20Stephen Friend MIT 2011-10-20
Stephen Friend MIT 2011-10-20
 
E31034043
E31034043E31034043
E31034043
 
E31034043
E31034043E31034043
E31034043
 
Community Finding with Applications on Phylogenetic Networks [Extended Abstract]
Community Finding with Applications on Phylogenetic Networks [Extended Abstract]Community Finding with Applications on Phylogenetic Networks [Extended Abstract]
Community Finding with Applications on Phylogenetic Networks [Extended Abstract]
 
Friend harvard 2013-01-30
Friend harvard 2013-01-30Friend harvard 2013-01-30
Friend harvard 2013-01-30
 
Technology R&D Theme 1: Differential Networks
Technology R&D Theme 1: Differential NetworksTechnology R&D Theme 1: Differential Networks
Technology R&D Theme 1: Differential Networks
 
Pharmacopsychiatry Bmsystems Max Planck Publication Biomarkers Cns
Pharmacopsychiatry Bmsystems Max Planck Publication Biomarkers CnsPharmacopsychiatry Bmsystems Max Planck Publication Biomarkers Cns
Pharmacopsychiatry Bmsystems Max Planck Publication Biomarkers Cns
 
Huwang-2-7.ppt
Huwang-2-7.pptHuwang-2-7.ppt
Huwang-2-7.ppt
 
A tutorial in Connectome Analysis (3) - Marcus Kaiser
A tutorial in Connectome Analysis (3) - Marcus KaiserA tutorial in Connectome Analysis (3) - Marcus Kaiser
A tutorial in Connectome Analysis (3) - Marcus Kaiser
 
Serine Integrases in Genetic Circuit Design
Serine Integrases in Genetic Circuit DesignSerine Integrases in Genetic Circuit Design
Serine Integrases in Genetic Circuit Design
 

Recently uploaded

Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 

Recently uploaded (20)

Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 

Perturbing The Interactome: Multi-Omics And Personalized Methods For Network Medicine

  • 1. PERTURBING THE INTERACTOME MULTI-OMICS AND PERSONALIZED METHODS FOR NETWORK MEDICINE Marc Santolini Center for Complex Network Research (CCNR)
  • 2. Asthma Parkinson’s Leukemia MS Hypertension Rheumatoidarthritis Crohn’s disease Type 2 diabetes Glioblastoma Ulcerative colitis Heart failure Network Clustering Means Explainable Biology AIF1 ZBTB12 NFKBIZ MERTK HHEX CFB Diseases As Local Neighborhoods
  • 4. −1.00.00.51.0 Fold-Change BXD−14/TyJ BXA16/PgnJ DBA/2J BXA24/PgnJ BXD32/TyJ BXD−32/TyJ BXHB2 KK/HlJ AXB19/PgnJ CXB−3/ByJ AXB−20/PgnJ BXD75 BUB/BnJ LG/J NOD/LtJ BXD−11/TyJ FVB/NJ PL/J CXB−12/HiAJ BXA−4/PgnJ BXD66 BXD62 SJL/J CXBH BXD50 BXH−19/TyJ BXD87 RIIIS/J SEA/GnJ 129X1/SvJ BXD56 SM/J BXH−9/TyJ BXD48 BALB/cByJ BXA−2/PgnJ C3H/HeJ CBA/J BXD45 BXD−38/TyJ CXB−7/ByJ AXB−6/PgnJ BXD49 BALB/cJ BXD73 BXD40/TyJ BXD−40/TyJ BXD43 AKR/J CXB−6/ByJ BXA14/PgnJ C57BLKS/J BXD64 BXD61 AXB10/PgnJ BXA−8/PgnJ BXD21/TyJ BXA−1/PgnJ NZB/BlNJ BXD68 NON/LtJ SWR/J BXD84 BXD74 BXD71 BXD79 BXD−5/TyJ BXA−7/PgnJ BXA−11/PgnJ BXD55 BXD−12/TyJ BXD85 AXB18 BXD44 CE/J AXB8/PgnJ NZW/LacJ BXD−24/TyJ BXD70 BXD39/TyJ LP/J CXB−11/HiAJ BXH−6/TyJ CXB−13/HiAJ 1.01.31.6 Fold-Change(log2) Hes1 Heart mass Hes1 downregulation Mild hypertrophy Hes1 upregulation Strong hypertrophy I. Topology vs dynamics in perturbation spreading II. Network perturbation by miRNAs III. Personalized response to a perturbation OVERVIEW
  • 5. PART I TOPOLOGY VS DYNAMICS IN PERTURBATION SPREADING Marc Santolini, Albert-László Barabási, “Predicting Perturbation Patterns From The Topology Of Biological Networks”
  • 6. EDGE TYPES undirected PPI directed Kinase/substrate Gene regulation Metabolic miRNA A B signed activation / inhibition B A B A weighted kinetic parameters ˙xi = f(xi, xj, ✓ij) BA BA
  • 7.
  • 20. ‣How much network complexity do we need to predict perturbation patterns? full network dynamical system topology backbone
  • 21. ‣87 dynamical systems of biological processes of size > 10
  • 23. RETRIEVING BIOCHEMICAL NETWORKS Weighted signed directed network System of differential equations b c a ... ... ... ... ... 8 >>< >>: ˙xa = k1xc ˙xb = k2 xc k3+xa k4xb ˙xc = k5xb k6xc . . . Influence networkJacobian matrix J = 2 6 6 6 4 0 0 k1 . . . k2 x⇤ c (k3+x⇤ a)2 k4 k2 k3+x⇤ a . . . 0 k5 k6 . . . ... ... ... ... 3 7 7 7 5 how a change in a node concentration directly influences another node at steady state Biochemical network
  • 24. “Onion-peeling” strategy: how much each layer of complexity adds to the accuracy of perturbation patterns
  • 25. Biochemical Topological Weight (kinetic parameters) + + + + + + + - + + - - + - - - Topology (interaction) Direction (irreversibility) Sign (activation/inhibition) ONION-PEELING J sign(J) |sign(J)| (|sign(J)| + |sign(JT )|) 2
  • 26. ONION-PEELING PPI Biochemical Topological Weight (kinetic parameters) + + + + + + + - + + - - + - - - Topology (interaction) Direction (irreversibility) Sign (activation/inhibition) J sign(J) |sign(J)| (|sign(J)| + |sign(JT )|) 2
  • 27. ONION-PEELING PPI Integration with kinome, metabolome, miRnome, gene regulatory network Biochemical Topological Weight (kinetic parameters) + + + + + + + - + + - - + - - - Topology (interaction) Direction (irreversibility) Sign (activation/inhibition) J sign(J) |sign(J)| (|sign(J)| + |sign(JT )|) 2
  • 28. ONION-PEELING Literature, genetic interactions Integration with kinome, metabolome, miRnome, gene regulatory network Biochemical Topological Weight (kinetic parameters) + + + + + + + - + + - - + - - - Topology (interaction) Direction (irreversibility) Sign (activation/inhibition) J sign(J) |sign(J)| (|sign(J)| + |sign(JT )|) 2 PPI
  • 29. ONION-PEELING Bottleneck Literature, genetic interactions Integration with kinome, metabolome, miRnome, gene regulatory network Biochemical Topological Weight (kinetic parameters) + + + + + + + - + + - - + - - - Topology (interaction) Direction (irreversibility) Sign (activation/inhibition) J sign(J) |sign(J)| (|sign(J)| + |sign(JT )|) 2 PPI
  • 30. PERTURBATION PATTERNS Perturbation spread computed from the Jacobian matrix (Barzel, Barabasi, Nat Biotech 2013) S = (1 J) 1 D( 1 (1 J) 1 ) Perturbation patterns (long distance correlations) Jacobian (direct influence) Sij = dxi/xi dxj/xj Jij = @xi/xi @xj/xj ‣ Similar to PRINCE algorithm for unweighted network (Vanunu et al, PLoS Comp Biol 2009)
  • 31. Biochemical Perturbed node Effect Network Perturbed nodePerturbed node Effect Biochemical Network ACCURACIES ACROSS 87 MODELS Accuracy of perturbation patterns
  • 32. ACCURACIES ACROSS 87 MODELS (dashed line: Z=2 random expectation) Topology Direction Sign Kinetics + + + + + + + - + + - - + - - - Accuracyofperturbationpatterns Biochemical Diffusion(d+s) Distance(d) Firstneighbors(d+s) Influencestrengthrecovery 0.00.20.40.60.81.0 Accuracy of perturbation patterns Biochemical Perturbed node Effect Network Perturbed nodePerturbed node Effect Biochemical Network
  • 33. ACCURACIES ACROSS 87 MODELS ‣ 65% recovery rate without kinetics (80% when just looking at sign recovery) (dashed line: Z=2 random expectation) Topology Direction Sign Kinetics + + + + + + + - + + - - + - - - Accuracyofperturbationpatterns Biochemical Diffusion(d+s) Distance(d) Firstneighbors(d+s) Influencestrengthrecovery 0.00.20.40.60.81.0 Accuracy of perturbation patterns Biochemical Perturbed node Effect Network Perturbed nodePerturbed node Effect Biochemical Network kinetics
  • 34. OTHER FEATURES Best models are modular, sparse and have fewer hubs Number of structural holes Edge density Mean degree Mean Jacobian value Mean eigenvector centrality Number of reversible equations Model size Mean betweenness centrality Number of strong connected components Correlation with network model accuracy −1.0 −0.5 0.0 0.5 1.0 ● ● ● ● ● ● ● ● ●
  • 35. MODULARITY BUFFERS PERTURBATIONS INSIGHTS | PERSPECTIVES :A.KITTERMAN/SCIENCE By Marta Sales-Pardo I n the 1970s, ecologists began to specu- late that modular systems—which are organized into blocks or modules—can better contain perturbations and are therefore more resilient against exter- nal damage (1). This simple concept can be applied to any networked system, be it an ecosystem, cellular metabolism, traffic flows, human disease contagion, a power grid, or an economy (2, 3). However, experi- mental evidence has been lacking (4). On page 199 of this issue, Gilarranz et al. (5) provide empirical evidence showing that modular networked systems do indeed have an advantage over nonmodular systems when faced with external perturbations. The authors designed an elegant meta- population experiment with the arthro- pod Folsomia candida. In the experiment, habitat patches (nodes) were connected in a modular fashion; specimens could freely move between patches. Initially, the au- thors inoculated all patches with the same number of specimens. Once the whole sys- tem had reached a stable population, they continuously removed specimens from one of the nodes for a sustained period of time. The results show that modular systems can contain the spread of such a perturbation more effectively than a nonmodular system would, so that only the populations of nodes within the same module as the perturbed node is affected (see the figure). Gilarranz et al. also show that the capac- ity to contain perturbations comes with a cost. The more modular the system, the larger the overall population in the presence of even strong perturbations, but that is not the case in the absence of a perturbation. In the latter case, the overall population levels are higher in nonmodular systems. These results not only align with theoretical ex- pectations, they also help explain the large- scale organization of complex systems. To further put this result in historical con- text, we should cast our minds back more than 10 years. At that time, the definition of module in a networked system was still a loose concept, especially for large systems (6). Based on commonalities in the systems-level organization of large networked systems, net- work scientists proposed to define a module as a set of nodes that are densely connected among themselves but loosely connected to other parts of the network (7, 8). This is the definition that Gilarranz et al. use. The modularity of a network then quantifies how well-defined these densely connected groups of nodes are within the network. Using this definition of modules, scien- tists soon found that the vast majority of large-scale networked systems in any con- text—including social, biological, ecologi- cal, and engineering systems—have a strong modular component (9, 10). The question arose why this was the case. In engineered systems, modularity is arguably a useful design principle because modular systems are easy to fix and update (11). However, the justification for the modularity of natural networked systems mostly hinged on the aforementioned theoretical stability consid- erations. The results reported by Gilarranz et al. show that the need to contain pertur- bations can plausibly explain the modular- ity of at least some natural systems. NETWORKS The importance of being modular An experiment proves the value of modularity in complex systems under perturbation Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain. Email: marta.sales@urv.cat System state RealityRandomModular Perturbation starts Perturbation spreads Contained in a module Perturbed node Node Module Spread? Spread? Uncontained spread Interconnected network How to contain perturbations In modular systems,perturbations can be contained in one module,whereas they spread throughout randomly connected systems.Real systems could be represented as a combination of the two types,making it difficult to predict the effects of perturbations. onSeptember14,2017http://science.sciencemag.org/Downloadedfrom 128 14 JULY 2017 • VOL 357 ISSUE 6347 sciencemag.org SCIENCE GRAPHIC:A.KITTERMAN/SCIENCE be applied to any networked system, be it an ecosystem, cellular metabolism, traffic flows, human disease contagion, a power grid, or an economy (2, 3). However, experi- mental evidence has been lacking (4). On page 199 of this issue, Gilarranz et al. (5) provide empirical evidence showing that modular networked systems do indeed have an advantage over nonmodular systems when faced with external perturbations. The authors designed an elegant meta- population experiment with the arthro- pod Folsomia candida. In the experiment, habitat patches (nodes) were connected in a modular fashion; specimens could freely move between patches. Initially, the au- would, so that only the populations of nodes within the same module as the perturbed node is affected (see the figure). Gilarranz et al. also show that the capac- ity to contain perturbations comes with a cost. The more modular the system, the larger the overall population in the presence of even strong perturbations, but that is not the case in the absence of a perturbation. In the latter case, the overall population levels are higher in nonmodular systems. These results not only align with theoretical ex- pectations, they also help explain the large- scale organization of complex systems. To further put this result in historical con- text, we should cast our minds back more than 10 years. At that time, the definition of module in a networked system was still a loose concept, especially for large systems (6). well-defined these densely connected groups of nodes are within the network. Using this definition of modules, scien- tists soon found that the vast majority of large-scale networked systems in any con- text—including social, biological, ecologi- cal, and engineering systems—have a strong modular component (9, 10). The question arose why this was the case. In engineered systems, modularity is arguably a useful design principle because modular systems are easy to fix and update (11). However, the justification for the modularity of natural networked systems mostly hinged on the aforementioned theoretical stability consid- erations. The results reported by Gilarranz et al. show that the need to contain pertur- bations can plausibly explain the modular- ity of at least some natural systems. Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain. Email: marta.sales@urv.cat System state RealityRandomModular Perturbation starts Perturbation spreads Contained in a module Perturbed node Node Module Spread? Spread? Uncontained spread Unperturbed nodes in modular systems Unperturbed nodes in randomly connected systems Perturbed nodes Interconnected network How to contain perturbations In modular systems,perturbations can be contained in one module,whereas they spread throughout randomly connected systems.Real systems could be represented as a combination of the two types,making it difficult to predict the effects of perturbations. Published by AAAS onSeptember14,2017http://science.sciencemag.org/Downloadedfrom Science, 2017
  • 36. CHEMOTAXIS Molecular Biology of the Cell Vol. 4, 469-482, May 1993 Computer Simulation of the Phosphorylation Cascade Controlling Bacterial Chemotaxis Dennis Bray,* Robert B. Bourret,t# and Melvin I. Simont *Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom; and tDivision of Biology, California Institute of Technology, Pasadena, California 91125 Submitted January 22, 1993; Accepted March 5, 1993 We have developed a computer program that simulates the intracellular reactions mediating the rapid (nonadaptive) chemotactic response of Escherichia coli bacteria to the attractant aspartate and the repellent Ni2+ ions. The model is built from modular units representing the molecular components involved, which are each assigned a known value of intracellular concentration and enzymatic rate constant wherever possible. The components are linked into a network of coupled biochemical reactions based on a compilation of widely accepted mechanisms but incorporating several novel features. The computer motor shows the same pattern of runs, tumbles and pauses seen in actual bacteria and responds in the same way as living bacteria to sudden changes in concentration of aspartate or Ni2+. The simulated network accurately reproduces the phenotype of more than 30 mutants in which com- ponents of the chemotactic pathway are deleted and/or expressed in excess amounts and shows a rapidity of response to a step change in aspartate concentration similar to living bacteria. Discrepancies between the simulation and real bacteria in the phenotype of certain mutants and in the gain of the chemotactic response to aspartate suggest the existence of additional as yet unidentified interactions in the in vivo signal processing pathway. INTRODUCTION Coupled protein phosphorylations are a universal mechanism of intracellular signaling and the basis of many complex nets of reactions in eucaryotic cells. Such networks are poorly understood, despite their impor- tance, because of the large number of components in- volved, and the multiple links that exist between them. Not only are quantitative data on the individual reac- tions lacking, but we also lack a vehicle by which we can comprehend the implications of such data and verify the overall performance of the entire network. Without making many detailed calculations, it will be difficult to predict how the network performs under a particular set of starting conditions, whether it will ever show os- cillatory or chaotic behavior, and how the performance of the network will be affected by genetic modifications. The rational solution to this problem is to employ a computer simulation that can be used to catalogue bio- chemical data, test current hypotheses of mechanism, and make predictions of performance under a virtually f Present address: Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599. limitless variety of conditions. However, there have been very few attempts to develop quantitative models of this sort for cell signaling pathways involving coupled phosphorylation reactions. Early steps in this direction include models of the spatial propagation of oscillations in Ca2+ concentration in a variety of cells (reviewed by Dupont and Goldbeter, 1992) and the initial response to light of vertebrate photoreceptors (Lamb and Pugh, 1992). For the vast majority of cell signaling pathways, there is insufficient information to construct a mean- ingful simulation. Without knowing most of the relevant intracellular concentrations and enzymatic rate con- stants in a pathway, computer simulations can only be phenomenological representations having little analyt- ical power or predictive force at the molecular level. One of the few signaling pathways for which there is presently sufficient information to attempt a detailed computer simulation is that underlying the chemotactic response in coliform bacteria. This entails a small and defined set of intracellular proteins which, through coupled phosphorylation and methylation reactions, enable the bacterium to respond in an informed, if not intelligent, way to its chemical environment. All of the intracellular proteins involved in this response have ©) 1993 by The American Society for Cell Biology 469 Table 5. Comparison of simulated and observed chemotactic behavior of mutant bacteria Bias Genotype Simulated Observed Interpretation in terms of bct 1.1 model References sm sm Most Yp made by TW-stimulated A tm tm More p flows to Y in absence of B sm sm Most Yp made by TW-stimulated Y sm sm No Yp sm sm No Yp tm tm Yp increases in absence of Z wt wt Unstimulated A makes enough Yp in absence of Z tm ? More p flows to Y in absence of B and Z tm ? More p flows to Y in absence of B and Z wt wt Unstimulated A makes enough Yp in absence of Z wt wt Unstim"lated A makes enough Yp in absence of Z sm sm No Yp, even in absence of Z sm sm No Yp sm sm No Yp smc sm T overproduction sequesters A and TA complex sm sm B removes phosphate from A, thus reducing Yp sm sm W overproduction sequesters A in AW complex tmd tm sm wt' tm T2+A2+ y2+z2+ B2+y2+ "Gutted" mutantsa (gutted) A+ (gutted) Y+ (gutted) y2+ (gutted) Y3+ (gutted) W+Y+ (gutted) T+W+Y+ (gutted) A+Y+ (gutted) A2`Y+ (gutted) W+A+Y+ (gutted) T+A+Y+ (gutted) T+W+A+Y+ (gutted) Mixed overproduction/ null mutants '2+Z- B2+Z- W2+Z A2+Z- Y2+z- Y2+B-Z- T2+W-Z- w2+B- Z2+B- Y2+T- sm A overproduction leads to more Yp tm Y overproduction leads to more Yp sm Z stimulates loss of Yp wt T & W form a complex to restore balance sm W overproduction doesn't turn off enough A tm ? A overproduction leads to more Yp wt' wt Z overproduction balances Y overproduction sm' sm p flows preferentially through B rather than Y sm sm No Yp sm ? No Yp sm sm No Yp, even in absence of Z sm' sm No YP when Y moderately overproduced tm tm Very high levels of CheY cause CW rotation sm sm No Yp, even in absence of Z sm sm No Yp, even in absence of Z tm sm Unstimulated A makes too much Yp in absence of Z tm ? A overproduction leads to more Yp tm sm Unstimulated A makes too much Yp in absence of Z tm sm Unstimulated A makes too much Yp in absence of Z tm tm Stimulated A makes Yp tm wt T overproduction doesn't turn off enough A tm sm B overproduction doesn't remove enough p from A tm sm W overproduction doesn't turn off enough A tm tm A overproduction and absence of Z lead to more Yp tm ? Y o,verproduction and absence of Z lead to more Yp tm tm More p flows to Y in absence of B and Z smc sm T overproduction turns off unstimulated A sm sm W overproduction sequesters A, converting B- to sm sm sm Z overproduction reduces Yp, converting B- to sm tm tm Unstimulated A makes Yp when Y overproduced Liu and Parkinson (1989) Parkinson (1978) Parkinson (1978) Parkinson (1978) Parkinson (1978) Parkinson (1978) Liu and Parkinson (1989) Liu and Parkinson (1989) Liu and Parkinson (1989) Liu and Parkinson (1989) Liu and Parkinson (1989) Wolfe et al. (1987) Liu and Parkinson (1989) Stewart et al. (1988) Liu and Parkinson (1989), Sanders et al. (1989) Stewart et al. (1988) Clegg and Koshland (1984) Kuo and Koshland (1987) Liu and Parkinson (1989) Liu and Parkinson (1989), This work This work Stewart et al. (1988) Wolfe et al. (1988) Wolfe et al. (1988) Wolfe et al. (1988) Barak and Eisenbach (1992) Conley et al. (1989) Conley et al. (1989) Conley et al. (1989) Conley et al. (1989) Conley et al. (1989) Conley et al. (1989) Liu and Parkinson (1989) This work Liu and Parkinson (1989), Sanders et al. (1989) This work Wolfe et al. (1987) Liu and Parkinson (1989) Sanders et al. (1989) Kuo and Koshland (1987) Clegg and Koshland (1984) a "y'+ (gutted)" refers to a strain in which CheY is expressed at wild-type concentration in the absence of Tar or other Che proteins. Swimming behavior predicted by the simulation is characterized as tm = tumble (bias < 0.6), wt = wild type (bias 0.6-0.8), or sm = smooth (bias > 0.8). b The bct 1.1 model contains only one transducer (Tar), whereas E. coli actually has four transducer species. Thus, the behavior of modeled T- Single null mutants T- b B- W- A- Y- Z- Multiple null mutants T-Z- B-Z- T-B-Z- W-z- T-W-Z- A-Z- Y-z- B-Y-Z- Overproduction mutants T2+ b B2+ w2+ “The simulated network accurately reproduces the phenotype of more than 30 mutants in which components of the chemotactic pathway are deleted and/or expressed in excess amounts” of the enzymatic alyzed kinetically. ither singly or in arge numbers and ted. There is, in e set of data, un- g system, against simulate the bio- axis in a computer ally reproduce all behavioral obser- e first step toward simulation of the ce receptor to the id, excitatory re- llents. The slower ptor methylation, deled previously kura and Honda, l. ibed in this paper, we carry the chemotactic ellar motor. ria such as Escherichia he ability to modulate imuli. This is achieved , which carry signals otor (Figure 1) (Bourret h many details are still n attractant or repellent phosphorylation of an Borkovich et al., 1989; . The phosphorylated te group to a second 1988). The product of racts with the flagellar ch produces "tumble" otor in the absence of lts in "run" swimming Two other components are CheW, which ap- CheA phosphorylation (sp) Figure 1. Signal transduction pathway in bacterial chemotaxis. Symbols within circles denote the Che proteins, in some cases phos- phorylated, which carry the chemotactic signals from the receptor protein Tar to the flagellar motor. Solid arrows represent phosphor- ylation reactions. Dashed arrows indicate regulatory interactions. The methylation reactions catalyzed by CheR and CheB (open arrows) are not included in the computer simulation. basis of the adaptation of this response. In consequence, we do not expect the model to show the slow recovery of swimming behavior characteristic of wild-type bacteria, but it should be able to reproduce the short-term, impulsive responses of wild-type and mutant bacteria. It should also reflect the short-term behavior of mutants in which the demethylating enzyme CheB has been removed or overexpressed, because the latter protein forms part of the flux of phosphate groups in the excitatory pathway. Theory In this section we present the algorithms used to represent the signaling reactions and the assumptions inherent in their use. Information on the binding of aspartate or Ni2" to the Tar receptor is relayed through the cytoplasm by changes in the concentrations of various phosphorylated protein species. It is convenient to divide the individual steps in this cascade into binding steps, in which two mo- lecular components associate or disassociate, and reaction steps in which a phosphate group is added or removed from a protein. Each step is represented by an equation which is evaluated repeatedly at intervals of time At, which is typically 5 ms. Experimentally, the response of bacteria to a step change in attractant or repellant concentration occurs in -0.2 s (Segall et al., 1982) and evidence of a delay due to diffusion has been obtained only in ab- ation of rations X [Lo]} ins (see At and tein au- tionship ecies in ] is the nd Km is , 1984). reacting by motor is lt from wise or ss when 1). The of CheY iM, and eraction ransfer simple binding uns and complex alculate 0.6 - 0 0 *~0.4- coLo 10 20 30 CheYp (nM) Figure 3. Proportion of time spent in run (l), tumble (0), and pause (A) modes predicted for the flagellar motor model, with the resting concentration of CheYp in a wild-type bacterium set to 9 nM. tumbles of the flagellar motor. In the present simulation, this model has been extended to incorporate two additional features. One is the cooperativity between CheY levels and flagellar motor response seen in mutant strains in which CheY is over-expressed to different levels (Kuo and Koshland, 1989). The effective species is now thought to be CheYp. The other feature added to the motor model is the capacity for pausing, which has been reported by Eisenbach and colleagues to be an inherent part of the behavioral repertoire of coliform bacteria (Lapidus et al., 1988; Eisenbach et al., 1990). These observations are incorporated into a model in which the motor complex, denoted M, binds sequentially up to four CheYp molecules thereby producing five distinct molecular species. Two of these (M and MYp) rotate counterclockwise, another two (MYpYpYp and MYpYpYpYp) rotate clockwise, and one species (MYpYp) is stationary, corresponding to the pausing of the motor (Figure 2). In a population of bacteria, the rotational bias (defined as the fraction of time spent in the counterclockwise mode) is therefore given by the following: bias = M + MYp M + MYp + MYpYp + MYpYpYp + MYpYpYpYp As in the earlier model of Block et al. (1982, 1983), transitions between each pair of states are governed by paired first-order rate constants, such as kl, and k2rYp (which is pseudo first-order at a given concen- tration of Yp). For an individual motor, these rate constants represent the probabilities per unit time of terminating the current state. The Adair-Pauling model of a multisite allosteric enzyme allows dissociation constants for each binding step to be calculated from two parameters-the dissociation constant of binding of the first binding site (K) and the factor (a) by which the affinity of successive binding sites change (Segel, 1975). We have assumed that the flagellar motor is similarly well-behaved and calculated K and a from an arbitrarily assigned value for the resting (unstimulated) concentration of CheYp and from the observed proportion of time spent in runs, pauses, and tumbles of an unstimulated, wild-type bacterium (Lapidus et al., 1988; Eisenbach et al., 1990). In trial simulations we found that the resting concentration of CheYp could be varied over a wide range without affecting overall performance. In the absence of experimental data bearing on this value, we selected 9 nM, which in combination with the best available values of reaction rates, produces an approximately wild-type rotational bias for mutant strains lacking either Tar, CheW,
  • 37. CHEMOTAXIS NETWORK FROM BIOMODELS Biochemical Diffusion(d+s) Distance(d) Adjacency(d+s) Correlation(spearman) 0.00.20.40.60.81.0 First neighbors DistanceDiffusion Topology Direction Sign Kinetics + + + + + + + - + + - - + - - - ~90% accuracy of network models Biochemical Diffusion(d+s) Distance(d) Adjacency(d+s) Correlation(spearman) 0.00.20.40.60.81.0 Accuracy
  • 38. EXPERIMENTAL EVIDENCE Phenotype Gene expression A - ,Yp Y - ,Yp Z - ,Yp A - Z - ,Yp Y - Z - ,Yp B - Y - Z - ,Yp A2+ ,Yp T2+ ,A T2+ ,TA B2+ ,Ap B2+ ,Yp W2+ ,A W2+ ,WA Z2+ ,Yp Y2+ ,Yp Biochemical Network A - Y - Z - A - Z - Y - Z - B - Y - Z - A2+ T2+ B2+ W2+ Z2+ Y2+ Biochemical Network Sign -1 0 1 Comparing predictions with experimental assays in bacterial chemotaxis Perturbation of gene X Expression of gene Y random walk biased walk a Wild-type Phenotype Observed change b c 86% correct 75% correct Bacterial Chemotaxis Simulation [Ro] and [Lo] are the total concentrations of receptor and ligand, ively, [RL] is the concentration of the protein-ligand complex, d is the dissociation constant of the complex. ther binding steps in the simulation involve the association of asmic proteins at comparable, and usually low, concentrations r this we use the relationship: 0.5{[Ro] + [Lo] + Kd - V([Ro] + [Lo] + Kd)2 - 4[Ro] X [Lo]} [Ro] and [Lo] are arbitrarily assigned to the two proteins (see 1975). tion steps are not assumed to run to completion within At and egrated by successive steps of the simulation. For protein au- phorylations we use the simple Michaelis-Menten relationship V J=[lkcat X [ATP]l ] [ATP] + Km J v is the rate of formation of the phosphorylated species in per second, [E] is the free enzyme concentration, [ATP] is the tration of ATP, k_cat is the catalytic rate constant and Km is haelis constant (Michaelis and Menten, 1913; Fersht, 1984). other reactions we assume that the concentrations of reacting are small, so that the reactions are simply described by v = (k.cat/Km) [E] X [S] autodephosphorylations v = klcat [E] llar Motor all other components of the simulation, the flagellar motor is ingle molecular species. It is a complex structure, built from imately 40 distinct proteins that rotates either clockwise or rclockwise at speeds of .300 cycles/s (significantly less when terium is tethered to a surface) (Jones and Aizawa, 1991). The on of rotation is controlled by the phosphorylated form of CheY h an interaction with the switch components (FliG, FliM, and oteins) of the motor Uones and Aizawa, 1991). The interaction s to be a simple binding of CheYp rather than a phosphotransfer n (Bourret et al., 1990). s shown previously by Block et al. (1982, 1983) that a simple te model in which run and tumble states differ in the binding ngle ligand has similar stochastic properties to the runs and Different states ofthe flagellar motor (M) are determined by the binding of CheYp (Yp): State 'T M State '3' MYp State '5' MYpYp State '7' MYpYpYp State '9' MYpYpYpYp ccw rotation ccw rotation zero rotation cw rotation cw rotation (run) (run) (pause) (tumble) (tumble) Occupation of the different states is governed by reversible equilibria: M + Yp q-b MYp MYp + Yp W MYpYp MYpYp + Yp W MYpYpYp Ki = kil/klr K2 = k2l/k2r K3 = k3d/k3r 1.0 0.6 - 0 0 *~0.4- coLo 10 20 30 CheYp (nM) Figure 3. Proportion of time spent in run (l), tumble (0), and pause (A) modes predicted for the flagellar motor model, with the resting concentration of CheYp in a wild-type bacterium set to 9 nM. tumbles of the flagellar motor. In the present simulation, this model has been extended to incorporate two additional features. One is the cooperativity between CheY levels and flagellar motor response seen in mutant strains in which CheY is over-expressed to different levels (Kuo and Koshland, 1989). The effective species is now thought to be CheYp. The other feature added to the motor model is the capacity for pausing, which has been reported by Eisenbach and colleagues to be an inherent part of the behavioral repertoire of coliform bacteria (Lapidus et al., 1988; Eisenbach et al., 1990). These observations are incorporated into a model in which the motor complex, denoted M, binds sequentially up to four CheYp molecules thereby producing five distinct molecular species. Two of these (M and MYp) rotate counterclockwise, another two (MYpYpYp and MYpYpYpYp) rotate clockwise, and one species (MYpYp) is stationary, corresponding to the pausing of the motor (Figure 2). In a population of bacteria, the rotational bias (defined as the fraction of time spent in the counterclockwise mode) is therefore given by the following: bias = M + MYp M + MYp + MYpYp + MYpYpYp + MYpYpYpYp As in the earlier model of Block et al. (1982, 1983), transitions between each pair of states are governed by paired first-order rate constants, such as kl, and k2rYp (which is pseudo first-order at a given concen- tration of Yp). For an individual motor, these rate constants represent the probabilities per unit time of terminating the current state. The Adair-Pauling model of a multisite allosteric enzyme allows dissociation constants for each binding step to be calculated from two parameters-the dissociation constant of binding of the first binding site (K) and the factor (a) by which the affinity of successive binding sites change (Segel, 1975). We have assumed that the flagellar motor is similarly well-behaved and calculated K and a from an arbitrarily
  • 39. I. TAKE HOME MESSAGE 1/3 kinetics Marc Santolini - CCNR Topology Direction Sign Kinetics + + + + + + + - + + - - + - - - Accuracyofperturbationpatterns Biochemical Diffusion(d+s) Distance(d) Firstneighbors(d+s) Influencestrengthrecovery 0.00.20.40.60.81.0 2/3 interactome
  • 40. PART II NETWORK PERTURBATION BY MIRNAS Ayşe Kılıç, Marc Santolini, Taiji Nakano, Matthias Schiller, Mizue Teranishi, Pascal Gellert, Yuliya Ponomareva, Thomas Braun, Shizuka Uchida, Scott T. Weiss, Amitabh Sharma And Harald Renz, “A Novel Systems Immunology Approach Identifies The Collective Impact Of Five Mirnas In Th2 Inflammation"
  • 41. R E V I E W S mathematical properties of random networks14 .Their much-investigated random network model assumes that a fixed number of nodes are connected randomly to each other(BOX2).Themostremarkablepropertyof themodel is its‘democratic’or uniform character,characterizing the degree,orconnectivity(k;BOX1),of theindividualnodes. Because, in the model, the links are placed randomly among the nodes,it is expected that some nodes collect only a few links whereas others collect many more.In a random network, the nodes degrees follow a Poisson distribution, which indicates that most nodes have roughly the same number of links,approximately equal to the network’s average degree,<k> (where <> denotes the average); nodes that have significantly more or less linksthan<k>areabsentorveryrare(BOX2). Despite its elegance, a series of recent findings indi- cate that the random network model cannot explain the topological properties of real networks. The deviations from the random model have several key signatures, the most striking being the finding that, in contrast to the Poisson degree distribution, for many social and technological networks the number of nodes with a given degree follows a power law. That is, the probability that a chosen node has exactly k links follows P(k) ~ k –γ , where γ is the degree exponent, with its value for most networks being between 2 and 3 (REF.15).Networks that are characterized by a power-law degree distribution are highly non-uniform, most of the nodes have only a few links.A few nodes with a very large number of links,which are often called hubs,hold these nodes together. Networks with a power degree distribution are called scale-free15 ,a name that is rooted Figure 2 | Yeast protein interaction network. A map of protein–protein interactions18 in Saccharomyces cerevisiae, which is based on early yeast two-hybrid measurements23 , illustrates that a few highly connected nodes (which are also known as hubs) hold the network together. The largest cluster, which contains ~78% of all proteins, is shown. The colour of a node indicates the phenotypic effect of removing the corresponding protein (red = lethal, green = non-lethal, orange = slow growth, yellow = unknown). Reproduced with permission from REF.18 © Macmillan Magazines Ltd. Jeong et al., “Lethality and centrality in protein networks“ Nature 2001 LETHALITY-CENTRALITY RULE
  • 42. MIRNA TARGETS IN THE INTERACTOME
  • 43.
  • 45. EXPRESSION DATA FROM ASTHMA MODEL Naive Th1- acute Th1- chronic Th2- acute Th2- chronic miRNA matrix mRNA matrix Protein matrix Meta-dimensional analysis using human Interactome Model: female BALB/c mice aged 6–8 weeks Mice were sensitized by injections of 10 µg OVA grade VI
  • 46. WORKFLOW mRNA and miRNA mice expression data Th2 disease module Human interactome and miRNA network 5 highest impact miRNAs Validation in mouse IDEAL approach naive early stable early stable Th1 Th2 Low High con-miR isotype miR-cocktail IL-13 MFI mRNA and miRNA mice expression data Th2 disease module Human interactome and miRNA network 5 highest impact miRNAs Validation in mouse IDEAL approach 1 2 5 10 20 50 100 012345 Number of miRNAs attacking CollectiveImpact(CI) RSBN1 LRP8 TSC1 AKAP8L PRKCD PRR11 IFNA4 BNIP3 MCPH1 MAFK CCL17 DLG2 hsa-let-7e PPP2R5E ASTE1 ARNT2 ZNF276 XRCC4 TRIM24 ZNF277INPPL1 PILRA LDHB PDE1BC14orf1 RPL8 GCC2 C5 PCDH19 BACE2 BATF CDON INPP5A DNAJB14 SH3RF2 CAMK2N1 C1orf94 hsa-mir-200c HMOX2 SMARCD1 CPSF7 CNN3 POLI SLC25A25 LTB XRN2 SIAH2 TINF2 RAPGEF6 PBX3 hsa-let-7b hsa-mir-107 SEC63 ATF7 CCR8 PTPN3 GRP TMEM62 SMURF1 RPS10 RPS21 MAP3K12 ARMC8 ANXA4 CDK10 INPP4A FBXW8 FBXL6 MAML3 MLEC EPB41 MAPRE1 ELF2 BMPR1A hsa-mir-138 DTL RAG1 ATRN hsa-mir-340 TAPT1 NARS2 MIPOL1PTGS2 LY75 RPS13 GALNT3USP24 ZCCHC2 ZNF653 CCR4 ERF ENTPD6 PIGF PARD3 ZBTB34 RIPK1RAPGEF1 KIAA1462 hsa-let-7a UPF3A hsa-mir-607 CA2 IL9RGAPVD1 FANCL TKT SMARCA5 GNPDA1 LAMC1 RXRA NEK1 hsa-mir-575 AURKC TNFRSF8NRBP1 COBLL1 hsa-mir-106b SPINT1 ALDH3A2 SH3BGRL FBXL2 PSME1 STK25 H1F0 LAMA5 hsa-mir-665 ERN1 hsa-let-7i STAT5A TPI1 SLC25A46 HSD17B7 hsa-mir-194 FRMD6 ASH1L AP1S2 DUSP2 MBTD1 DGKI CHST11 F2RL1 MLKL HMGXB3 GNB4 ANKRD29 LITAF KLHL3 hsa-let-7d FUCA2 CCDC101 PBX2 FRMD4B hsa-mir-580 ADNP LIMK1 P2RY1 ATG4B GATA2 hsa-mir-18b PCYT2 RGS9 RPS12 hsa-mir-15b RNF24 IRF8 ETNK1 hsa-mir-21 EIF4G3 PLEKHO1 LFNG BCL2L15DNAJB9 CA1 PRDM2 SAT1 BHLHB9 GAS7 FLRT2 RPL17 HPSE STX11 MEOX2 IGF1RCCDC22CGGBP1 RPS16 USP14 CPSF3 MYO1D ZMYND11 TRIM44 hsa-let-7c hsa-mir-516a-5p HDAC7 NEK7 ITGB8 TNFRSF14ZNF605 DCP2 PRDM4 AQP9 MEPCE HMCN1 CTNNA1 TNFSF10 TCF12SDCCAG3 ZFYVE16 DIP2C DUSP19 ASXL2 CHST15 hsa-mir-203 AXIN1 CAMKK2 VEZTBCL7B MEF2A FHL3 ANKRD17 hsa-mir-494 IL24 RASSF5 DENND4A CREB3L2 PUM2 RNF130 TRIM8 UNKL PHF20L1 SCMH1 hsa-mir-552 PYGM NRP1 BRPF1 SERINC3 EIF5B RANBP3 hsa-mir-149 CSK NPAT GNB2L1LY9 CARM1 PCNA hsa-mir-150 ST3GAL4 RB1 RREB1 HSPA2 CNOT1 RPL23 hsa-mir-17 F11R ATP11C hsa-mir-135b MPP7 SRF SMYD3 NOTCH1 NEDD8 ITM2A hsa-mir-33b STAR LRIG1 ATP2B1 CCR7 TIGIT CD84 RPL31 YWHAZ TESK1 RNLS C21orf91 CENPT XPC DYNLT3 ACTR6 LPIN2 RUNX2 KLKB1 CSGALNACT1 CHCHD3MIF4GD PLEKHA1 EHMT1 RPL27A SAMSN1 PSMD7 RORA AKAP8 VTI1A EPAS1 AKR1B1 DAPK1ZDHHC23 FBXW7 CCL1 IL1RN GAPDHS DEK ADAM19 TDG PLCB4 HSD3B1 WHSC1 MRPL30 RBM6 MDK PPP4R1 SUV420H1 HSPA8 hsa-mir-623 RNF44 AMPH LILRB4 USP9X BZW2 RBM28 EDEM3 MYO10 GLDC ASAP1 CHRM2 QTRT1 hsa-mir-383 KLHL6 VAT1 CDK6 ITPR1 KIAA1598 ATXN1 UBL3 hsa-let-7f STOM VDR THADA ZBTB44 KLHDC10 ARHGEF2 IPMK YLPM1IFNG STT3B CTDSPL2 WDR82UBR1 hsa-mir-517a QSER1 BRF1 SLC39A10 RALY GRSF1 FN1 NCOR2 CDK12 GNAQ ZNF654 GALC UBE2D1 FFAR2 H2AFZ TOM1 NCKAP1 GSRhsa-mir-220b SERF2 GNG2RAF1 RGS19 SETD1A IMPA2FGF18 ERAP1 STAG1 IKZF4 ELMOD2 PROS1 PLB1 STAMBPL1 ERC1 STXBP4PPARG hsa-mir-154 ACVR2A NEU1 TMTC2RPL18 IL9RPAP2 DCBLD2 IL19 HEPHL1 MID2 GIMAP8 CAMK2D MYH9 TERF2DHRS7 KIFC1 hsa-mir-380 CYP1A1 ADH5 SRRT EPN1 GNG4 PTPN4 PER1 ABCB8 DHX9 RGS3 hsa-mir-545 SLC48A1 PCGF2 RGS1 TXK ADARB1 ASB13 AURKB MPZL1 OVGP1 RHOH TPD52 hsa-mir-143 RPS23 hsa-mir-99b CNOT10 RAB11B ATRNL1 USP15 WDFY2 RAB9A hsa-mir-571 NAV2 ZRSR2 PHOX2A ATXN7L2 RABGGTA FGFR1OP2 NCLN RAB8A TTLL4 FOXJ3 ZMIZ2 ETS2 LAG3 EGLN3 ZNF318 UXT CLDND1 TTBK1 CYCS CRTAM hsa-mir-30b PCYT1A hsa-mir-200bATRIP DYRK2hsa-mir-328 NDUFA10 hsa-mir-505 TMEM159 hsa-mir-379 SMC5 RNF19A GPRASP1 GABARAP hsa-mir-24 EIF3K SLC17A6 RPL19 CMPK1 TMEM30A GRN HIC1 TNFSF8 hsa-mir-30c NBN IL10 MAPK8 ADORA2B CSNK1G3 MYO1E LRP12 COIL hsa-mir-603 FUT8 PPFIA1 hsa-mir-155 RPS6KA1 KPNA1 SIDT2 TRIM25 FDFT1 UBE2F CTLA4 KIF3A TARS2 hsa-mir-760 CCR3 LXN KHDRBS1 MECR PLCD1 HIVEP2 GLB1 RPL13A GRIPAP1 MTOR hsa-mir-148b CHD7 DMXL1 TMOD4 INADL NFX1 hsa-mir-422a SH2D1A DAG1 DOCK11 CLSTN1 INTS4 GZF1 RPL9 PARP4 RPS15A SKP1 PLP2 ATP10A hsa-mir-452 TAF8 HIPK1 MSH3 KLRG1 PDE2A MLLT10 hsa-mir-181c CCDC90B SETX CEP55 CNIH2 FRS2 FBXL5 MARS2 WDR33 U2AF2 TANK PTPN12 ZBTB32 SPN SLC25A27 IPCEF1 EP400 RGS13 hsa-mir-206ZNF592 PEX10 CWC15 hsa-mir-220c PARD6G DUSP4SUFU JPH1 SH3PXD2A S100A1 SLC44A1 SERPINF1 CYFIP1 USP28 FOXF2PRKAR2A VAMP4 GTF3C2 IL1R2 BAZ1Ahsa-mir-181a MOCOS FOXN2 ABCC1 MYO1C LSM1 hsa-mir-922 ETV5 PAN3 RBM41 STK24 SETD7 SPHK2 MLF1 RTN3 ANXA2 SLC7A8 EZR RC3H1 hsa-mir-548a-3p RPE PCGF5 LPXN TREX1 LYN MED13 RBM38 MKL2 RPS9 MAP3K5hsa-mir-620 MCL1 CD5PTPN6 ARL14MAPKAPK5 VCL LCORL CSNK1E SUV39H1 NEB RPL10 hsa-mir-497 PTPRJ APLP1 HIST1H3B DDX11 ARL6 DVL1 RPL13 RNPC3 ARL5A DDX28 RPSAZMYM4 hsa-mir-487a ZBTB38 DICER1 PTGER2 ARHGEF3 hsa-mir-520h THRAP3 IL1R1 ABL2 NDUFA3 IL23R LAT HIPK2 hsa-mir-103 ARFGEF1 ZRANB1 KIAA2026 PTPN13 hsa-mir-29b CRMP1 APBB3 IPO9 hsa-mir-488 ARHGEF12 SPP1 RPLP2 LLGL1 EIF3F LZTFL1 FAM91A1 RPS5 DDX19B PLXNC1 GIT1 TPBG UHRF2 INHBA hsa-mir-211 S100A11 ACTN1 ACVR1 HIST1H4C CNTNAP4 GYPC POLR3F GMNN TAOK2 ARG1 THOC1 KIF16B PHF20 TIPARP PPM1F PTP4A3 SFN OLR1 SIN3A BCL2L11 RAPH1 ICOS hsa-mir-374b IKBKE SAP130 AHR TOP2A GNPTAB PJA1 FGL2 ADAM9 EFR3A SETBP1 HN1L NUMA1 STUB1 SLK GAD1 SERTAD2 GJB3 PALLD C19orf66 GRM5 SLCO3A1 PIK3CB ESYT2 KAT2A FBXW11hsa-mir-520f SUSD2 CNOT2 PAIP2 TRAM1 NCAPH ANKRD13C S100A16 HIRA AQR NR3C1 hsa-mir-222 CA8 ZDHHC3 CAPG MTMR2 hsa-mir-551b ZBTB10 MKNK1 PTPRC ADAP1 RHOQ PTPLAD1 CA5B DAXX MPHOSPH8hsa-mir-200a UGP2 EBAG9 IKBKB RAB11FIP4 IPPK PRDX6 CYP11A1 RXRB ZNF25 RNF146 ITGAD RAB11FIP1 RNF216 PLAUR CAP2 CYP17A1 TEX2 PLK2 TIMP3 SMAD1 TIMP1 RASSF8 DUSP14 RASA3 IGF2R MKRN2 ITGB2 DDX46 TRA2A ZBTB11 CRY2 RPS28 PPAP2B STARD13 RNF31 GLUD1 SESN3 CDK11APRICKLE3 CMAS LEF1 PHACTR4 MFHAS1 SMAD3OSBPL3 MUS81 CASP6 MYCBP2 MYLIP USP34 hsa-let-7g PSIP1 MAPKAPK2 NUP153 CASP4 TRPS1 QRICH1 KIF2C PRKCH SVIL AXL CTCF CD2AP EYA1 SRSF2 RPTOR hsa-mir-214 ITGA2DUSP16 INTS7 MPI MARK3 SMARCD3BNC1 PARP8 ACBD5 RNF111 HBS1L ICAM2 MTMR10 GNPAT RCOR1 hsa-mir-18a PHC1 SRXN1 CCR1 B4GALT5 CAPNS1 MAPK8IP3 MSC CDC27 GPR126 IER3 QPCTL GATM HSF1 MFNG hsa-mir-93PKD2 GATA3 TOR1AIP2 KLRD1 GRAMD3 RRAS2 CASP1 KBTBD2 CREBL2 CABIN1 RASL11A IGBP1 SPRED2HIST1H3C AMMECR1 hsa-mir-554 RYK MIA3 COX7A2L CABYR PPFIBP1EPS15L1 MAX hsa-mir-182 TEC RPS7 STK38 LGALS3 LRRFIP1 RPL30 BMPR2 CD80 PTDSS1 LGALS1 TNKS2 FARP2 SLC24A3 MRAS PTPN9 SDC4 TSC2 CAPN2 PIK3AP1 CD44 CYTH3 NEK6MED26 ERCC4 FAM57A TAF4B HEG1 UTRN BCAS2 ARHGAP29 GAPDH HLF DPM1hsa-mir-181b NEO1 LTN1 ZC3H12C hsa-mir-25 hsa-mir-152PDCD10 IL5 RBPJ RALGDS FOXP4 hsa-mir-610 CBLB BCAR3 PDSS1 NDUFB1 ATR ENY2 GIGYF2 PICK1 hsa-mir-19a TRAF3IP3 KIF13A POGZ AKAP6 hsa-mir-326 ATP10B IL13 ITGB1BP1 hsa-mir-192 PRPF38B SERPINA3 IL2RB CLCN5 hsa-mir-195 IRF3 SSFA2 VASP CDK4 ENAH TADA2B MAP3K14 hsa-mir-649 TRIM35 PJA2 NCAPG2 PBRM1 EPN2 SMC4REV1 GPR45 PACSIN1 PUM1 hsa-mir-874 SFRP4 MAP2K7 TMEM132B hsa-mir-26a DIAPH3 CD200R1 CDO1 BCL9 F2R HS3ST3B1 hsa-mir-106a FOXP3 NT5E LSRATG4D ARHGEF7 hsa-mir-23a CEP68 TXNDC17 CHRAC1MLXIP ATP2B4 YTHDC2AHNAK SLC2A3 LCOR IFI16 ADCY3 JAG1 RAB31 PLCL1 RALGPS2 NPY SUOX SF3B4IGFBP7 CD27 hsa-mir-921 NDOR1 PHF3 RPL26hsa-mir-29a XPO7 TAF7 TOP3A CSTA IMPDH1 hsa-mir-378 TAGAP PCID2 NUP107 DGCR2 FBXL12 SOCS2 CSF1 CENPO CRY1 CST3 KSR1 FGF2CNKSR3 MMP25 hsa-mir-32 UGCG GTF2I CLTA SUCLG2 hsa-mir-625 IRF2BP1 FKBP3 hsa-mir-608 MAST1 SEMA4D DCUN1D4 ERO1L ZCCHC7 ST6GAL1 NDUFV2 GPM6B MRPS24 STRBPRBM12 ZYG11B RFK CXCL10 hsa-mir-23bUBE2H SLC35C1 TAGLN APBB1IPMVP GPATCH8 HLA-A hsa-mir-132 NCK1 KIAA0922 POLD2 VPS54 CYP1B1 PIP4K2A IRAK3 IKZF2 PANK4 hsa-mir-19b STX1A hsa-mir-425 ADPGK UCHL3 AMBRA1 ID2 RPS29 ENTPD1 STAB1 hsa-mir-765 PLOD2FBXO4 TAF1D UBP1 PRMT8 TSC22D4 hsa-mir-26b PLCXD2 PRPF39 GAS2 PTPN5 MYNN ATXN7L3 LTB4R HS2ST1 ME1 NFIL3 DET1 hsa-mir-29c NPNT BTLA HSPB1 R3HDM1 hsa-mir-448 GOT1 DHRS3 RAD50 SELL ZFAND3 MAF FLOT1 ETV6 DSTN SCN1B HOOK1 PDLIM5CHKA CDKN2C LYRM2 hsa-mir-636 MED1 hsa-mir-504 SLC4A2 hsa-mir-204 LGMN ORMDL3 DOCK6 FNDC3A KDSR RAB20 ANGEL1 EML2 GNA15 IL22 NYNRIN DIS3 hsa-mir-181d TAF4 TBX21 MED18 GSN RAB39B FURIN FES hsa-mir-98 TASP1 CPNE1 SETDB2 CTDP1 ATG16L1 hsa-mir-30e MPHOSPH9ZNF644 FAU hsa-mir-216aTLE4 hsa-mir-27b C2orf42 NDUFB6PEX13 ALDOA RPL12 KLK3 KRTAP11-1 ELK3 DYRK1B hsa-mir-936 SP1 EIF5 KLF12 PTK2Bhsa-mir-637 EDN1 IL17RBDCAF6 KCNK6 ANKRD12 ZNF281 PRR5L CUL4B ERGIC1 ZPBP2 PPP1R2 DENND5AKHSRP TNFRSF1ACA13 ADAMTS6 HIP1 TMEM43 TRRAP TSC22D1 XAB2 CASZ1 hsa-mir-593 hsa-mir-22 HSF2 SENP2 ATXN7L1 PTPN1 ACIN1 BTG2 STXBP1 hsa-mir-657 USP7 HAVCR2 IL12RB1 BOLL RRM2 PICALM CDK2 hsa-mir-20b CD9 hsa-mir-449b RBBP9 PDSS2RASL11B AGTPBP1 MBP N4BP2 hsa-mir-372 GTF2A1 CCL19 MPRIP GCNT1 SLC20A1 RNF138 N4BP1 SLC11A1 hsa-mir-766 DMXL2 NLRP3 ELL2LIN9 SMAD2 EZH2 DLG4 MYD88 ATP1B1GLRX hsa-mir-7 DNAJC5B WBP11DGKD hsa-mir-301a hsa-mir-363SF3B1 ARSB FNTB RNH1 hsa-mir-146a BRWD1 CBFA2T2 SFPQIL6ST IL10RA ANGPTL2 B3GALT2 USP22 IL1RL1 RAB3GAP1 USE1 ID3 CBX7 CENPJ DGKZ PSME2 IFITM2 hsa-mir-302b VRK2 PRDM1 CLCF1 NCKAP5 GOLGA1 ARL6IP6 hsa-mir-30a PLCD4 TYMS OGDH STAT3 FBXW2 S100A6 ELK4 TIAM1 SDC1 hsa-mir-34a RPL35A FEZ2 PRSS8 SEC11A NRF1 TWISTNB FNBP4 EXOSC5 CRIM1 KLC1 C1GALT1 PKN2 HIST1H3HSUB1 VPS37A LPHN2 KIF2A AHDC1 PFKL EMP1 ST6GALNAC2 TUBA4A CD74 BACH2 ING2 FUNDC2 SRGAP3 MGRN1 EXOC6 TRAK2 DTYMK PCSK1 SCGB1A1 CPD RIOK3 CUL4A CD38 hsa-mir-27a PTBP2 CCR5 RNF128 hsa-mir-891b GTF3A CD79A CTSH NCOA3 FYN CNOT6 IKZF3 PITPNM2 NKIRAS1 BCL3 NFS1 VAV1CLK2 ATXN2 SMG1 con-miR isotype miR-cocktail IL-13 MFI mRNA and miRNA mice expression data Th2 disease module Human interactome and miRNA network 5 highest impact miRNAs Validation in mouse IDEAL approach 1 2 5 10 20 50 100 012345 Number of miRNAs attacking CollectiveImpact(CI) RSBN1 LRP8 TSC1 AKAP8L PRKCD PRR11 IFNA4 BNIP3 MCPH1 MAFK CCL17 DLG2 hsa-let-7e PPP2R5E ASTE1 ARNT2 ZNF276 XRCC4 TRIM24 ZNF277INPPL1 PILRA LDHB PDE1BC14orf1 RPL8 GCC2 C5 PCDH19 BACE2 BATF CDON INPP5A DNAJB14 SH3RF2 CAMK2N1 C1orf94 hsa-mir-200c HMOX2 SMARCD1 CPSF7 CNN3 POLI SLC25A25 LTB XRN2 SIAH2 TINF2 RAPGEF6 PBX3 hsa-let-7b hsa-mir-107 SEC63 ATF7 CCR8 PTPN3 GRP TMEM62 SMURF1 RPS10 RPS21 MAP3K12 ARMC8 ANXA4 CDK10 INPP4A FBXW8 FBXL6 MAML3 MLEC EPB41 MAPRE1 ELF2 BMPR1A hsa-mir-138 DTL RAG1 ATRN hsa-mir-340 TAPT1 NARS2 MIPOL1PTGS2 LY75 RPS13 GALNT3USP24 ZCCHC2 ZNF653 CCR4 ERF ENTPD6 PIGF PARD3 ZBTB34 RIPK1RAPGEF1 KIAA1462 hsa-let-7a UPF3A hsa-mir-607 CA2 IL9RGAPVD1 FANCL TKT SMARCA5 GNPDA1 LAMC1 RXRA NEK1 hsa-mir-575 AURKC TNFRSF8NRBP1 COBLL1 hsa-mir-106b SPINT1 ALDH3A2 SH3BGRL FBXL2 PSME1 STK25 H1F0 LAMA5 hsa-mir-665 ERN1 hsa-let-7i STAT5A TPI1 SLC25A46 HSD17B7 hsa-mir-194 FRMD6 ASH1L AP1S2 DUSP2 MBTD1 DGKI CHST11 F2RL1 MLKL HMGXB3 GNB4 ANKRD29 LITAF KLHL3 hsa-let-7d FUCA2 CCDC101 PBX2 FRMD4B hsa-mir-580 ADNP LIMK1 P2RY1 ATG4B GATA2 hsa-mir-18b PCYT2 RGS9 RPS12 hsa-mir-15b RNF24 IRF8 ETNK1 hsa-mir-21 EIF4G3 PLEKHO1 LFNG BCL2L15DNAJB9 CA1 PRDM2 SAT1 BHLHB9 GAS7 FLRT2 RPL17 HPSE STX11 MEOX2 IGF1RCCDC22CGGBP1 RPS16 USP14 CPSF3 MYO1D ZMYND11 TRIM44 hsa-let-7c hsa-mir-516a-5p HDAC7 NEK7 ITGB8 TNFRSF14ZNF605 DCP2 PRDM4 AQP9 MEPCE HMCN1 CTNNA1 TNFSF10 TCF12SDCCAG3 ZFYVE16 DIP2C DUSP19 ASXL2 CHST15 hsa-mir-203 AXIN1 CAMKK2 VEZTBCL7B MEF2A FHL3 ANKRD17 hsa-mir-494 IL24 RASSF5 DENND4A CREB3L2 PUM2 RNF130 TRIM8 UNKL PHF20L1 SCMH1 hsa-mir-552 PYGM NRP1 BRPF1 SERINC3 EIF5B RANBP3 hsa-mir-149 CSK NPAT GNB2L1LY9 CARM1 PCNA hsa-mir-150 ST3GAL4 RB1 RREB1 HSPA2 CNOT1 RPL23 hsa-mir-17 F11R ATP11C hsa-mir-135b MPP7 SRF SMYD3 NOTCH1 NEDD8 ITM2A hsa-mir-33b STAR LRIG1 ATP2B1 CCR7 TIGIT CD84 RPL31 YWHAZ TESK1 RNLS C21orf91 CENPT XPC DYNLT3 ACTR6 LPIN2 RUNX2 KLKB1 CSGALNACT1 CHCHD3MIF4GD PLEKHA1 EHMT1 RPL27A SAMSN1 PSMD7 RORA AKAP8 VTI1A EPAS1 AKR1B1 DAPK1ZDHHC23 FBXW7 CCL1 IL1RN GAPDHS DEK ADAM19 TDG PLCB4 HSD3B1 WHSC1 MRPL30 RBM6 MDK PPP4R1 SUV420H1 HSPA8 hsa-mir-623 RNF44 AMPH LILRB4 USP9X BZW2 RBM28 EDEM3 MYO10 GLDC ASAP1 CHRM2 QTRT1 hsa-mir-383 KLHL6 VAT1 CDK6 ITPR1 KIAA1598 ATXN1 UBL3 hsa-let-7f STOM VDR THADA ZBTB44 KLHDC10 ARHGEF2 IPMK YLPM1IFNG STT3B CTDSPL2 WDR82UBR1 hsa-mir-517a QSER1 BRF1 SLC39A10 RALY GRSF1 FN1 NCOR2 CDK12 GNAQ ZNF654 GALC UBE2D1 FFAR2 H2AFZ TOM1 NCKAP1 GSRhsa-mir-220b SERF2 GNG2RAF1 RGS19 SETD1A IMPA2FGF18 ERAP1 STAG1 IKZF4 ELMOD2 PROS1 PLB1 STAMBPL1 ERC1 STXBP4PPARG hsa-mir-154 ACVR2A NEU1 TMTC2RPL18 IL9RPAP2 DCBLD2 IL19 HEPHL1 MID2 GIMAP8 CAMK2D MYH9 TERF2DHRS7 KIFC1 hsa-mir-380 CYP1A1 ADH5 SRRT EPN1 GNG4 PTPN4 PER1 ABCB8 DHX9 RGS3 hsa-mir-545 SLC48A1 PCGF2 RGS1 TXK ADARB1 ASB13 AURKB MPZL1 OVGP1 RHOH TPD52 hsa-mir-143 RPS23 hsa-mir-99b CNOT10 RAB11B ATRNL1 USP15 WDFY2 RAB9A hsa-mir-571 NAV2 ZRSR2 PHOX2A ATXN7L2 RABGGTA FGFR1OP2 NCLN RAB8A TTLL4 FOXJ3 ZMIZ2 ETS2 LAG3 EGLN3 ZNF318 UXT CLDND1 TTBK1 CYCS CRTAM hsa-mir-30b PCYT1A hsa-mir-200bATRIP DYRK2hsa-mir-328 NDUFA10 hsa-mir-505 TMEM159 hsa-mir-379 SMC5 RNF19A GPRASP1 GABARAP hsa-mir-24 EIF3K SLC17A6 RPL19 CMPK1 TMEM30A GRN HIC1 TNFSF8 hsa-mir-30c NBN IL10 MAPK8 ADORA2B CSNK1G3 MYO1E LRP12 COIL hsa-mir-603 FUT8 PPFIA1 hsa-mir-155 RPS6KA1 KPNA1 SIDT2 TRIM25 FDFT1 UBE2F CTLA4 KIF3A TARS2 hsa-mir-760 CCR3 LXN KHDRBS1 MECR PLCD1 HIVEP2 GLB1 RPL13A GRIPAP1 MTOR hsa-mir-148b CHD7 DMXL1 TMOD4 INADL NFX1 hsa-mir-422a SH2D1A DAG1 DOCK11 CLSTN1 INTS4 GZF1 RPL9 PARP4 RPS15A SKP1 PLP2 ATP10A hsa-mir-452 TAF8 HIPK1 MSH3 KLRG1 PDE2A MLLT10 hsa-mir-181c CCDC90B SETX CEP55 CNIH2 FRS2 FBXL5 MARS2 WDR33 U2AF2 TANK PTPN12 ZBTB32 SPN SLC25A27 IPCEF1 EP400 RGS13 hsa-mir-206ZNF592 PEX10 CWC15 hsa-mir-220c PARD6G DUSP4SUFU JPH1 SH3PXD2A S100A1 SLC44A1 SERPINF1 CYFIP1 USP28 FOXF2PRKAR2A VAMP4 GTF3C2 IL1R2 BAZ1Ahsa-mir-181a MOCOS FOXN2 ABCC1 MYO1C LSM1 hsa-mir-922 ETV5 PAN3 RBM41 STK24 SETD7 SPHK2 MLF1 RTN3 ANXA2 SLC7A8 EZR RC3H1 hsa-mir-548a-3p RPE PCGF5 LPXN TREX1 LYN MED13 RBM38 MKL2 RPS9 MAP3K5hsa-mir-620 MCL1 CD5PTPN6 ARL14MAPKAPK5 VCL LCORL CSNK1E SUV39H1 NEB RPL10 hsa-mir-497 PTPRJ APLP1 HIST1H3B DDX11 ARL6 DVL1 RPL13 RNPC3 ARL5A DDX28 RPSAZMYM4 hsa-mir-487a ZBTB38 DICER1 PTGER2 ARHGEF3 hsa-mir-520h THRAP3 IL1R1 ABL2 NDUFA3 IL23R LAT HIPK2 hsa-mir-103 ARFGEF1 ZRANB1 KIAA2026 PTPN13 hsa-mir-29b CRMP1 APBB3 IPO9 hsa-mir-488 ARHGEF12 SPP1 RPLP2 LLGL1 EIF3F LZTFL1 FAM91A1 RPS5 DDX19B PLXNC1 GIT1 TPBG UHRF2 INHBA hsa-mir-211 S100A11 ACTN1 ACVR1 HIST1H4C CNTNAP4 GYPC POLR3F GMNN TAOK2 ARG1 THOC1 KIF16B PHF20 TIPARP PPM1F PTP4A3 SFN OLR1 SIN3A BCL2L11 RAPH1 ICOS hsa-mir-374b IKBKE SAP130 AHR TOP2A GNPTAB PJA1 FGL2 ADAM9 EFR3A SETBP1 HN1L NUMA1 STUB1 SLK GAD1 SERTAD2 GJB3 PALLD C19orf66 GRM5 SLCO3A1 PIK3CB ESYT2 KAT2A FBXW11hsa-mir-520f SUSD2 CNOT2 PAIP2 TRAM1 NCAPH ANKRD13C S100A16 HIRA AQR NR3C1 hsa-mir-222 CA8 ZDHHC3 CAPG MTMR2 hsa-mir-551b ZBTB10 MKNK1 PTPRC ADAP1 RHOQ PTPLAD1 CA5B DAXX MPHOSPH8hsa-mir-200a UGP2 EBAG9 IKBKB RAB11FIP4 IPPK PRDX6 CYP11A1 RXRB ZNF25 RNF146 ITGAD RAB11FIP1 RNF216 PLAUR CAP2 CYP17A1 TEX2 PLK2 TIMP3 SMAD1 TIMP1 RASSF8 DUSP14 RASA3 IGF2R MKRN2 ITGB2 DDX46 TRA2A ZBTB11 CRY2 RPS28 PPAP2B STARD13 RNF31 GLUD1 SESN3 CDK11APRICKLE3 CMAS LEF1 PHACTR4 MFHAS1 SMAD3OSBPL3 MUS81 CASP6 MYCBP2 MYLIP USP34 hsa-let-7g PSIP1 MAPKAPK2 NUP153 CASP4 TRPS1 QRICH1 KIF2C PRKCH SVIL AXL CTCF CD2AP EYA1 SRSF2 RPTOR hsa-mir-214 ITGA2DUSP16 INTS7 MPI MARK3 SMARCD3BNC1 PARP8 ACBD5 RNF111 HBS1L ICAM2 MTMR10 GNPAT RCOR1 hsa-mir-18a PHC1 SRXN1 CCR1 B4GALT5 CAPNS1 MAPK8IP3 MSC CDC27 GPR126 IER3 QPCTL GATM HSF1 MFNG hsa-mir-93PKD2 GATA3 TOR1AIP2 KLRD1 GRAMD3 RRAS2 CASP1 KBTBD2 CREBL2 CABIN1 RASL11A IGBP1 SPRED2HIST1H3C AMMECR1 hsa-mir-554 RYK MIA3 COX7A2L CABYR PPFIBP1EPS15L1 MAX hsa-mir-182 TEC RPS7 STK38 LGALS3 LRRFIP1 RPL30 BMPR2 CD80 PTDSS1 LGALS1 TNKS2 FARP2 SLC24A3 MRAS PTPN9 SDC4 TSC2 CAPN2 PIK3AP1 CD44 CYTH3 NEK6MED26 ERCC4 FAM57A TAF4B HEG1 UTRN BCAS2 ARHGAP29 GAPDH HLF DPM1hsa-mir-181b NEO1 LTN1 ZC3H12C hsa-mir-25 hsa-mir-152PDCD10 IL5 RBPJ RALGDS FOXP4 hsa-mir-610 CBLB BCAR3 PDSS1 NDUFB1 ATR ENY2 GIGYF2 PICK1 hsa-mir-19a TRAF3IP3 KIF13A POGZ AKAP6 hsa-mir-326 ATP10B IL13 ITGB1BP1 hsa-mir-192 PRPF38B SERPINA3 IL2RB CLCN5 hsa-mir-195 IRF3 SSFA2 VASP CDK4 ENAH TADA2B MAP3K14 hsa-mir-649 TRIM35 PJA2 NCAPG2 PBRM1 EPN2 SMC4REV1 GPR45 PACSIN1 PUM1 hsa-mir-874 SFRP4 MAP2K7 TMEM132B hsa-mir-26a DIAPH3 CD200R1 CDO1 BCL9 F2R HS3ST3B1 hsa-mir-106a FOXP3 NT5E LSRATG4D ARHGEF7 hsa-mir-23a CEP68 TXNDC17 CHRAC1MLXIP ATP2B4 YTHDC2AHNAK SLC2A3 LCOR IFI16 ADCY3 JAG1 RAB31 PLCL1 RALGPS2 NPY SUOX SF3B4IGFBP7 CD27 hsa-mir-921 NDOR1 PHF3 RPL26hsa-mir-29a XPO7 TAF7 TOP3A CSTA IMPDH1 hsa-mir-378 TAGAP PCID2 NUP107 DGCR2 FBXL12 SOCS2 CSF1 CENPO CRY1 CST3 KSR1 FGF2CNKSR3 MMP25 hsa-mir-32 UGCG GTF2I CLTA SUCLG2 hsa-mir-625 IRF2BP1 FKBP3 hsa-mir-608 MAST1 SEMA4D DCUN1D4 ERO1L ZCCHC7 ST6GAL1 NDUFV2 GPM6B MRPS24 STRBPRBM12 ZYG11B RFK CXCL10 hsa-mir-23bUBE2H SLC35C1 TAGLN APBB1IPMVP GPATCH8 HLA-A hsa-mir-132 NCK1 KIAA0922 POLD2 VPS54 CYP1B1 PIP4K2A IRAK3 IKZF2 PANK4 hsa-mir-19b STX1A hsa-mir-425 ADPGK UCHL3 AMBRA1 ID2 RPS29 ENTPD1 STAB1 hsa-mir-765 PLOD2FBXO4 TAF1D UBP1 PRMT8 TSC22D4 hsa-mir-26b PLCXD2 PRPF39 GAS2 PTPN5 MYNN ATXN7L3 LTB4R HS2ST1 ME1 NFIL3 DET1 hsa-mir-29c NPNT BTLA HSPB1 R3HDM1 hsa-mir-448 GOT1 DHRS3 RAD50 SELL ZFAND3 MAF FLOT1 ETV6 DSTN SCN1B HOOK1 PDLIM5CHKA CDKN2C LYRM2 hsa-mir-636 MED1 hsa-mir-504 SLC4A2 hsa-mir-204 LGMN ORMDL3 DOCK6 FNDC3A KDSR RAB20 ANGEL1 EML2 GNA15 IL22 NYNRIN DIS3 hsa-mir-181d TAF4 TBX21 MED18 GSN RAB39B FURIN FES hsa-mir-98 TASP1 CPNE1 SETDB2 CTDP1 ATG16L1 hsa-mir-30e MPHOSPH9ZNF644 FAU hsa-mir-216aTLE4 hsa-mir-27b C2orf42 NDUFB6PEX13 ALDOA RPL12 KLK3 KRTAP11-1 ELK3 DYRK1B hsa-mir-936 SP1 EIF5 KLF12 PTK2Bhsa-mir-637 EDN1 IL17RBDCAF6 KCNK6 ANKRD12 ZNF281 PRR5L CUL4B ERGIC1 ZPBP2 PPP1R2 DENND5AKHSRP TNFRSF1ACA13 ADAMTS6 HIP1 TMEM43 TRRAP TSC22D1 XAB2 CASZ1 hsa-mir-593 hsa-mir-22 HSF2 SENP2 ATXN7L1 PTPN1 ACIN1 BTG2 STXBP1 hsa-mir-657 USP7 HAVCR2 IL12RB1 BOLL RRM2 PICALM CDK2 hsa-mir-20b CD9 hsa-mir-449b RBBP9 PDSS2RASL11B AGTPBP1 MBP N4BP2 hsa-mir-372 GTF2A1 CCL19 MPRIP GCNT1 SLC20A1 RNF138 N4BP1 SLC11A1 hsa-mir-766 DMXL2 NLRP3 ELL2LIN9 SMAD2 EZH2 DLG4 MYD88 ATP1B1GLRX hsa-mir-7 DNAJC5B WBP11DGKD hsa-mir-301a hsa-mir-363SF3B1 ARSB FNTB RNH1 hsa-mir-146a BRWD1 CBFA2T2 SFPQIL6ST IL10RA ANGPTL2 B3GALT2 USP22 IL1RL1 RAB3GAP1 USE1 ID3 CBX7 CENPJ DGKZ PSME2 IFITM2 hsa-mir-302b VRK2 PRDM1 CLCF1 NCKAP5 GOLGA1 ARL6IP6 hsa-mir-30a PLCD4 TYMS OGDH STAT3 FBXW2 S100A6 ELK4 TIAM1 SDC1 hsa-mir-34a RPL35A FEZ2 PRSS8 SEC11A NRF1 TWISTNB FNBP4 EXOSC5 CRIM1 KLC1 C1GALT1 PKN2 HIST1H3HSUB1 VPS37A LPHN2 KIF2A AHDC1 PFKL EMP1 ST6GALNAC2 TUBA4A CD74 BACH2 ING2 FUNDC2 SRGAP3 MGRN1 EXOC6 TRAK2 DTYMK PCSK1 SCGB1A1 CPD RIOK3 CUL4A CD38 hsa-mir-27a PTBP2 CCR5 RNF128 hsa-mir-891b GTF3A CD79A CTSH NCOA3 FYN CNOT6 IKZF3 PITPNM2 NKIRAS1 BCL3 NFS1 VAV1CLK2 ATXN2 SMG1 con-miR isotype miR-cocktail IL-13 MFI mRNA and miRNA mice expression data Th2 disease module Human interactome and miRNA network 5 highest impact miRNAs Validation in mouse IDEAL approach 1 2 5 10 20 50 100 012345 Number of miRNAs attacking CollectiveImpact(CI) RSBN1 LRP8 TSC1 AKAP8L PRKCD PRR11 IFNA4 BNIP3 MCPH1 MAFK CCL17 DLG2 hsa-let-7e PPP2R5E ASTE1 ARNT2 ZNF276 XRCC4 TRIM24 ZNF277INPPL1 PILRA LDHB PDE1BC14orf1 RPL8 GCC2 C5 PCDH19 BACE2 BATF CDON INPP5A DNAJB14 SH3RF2 CAMK2N1 C1orf94 hsa-mir-200c HMOX2 SMARCD1 CPSF7 CNN3 POLI SLC25A25 LTB XRN2 SIAH2 TINF2 RAPGEF6 PBX3 hsa-let-7b hsa-mir-107 SEC63 ATF7 CCR8 PTPN3 GRP TMEM62 SMURF1 RPS10 RPS21 MAP3K12 ARMC8 ANXA4 CDK10 INPP4A FBXW8 FBXL6 MAML3 MLEC EPB41 MAPRE1 ELF2 BMPR1A hsa-mir-138 DTL RAG1 ATRN hsa-mir-340 TAPT1 NARS2 MIPOL1PTGS2 LY75 RPS13 GALNT3USP24 ZCCHC2 ZNF653 CCR4 ERF ENTPD6 PIGF PARD3 ZBTB34 RIPK1RAPGEF1 KIAA1462 hsa-let-7a UPF3A hsa-mir-607 CA2 IL9RGAPVD1 FANCL TKT SMARCA5 GNPDA1 LAMC1 RXRA NEK1 hsa-mir-575 AURKC TNFRSF8NRBP1 COBLL1 hsa-mir-106b SPINT1 ALDH3A2 SH3BGRL FBXL2 PSME1 STK25 H1F0 LAMA5 hsa-mir-665 ERN1 hsa-let-7i STAT5A TPI1 SLC25A46 HSD17B7 hsa-mir-194 FRMD6 ASH1L AP1S2 DUSP2 MBTD1 DGKI CHST11 F2RL1 MLKL HMGXB3 GNB4 ANKRD29 LITAF KLHL3 hsa-let-7d FUCA2 CCDC101 PBX2 FRMD4B hsa-mir-580 ADNP LIMK1 P2RY1 ATG4B GATA2 hsa-mir-18b PCYT2 RGS9 RPS12 hsa-mir-15b RNF24 IRF8 ETNK1 hsa-mir-21 EIF4G3 PLEKHO1 LFNG BCL2L15DNAJB9 CA1 PRDM2 SAT1 BHLHB9 GAS7 FLRT2 RPL17 HPSE STX11 MEOX2 IGF1RCCDC22CGGBP1 RPS16 USP14 CPSF3 MYO1D ZMYND11 TRIM44 hsa-let-7c hsa-mir-516a-5p HDAC7 NEK7 ITGB8 TNFRSF14ZNF605 DCP2 PRDM4 AQP9 MEPCE HMCN1 CTNNA1 TNFSF10 TCF12SDCCAG3 ZFYVE16 DIP2C DUSP19 ASXL2 CHST15 hsa-mir-203 AXIN1 CAMKK2 VEZTBCL7B MEF2A FHL3 ANKRD17 hsa-mir-494 IL24 RASSF5 DENND4A CREB3L2 PUM2 RNF130 TRIM8 UNKL PHF20L1 SCMH1 hsa-mir-552 PYGM NRP1 BRPF1 SERINC3 EIF5B RANBP3 hsa-mir-149 CSK NPAT GNB2L1LY9 CARM1 PCNA hsa-mir-150 ST3GAL4 RB1 RREB1 HSPA2 CNOT1 RPL23 hsa-mir-17 F11R ATP11C hsa-mir-135b MPP7 SRF SMYD3 NOTCH1 NEDD8 ITM2A hsa-mir-33b STAR LRIG1 ATP2B1 CCR7 TIGIT CD84 RPL31 YWHAZ TESK1 RNLS C21orf91 CENPT XPC DYNLT3 ACTR6 LPIN2 RUNX2 KLKB1 CSGALNACT1 CHCHD3MIF4GD PLEKHA1 EHMT1 RPL27A SAMSN1 PSMD7 RORA AKAP8 VTI1A EPAS1 AKR1B1 DAPK1ZDHHC23 FBXW7 CCL1 IL1RN GAPDHS DEK ADAM19 TDG PLCB4 HSD3B1 WHSC1 MRPL30 RBM6 MDK PPP4R1 SUV420H1 HSPA8 hsa-mir-623 RNF44 AMPH LILRB4 USP9X BZW2 RBM28 EDEM3 MYO10 GLDC ASAP1 CHRM2 QTRT1 hsa-mir-383 KLHL6 VAT1 CDK6 ITPR1 KIAA1598 ATXN1 UBL3 hsa-let-7f STOM VDR THADA ZBTB44 KLHDC10 ARHGEF2 IPMK YLPM1IFNG STT3B CTDSPL2 WDR82UBR1 hsa-mir-517a QSER1 BRF1 SLC39A10 RALY GRSF1 FN1 NCOR2 CDK12 GNAQ ZNF654 GALC UBE2D1 FFAR2 H2AFZ TOM1 NCKAP1 GSRhsa-mir-220b SERF2 GNG2RAF1 RGS19 SETD1A IMPA2FGF18 ERAP1 STAG1 IKZF4 ELMOD2 PROS1 PLB1 STAMBPL1 ERC1 STXBP4PPARG hsa-mir-154 ACVR2A NEU1 TMTC2RPL18 IL9RPAP2 DCBLD2 IL19 HEPHL1 MID2 GIMAP8 CAMK2D MYH9 TERF2DHRS7 KIFC1 hsa-mir-380 CYP1A1 ADH5 SRRT EPN1 GNG4 PTPN4 PER1 ABCB8 DHX9 RGS3 hsa-mir-545 SLC48A1 PCGF2 RGS1 TXK ADARB1 ASB13 AURKB MPZL1 OVGP1 RHOH TPD52 hsa-mir-143 RPS23 hsa-mir-99b CNOT10 RAB11B ATRNL1 USP15 WDFY2 RAB9A hsa-mir-571 NAV2 ZRSR2 PHOX2A ATXN7L2 RABGGTA FGFR1OP2 NCLN RAB8A TTLL4 FOXJ3 ZMIZ2 ETS2 LAG3 EGLN3 ZNF318 UXT CLDND1 TTBK1 CYCS CRTAM hsa-mir-30b PCYT1A hsa-mir-200bATRIP DYRK2hsa-mir-328 NDUFA10 hsa-mir-505 TMEM159 hsa-mir-379 SMC5 RNF19A GPRASP1 GABARAP hsa-mir-24 EIF3K SLC17A6 RPL19 CMPK1 TMEM30A GRN HIC1 TNFSF8 hsa-mir-30c NBN IL10 MAPK8 ADORA2B CSNK1G3 MYO1E LRP12 COIL hsa-mir-603 FUT8 PPFIA1 hsa-mir-155 RPS6KA1 KPNA1 SIDT2 TRIM25 FDFT1 UBE2F CTLA4 KIF3A TARS2 hsa-mir-760 CCR3 LXN KHDRBS1 MECR PLCD1 HIVEP2 GLB1 RPL13A GRIPAP1 MTOR hsa-mir-148b CHD7 DMXL1 TMOD4 INADL NFX1 hsa-mir-422a SH2D1A DAG1 DOCK11 CLSTN1 INTS4 GZF1 RPL9 PARP4 RPS15A SKP1 PLP2 ATP10A hsa-mir-452 TAF8 HIPK1 MSH3 KLRG1 PDE2A MLLT10 hsa-mir-181c CCDC90B SETX CEP55 CNIH2 FRS2 FBXL5 MARS2 WDR33 U2AF2 TANK PTPN12 ZBTB32 SPN SLC25A27 IPCEF1 EP400 RGS13 hsa-mir-206ZNF592 PEX10 CWC15 hsa-mir-220c PARD6G DUSP4SUFU JPH1 SH3PXD2A S100A1 SLC44A1 SERPINF1 CYFIP1 USP28 FOXF2PRKAR2A VAMP4 GTF3C2 IL1R2 BAZ1Ahsa-mir-181a MOCOS FOXN2 ABCC1 MYO1C LSM1 hsa-mir-922 ETV5 PAN3 RBM41 STK24 SETD7 SPHK2 MLF1 RTN3 ANXA2 SLC7A8 EZR RC3H1 hsa-mir-548a-3p RPE PCGF5 LPXN TREX1 LYN MED13 RBM38 MKL2 RPS9 MAP3K5hsa-mir-620 MCL1 CD5PTPN6 ARL14MAPKAPK5 VCL LCORL CSNK1E SUV39H1 NEB RPL10 hsa-mir-497 PTPRJ APLP1 HIST1H3B DDX11 ARL6 DVL1 RPL13 RNPC3 ARL5A DDX28 RPSAZMYM4 hsa-mir-487a ZBTB38 DICER1 PTGER2 ARHGEF3 hsa-mir-520h THRAP3 IL1R1 ABL2 NDUFA3 IL23R LAT HIPK2 hsa-mir-103 ARFGEF1 ZRANB1 KIAA2026 PTPN13 hsa-mir-29b CRMP1 APBB3 IPO9 hsa-mir-488 ARHGEF12 SPP1 RPLP2 LLGL1 EIF3F LZTFL1 FAM91A1 RPS5 DDX19B PLXNC1 GIT1 TPBG UHRF2 INHBA hsa-mir-211 S100A11 ACTN1 ACVR1 HIST1H4C CNTNAP4 GYPC POLR3F GMNN TAOK2 ARG1 THOC1 KIF16B PHF20 TIPARP PPM1F PTP4A3 SFN OLR1 SIN3A BCL2L11 RAPH1 ICOS hsa-mir-374b IKBKE SAP130 AHR TOP2A GNPTAB PJA1 FGL2 ADAM9 EFR3A SETBP1 HN1L NUMA1 STUB1 SLK GAD1 SERTAD2 GJB3 PALLD C19orf66 GRM5 SLCO3A1 PIK3CB ESYT2 KAT2A FBXW11hsa-mir-520f SUSD2 CNOT2 PAIP2 TRAM1 NCAPH ANKRD13C S100A16 HIRA AQR NR3C1 hsa-mir-222 CA8 ZDHHC3 CAPG MTMR2 hsa-mir-551b ZBTB10 MKNK1 PTPRC ADAP1 RHOQ PTPLAD1 CA5B DAXX MPHOSPH8hsa-mir-200a UGP2 EBAG9 IKBKB RAB11FIP4 IPPK PRDX6 CYP11A1 RXRB ZNF25 RNF146 ITGAD RAB11FIP1 RNF216 PLAUR CAP2 CYP17A1 TEX2 PLK2 TIMP3 SMAD1 TIMP1 RASSF8 DUSP14 RASA3 IGF2R MKRN2 ITGB2 DDX46 TRA2A ZBTB11 CRY2 RPS28 PPAP2B STARD13 RNF31 GLUD1 SESN3 CDK11APRICKLE3 CMAS LEF1 PHACTR4 MFHAS1 SMAD3OSBPL3 MUS81 CASP6 MYCBP2 MYLIP USP34 hsa-let-7g PSIP1 MAPKAPK2 NUP153 CASP4 TRPS1 QRICH1 KIF2C PRKCH SVIL AXL CTCF CD2AP EYA1 SRSF2 RPTOR hsa-mir-214 ITGA2DUSP16 INTS7 MPI MARK3 SMARCD3BNC1 PARP8 ACBD5 RNF111 HBS1L ICAM2 MTMR10 GNPAT RCOR1 hsa-mir-18a PHC1 SRXN1 CCR1 B4GALT5 CAPNS1 MAPK8IP3 MSC CDC27 GPR126 IER3 QPCTL GATM HSF1 MFNG hsa-mir-93PKD2 GATA3 TOR1AIP2 KLRD1 GRAMD3 RRAS2 CASP1 KBTBD2 CREBL2 CABIN1 RASL11A IGBP1 SPRED2HIST1H3C AMMECR1 hsa-mir-554 RYK MIA3 COX7A2L CABYR PPFIBP1EPS15L1 MAX hsa-mir-182 TEC RPS7 STK38 LGALS3 LRRFIP1 RPL30 BMPR2 CD80 PTDSS1 LGALS1 TNKS2 FARP2 SLC24A3 MRAS PTPN9 SDC4 TSC2 CAPN2 PIK3AP1 CD44 CYTH3 NEK6MED26 ERCC4 FAM57A TAF4B HEG1 UTRN BCAS2 ARHGAP29 GAPDH HLF DPM1hsa-mir-181b NEO1 LTN1 ZC3H12C hsa-mir-25 hsa-mir-152PDCD10 IL5 RBPJ RALGDS FOXP4 hsa-mir-610 CBLB BCAR3 PDSS1 NDUFB1 ATR ENY2 GIGYF2 PICK1 hsa-mir-19a TRAF3IP3 KIF13A POGZ AKAP6 hsa-mir-326 ATP10B IL13 ITGB1BP1 hsa-mir-192 PRPF38B SERPINA3 IL2RB CLCN5 hsa-mir-195 IRF3 SSFA2 VASP CDK4 ENAH TADA2B MAP3K14 hsa-mir-649 TRIM35 PJA2 NCAPG2 PBRM1 EPN2 SMC4REV1 GPR45 PACSIN1 PUM1 hsa-mir-874 SFRP4 MAP2K7 TMEM132B hsa-mir-26a DIAPH3 CD200R1 CDO1 BCL9 F2R HS3ST3B1 hsa-mir-106a FOXP3 NT5E LSRATG4D ARHGEF7 hsa-mir-23a CEP68 TXNDC17 CHRAC1MLXIP ATP2B4 YTHDC2AHNAK SLC2A3 LCOR IFI16 ADCY3 JAG1 RAB31 PLCL1 RALGPS2 NPY SUOX SF3B4IGFBP7 CD27 hsa-mir-921 NDOR1 PHF3 RPL26hsa-mir-29a XPO7 TAF7 TOP3A CSTA IMPDH1 hsa-mir-378 TAGAP PCID2 NUP107 DGCR2 FBXL12 SOCS2 CSF1 CENPO CRY1 CST3 KSR1 FGF2CNKSR3 MMP25 hsa-mir-32 UGCG GTF2I CLTA SUCLG2 hsa-mir-625 IRF2BP1 FKBP3 hsa-mir-608 MAST1 SEMA4D DCUN1D4 ERO1L ZCCHC7 ST6GAL1 NDUFV2 GPM6B MRPS24 STRBPRBM12 ZYG11B RFK CXCL10 hsa-mir-23bUBE2H SLC35C1 TAGLN APBB1IPMVP GPATCH8 HLA-A hsa-mir-132 NCK1 KIAA0922 POLD2 VPS54 CYP1B1 PIP4K2A IRAK3 IKZF2 PANK4 hsa-mir-19b STX1A hsa-mir-425 ADPGK UCHL3 AMBRA1 ID2 RPS29 ENTPD1 STAB1 hsa-mir-765 PLOD2FBXO4 TAF1D UBP1 PRMT8 TSC22D4 hsa-mir-26b PLCXD2 PRPF39 GAS2 PTPN5 MYNN ATXN7L3 LTB4R HS2ST1 ME1 NFIL3 DET1 hsa-mir-29c NPNT BTLA HSPB1 R3HDM1 hsa-mir-448 GOT1 DHRS3 RAD50 SELL ZFAND3 MAF FLOT1 ETV6 DSTN SCN1B HOOK1 PDLIM5CHKA CDKN2C LYRM2 hsa-mir-636 MED1 hsa-mir-504 SLC4A2 hsa-mir-204 LGMN ORMDL3 DOCK6 FNDC3A KDSR RAB20 ANGEL1 EML2 GNA15 IL22 NYNRIN DIS3 hsa-mir-181d TAF4 TBX21 MED18 GSN RAB39B FURIN FES hsa-mir-98 TASP1 CPNE1 SETDB2 CTDP1 ATG16L1 hsa-mir-30e MPHOSPH9ZNF644 FAU hsa-mir-216aTLE4 hsa-mir-27b C2orf42 NDUFB6PEX13 ALDOA RPL12 KLK3 KRTAP11-1 ELK3 DYRK1B hsa-mir-936 SP1 EIF5 KLF12 PTK2Bhsa-mir-637 EDN1 IL17RBDCAF6 KCNK6 ANKRD12 ZNF281 PRR5L CUL4B ERGIC1 ZPBP2 PPP1R2 DENND5AKHSRP TNFRSF1ACA13 ADAMTS6 HIP1 TMEM43 TRRAP TSC22D1 XAB2 CASZ1 hsa-mir-593 hsa-mir-22 HSF2 SENP2 ATXN7L1 PTPN1 ACIN1 BTG2 STXBP1 hsa-mir-657 USP7 HAVCR2 IL12RB1 BOLL RRM2 PICALM CDK2 hsa-mir-20b CD9 hsa-mir-449b RBBP9 PDSS2RASL11B AGTPBP1 MBP N4BP2 hsa-mir-372 GTF2A1 CCL19 MPRIP GCNT1 SLC20A1 RNF138 N4BP1 SLC11A1 hsa-mir-766 DMXL2 NLRP3 ELL2LIN9 SMAD2 EZH2 DLG4 MYD88 ATP1B1GLRX hsa-mir-7 DNAJC5B WBP11DGKD hsa-mir-301a hsa-mir-363SF3B1 ARSB FNTB RNH1 hsa-mir-146a BRWD1 CBFA2T2 SFPQIL6ST IL10RA ANGPTL2 B3GALT2 USP22 IL1RL1 RAB3GAP1 USE1 ID3 CBX7 CENPJ DGKZ PSME2 IFITM2 hsa-mir-302b VRK2 PRDM1 CLCF1 NCKAP5 GOLGA1 ARL6IP6 hsa-mir-30a PLCD4 TYMS OGDH STAT3 FBXW2 S100A6 ELK4 TIAM1 SDC1 hsa-mir-34a RPL35A FEZ2 PRSS8 SEC11A NRF1 TWISTNB FNBP4 EXOSC5 CRIM1 KLC1 C1GALT1 PKN2 HIST1H3HSUB1 VPS37A LPHN2 KIF2A AHDC1 PFKL EMP1 ST6GALNAC2 TUBA4A CD74 BACH2 ING2 FUNDC2 SRGAP3 MGRN1 EXOC6 TRAK2 DTYMK PCSK1 SCGB1A1 CPD RIOK3 CUL4A CD38 hsa-mir-27a PTBP2 CCR5 RNF128 hsa-mir-891b GTF3A CD79A CTSH NCOA3 FYN CNOT6 IKZF3 PITPNM2 NKIRAS1 BCL3 NFS1 VAV1CLK2 ATXN2 SMG1 con-miR isotype miR-cocktail IL-13 MFI mRNA and miRNA mice expression data Th2 disease module Human interactome and miRNA network 5 highest impact miRNAs Validation in mouse IDEAL approach 1 2 5 10 20 50 100 012345 Number of miRNAs attacking CollectiveImpact(CI) RSBN1 LRP8 TSC1 AKAP8L PRKCD PRR11 IFNA4 BNIP3 MCPH1 MAFK CCL17 DLG2 hsa-let-7e PPP2R5E ASTE1 ARNT2 ZNF276 XRCC4 TRIM24 ZNF277INPPL1 PILRA LDHB PDE1BC14orf1 RPL8 GCC2 C5 PCDH19 BACE2 BATF CDON INPP5A DNAJB14 SH3RF2 CAMK2N1 C1orf94 hsa-mir-200c HMOX2 SMARCD1 CPSF7 CNN3 POLI SLC25A25 LTB XRN2 SIAH2 TINF2 RAPGEF6 PBX3 hsa-let-7b hsa-mir-107 SEC63 ATF7 CCR8 PTPN3 GRP TMEM62 SMURF1 RPS10 RPS21 MAP3K12 ARMC8 ANXA4 CDK10 INPP4A FBXW8 FBXL6 MAML3 MLEC EPB41 MAPRE1 ELF2 BMPR1A hsa-mir-138 DTL RAG1 ATRN hsa-mir-340 TAPT1 NARS2 MIPOL1PTGS2 LY75 RPS13 GALNT3USP24 ZCCHC2 ZNF653 CCR4 ERF ENTPD6 PIGF PARD3 ZBTB34 RIPK1RAPGEF1 KIAA1462 hsa-let-7a UPF3A hsa-mir-607 CA2 IL9RGAPVD1 FANCL TKT SMARCA5 GNPDA1 LAMC1 RXRA NEK1 hsa-mir-575 AURKC TNFRSF8NRBP1 COBLL1 hsa-mir-106b SPINT1 ALDH3A2 SH3BGRL FBXL2 PSME1 STK25 H1F0 LAMA5 hsa-mir-665 ERN1 hsa-let-7i STAT5A TPI1 SLC25A46 HSD17B7 hsa-mir-194 FRMD6 ASH1L AP1S2 DUSP2 MBTD1 DGKI CHST11 F2RL1 MLKL HMGXB3 GNB4 ANKRD29 LITAF KLHL3 hsa-let-7d FUCA2 CCDC101 PBX2 FRMD4B hsa-mir-580 ADNP LIMK1 P2RY1 ATG4B GATA2 hsa-mir-18b PCYT2 RGS9 RPS12 hsa-mir-15b RNF24 IRF8 ETNK1 hsa-mir-21 EIF4G3 PLEKHO1 LFNG BCL2L15DNAJB9 CA1 PRDM2 SAT1 BHLHB9 GAS7 FLRT2 RPL17 HPSE STX11 MEOX2 IGF1RCCDC22CGGBP1 RPS16 USP14 CPSF3 MYO1D ZMYND11 TRIM44 hsa-let-7c hsa-mir-516a-5p HDAC7 NEK7 ITGB8 TNFRSF14ZNF605 DCP2 PRDM4 AQP9 MEPCE HMCN1 CTNNA1 TNFSF10 TCF12SDCCAG3 ZFYVE16 DIP2C DUSP19 ASXL2 CHST15 hsa-mir-203 AXIN1 CAMKK2 VEZTBCL7B MEF2A FHL3 ANKRD17 hsa-mir-494 IL24 RASSF5 DENND4A CREB3L2 PUM2 RNF130 TRIM8 UNKL PHF20L1 SCMH1 hsa-mir-552 PYGM NRP1 BRPF1 SERINC3 EIF5B RANBP3 hsa-mir-149 CSK NPAT GNB2L1LY9 CARM1 PCNA hsa-mir-150 ST3GAL4 RB1 RREB1 HSPA2 CNOT1 RPL23 hsa-mir-17 F11R ATP11C hsa-mir-135b MPP7 SRF SMYD3 NOTCH1 NEDD8 ITM2A hsa-mir-33b STAR LRIG1 ATP2B1 CCR7 TIGIT CD84 RPL31 YWHAZ TESK1 RNLS C21orf91 CENPT XPC DYNLT3 ACTR6 LPIN2 RUNX2 KLKB1 CSGALNACT1 CHCHD3MIF4GD PLEKHA1 EHMT1 RPL27A SAMSN1 PSMD7 RORA AKAP8 VTI1A EPAS1 AKR1B1 DAPK1ZDHHC23 FBXW7 CCL1 IL1RN GAPDHS DEK ADAM19 TDG PLCB4 HSD3B1 WHSC1 MRPL30 RBM6 MDK PPP4R1 SUV420H1 HSPA8 hsa-mir-623 RNF44 AMPH LILRB4 USP9X BZW2 RBM28 EDEM3 MYO10 GLDC ASAP1 CHRM2 QTRT1 hsa-mir-383 KLHL6 VAT1 CDK6 ITPR1 KIAA1598 ATXN1 UBL3 hsa-let-7f STOM VDR THADA ZBTB44 KLHDC10 ARHGEF2 IPMK YLPM1IFNG STT3B CTDSPL2 WDR82UBR1 hsa-mir-517a QSER1 BRF1 SLC39A10 RALY GRSF1 FN1 NCOR2 CDK12 GNAQ ZNF654 GALC UBE2D1 FFAR2 H2AFZ TOM1 NCKAP1 GSRhsa-mir-220b SERF2 GNG2RAF1 RGS19 SETD1A IMPA2FGF18 ERAP1 STAG1 IKZF4 ELMOD2 PROS1 PLB1 STAMBPL1 ERC1 STXBP4PPARG hsa-mir-154 ACVR2A NEU1 TMTC2RPL18 IL9RPAP2 DCBLD2 IL19 HEPHL1 MID2 GIMAP8 CAMK2D MYH9 TERF2DHRS7 KIFC1 hsa-mir-380 CYP1A1 ADH5 SRRT EPN1 GNG4 PTPN4 PER1 ABCB8 DHX9 RGS3 hsa-mir-545 SLC48A1 PCGF2 RGS1 TXK ADARB1 ASB13 AURKB MPZL1 OVGP1 RHOH TPD52 hsa-mir-143 RPS23 hsa-mir-99b CNOT10 RAB11B ATRNL1 USP15 WDFY2 RAB9A hsa-mir-571 NAV2 ZRSR2 PHOX2A ATXN7L2 RABGGTA FGFR1OP2 NCLN RAB8A TTLL4 FOXJ3 ZMIZ2 ETS2 LAG3 EGLN3 ZNF318 UXT CLDND1 TTBK1 CYCS CRTAM hsa-mir-30b PCYT1A hsa-mir-200bATRIP DYRK2hsa-mir-328 NDUFA10 hsa-mir-505 TMEM159 hsa-mir-379 SMC5 RNF19A GPRASP1 GABARAP hsa-mir-24 EIF3K SLC17A6 RPL19 CMPK1 TMEM30A GRN HIC1 TNFSF8 hsa-mir-30c NBN IL10 MAPK8 ADORA2B CSNK1G3 MYO1E LRP12 COIL hsa-mir-603 FUT8 PPFIA1 hsa-mir-155 RPS6KA1 KPNA1 SIDT2 TRIM25 FDFT1 UBE2F CTLA4 KIF3A TARS2 hsa-mir-760 CCR3 LXN KHDRBS1 MECR PLCD1 HIVEP2 GLB1 RPL13A GRIPAP1 MTOR hsa-mir-148b CHD7 DMXL1 TMOD4 INADL NFX1 hsa-mir-422a SH2D1A DAG1 DOCK11 CLSTN1 INTS4 GZF1 RPL9 PARP4 RPS15A SKP1 PLP2 ATP10A hsa-mir-452 TAF8 HIPK1 MSH3 KLRG1 PDE2A MLLT10 hsa-mir-181c CCDC90B SETX CEP55 CNIH2 FRS2 FBXL5 MARS2 WDR33 U2AF2 TANK PTPN12 ZBTB32 SPN SLC25A27 IPCEF1 EP400 RGS13 hsa-mir-206ZNF592 PEX10 CWC15 hsa-mir-220c PARD6G DUSP4SUFU JPH1 SH3PXD2A S100A1 SLC44A1 SERPINF1 CYFIP1 USP28 FOXF2PRKAR2A VAMP4 GTF3C2 IL1R2 BAZ1Ahsa-mir-181a MOCOS FOXN2 ABCC1 MYO1C LSM1 hsa-mir-922 ETV5 PAN3 RBM41 STK24 SETD7 SPHK2 MLF1 RTN3 ANXA2 SLC7A8 EZR RC3H1 hsa-mir-548a-3p RPE PCGF5 LPXN TREX1 LYN MED13 RBM38 MKL2 RPS9 MAP3K5hsa-mir-620 MCL1 CD5PTPN6 ARL14MAPKAPK5 VCL LCORL CSNK1E SUV39H1 NEB RPL10 hsa-mir-497 PTPRJ APLP1 HIST1H3B DDX11 ARL6 DVL1 RPL13 RNPC3 ARL5A DDX28 RPSAZMYM4 hsa-mir-487a ZBTB38 DICER1 PTGER2 ARHGEF3 hsa-mir-520h THRAP3 IL1R1 ABL2 NDUFA3 IL23R LAT HIPK2 hsa-mir-103 ARFGEF1 ZRANB1 KIAA2026 PTPN13 hsa-mir-29b CRMP1 APBB3 IPO9 hsa-mir-488 ARHGEF12 SPP1 RPLP2 LLGL1 EIF3F LZTFL1 FAM91A1 RPS5 DDX19B PLXNC1 GIT1 TPBG UHRF2 INHBA hsa-mir-211 S100A11 ACTN1 ACVR1 HIST1H4C CNTNAP4 GYPC POLR3F GMNN TAOK2 ARG1 THOC1 KIF16B PHF20 TIPARP PPM1F PTP4A3 SFN OLR1 SIN3A BCL2L11 RAPH1 ICOS hsa-mir-374b IKBKE SAP130 AHR TOP2A GNPTAB PJA1 FGL2 ADAM9 EFR3A SETBP1 HN1L NUMA1 STUB1 SLK GAD1 SERTAD2 GJB3 PALLD C19orf66 GRM5 SLCO3A1 PIK3CB ESYT2 KAT2A FBXW11hsa-mir-520f SUSD2 CNOT2 PAIP2 TRAM1 NCAPH ANKRD13C S100A16 HIRA AQR NR3C1 hsa-mir-222 CA8 ZDHHC3 CAPG MTMR2 hsa-mir-551b ZBTB10 MKNK1 PTPRC ADAP1 RHOQ PTPLAD1 CA5B DAXX MPHOSPH8hsa-mir-200a UGP2 EBAG9 IKBKB RAB11FIP4 IPPK PRDX6 CYP11A1 RXRB ZNF25 RNF146 ITGAD RAB11FIP1 RNF216 PLAUR CAP2 CYP17A1 TEX2 PLK2 TIMP3 SMAD1 TIMP1 RASSF8 DUSP14 RASA3 IGF2R MKRN2 ITGB2 DDX46 TRA2A ZBTB11 CRY2 RPS28 PPAP2B STARD13 RNF31 GLUD1 SESN3 CDK11APRICKLE3 CMAS LEF1 PHACTR4 MFHAS1 SMAD3OSBPL3 MUS81 CASP6 MYCBP2 MYLIP USP34 hsa-let-7g PSIP1 MAPKAPK2 NUP153 CASP4 TRPS1 QRICH1 KIF2C PRKCH SVIL AXL CTCF CD2AP EYA1 SRSF2 RPTOR hsa-mir-214 ITGA2DUSP16 INTS7 MPI MARK3 SMARCD3BNC1 PARP8 ACBD5 RNF111 HBS1L ICAM2 MTMR10 GNPAT RCOR1 hsa-mir-18a PHC1 SRXN1 CCR1 B4GALT5 CAPNS1 MAPK8IP3 MSC CDC27 GPR126 IER3 QPCTL GATM HSF1 MFNG hsa-mir-93PKD2 GATA3 TOR1AIP2 KLRD1 GRAMD3 RRAS2 CASP1 KBTBD2 CREBL2 CABIN1 RASL11A IGBP1 SPRED2HIST1H3C AMMECR1 hsa-mir-554 RYK MIA3 COX7A2L CABYR PPFIBP1EPS15L1 MAX hsa-mir-182 TEC RPS7 STK38 LGALS3 LRRFIP1 RPL30 BMPR2 CD80 PTDSS1 LGALS1 TNKS2 FARP2 SLC24A3 MRAS PTPN9 SDC4 TSC2 CAPN2 PIK3AP1 CD44 CYTH3 NEK6MED26 ERCC4 FAM57A TAF4B HEG1 UTRN BCAS2 ARHGAP29 GAPDH HLF DPM1hsa-mir-181b NEO1 LTN1 ZC3H12C hsa-mir-25 hsa-mir-152PDCD10 IL5 RBPJ RALGDS FOXP4 hsa-mir-610 CBLB BCAR3 PDSS1 NDUFB1 ATR ENY2 GIGYF2 PICK1 hsa-mir-19a TRAF3IP3 KIF13A POGZ AKAP6 hsa-mir-326 ATP10B IL13 ITGB1BP1 hsa-mir-192 PRPF38B SERPINA3 IL2RB CLCN5 hsa-mir-195 IRF3 SSFA2 VASP CDK4 ENAH TADA2B MAP3K14 hsa-mir-649 TRIM35 PJA2 NCAPG2 PBRM1 EPN2 SMC4REV1 GPR45 PACSIN1 PUM1 hsa-mir-874 SFRP4 MAP2K7 TMEM132B hsa-mir-26a DIAPH3 CD200R1 CDO1 BCL9 F2R HS3ST3B1 hsa-mir-106a FOXP3 NT5E LSRATG4D ARHGEF7 hsa-mir-23a CEP68 TXNDC17 CHRAC1MLXIP ATP2B4 YTHDC2AHNAK SLC2A3 LCOR IFI16 ADCY3 JAG1 RAB31 PLCL1 RALGPS2 NPY SUOX SF3B4IGFBP7 CD27 hsa-mir-921 NDOR1 PHF3 RPL26hsa-mir-29a XPO7 TAF7 TOP3A CSTA IMPDH1 hsa-mir-378 TAGAP PCID2 NUP107 DGCR2 FBXL12 SOCS2 CSF1 CENPO CRY1 CST3 KSR1 FGF2CNKSR3 MMP25 hsa-mir-32 UGCG GTF2I CLTA SUCLG2 hsa-mir-625 IRF2BP1 FKBP3 hsa-mir-608 MAST1 SEMA4D DCUN1D4 ERO1L ZCCHC7 ST6GAL1 NDUFV2 GPM6B MRPS24 STRBPRBM12 ZYG11B RFK CXCL10 hsa-mir-23bUBE2H SLC35C1 TAGLN APBB1IPMVP GPATCH8 HLA-A hsa-mir-132 NCK1 KIAA0922 POLD2 VPS54 CYP1B1 PIP4K2A IRAK3 IKZF2 PANK4 hsa-mir-19b STX1A hsa-mir-425 ADPGK UCHL3 AMBRA1 ID2 RPS29 ENTPD1 STAB1 hsa-mir-765 PLOD2FBXO4 TAF1D UBP1 PRMT8 TSC22D4 hsa-mir-26b PLCXD2 PRPF39 GAS2 PTPN5 MYNN ATXN7L3 LTB4R HS2ST1 ME1 NFIL3 DET1 hsa-mir-29c NPNT BTLA HSPB1 R3HDM1 hsa-mir-448 GOT1 DHRS3 RAD50 SELL ZFAND3 MAF FLOT1 ETV6 DSTN SCN1B HOOK1 PDLIM5CHKA CDKN2C LYRM2 hsa-mir-636 MED1 hsa-mir-504 SLC4A2 hsa-mir-204 LGMN ORMDL3 DOCK6 FNDC3A KDSR RAB20 ANGEL1 EML2 GNA15 IL22 NYNRIN DIS3 hsa-mir-181d TAF4 TBX21 MED18 GSN RAB39B FURIN FES hsa-mir-98 TASP1 CPNE1 SETDB2 CTDP1 ATG16L1 hsa-mir-30e MPHOSPH9ZNF644 FAU hsa-mir-216aTLE4 hsa-mir-27b C2orf42 NDUFB6PEX13 ALDOA RPL12 KLK3 KRTAP11-1 ELK3 DYRK1B hsa-mir-936 SP1 EIF5 KLF12 PTK2Bhsa-mir-637 EDN1 IL17RBDCAF6 KCNK6 ANKRD12 ZNF281 PRR5L CUL4B ERGIC1 ZPBP2 PPP1R2 DENND5AKHSRP TNFRSF1ACA13 ADAMTS6 HIP1 TMEM43 TRRAP TSC22D1 XAB2 CASZ1 hsa-mir-593 hsa-mir-22 HSF2 SENP2 ATXN7L1 PTPN1 ACIN1 BTG2 STXBP1 hsa-mir-657 USP7 HAVCR2 IL12RB1 BOLL RRM2 PICALM CDK2 hsa-mir-20b CD9 hsa-mir-449b RBBP9 PDSS2RASL11B AGTPBP1 MBP N4BP2 hsa-mir-372 GTF2A1 CCL19 MPRIP GCNT1 SLC20A1 RNF138 N4BP1 SLC11A1 hsa-mir-766 DMXL2 NLRP3 ELL2LIN9 SMAD2 EZH2 DLG4 MYD88 ATP1B1GLRX hsa-mir-7 DNAJC5B WBP11DGKD hsa-mir-301a hsa-mir-363SF3B1 ARSB FNTB RNH1 hsa-mir-146a BRWD1 CBFA2T2 SFPQIL6ST IL10RA ANGPTL2 B3GALT2 USP22 IL1RL1 RAB3GAP1 USE1 ID3 CBX7 CENPJ DGKZ PSME2 IFITM2 hsa-mir-302b VRK2 PRDM1 CLCF1 NCKAP5 GOLGA1 ARL6IP6 hsa-mir-30a PLCD4 TYMS OGDH STAT3 FBXW2 S100A6 ELK4 TIAM1 SDC1 hsa-mir-34a RPL35A FEZ2 PRSS8 SEC11A NRF1 TWISTNB FNBP4 EXOSC5 CRIM1 KLC1 C1GALT1 PKN2 HIST1H3HSUB1 VPS37A LPHN2 KIF2A AHDC1 PFKL EMP1 ST6GALNAC2 TUBA4A CD74 BACH2 ING2 FUNDC2 SRGAP3 MGRN1 EXOC6 TRAK2 DTYMK PCSK1 SCGB1A1 CPD RIOK3 CUL4A CD38 hsa-mir-27a PTBP2 CCR5 RNF128 hsa-mir-891b GTF3A CD79A CTSH NCOA3 FYN CNOT6 IKZF3 PITPNM2 NKIRAS1 BCL3 NFS1 VAV1CLK2 ATXN2 SMG1
  • 47. BUILDING THE TH2 DISEASE MODULE Maximize Largest Connected Component (LCC) size compare to random (Z-score) ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 1.0 1.5 2.0 2.5 012345 Choosing a FC cutoff for mRNAs Fold−change cutoff LCCZscore Optimal FC=1.3 stable ● ● ● ● ● ● ● 1.0 1.5 01234 Choosing a Fold LCCZscore O F
  • 48. MIRNAS IMPACT • LCC Z score after removal of miRNA targets • Compare to random targets Th2 stableTh2 early 123456 e(r) cute c(r) onic Assessing the collective attack of miRNA LCCZscore miRNAs impact on Th2 disease module random observed
  • 50. COLLECTIVE IMPACT Th2 stable ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ●● ● ● ● ● ●● ● ●● ● ● 1 2 5 10 20 50 100 −2−101234 Number of miRNAs attacking CollectiveImpact(CI) ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ● Ranking by FC Ranking by LCC impact mir-27b mir-206 mir-106b mir-203 mir-23b High Collective Impact ● 1 2 −0.50.00.51.01.52.02.5 Nu CollectiveImpact(CI) ● ● ● Compare observed impact with random expectation (Z-score)
  • 51. Target candidates for screeningTARGET CANDIDATES FOR SCREENING
  • 52. EFFECT OF MIRNA ON TARGET EXPRESSION
  • 54. Nucleofection of Th2 cells followed by flow cytometry PHENOTYPE VALIDATION
  • 55. II. TAKE HOME MESSAGE Marc Santolini - CCNR IDEAL
  • 56. PART III PERSONALIZED RESPONSE TO A PERTURBATION Marc Santolini, Milagros C. Romay, Clara L. Yukhtman, Christoph D. Rau, Shuxun Ren, Jeffrey J. Saucerman, Jessica J. Wang, James N. Weiss, Yibin Wang, Aldons J. Lusis, Alain Karma, “A Personalized, Multi-Omics Approach Identifies Genes Involved In Cardiac Hypertrophy And Heart Failure”
  • 57. Hybrid Mouse Diversity Panel 100+ strains of mice DNA variants (500k+ SNPs) Heart Failure HMDP: Overview of the Study Isoproterenol Induced Phenotypic Spectrum Compensated Heart Decompensated Heart Hybrid Mouse Diversity Panel Treat with 20 mg/kg body weight/day ISO for 3 weeks Collected phenotypes Weights Heart (total and each chamber) Liver Lung Adrenal Body Echocardiography Ejection Fraction & Fractional Shortening LV chamber diameter (diastolic and systolic) Posterior Wall Thickness (diastolic and systolic) E/A Ratio LV mass Ejection Time Other Plasma Lipids Fibrosis % Death in Response to Isoproternol Mitochondrial DNA content RNA Transcriptomes THE HYBRID MOUSE DIVERSITY PANEL (HMDP) Ghazalpour et al, Mamm Genome (2012) Combines genetic and phenotypic diversity Spectrum of phenotypes 42 traits pre/post ISO mRNAs microarrays +ISO Isoproterenol-induced heart failure (3 weeks) List of collected phenotypes Weights Heart (total and each chamber) Body% Adrenal Liver Lung Echocardiography Ejection Fraction & Fractional Shortening LV chamber diameter (diastolic and systolic) Posterior Wall Thickness (diastolic and systolic) E/A Ratio LV mass Ejection Time Other Myocyte Cross- section Area Fibrosis Apoptosis Mitochondrial DNA content RNA Transcriptomes
  • 58. GLOBAL VS PERSONALIZED RESPONSES Spectrum of responses Heart mass h Fold-Change PHENOTYPE LEVEL BXD−14/TyJ BXA16/PgnJ DBA/2J BXA24/PgnJ BXD32/TyJ BXD−32/TyJ BXHB2 KK/HlJ AXB19/PgnJ CXB−3/ByJ AXB−20/PgnJ BXD75 BUB/BnJ LG/J NOD/LtJ BXD−11/TyJ FVB/NJ PL/J CXB−12/HiAJ BXA−4/PgnJ BXD66 BXD62 SJL/J CXBH BXD50 BXH−19/TyJ BXD87 RIIIS/J SEA/GnJ 129X1/SvJ BXD56 SM/J BXH−9/TyJ BXD48 BALB/cByJ BXA−2/PgnJ C3H/HeJ CBA/J BXD45 BXD−38/TyJ CXB−7/ByJ AXB−6/PgnJ BXD49 BALB/cJ BXD73 BXD40/TyJ BXD−40/TyJ BXD43 AKR/J CXB−6/ByJ BXA14/PgnJ C57BLKS/J BXD64 BXD61 AXB10/PgnJ BXA−8/PgnJ BXD21/TyJ BXA−1/PgnJ NZB/BlNJ BXD68 NON/LtJ SWR/J BXD84 BXD74 BXD71 BXD79 BXD−5/TyJ BXA−7/PgnJ BXA−11/PgnJ BXD55 BXD−12/TyJ BXD85 AXB18 BXD44 CE/J AXB8/PgnJ NZW/LacJ BXD−24/TyJ BXD70 BXD39/TyJ LP/J CXB−11/HiAJ BXH−6/TyJ CXB−13/HiAJ 1.01.31.6 Heart mass Global / Uncorrelated Serpina3n FC = 3.9 r = -0.06 i Fold-Change(log2) GENE LEVEL CORRELATIONS j ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● −2 0 2 4 1.01.21.41.6 r = −0.058 (p=0.6) Expression FC TotalHeartFCHeartmassFC −1012345 Serpina3n Individual / Correlated Kcnip2 FC = 0.85 r = 0.41 k ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● −2 −1 0 1 2 1.01.21.41.6 r = 0.41 (p=0.00011) Expression FC TotalHeartFC Expression FC (log2) −1.5−0.50.51.5 Fold-Change(log2) HeartmassFC l Kcnip2
  • 59. ● SAM FC 0.00.10.20.30.4 CorrelationwithHypertrophy(abs.) AXB10/PgnJ_ISO BXD39/TyJ_ISO BXH−19/TyJ_ISO BXD−20/TyJ_ISO BXA16/PgnJ_ISO BXA14/PgnJ_ISO BUB/BnJ_ISO −3 0 2 Fold−Change (log2) Fold-Change (log2) -3 0 -3 HeartmassFC Bclaf1 AW549877 Scara5 Mkrn3 Corin Akap9 Zfp523 Ttc13 Klhl23 Pcdhgc4 Rffl Cab39l Ppp1r9a Tnni2 Tspan17 9430041O17Rik Ankrd1 Kcnip2 Fgf16 Kremen Prnpip1 Ptrf Ehd2 Nppb Lrrc1 Dtr Hes1 Atp6v0a1 Gss 4930504E06Rik Nipsnap3b Dedd Nfatc1 2310022B05Rik Wdr1 Eif4a1 AXB18_ISO PL/J_ISO.1 BXD−5/TyJ_ISO BXA−8/PgnJ_ISO 129X1/SvJ_ISO 129X1/SvJ.1_ISO NZB/BlNJ_ISO BXD70_ISO BXD44_ISO BXA−7/PgnJ_ISO C57BL/6J_ISO.1 C57BL/6J.1_ISO.1 CXB−3/ByJ_ISO BXH−6/TyJ_ISO PL/J_ISO CE/J_ISO BXD49_ISO BXD85_ISO BXD−40/TyJ_ISO BXD62_ISO BXD73_ISO BXD68_ISO BALB/cJ_ISO BXD−12/TyJ_ISO CXB−13/HiAJ_ISO AXB19/PgnJ_ISO RIIIS/J_ISO SWR/J_ISO LP/J_ISO NON/LtJ_ISO CBA/J_ISO BXA−11/PgnJ_ISO BXD45_ISO BXD84_ISO BXD55_ISO BXD61_ISO CBA/J.1_ISO SM/J_ISO NZW/LacJ_ISO DBA/2J.1_ISO BXD−24/TyJ_ISO BXD74_ISO BXD64_ISO BXA−2/PgnJ_ISO BXD79_ISO LG/J_ISO BALB/cByJ_ISO BXD−38/TyJ_ISO C57BLKS/J_ISO BXD87_ISO BXD48_ISO AXB8/PgnJ_ISO C3H/HeJ_ISO BXD50_ISO BXD43_ISO KK/HlJ_ISO BXD71_ISO BXD75_ISO BXD56_ISO AKR/J_ISO FVB/NJ_ISO BXD66_ISO BXD40/TyJ_ISO NOD/LtJ_ISO NOD/LtJ_ISO.1 DBA/2J.1_ISO.1 DBA/2J_ISO.1 FVB/NJ_ISO.1 BXA−4/PgnJ_ISO SJL/J_ISO DBA/2J_ISO BXD21/TyJ_ISO AXB−20/PgnJ_ISO BXD−14/TyJ_ISO A/J_ISO.1 CXB−12/HiAJ_ISO CXB−6/ByJ_ISO CXB−11/HiAJ_ISO BXH−19/TyJ_ISO BXHB2_ISO BXD−32/TyJ_ISO BUB/BnJ.1_ISO BXD39/TyJ_ISO AXB10/PgnJ_ISO BXD−20/TyJ_ISO CXB−7/ByJ_ISO BXA24/PgnJ_ISO SEA/GnJ_ISO BXD32/TyJ_ISO BXA16/PgnJ_ISO BXA14/PgnJ_ISO BUB/BnJ_ISO CXBH_ISO BXA−1/PgnJ_ISO AXB−6/PgnJ_ISO BXD−11/TyJ_ISO BXH−9/TyJ_ISO FC genes Correlation with Hypertrophy (abs.) Frequency 0.0 0.1 0.2 0.3 0.4 0.5 01234567 Observed Randomized HYPERTROPHIC GENES IDENTIFICATION a b c d ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● −2 −1 0 1 2 1.01.21.41.6 r = 0.41 (p=0.00011) Expression FC TotalHeartFC 36 best FC genes selected GLOBAL VS PERSONALIZED RESPONSES
  • 60. DISEASE GENES ENRICHMENT GWAS genes from HuGE database (2,747 diseases) MOST ENRICHED DISEASE GENES SETS HeartValveDiseases TricuspidAtresia Hypertension,Malignant VentricularDysfunction Hypertension,Renovascular RenalArteryObstruction Cardiomyopathy,Hypertrophic HeartDiseases Arthrogryposis AorticValveStenosis HeartArrest HeartFailure,Systolic PulmonaryValveStenosis CardiovascularDiseases Hypotension,Orthostatic FC SAM Significant diseases for FC p−value(−log10) 0.01.02.0 Cardiac Hypertrophy / Heart Failure NeuropsychologicalTests CognitionDisorders PsychologicalTests PersonalityTests AcuteDisease Disease JointDiseases HeartDiseases RheumaticDiseases Taste Fibrosis Inflammation Hypersensitivity NasalPolyps AtrialFibrillation FC SAM Significant diseases for SAM p−value(−log10) 0123 Fibrosis (Remodeling) e f
  • 61. TWO DISTINCT CO-EXPRESSION MODULES Ttc13 Kcnip2 Ankrd1 Cab39l Prnpip1 Rffl AW549877 Fgf16 Ehd2 2310022B05Rik Bclaf1 Ptrf Wdr1 Gss Nipsnap3b Kremen Polydom Acot1 Pacrg Col14a1 Scara5 BC020188 Tnc Timp1 Arpc3 Ms4a7 Clec4n Lox DctTnc Arhgdig Catnal1 Mfap5 Clecsf8 2610028H24Rik Slc1a2Ces3 Fhl1 Fhl1 Panx1 Adamts2 Snai3 Adamts2 Nppb Klhl23 Tnni2 9430041O17Rik Dtr Pcdhgc4 Eif4a1 Akap9 Ppp1r9a Zfp523 Nfatc1 Hes1 4930504E06Rik Atp6v0a1 Dedd BC020188 Timp1 AI593442 Serpina3n Cysltr1 Lgals3 Retnla Rpp25Gp38 Corin Lrrc1 BC025833 Mkrn3 Tspan17 CO-EXPRESSION NETWORKS Tspan17 Fgf16 Wdr1 Kcnip2 Klhl23 Ehd2 Arpc3 Panx1 Timp1 Acot1 Arhgdig Snai3 Lox Rpp25 Serpina3n BC025833 Rffl Akap9 Prnpip1 AW549877 Cab39l Atp6v0a1 Ttc13 4930504E06Rik Hes1 Bclaf1 Dedd 9430041O17Rik Nipsnap3b Pcdhgc4 2310022B05Rik Nfatc1Lrrc1 Zfp523 Lgals3 Timp1 Mfap5 Fhl1 Retnla Adamts2 BC020188 Slc1a2 Gp38 AI593442 Ms4a7 Clecsf8 Adamts2 Clec4n BC020188 Tnc Polydom Col14a1 Tnc Nppb Ppp1r9a Corin Ptrf Gss Kremen Cysltr1 Eif4a1 Ankrd1 Dtr Tnni2 Fhl1 Dct 2610028H24Rik Catnal1 Pacrg Ces3 Scara5 FC SAM pre-ISO post-ISO Healthy ISO FC module SAM module Inter modules EdgedensityZscore −50510 TWO DENSE, DISJOINT MODULES a b PREDICTED UPSTREAM TFs FOR FC GENES 1. Snai3 (#3 SAM gene) 2. Vdr 3. Gabpa 4. Srebf1 5. Mxd4 6. Hes1 (#10 FC gene) c
  • 62. TWO DISTINCT CO-EXPRESSION MODULES Ttc13 Kcnip2 Ankrd1 Cab39l Prnpip1 Rffl AW549877 Fgf16 Ehd2 2310022B05Rik Bclaf1 Ptrf Wdr1 Gss Nipsnap3b Kremen Polydom Acot1 Pacrg Col14a1 Scara5 BC020188 Tnc Timp1 Arpc3 Ms4a7 Clec4n Lox DctTnc Arhgdig Catnal1 Mfap5 Clecsf8 2610028H24Rik Slc1a2Ces3 Fhl1 Fhl1 Panx1 Adamts2 Snai3 Adamts2 Nppb Klhl23 Tnni2 9430041O17Rik Dtr Pcdhgc4 Eif4a1 Akap9 Ppp1r9a Zfp523 Nfatc1 Hes1 4930504E06Rik Atp6v0a1 Dedd BC020188 Timp1 AI593442 Serpina3n Cysltr1 Lgals3 Retnla Rpp25Gp38 Corin Lrrc1 BC025833 Mkrn3 Tspan17 CO-EXPRESSION NETWORKS Tspan17 Fgf16 Wdr1 Kcnip2 Klhl23 Ehd2 Arpc3 Panx1 Timp1 Acot1 Arhgdig Snai3 Lox Rpp25 Serpina3n BC025833 Rffl Akap9 Prnpip1 AW549877 Cab39l Atp6v0a1 Ttc13 4930504E06Rik Hes1 Bclaf1 Dedd 9430041O17Rik Nipsnap3b Pcdhgc4 2310022B05Rik Nfatc1Lrrc1 Zfp523 Lgals3 Timp1 Mfap5 Fhl1 Retnla Adamts2 BC020188 Slc1a2 Gp38 AI593442 Ms4a7 Clecsf8 Adamts2 Clec4n BC020188 Tnc Polydom Col14a1 Tnc Nppb Ppp1r9a Corin Ptrf Gss Kremen Cysltr1 Eif4a1 Ankrd1 Dtr Tnni2 Fhl1 Dct 2610028H24Rik Catnal1 Pacrg Ces3 Scara5 FC SAM pre-ISO post-ISO Healthy ISO FC module SAM module Inter modules EdgedensityZscore −50510 TWO DENSE, DISJOINT MODULES a b PREDICTED UPSTREAM TFs FOR FC GENES 1. Snai3 (#3 SAM gene) 2. Vdr 3. Gabpa 4. Srebf1 5. Mxd4 6. Hes1 (#10 FC gene) c
  • 63. TWO DISTINCT CO-EXPRESSION MODULES Ttc13 Kcnip2 Ankrd1 Cab39l Prnpip1 Rffl AW549877 Fgf16 Ehd2 2310022B05Rik Bclaf1 Ptrf Wdr1 Gss Nipsnap3b Kremen Polydom Acot1 Pacrg Col14a1 Scara5 BC020188 Tnc Timp1 Arpc3 Ms4a7 Clec4n Lox DctTnc Arhgdig Catnal1 Mfap5 Clecsf8 2610028H24Rik Slc1a2Ces3 Fhl1 Fhl1 Panx1 Adamts2 Snai3 Adamts2 Nppb Klhl23 Tnni2 9430041O17Rik Dtr Pcdhgc4 Eif4a1 Akap9 Ppp1r9a Zfp523 Nfatc1 Hes1 4930504E06Rik Atp6v0a1 Dedd BC020188 Timp1 AI593442 Serpina3n Cysltr1 Lgals3 Retnla Rpp25Gp38 Corin Lrrc1 BC025833 Mkrn3 Tspan17 CO-EXPRESSION NETWORKS Tspan17 Fgf16 Wdr1 Kcnip2 Klhl23 Ehd2 Arpc3 Panx1 Timp1 Acot1 Arhgdig Snai3 Lox Rpp25 Serpina3n BC025833 Rffl Akap9 Prnpip1 AW549877 Cab39l Atp6v0a1 Ttc13 4930504E06Rik Hes1 Bclaf1 Dedd 9430041O17Rik Nipsnap3b Pcdhgc4 2310022B05Rik Nfatc1Lrrc1 Zfp523 Lgals3 Timp1 Mfap5 Fhl1 Retnla Adamts2 BC020188 Slc1a2 Gp38 AI593442 Ms4a7 Clecsf8 Adamts2 Clec4n BC020188 Tnc Polydom Col14a1 Tnc Nppb Ppp1r9a Corin Ptrf Gss Kremen Cysltr1 Eif4a1 Ankrd1 Dtr Tnni2 Fhl1 Dct 2610028H24Rik Catnal1 Pacrg Ces3 Scara5 FC SAM pre-ISO post-ISO Healthy ISO FC module SAM module Inter modules EdgedensityZscore −50510 TWO DENSE, DISJOINT MODULES a b PREDICTED UPSTREAM TFs FOR FC GENES 1. Snai3 (#3 SAM gene) 2. Vdr 3. Gabpa 4. Srebf1 5. Mxd4 6. Hes1 (#10 FC gene) c
  • 64. PATHWAY ENRICHMENT OF NEIGHBORS IN THE INTERACTOME 8,693 pathways from mSigDb & wikipathways d INTERACTION WITH THE CARDIAC HYPERTROPHIC SIGNALING NETWORK (CHSN) e Proportion of PPI neighbors in CHSN Expectedfrequency 0.00 0.05 0.10 0.15 050100150200 FC Z = 4 SAM Z = 1.2 FC gene
  • 65. HES1 AS A CANDIDATE −1.00.00.51.0 Fold-Change BXD−14/TyJ BXA16/PgnJ DBA/2J BXA24/PgnJ BXD32/TyJ BXD−32/TyJ BXHB2 KK/HlJ AXB19/PgnJ CXB−3/ByJ AXB−20/PgnJ BXD75 BUB/BnJ LG/J NOD/LtJ BXD−11/TyJ FVB/NJ PL/J CXB−12/HiAJ BXA−4/PgnJ BXD66 BXD62 SJL/J CXBH BXD50 BXH−19/TyJ BXD87 RIIIS/J SEA/GnJ 129X1/SvJ BXD56 SM/J BXH−9/TyJ BXD48 BALB/cByJ BXA−2/PgnJ C3H/HeJ CBA/J BXD45 BXD−38/TyJ CXB−7/ByJ AXB−6/PgnJ BXD49 BALB/cJ BXD73 BXD40/TyJ BXD−40/TyJ BXD43 AKR/J CXB−6/ByJ BXA14/PgnJ C57BLKS/J BXD64 BXD61 AXB10/PgnJ BXA−8/PgnJ BXD21/TyJ BXA−1/PgnJ NZB/BlNJ BXD68 NON/LtJ SWR/J BXD84 BXD74 BXD71 BXD79 BXD−5/TyJ BXA−7/PgnJ BXA−11/PgnJ BXD55 BXD−12/TyJ BXD85 AXB18 BXD44 CE/J AXB8/PgnJ NZW/LacJ BXD−24/TyJ BXD70 BXD39/TyJ LP/J CXB−11/HiAJ BXH−6/TyJ CXB−13/HiAJ 1.01.31.6 Fold-Change(log2) Hes1 Heart mass Hes1 downregulation Mild hypertrophy Hes1 upregulation Strong hypertrophy a b Hes1 expression FC in the HMDP Hes1 is a FC gene, a predicted TF and interacts with cardiac hypertrophy pathway
  • 66. HES1 VALIDATION a VALIDATION OF HES1 AS A NEW CARDIAC HYPERTROPHY REGULATOR b Effect on known hypertrophic markersHes1 expression 48h after siRNA transfection c Effect on cardiac cell size 0 0.2 0.4 0.6 0.8 1 1.2 TransfectionControl Hes1siRNA-1 Hes1siRNA-2 TransfectionControl Hes1siRNA-1 Hes1siRNA-2 TransfectionControl Hes1siRNA-1 Hes1siRNA-2 Control Isoproterenol Phenylepherine FoldChangeRelativetoControl 0 0.5 1 1.5 2 2.5 Control Isoproterenol Phenylepherine Control Isoproterenol Phenylepherine Control Isoproterenol Phenylepherine Transfection Control Hes1 siRNA 1 Hes1 siRNA 2 Fold Change Relative To Control *** *** *** *** 0 2 4 6 8 10 12 14 Control Isoproterenol Phenylepherine Control Isoproterenol Phenylepherine Control Isoproterenol Phenylepherine Transfection Control Hes1 siRNA - 1 Hes1 siRNA - 2 Fold Change Relative To Control *** *** *** *** Nppa 0 2 4 6 8 10 12 14 16 Control Isoproterenol Phenylepherine Control Isoproterenol Phenylepherine Control Isoproterenol Phenylepherine Transfection Control Hes1 siRNA - 1 Hes1 siRNA - 2FoldChangeRelativetoControl * *** *** *** Nppb
  • 67. III. TAKE HOME MESSAGE −1012345 −1.5−0.50.51.5 a b INTERACTION WITH THE CARDIAC HYPERTROPHIC SIGNALING NETWORK (CHSN) FC gene predicted TF Proportion of PPI neighbors in cardiac hypertrophic pathway Expectedfrequency 0.00 0.05 0.10 0.15 050100150 FC Z = 4.8 SAM Z = −0.21 Proportion of PPI neighbors in CHSN BXD−14/TyJ BXA16/PgnJ DBA/2J BXA24/PgnJ BXD32/TyJ BXD−32/TyJ BXHB2 KK/HlJ AXB19/PgnJ CXB−3/ByJ AXB−20/PgnJ BXD75 BUB/BnJ LG/J NOD/LtJ BXD−11/TyJ FVB/NJ PL/J CXB−12/HiAJ BXA−4/PgnJ BXD66 BXD62 SJL/J CXBH BXD50 BXH−19/TyJ BXD87 RIIIS/J SEA/GnJ 129X1/SvJ BXD56 SM/J BXH−9/TyJ BXD48 BALB/cByJ BXA−2/PgnJ C3H/HeJ CBA/J BXD45 BXD−38/TyJ CXB−7/ByJ AXB−6/PgnJ BXD49 BALB/cJ BXD73 BXD40/TyJ BXD−40/TyJ BXD43 AKR/J CXB−6/ByJ BXA14/PgnJ C57BLKS/J BXD64 BXD61 AXB10/PgnJ BXA−8/PgnJ BXD21/TyJ BXA−1/PgnJ NZB/BlNJ BXD68 NON/LtJ SWR/J BXD84 BXD74 BXD71 BXD79 BXD−5/TyJ BXA−7/PgnJ BXA−11/PgnJ BXD55 BXD−12/TyJ BXD85 AXB18 BXD44 CE/J AXB8/PgnJ NZW/LacJ BXD−24/TyJ BXD70 BXD39/TyJ LP/J CXB−11/HiAJ BXH−6/TyJ CXB−13/HiAJ 1.01.31.6 FC SAM hypertrophy spectrum Ttc13 Kcnip2 Ankrd1 Cab39l Prnpip1 Rffl AW549877 Fgf16 Ehd2 2310022B05Rik Bclaf1 Ptrf Wdr1 Gss Nipsnap3b Kremen Polydom Acot1 Pacrg Col14a1 Scara5 BC020188 Tnc Timp1 Arpc3 Ms4a7 Clec4n Lox DctTnc Arhgdig Catnal1 Mfap5 Clecsf8 2610028H24Rik Slc1a2Ces3 Fhl1 Fhl1 Panx1 Adamts2 Snai3 Adamts2 Nppb Klhl23 Tnni2 9430041O17Rik Dtr Pcdhgc4 Eif4a1 Akap9 Ppp1r9a Zfp523 Nfatc1 Hes1 4930504E06Rik Atp6v0a1 Dedd BC020188 Timp1 AI593442 Serpina3n Cysltr1 Lgals3 Retnla Rpp25Gp38 Corin Lrrc1 BC025833 Mkrn3 Tspan17 Global response
  • 68. Method also used to find genes associated to drug response and classify responders vs non-responders
  • 69. THANKS! −1.00.00.51.0 Fold-Change BXD−14/TyJ BXA16/PgnJ DBA/2J BXA24/PgnJ BXD32/TyJ BXD−32/TyJ BXHB2 KK/HlJ AXB19/PgnJ CXB−3/ByJ AXB−20/PgnJ BXD75 BUB/BnJ LG/J NOD/LtJ BXD−11/TyJ FVB/NJ PL/J CXB−12/HiAJ BXA−4/PgnJ BXD66 BXD62 SJL/J CXBH BXD50 BXH−19/TyJ BXD87 RIIIS/J SEA/GnJ 129X1/SvJ BXD56 SM/J BXH−9/TyJ BXD48 BALB/cByJ BXA−2/PgnJ C3H/HeJ CBA/J BXD45 BXD−38/TyJ CXB−7/ByJ AXB−6/PgnJ BXD49 BALB/cJ BXD73 BXD40/TyJ BXD−40/TyJ BXD43 AKR/J CXB−6/ByJ BXA14/PgnJ C57BLKS/J BXD64 BXD61 AXB10/PgnJ BXA−8/PgnJ BXD21/TyJ BXA−1/PgnJ NZB/BlNJ BXD68 NON/LtJ SWR/J BXD84 BXD74 BXD71 BXD79 BXD−5/TyJ BXA−7/PgnJ BXA−11/PgnJ BXD55 BXD−12/TyJ BXD85 AXB18 BXD44 CE/J AXB8/PgnJ NZW/LacJ BXD−24/TyJ BXD70 BXD39/TyJ LP/J CXB−11/HiAJ BXH−6/TyJ CXB−13/HiAJ 1.01.31.6 Fold-Change(log2) Hes1 Heart mass Hes1 downregulation Mild hypertrophy Hes1 upregulation Strong hypertrophy I. Topology vs dynamics in perturbation spreading II. Network perturbation by miRNAs III. Personalized response to a perturbation
  • 70.
  • 71. PERTURBATION PATTERNS Perturbation patterns can be exactly computed from the Jacobian matrix (Barzel, Barabasi, Nat Biotech 2013) S = (1 J) 1 D( 1 (1 J) 1 ) Perturbation patterns (long distance correlations) Jacobian (direct influence) Sij = dxi/xi dxj/xj Jij = @xi/xi @xj/xj (Vanunu et al, PLoS Comp Biol 2009) The requirements on F can be expressed in linea follows: F~aW’Fz(1{a)YuF~(I{aW’){1 (1{a)Y where W’ is a jVj|jVj matrix whose values are given b F and Y are viewed here as vectors of size jVj. We re eigenvalues of W’ to be in ½{1,1Š. Since a[(0,1), the ei of (I{aW’) are positive and, hence, (I{aW’){1 exist While the above linear system can be solved exactly networks an iterative propagation-based algorithm works is guaranteed to converge to the system’s solution. Speci use the algorithm of Zhou et al. [21] which at iteration t Ft : ~aW’Ft{1 z(1{a)Y where F1 : ~Y. This iterative algorithm can be best und simulating a process where nodes for which prior informa PLoS Computational Biology | www.ploscompbiol.or weighted adjacency matrix (normalized by degrees of end-points) prioritization function origin of impact PRINCE algorithm Network model Biochemical model