SlideShare a Scribd company logo
1 of 54
CONTROL SYSTEMS
12-Apr-17
1
Eng. Mahmoud Hussein
RTECS
Control Objectives3
Regulatory Control /
Load Disturbance Rejection4
 Maintains a parameter at or near a set-point despite
disturbance
 Is hence called
“Load Disturbance rejection problem”
 Example
 Cruise control
 Siphon Water Level Control
Regulatory Control
Siphon Water Level Control5
 Principle of Operation
 OPEN
 If water level becomes low in the reservoir, the lever comes
down by the weight of floating ball and the ball of valve-
room rotating by the lever opens the flow way.
 CLOSE
 If water level becomes high in the reservoir, the lever comes
up by the buoyancy of floating ball and the ball of valve-
room rotating by the lever inside of valve closes the flow
way.
Regulatory Control
Siphon Water Level Control6
 Set point
 Normalizing the scale, the set point can be taken as a reference
 Desired signal = 0
 Output signal @ steady state = 0
 Control signal @ steady state = 0
 Disturbance
 Flushing the toilet
Servo Control / Setpoint Tracking Control /
Trajectory Control7
 Cause the plant output to follow the changing input command
as closely as possible
 Examples
 Remote control car
 Automatic parking control
Servo Control / Tracking Control Automatic
Parking Control8
Control Structures9
Open Loop Control
10
Open Loop Control
11
 Characteristics
 Highly sensitive to extraneous disturbances
 Highly sensitive to parametrical variation in the process
 TypicalApplications
 Stepper motor
 Motor with a worm gear (very high reduction ratio)
 Electric toaster
Closed Loop Control
(Feedback Control)12
Gc(s)
Controller
  n
sensor
noise

w load disturbance

Gprocess(s)
u
control
y
output
r
reference
input, or
set-point
e
 sensed
error
GActuator(s)
Actuator Process
Closed Loop Control
(Feedback Control)13
 Closed loop control strategy involves
 Measurement of the actual output,
 Comparison with the required reference value and
 Employing a suitable correction compensating for any deviation
Gc(s)
Controller
  n
sensor
noise

w load disturbance

u
control
y
output


r
reference
input, or
set-point
e
sensed
error
GActuator(s) Gprocess(s)
Actuator Process
Five Signals of Feedback Control Loop
14
 Set Point
 Desired output to be performed by the system
 constant for regulation control and
 variable for trajectory control
 Error signal
 The deviation between the desired behaviour and the system sensed output.
 Command/Control signal
 The signal generated from the controller
Gc(s)
Controller
  n
sensor
noise

w load disturbance
u
control
y
output

reference
input, or
set-point
r e
sensed
error
GActuator(s Gprocess(s))
Actuator Process
Five Signals of Feedback Control Loop
15
Gc(s)
  n
sensor
noise

 Disturbance
 A temporary change in environmental conditions that causes a
pronounced change in the system behaviour
 Low frequency deterministic measurable change
 Noise
 Random change of the signal at a high frequency
 Only statistically measurable
w load disturbance

Gprocess(s)
Process
u
control
y
output

reference
input, or
set-point
r e
sensed
error
GActuator(s)
Controller Actuator
Advantages of Feedback Control
16
 Speeds up the response
 Reduces steady-state error
 Reduces the sensitivity of a system to
 External disturbances
 Variations in its individual elements & components
 Improves stability
The Cost of Feedback
17
 Increased number of components and complexity
 Possibility of instability
 Whereas the open-loop system is stable, the closed-loop system
may not be always stable.
One DOF Feedback Controller18
One DOF Feedback Controller Block Diagram
19
Gc(s)
Controller
  n
sensor
noise

w load disturbance

Gp(s)
Plant
u
control
y
output
r
reference
input, or
set-point
e
 sensed
error
W(s)
Gp (s)
1GcGp (s)
N(s) 
GcGp (s)
1GcGp (s)
R(s) 
GcGp (s)
1GcGp (s)
Y (s)
Tracking /Servo Control Problem
20
R(s)
GcGp (s)
1GcGp (s)
Y (s)

Gc(s)
Controller
  n
sensor
noise

w load disturbance

Gp(s)
Plant
u
control
y
output
r
reference
input, or
set-point
e
 sensed
error
1 if GcGp (s)  1
Disturbance Rejection Problem
21
Gc(s)
Controller
  n
sensor
noise

w load disturbance

Gp(s)
Plant
u
control
y
output
r
reference
input, or
set-point
e
 sensed
error
W(s)
Gp (s)
1GcGp (s)
Y(s)

Noise Problem
22
Gc(s)
Controller
  n
sensor
noise

w load disturbance

Gp(s)
Plant
u
control
y
output
r
reference
input, or
set-point
e
 sensed
error
N(s) c p
GcGp (s)
1 G G (s)
Y (s)
 1if GcGp (s)  1
One DOF Feedback Controller
23
 To address all aspects of the system, only one degree of
freedom is available, namely, Gc(s)
W(s)
Gp (s)GcGp (s) GcGp (s)
1GcGp (s)
R(s)  N(s) 
1 GcGp (s) 1GcGp (s)
Y (s)
Gc(s)
Controller
 n
sensor
noise

w load disturbance

Gp(s)
Plant
u
control
y
output
r
reference
input, or
set-point
e
sensed
error
 Series Connection
 G=G2*G1
 where G1 and G2 are LTI objects (tf, ss, or zpk)
 Parallel Connection
 G=G1+G2
 where G1 and G2 are LTI objects (tf, ss, or zpk)
 Feedback Connection
 G=feedback(G,H,Sign)
 If Sign=-1, the negative feedback structure is indicated; negative feedbackis
the default
Modeling of Interconnected Block Diagrams in
Matlab24
Modeling of Interconnected Block Diagrams in
Matlab Example
 Where H(s) is a feeedback
block representing a first order
low pass filter with the aim of
sensor noise cancellation
 tf
 Create transfer function model, convert
to transfer function model
 feedback
 Feedback connection of two models
 Gp = tf( [1 7 24 24], [1 10 35 50 24] )
 Gc = tf( [10 5], [1 0] )
 H = tf( 1, [0.01, 1] )
 G_cl_loop = feedback( Gp*Gc, H, -1)
25
0.01s1
H (s)
s
1
10s 5
s3
 7s2
 24s 24
10s3
 35s2
 50s 24
Gc (s) 
Gp (s) 
s4
Time Domain Analysis in Matlab26
Step response evaluations with MATLAB
27
 step(G)
 %automatic draw of step response curves
 [y,t]=step(G)
 %evaluate the responses, but not drawn
 [y,t]=step(G,t_f)
 % final simulation time t_f setting
 y=step(G,t)
 %simulation on user defined time vector t
Unit Step Response in MATLAB
28
 OL_Sys = zpk([],[0 -6],25)
 CL_Sys = feedback(OL_Sys,1)
 figure
 step(CL_Sys);
 grid on
 stepinfo(CL_Sys)
R(s) + Y(s)25
s(s 6)
Unit Step Response in MATLAB
29
 RiseTime: 0.3711
 SettlingTime: 1.1887
 SettlingMin: 0.9083
 SettlingMax: 1.0948
 Overshoot: 9.4773
 Undershoot: 0
 Peak: 1.0948
 PeakTime: 0.7829
Step Response
Amplitude
0.2 0.4 0.6 0.8
Time(sec)
1 1.2 1.4 1.6
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
System: CL_Sys
Rise Time(sec ): 0.372
System: CL_Sys
Peak amplitude: 1.09
Overshoot (%): 9.47
At time (sec): 0.777 System: CL_Sys
Settling Time (sec): 1.19
Biological Feedback Control Example
30
 Regulation of glucose in the bloodstream through the
production of insulin and glucagon by the pancreas.
RTECS 2015 12-Apr-17
Biological Feedback Control Example
32
 Can you find out the components of the feedback control loop?
Control Device
Pancreas
Actuator
Insulin OR
Glucagon
Process
Liver
Actual Blood
Glucose Conc.
error
Sensor
Glucoreceptors
In Pancreas
+
-
Measured Blood
Glucose
Desired Blood
GlucoseConc.
(90 mg per100 mL ofblood)
Stability33
RTECS 2015
Simple Real Pole p = -
 The natural response is
of the form:
y(t )  K e t
K is given by the
initial condition
 Assuming K > 0:
34
if   0y(t)
if   0
t
 Location in s-domain:
Im(s)
if   0 if   0
Re(s)
Note: since  = 0, y(t) is located on
the real axis.
Simple Real Pole y(t )  Ke t
35
Note: Since  = 0, y(t) are located
on the real axis.
 Location in s-domain:
Im(s)
t
stable
Re(s)
stable
 Assuming K >0, if  >0:
y(t)
y(t) decays
t
• Effect of the value of  >0:
y(t) y(t) decay

Simple Real Pole y(t )  Ke t
 Assuming K >0, if  <0:
36
Note: Since  = 0, y(t) are located
on the real axis.
 Location in s-domain:
Im(s)
t
y(t)
unstable unstable
Re(s)
y(t) grows
t
• Effect of the value of  <0:
y(t) y(t) grow

Simple Real Pole p = 0
37
RTECS 2015
 The natural response is
of the form:
y(t)  B
B is given by the
initial condition
 Assuming B > 0:
y(t)
t
Note: since  = 0 and  = 0, y(t) is
located on the origin.
 Location in s-domain:
Im(s)
unstable
Re(s)
Simple Pair of Imaginary Poles
p = ± jd38
RTECS 2015
Re(s)
 The natural response is
of the form:
y(t )  Acos(d t ) Bsin( dt )
A and B are given by
the initial conditions
 Assuming A > 0, B > 0:
y(t)
t Note: since  = 0, y(t) is located on
the imaginary axis.
 Location in s-domain:
Im(s)
  0
 Assuming A > 0, B >0:
39
Re(s)
t
y(t)

y(t) oscillates
forever
t
Simple Pair of Imaginary Poles
y(t )  Acos(d t ) Bsin(dt )
• Effect of the value of  < 0:
y(t) y(t) oscillate
 Location in s-domain:
Im(s)
unstable
unstable
2

unstable
unstable
Note: In the case  = 0, the systemis
said unstable or critically stable.
RTECS 2015
Simple Pair of Complex Poles
p = - ±jd
d dAcos( t ) Bsin(  t )y(t )  et
 The natural response is
of the form:
A and B are given by
the initial conditions
40
RTECS 2015
if   0
 Location in s-domain:
Im(s)
if   0
if   0
 Assuming A >0, B > 0:
y(t)
if   0
t
stable unstable
Re(s)
stable unstable
Effects of Zeros
41
 A zero in the left half-plane
 Increases the overshoot if the zero is within a factor of 4 of the real
part of the complex poles. whereas it has very little influence on the
settling time.
 A zero in the right half-plane
 Depress the overshoot (and may causes an initial undershoot (=the
step response starts out in the wrong direction).
Effects of Additional Poles
42
 An additional pole in the left half plane
 increases the rise time significantly (=slows down the response) if
the extra pole is within a factor 4 of the real part of the complex
poles.
 If the extra real pole  is more than 6 times Re{p}, the effect is
negligible.
RTECS 201543
Well Behaved Signals44
How To Specify Controller Requirements ?
45
 Step Input
 Specify the requirements on the response to a step reference signal
 Transient Response
 First part of system response when the output is still changing
 Steady State Response
 The final state for the system output
RTECS 201546
Settling time
OvershootControlled variable
Reference
Steady State
Transient State
Steady state error
Delay time, Td : the time needed for the
output response to reach 50% of its final
value.
Rise time, Tr : the time taken for the output
response to go from 10% to 90% of its final
value.
Settling time, Ts : the time taken for the
output response to reach, and stay within
2% of its final output value
dn
s
 
4

4
T 
Peak time, Tp : the time required for the
output response to reach the first, or
maximum peak
dn
pT


 

 1 2
Percentage overshoot, %OS : the amount
of the output response overshoots the final
value at the peak time, expressed in
percentage of steady-state value
cfinal
c final
100%%OS 
cmax
1 2
%OS  e 100%
1 2
)
cmax
( /
 c(tp ) 1 e

• The steady-state value of the system G can be
evaluated using the function
▫ K=dcgain(G)
Steady-state Value y(∞)
52
 The steady-state value of the system under the
step response is the output when t → ∞.
 Using the final value theorem
a0
s
y()  lim sG(s)
1
s0
 G(0) 
b0
Laplace Transform Method
53
 Inverse Laplace transformation is used to obtain the output
signal in the time domain
 Symbolic Toolbox of MATLAB
Laplace Transform Method Example
54
s4
u(t)  2 2e3t
sin(2t)
 For the transfer function G(s) and the input u(t),
obtain the output y(t)
 Hint
 Laplace command: laplace
 Inverse Laplace command: i laplace
 7s3
17s2
17s 6
s3
 7s2
3s  4
G(s) 
RTECS

More Related Content

What's hot

PLC ladder logics (Programmable Logic Controller)
PLC ladder logics (Programmable Logic Controller)PLC ladder logics (Programmable Logic Controller)
PLC ladder logics (Programmable Logic Controller)JHALAKNIHALANI
 
Pe 3032 wk 1 introduction to control system march 04e
Pe 3032 wk 1 introduction to control system  march 04ePe 3032 wk 1 introduction to control system  march 04e
Pe 3032 wk 1 introduction to control system march 04eCharlton Inao
 
Root locus & nyquist stability criterion
Root locus  & nyquist stability criterionRoot locus  & nyquist stability criterion
Root locus & nyquist stability criterionSatheeshCS2
 
Clase07 sistemas de segundo orden
Clase07 sistemas de segundo ordenClase07 sistemas de segundo orden
Clase07 sistemas de segundo ordenUNEFA
 
Ch2 mathematical modeling of control system
Ch2 mathematical modeling of control system Ch2 mathematical modeling of control system
Ch2 mathematical modeling of control system Elaf A.Saeed
 
State space analysis.pptx
State space analysis.pptxState space analysis.pptx
State space analysis.pptxRaviMuthamala1
 
Time response second order
Time response second orderTime response second order
Time response second orderSyed Saeed
 
Modern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsModern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsAmr E. Mohamed
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systemsAmr E. Mohamed
 
State space analysis, eign values and eign vectors
State space analysis, eign values and eign vectorsState space analysis, eign values and eign vectors
State space analysis, eign values and eign vectorsShilpa Shukla
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space AnalysisHussain K
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observersSolo Hermelin
 
Controllability and observability
Controllability and observabilityControllability and observability
Controllability and observabilityjawaharramaya
 
Lecture 6 ME 176 2 Time Response
Lecture 6 ME 176 2 Time ResponseLecture 6 ME 176 2 Time Response
Lecture 6 ME 176 2 Time ResponseLeonides De Ocampo
 
DAC0800 8-Bit DAC Datasheet
DAC0800 8-Bit DAC DatasheetDAC0800 8-Bit DAC Datasheet
DAC0800 8-Bit DAC DatasheetYong Heui Cho
 
Use of plc in industrial automation
Use of plc in industrial automationUse of plc in industrial automation
Use of plc in industrial automationAloka Patro
 

What's hot (20)

PLC ladder logics (Programmable Logic Controller)
PLC ladder logics (Programmable Logic Controller)PLC ladder logics (Programmable Logic Controller)
PLC ladder logics (Programmable Logic Controller)
 
Pe 3032 wk 1 introduction to control system march 04e
Pe 3032 wk 1 introduction to control system  march 04ePe 3032 wk 1 introduction to control system  march 04e
Pe 3032 wk 1 introduction to control system march 04e
 
Root locus & nyquist stability criterion
Root locus  & nyquist stability criterionRoot locus  & nyquist stability criterion
Root locus & nyquist stability criterion
 
Clase07 sistemas de segundo orden
Clase07 sistemas de segundo ordenClase07 sistemas de segundo orden
Clase07 sistemas de segundo orden
 
Ch2 mathematical modeling of control system
Ch2 mathematical modeling of control system Ch2 mathematical modeling of control system
Ch2 mathematical modeling of control system
 
State space analysis.pptx
State space analysis.pptxState space analysis.pptx
State space analysis.pptx
 
PLC and SCADA
PLC and SCADAPLC and SCADA
PLC and SCADA
 
Time response second order
Time response second orderTime response second order
Time response second order
 
DC servo motor
DC servo motorDC servo motor
DC servo motor
 
Modern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsModern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of Systems
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
 
State space analysis, eign values and eign vectors
State space analysis, eign values and eign vectorsState space analysis, eign values and eign vectors
State space analysis, eign values and eign vectors
 
6. steady state error
6. steady state error6. steady state error
6. steady state error
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space Analysis
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Controllability and observability
Controllability and observabilityControllability and observability
Controllability and observability
 
Lecture 6 ME 176 2 Time Response
Lecture 6 ME 176 2 Time ResponseLecture 6 ME 176 2 Time Response
Lecture 6 ME 176 2 Time Response
 
DAC0800 8-Bit DAC Datasheet
DAC0800 8-Bit DAC DatasheetDAC0800 8-Bit DAC Datasheet
DAC0800 8-Bit DAC Datasheet
 
Use of plc in industrial automation
Use of plc in industrial automationUse of plc in industrial automation
Use of plc in industrial automation
 
Chapter10
Chapter10Chapter10
Chapter10
 

Similar to 06 control.systems

lecture 2 courseII (4).pptx
lecture 2 courseII (4).pptxlecture 2 courseII (4).pptx
lecture 2 courseII (4).pptxAYMENGOODKid
 
Closed loop control systems block diagrams
Closed loop control systems block diagramsClosed loop control systems block diagrams
Closed loop control systems block diagramsArunPremAnandNataraj
 
12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final PresentationAmritesh Maitra
 
Inno2019_EMT4203_CONTROL_II_Chap1_Control Actions.pdf
Inno2019_EMT4203_CONTROL_II_Chap1_Control Actions.pdfInno2019_EMT4203_CONTROL_II_Chap1_Control Actions.pdf
Inno2019_EMT4203_CONTROL_II_Chap1_Control Actions.pdfkabuej3
 
Sequential logic circuit
Sequential logic circuitSequential logic circuit
Sequential logic circuitAswiniT3
 
Proportional integral and derivative PID controller
Proportional integral and derivative PID controller Proportional integral and derivative PID controller
Proportional integral and derivative PID controller Mostafa Ragab
 
Linear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop SystemsLinear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop SystemsSohaibUllah5
 
Introduction to control system
Introduction to control systemIntroduction to control system
Introduction to control systemRosh54
 

Similar to 06 control.systems (20)

lecture 2 courseII (4).pptx
lecture 2 courseII (4).pptxlecture 2 courseII (4).pptx
lecture 2 courseII (4).pptx
 
Closed loop control systems block diagrams
Closed loop control systems block diagramsClosed loop control systems block diagrams
Closed loop control systems block diagrams
 
time response analysis
time response analysistime response analysis
time response analysis
 
Lecture13 controls
Lecture13  controls Lecture13  controls
Lecture13 controls
 
1619494.ppt
1619494.ppt1619494.ppt
1619494.ppt
 
12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final Presentation
 
Pid controller
Pid controllerPid controller
Pid controller
 
1577320.ppt
1577320.ppt1577320.ppt
1577320.ppt
 
Block diagrams.ppt
Block diagrams.pptBlock diagrams.ppt
Block diagrams.ppt
 
ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
 
Final Project
Final ProjectFinal Project
Final Project
 
Inno2019_EMT4203_CONTROL_II_Chap1_Control Actions.pdf
Inno2019_EMT4203_CONTROL_II_Chap1_Control Actions.pdfInno2019_EMT4203_CONTROL_II_Chap1_Control Actions.pdf
Inno2019_EMT4203_CONTROL_II_Chap1_Control Actions.pdf
 
03 dynamic.system.
03 dynamic.system.03 dynamic.system.
03 dynamic.system.
 
1413570.ppt
1413570.ppt1413570.ppt
1413570.ppt
 
Sequential logic circuit
Sequential logic circuitSequential logic circuit
Sequential logic circuit
 
08 pid.controller
08 pid.controller08 pid.controller
08 pid.controller
 
Proportional integral and derivative PID controller
Proportional integral and derivative PID controller Proportional integral and derivative PID controller
Proportional integral and derivative PID controller
 
Lead-lag controller
Lead-lag controllerLead-lag controller
Lead-lag controller
 
Linear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop SystemsLinear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop Systems
 
Introduction to control system
Introduction to control systemIntroduction to control system
Introduction to control system
 

More from Mahmoud Hussein

More from Mahmoud Hussein (20)

07 modelling.electric.motors
07 modelling.electric.motors07 modelling.electric.motors
07 modelling.electric.motors
 
Dc dc converter
Dc dc converterDc dc converter
Dc dc converter
 
05 tuning.pid.controllers
05 tuning.pid.controllers05 tuning.pid.controllers
05 tuning.pid.controllers
 
02 physical.system.modelling mechanical.systems.
02 physical.system.modelling mechanical.systems.02 physical.system.modelling mechanical.systems.
02 physical.system.modelling mechanical.systems.
 
Lecture 02 laplace transformation
Lecture 02 laplace transformationLecture 02 laplace transformation
Lecture 02 laplace transformation
 
Mbd2
Mbd2Mbd2
Mbd2
 
Model based design-Hardware in loop-software in loop
Model based design-Hardware in loop-software in loopModel based design-Hardware in loop-software in loop
Model based design-Hardware in loop-software in loop
 
Ac drive basics
Ac drive basicsAc drive basics
Ac drive basics
 
Velocity kinematics
Velocity kinematicsVelocity kinematics
Velocity kinematics
 
MPI Communication
MPI CommunicationMPI Communication
MPI Communication
 
ERROR
ERRORERROR
ERROR
 
Analogue Module
Analogue ModuleAnalogue Module
Analogue Module
 
Function Block & Organization Block
Function Block & Organization BlockFunction Block & Organization Block
Function Block & Organization Block
 
Data Block
Data BlockData Block
Data Block
 
Declaration Table
Declaration TableDeclaration Table
Declaration Table
 
Math operation
Math operationMath operation
Math operation
 
Industrial communication
Industrial communicationIndustrial communication
Industrial communication
 
Computer vision
Computer visionComputer vision
Computer vision
 
Neural network
Neural networkNeural network
Neural network
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
 

Recently uploaded

(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样gfghbihg
 
FULL ENJOY - 9953040155 Call Girls in Sector 61 | Noida
FULL ENJOY - 9953040155 Call Girls in Sector 61 | NoidaFULL ENJOY - 9953040155 Call Girls in Sector 61 | Noida
FULL ENJOY - 9953040155 Call Girls in Sector 61 | NoidaMalviyaNagarCallGirl
 
Digamma / CertiCon Company Presentation
Digamma / CertiCon Company  PresentationDigamma / CertiCon Company  Presentation
Digamma / CertiCon Company PresentationMihajloManjak
 
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一fhhkjh
 
2024 TOP 10 most fuel-efficient vehicles according to the US agency
2024 TOP 10 most fuel-efficient vehicles according to the US agency2024 TOP 10 most fuel-efficient vehicles according to the US agency
2024 TOP 10 most fuel-efficient vehicles according to the US agencyHyundai Motor Group
 
Call Girls in Karachi | +923081633338 | Karachi Call Girls
Call Girls in Karachi  | +923081633338 | Karachi Call GirlsCall Girls in Karachi  | +923081633338 | Karachi Call Girls
Call Girls in Karachi | +923081633338 | Karachi Call GirlsAyesha Khan
 
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证jjrehjwj11gg
 
BLUE VEHICLES the kids picture show 2024
BLUE VEHICLES the kids picture show 2024BLUE VEHICLES the kids picture show 2024
BLUE VEHICLES the kids picture show 2024AHOhOops1
 
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptxUNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptxDineshKumar4165
 
call girls in G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in  G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in  G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Digamma - CertiCon Team Skills and Qualifications
Digamma - CertiCon Team Skills and QualificationsDigamma - CertiCon Team Skills and Qualifications
Digamma - CertiCon Team Skills and QualificationsMihajloManjak
 
Call Girls Vastrapur 7397865700 Ridhima Hire Me Full Night
Call Girls Vastrapur 7397865700 Ridhima Hire Me Full NightCall Girls Vastrapur 7397865700 Ridhima Hire Me Full Night
Call Girls Vastrapur 7397865700 Ridhima Hire Me Full Nightssuser7cb4ff
 
定制昆士兰大学毕业证(本硕)UQ学位证书原版一比一
定制昆士兰大学毕业证(本硕)UQ学位证书原版一比一定制昆士兰大学毕业证(本硕)UQ学位证书原版一比一
定制昆士兰大学毕业证(本硕)UQ学位证书原版一比一fjjhfuubb
 
原版1:1复刻俄亥俄州立大学毕业证OSU毕业证留信学历认证
原版1:1复刻俄亥俄州立大学毕业证OSU毕业证留信学历认证原版1:1复刻俄亥俄州立大学毕业证OSU毕业证留信学历认证
原版1:1复刻俄亥俄州立大学毕业证OSU毕业证留信学历认证jdkhjh
 
办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一
办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一
办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一F La
 
办理萨省大学毕业证成绩单|购买加拿大USASK文凭证书
办理萨省大学毕业证成绩单|购买加拿大USASK文凭证书办理萨省大学毕业证成绩单|购买加拿大USASK文凭证书
办理萨省大学毕业证成绩单|购买加拿大USASK文凭证书zdzoqco
 
如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一
如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一
如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一ypfy7p5ld
 
UNIT-III-TRANSMISSION SYSTEMS REAR AXLES
UNIT-III-TRANSMISSION SYSTEMS REAR AXLESUNIT-III-TRANSMISSION SYSTEMS REAR AXLES
UNIT-III-TRANSMISSION SYSTEMS REAR AXLESDineshKumar4165
 
Not Sure About VW EGR Valve Health Look For These Symptoms
Not Sure About VW EGR Valve Health Look For These SymptomsNot Sure About VW EGR Valve Health Look For These Symptoms
Not Sure About VW EGR Valve Health Look For These SymptomsFifth Gear Automotive
 

Recently uploaded (20)

(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
 
FULL ENJOY - 9953040155 Call Girls in Sector 61 | Noida
FULL ENJOY - 9953040155 Call Girls in Sector 61 | NoidaFULL ENJOY - 9953040155 Call Girls in Sector 61 | Noida
FULL ENJOY - 9953040155 Call Girls in Sector 61 | Noida
 
Digamma / CertiCon Company Presentation
Digamma / CertiCon Company  PresentationDigamma / CertiCon Company  Presentation
Digamma / CertiCon Company Presentation
 
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
 
2024 TOP 10 most fuel-efficient vehicles according to the US agency
2024 TOP 10 most fuel-efficient vehicles according to the US agency2024 TOP 10 most fuel-efficient vehicles according to the US agency
2024 TOP 10 most fuel-efficient vehicles according to the US agency
 
Call Girls in Karachi | +923081633338 | Karachi Call Girls
Call Girls in Karachi  | +923081633338 | Karachi Call GirlsCall Girls in Karachi  | +923081633338 | Karachi Call Girls
Call Girls in Karachi | +923081633338 | Karachi Call Girls
 
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
 
sauth delhi call girls in Connaught Place🔝 9953056974 🔝 escort Service
sauth delhi call girls in  Connaught Place🔝 9953056974 🔝 escort Servicesauth delhi call girls in  Connaught Place🔝 9953056974 🔝 escort Service
sauth delhi call girls in Connaught Place🔝 9953056974 🔝 escort Service
 
BLUE VEHICLES the kids picture show 2024
BLUE VEHICLES the kids picture show 2024BLUE VEHICLES the kids picture show 2024
BLUE VEHICLES the kids picture show 2024
 
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptxUNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
 
call girls in G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in  G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in  G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Digamma - CertiCon Team Skills and Qualifications
Digamma - CertiCon Team Skills and QualificationsDigamma - CertiCon Team Skills and Qualifications
Digamma - CertiCon Team Skills and Qualifications
 
Call Girls Vastrapur 7397865700 Ridhima Hire Me Full Night
Call Girls Vastrapur 7397865700 Ridhima Hire Me Full NightCall Girls Vastrapur 7397865700 Ridhima Hire Me Full Night
Call Girls Vastrapur 7397865700 Ridhima Hire Me Full Night
 
定制昆士兰大学毕业证(本硕)UQ学位证书原版一比一
定制昆士兰大学毕业证(本硕)UQ学位证书原版一比一定制昆士兰大学毕业证(本硕)UQ学位证书原版一比一
定制昆士兰大学毕业证(本硕)UQ学位证书原版一比一
 
原版1:1复刻俄亥俄州立大学毕业证OSU毕业证留信学历认证
原版1:1复刻俄亥俄州立大学毕业证OSU毕业证留信学历认证原版1:1复刻俄亥俄州立大学毕业证OSU毕业证留信学历认证
原版1:1复刻俄亥俄州立大学毕业证OSU毕业证留信学历认证
 
办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一
办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一
办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一
 
办理萨省大学毕业证成绩单|购买加拿大USASK文凭证书
办理萨省大学毕业证成绩单|购买加拿大USASK文凭证书办理萨省大学毕业证成绩单|购买加拿大USASK文凭证书
办理萨省大学毕业证成绩单|购买加拿大USASK文凭证书
 
如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一
如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一
如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一
 
UNIT-III-TRANSMISSION SYSTEMS REAR AXLES
UNIT-III-TRANSMISSION SYSTEMS REAR AXLESUNIT-III-TRANSMISSION SYSTEMS REAR AXLES
UNIT-III-TRANSMISSION SYSTEMS REAR AXLES
 
Not Sure About VW EGR Valve Health Look For These Symptoms
Not Sure About VW EGR Valve Health Look For These SymptomsNot Sure About VW EGR Valve Health Look For These Symptoms
Not Sure About VW EGR Valve Health Look For These Symptoms
 

06 control.systems

  • 3. Regulatory Control / Load Disturbance Rejection4  Maintains a parameter at or near a set-point despite disturbance  Is hence called “Load Disturbance rejection problem”  Example  Cruise control  Siphon Water Level Control
  • 4. Regulatory Control Siphon Water Level Control5  Principle of Operation  OPEN  If water level becomes low in the reservoir, the lever comes down by the weight of floating ball and the ball of valve- room rotating by the lever opens the flow way.  CLOSE  If water level becomes high in the reservoir, the lever comes up by the buoyancy of floating ball and the ball of valve- room rotating by the lever inside of valve closes the flow way.
  • 5. Regulatory Control Siphon Water Level Control6  Set point  Normalizing the scale, the set point can be taken as a reference  Desired signal = 0  Output signal @ steady state = 0  Control signal @ steady state = 0  Disturbance  Flushing the toilet
  • 6. Servo Control / Setpoint Tracking Control / Trajectory Control7  Cause the plant output to follow the changing input command as closely as possible  Examples  Remote control car  Automatic parking control
  • 7. Servo Control / Tracking Control Automatic Parking Control8
  • 10. Open Loop Control 11  Characteristics  Highly sensitive to extraneous disturbances  Highly sensitive to parametrical variation in the process  TypicalApplications  Stepper motor  Motor with a worm gear (very high reduction ratio)  Electric toaster
  • 11. Closed Loop Control (Feedback Control)12 Gc(s) Controller   n sensor noise  w load disturbance  Gprocess(s) u control y output r reference input, or set-point e  sensed error GActuator(s) Actuator Process
  • 12. Closed Loop Control (Feedback Control)13  Closed loop control strategy involves  Measurement of the actual output,  Comparison with the required reference value and  Employing a suitable correction compensating for any deviation Gc(s) Controller   n sensor noise  w load disturbance  u control y output   r reference input, or set-point e sensed error GActuator(s) Gprocess(s) Actuator Process
  • 13. Five Signals of Feedback Control Loop 14  Set Point  Desired output to be performed by the system  constant for regulation control and  variable for trajectory control  Error signal  The deviation between the desired behaviour and the system sensed output.  Command/Control signal  The signal generated from the controller Gc(s) Controller   n sensor noise  w load disturbance u control y output  reference input, or set-point r e sensed error GActuator(s Gprocess(s)) Actuator Process
  • 14. Five Signals of Feedback Control Loop 15 Gc(s)   n sensor noise   Disturbance  A temporary change in environmental conditions that causes a pronounced change in the system behaviour  Low frequency deterministic measurable change  Noise  Random change of the signal at a high frequency  Only statistically measurable w load disturbance  Gprocess(s) Process u control y output  reference input, or set-point r e sensed error GActuator(s) Controller Actuator
  • 15. Advantages of Feedback Control 16  Speeds up the response  Reduces steady-state error  Reduces the sensitivity of a system to  External disturbances  Variations in its individual elements & components  Improves stability
  • 16. The Cost of Feedback 17  Increased number of components and complexity  Possibility of instability  Whereas the open-loop system is stable, the closed-loop system may not be always stable.
  • 17. One DOF Feedback Controller18
  • 18. One DOF Feedback Controller Block Diagram 19 Gc(s) Controller   n sensor noise  w load disturbance  Gp(s) Plant u control y output r reference input, or set-point e  sensed error W(s) Gp (s) 1GcGp (s) N(s)  GcGp (s) 1GcGp (s) R(s)  GcGp (s) 1GcGp (s) Y (s)
  • 19. Tracking /Servo Control Problem 20 R(s) GcGp (s) 1GcGp (s) Y (s)  Gc(s) Controller   n sensor noise  w load disturbance  Gp(s) Plant u control y output r reference input, or set-point e  sensed error 1 if GcGp (s)  1
  • 20. Disturbance Rejection Problem 21 Gc(s) Controller   n sensor noise  w load disturbance  Gp(s) Plant u control y output r reference input, or set-point e  sensed error W(s) Gp (s) 1GcGp (s) Y(s) 
  • 21. Noise Problem 22 Gc(s) Controller   n sensor noise  w load disturbance  Gp(s) Plant u control y output r reference input, or set-point e  sensed error N(s) c p GcGp (s) 1 G G (s) Y (s)  1if GcGp (s)  1
  • 22. One DOF Feedback Controller 23  To address all aspects of the system, only one degree of freedom is available, namely, Gc(s) W(s) Gp (s)GcGp (s) GcGp (s) 1GcGp (s) R(s)  N(s)  1 GcGp (s) 1GcGp (s) Y (s) Gc(s) Controller  n sensor noise  w load disturbance  Gp(s) Plant u control y output r reference input, or set-point e sensed error
  • 23.  Series Connection  G=G2*G1  where G1 and G2 are LTI objects (tf, ss, or zpk)  Parallel Connection  G=G1+G2  where G1 and G2 are LTI objects (tf, ss, or zpk)  Feedback Connection  G=feedback(G,H,Sign)  If Sign=-1, the negative feedback structure is indicated; negative feedbackis the default Modeling of Interconnected Block Diagrams in Matlab24
  • 24. Modeling of Interconnected Block Diagrams in Matlab Example  Where H(s) is a feeedback block representing a first order low pass filter with the aim of sensor noise cancellation  tf  Create transfer function model, convert to transfer function model  feedback  Feedback connection of two models  Gp = tf( [1 7 24 24], [1 10 35 50 24] )  Gc = tf( [10 5], [1 0] )  H = tf( 1, [0.01, 1] )  G_cl_loop = feedback( Gp*Gc, H, -1) 25 0.01s1 H (s) s 1 10s 5 s3  7s2  24s 24 10s3  35s2  50s 24 Gc (s)  Gp (s)  s4
  • 25. Time Domain Analysis in Matlab26
  • 26. Step response evaluations with MATLAB 27  step(G)  %automatic draw of step response curves  [y,t]=step(G)  %evaluate the responses, but not drawn  [y,t]=step(G,t_f)  % final simulation time t_f setting  y=step(G,t)  %simulation on user defined time vector t
  • 27. Unit Step Response in MATLAB 28  OL_Sys = zpk([],[0 -6],25)  CL_Sys = feedback(OL_Sys,1)  figure  step(CL_Sys);  grid on  stepinfo(CL_Sys) R(s) + Y(s)25 s(s 6)
  • 28. Unit Step Response in MATLAB 29  RiseTime: 0.3711  SettlingTime: 1.1887  SettlingMin: 0.9083  SettlingMax: 1.0948  Overshoot: 9.4773  Undershoot: 0  Peak: 1.0948  PeakTime: 0.7829 Step Response Amplitude 0.2 0.4 0.6 0.8 Time(sec) 1 1.2 1.4 1.6 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 System: CL_Sys Rise Time(sec ): 0.372 System: CL_Sys Peak amplitude: 1.09 Overshoot (%): 9.47 At time (sec): 0.777 System: CL_Sys Settling Time (sec): 1.19
  • 29. Biological Feedback Control Example 30  Regulation of glucose in the bloodstream through the production of insulin and glucagon by the pancreas.
  • 31. Biological Feedback Control Example 32  Can you find out the components of the feedback control loop? Control Device Pancreas Actuator Insulin OR Glucagon Process Liver Actual Blood Glucose Conc. error Sensor Glucoreceptors In Pancreas + - Measured Blood Glucose Desired Blood GlucoseConc. (90 mg per100 mL ofblood)
  • 33. Simple Real Pole p = -  The natural response is of the form: y(t )  K e t K is given by the initial condition  Assuming K > 0: 34 if   0y(t) if   0 t  Location in s-domain: Im(s) if   0 if   0 Re(s) Note: since  = 0, y(t) is located on the real axis.
  • 34. Simple Real Pole y(t )  Ke t 35 Note: Since  = 0, y(t) are located on the real axis.  Location in s-domain: Im(s) t stable Re(s) stable  Assuming K >0, if  >0: y(t) y(t) decays t • Effect of the value of  >0: y(t) y(t) decay 
  • 35. Simple Real Pole y(t )  Ke t  Assuming K >0, if  <0: 36 Note: Since  = 0, y(t) are located on the real axis.  Location in s-domain: Im(s) t y(t) unstable unstable Re(s) y(t) grows t • Effect of the value of  <0: y(t) y(t) grow 
  • 36. Simple Real Pole p = 0 37 RTECS 2015  The natural response is of the form: y(t)  B B is given by the initial condition  Assuming B > 0: y(t) t Note: since  = 0 and  = 0, y(t) is located on the origin.  Location in s-domain: Im(s) unstable Re(s)
  • 37. Simple Pair of Imaginary Poles p = ± jd38 RTECS 2015 Re(s)  The natural response is of the form: y(t )  Acos(d t ) Bsin( dt ) A and B are given by the initial conditions  Assuming A > 0, B > 0: y(t) t Note: since  = 0, y(t) is located on the imaginary axis.  Location in s-domain: Im(s)   0
  • 38.  Assuming A > 0, B >0: 39 Re(s) t y(t)  y(t) oscillates forever t Simple Pair of Imaginary Poles y(t )  Acos(d t ) Bsin(dt ) • Effect of the value of  < 0: y(t) y(t) oscillate  Location in s-domain: Im(s) unstable unstable 2  unstable unstable Note: In the case  = 0, the systemis said unstable or critically stable. RTECS 2015
  • 39. Simple Pair of Complex Poles p = - ±jd d dAcos( t ) Bsin(  t )y(t )  et  The natural response is of the form: A and B are given by the initial conditions 40 RTECS 2015 if   0  Location in s-domain: Im(s) if   0 if   0  Assuming A >0, B > 0: y(t) if   0 t stable unstable Re(s) stable unstable
  • 40. Effects of Zeros 41  A zero in the left half-plane  Increases the overshoot if the zero is within a factor of 4 of the real part of the complex poles. whereas it has very little influence on the settling time.  A zero in the right half-plane  Depress the overshoot (and may causes an initial undershoot (=the step response starts out in the wrong direction).
  • 41. Effects of Additional Poles 42  An additional pole in the left half plane  increases the rise time significantly (=slows down the response) if the extra pole is within a factor 4 of the real part of the complex poles.  If the extra real pole  is more than 6 times Re{p}, the effect is negligible.
  • 44. How To Specify Controller Requirements ? 45  Step Input  Specify the requirements on the response to a step reference signal  Transient Response  First part of system response when the output is still changing  Steady State Response  The final state for the system output
  • 45. RTECS 201546 Settling time OvershootControlled variable Reference Steady State Transient State Steady state error
  • 46. Delay time, Td : the time needed for the output response to reach 50% of its final value.
  • 47. Rise time, Tr : the time taken for the output response to go from 10% to 90% of its final value.
  • 48. Settling time, Ts : the time taken for the output response to reach, and stay within 2% of its final output value dn s   4  4 T 
  • 49. Peak time, Tp : the time required for the output response to reach the first, or maximum peak dn pT       1 2
  • 50. Percentage overshoot, %OS : the amount of the output response overshoots the final value at the peak time, expressed in percentage of steady-state value cfinal c final 100%%OS  cmax 1 2 %OS  e 100% 1 2 ) cmax ( /  c(tp ) 1 e 
  • 51. • The steady-state value of the system G can be evaluated using the function ▫ K=dcgain(G) Steady-state Value y(∞) 52  The steady-state value of the system under the step response is the output when t → ∞.  Using the final value theorem a0 s y()  lim sG(s) 1 s0  G(0)  b0
  • 52. Laplace Transform Method 53  Inverse Laplace transformation is used to obtain the output signal in the time domain  Symbolic Toolbox of MATLAB
  • 53. Laplace Transform Method Example 54 s4 u(t)  2 2e3t sin(2t)  For the transfer function G(s) and the input u(t), obtain the output y(t)  Hint  Laplace command: laplace  Inverse Laplace command: i laplace  7s3 17s2 17s 6 s3  7s2 3s  4 G(s) 
  • 54. RTECS