SlideShare a Scribd company logo
1 of 270
Download to read offline
Tri-Carb®
Liquid Scintillation Analyzer
(Models B2810TR, B2910TR, B3110TR, and B3180TR/SL)
Reference Manual
PerkinElmer Singapore Pte Ltd
28 Ayer Rajah Crescent #04-01
Singapore 139959
Tel (65) 6868 1688, Fax (65) 6779 6567
Website: www.perkinelmer.com
Email: info@perkinelmer.com
Manual Reorder Number 8860039
Rev. C
Printed in U.S.A.
Copyright © 2011, PerkinElmer, Inc.
All Rights Reserved
Trademark Acknowledgement
PerkinElmer® and Tri-Carb® are registered trademarks of PerkinElmer, Inc.
IPA™
is a trademark of PerkinElmer, Inc.
Ultima Gold™
is a trademark of PerkinElmer, Inc.
QuantaSmart™
is a trademark of PerkinElmer, Inc.
Replay™ is a trademark of PerkinElmer, Inc.
SpectraView™
is a trademark of PerkinElmer, Inc.
Varisette™ is a trademark of PerkinElmer, Inc.
Teflon®
is a registered trademark of E.I. DuPont Company.
Lotus®
is a registered trademark of Lotus Development Corporation.
Microsoft® and Windows® are registered trademarks of Microsoft
Corporation.
PerkinElmer, Inc. i
Explanation of Symbols
Signification des symboles
Erklärung der Symbole
Symbol Symbol Symboles Beschreibung
Alternating current Courant alternatif Wechselstrom
Protective Earth
Ground
Mise à la terre Schutz - Erdung
On (Supply)
Off (Supply)
Marche
(alimentation)
Arrêt (alimentation)
Ein
Aus
Caution -
Risk of Electrical
Shock
Attention:
Risque de choc
électrique
Vorsicht -
Gefährliche
Spannung
Caution
(refer to
accompanying
documents)
Attention:
Voir les documents
ci-joints
Vorsicht -
Siehe
Begleitinformation
Serial Out Sortie série Serieller Ausgang
Printer Imprimante Drucker
Monitor Moniteur Bildschirm
ii PerkinElmer,Inc.
Fuse Label /
Current Warning
Étiquette
d’advertissement
relatif au type et au
courant du fusible
Sicherung/
Stromstärke
Warning
High Leakage
Current, Ensure
Proper Grounding
Avertissement:
Courant de fuite
élevé,
Mettre correctement
à la terre
Warnung:
Hoher Leckstrom-
Ordnungsgemäße
Erdung sicherstellen
Warning
Laser Product Avoid
Direct Exposure to
Beam
Avertissement:
Appareil à laser
exposition au
faisceau dangereuse
Warnung:
Laserstrahlung, nicht
in den lichtstrahl
blicken, unsicht bare
laserstrahlung.
Pinch Hazard Pincement
Hasard
Vorsicht-
Verletzungsgefahr!
Hot Surface Surface Chaude Heiße Oberfläche
Waste Electrical &
Electronic Equipment
Dispositions
Relatives à La
Composition Des
Équipements
Électriques et
Électroniques
Überschüssige
elektrische und
elektronische
Ausrüstung
Symbol Symbol Symboles Beschreibung
100, 120 VAC, 50/60 Hz, X amps
200, 220 VAC, 50 Hz, X amps
!
Warning
High Leakage
Current, Ensure
Proper Grounding
PerkinElmer, Inc. iii
Regulatory Compliance
This equipment must be used only by authorized personnel, in a controlled
laboratory environment.
Refer all detailed questions to the PerkinElmer Operation and Reference
manuals.
This equipment must only be used with IEC listed accessories (computer,
printer, monitor, etc.).
RFI Compliance
This equipment has been tested and found to comply with the limits of VFG
243, VDE 0871 and EN 50 082-1.
Any changes or modifications not expressly approved by PerkinElmer could
adversely affect compliance.
Use only shielded interface cables with this equipment.
If the instrument is received in a damaged condition, request an immediate
inspection by the carrier and local technical service representative.
PerkinElmer is not responsible for damage occurring during transit. However,
PerkinElmer will assist in ensuring a satisfactory settlement from the carrier.
Upon receipt of all damage/inspection reports, PerkinElmer will arrange for
either instrument repair or replacement.
For proper ventilation of this equipment, a distance of 15cm must be
maintained from this unit to any other surface.
 Warning: If the equipment is used in a manner not specified herein,
the protection provided by the equipment may be
impaired.
iv PerkinElmer,Inc.
Ce matériel doit être utilisé seul par Personnel autorisé, a commandé dans un
l’environnement du Laboratoire.
Reportez à toutes questions détaillées au PerkinElmer Opération et manuels
de la Référence.
Reportez à tout service, a formé à un PerkinElmer le personnel du service
seul.
Ce matériel, faut seul est utilisé avec IEC a Inscrit des Accessoires.
(Ordinateur, Imprimeur, Moniteur, [etc])
RFI Acquiescement
Ce matériel a été testé et a trouvé conformer à avec les limites de VFG 243,
VDE 0871 and EN 50 082-1.
Tous changements ou modifications pas expressément approuvé Instrumente
par PerkinElmer pouvait, [incorrigible] effectue l’acquiescement.
Utilisez seul a protégé des câbles de l’interface avec ce matériel.
Si l’instrument est reçu dans une condition endommagée, demande une
inspection immédiate par le porteur et représentant du service local
technique. PerkinElmer n’est pas responsable pour dégât produit pendant
passage. De quelque manière que, PerkinElmer aidera dans assurer un
règlement satisfaisant du porteur.
Rapporte sur reçu de toute inspection du dégât, PerkinElmer arrangera la
réparation de l’instrument a l’un ou l’autre ou remise en place.
Pour ventilation adéquate de ce matériel, une distance de 15cm doit être
maintenue, de cette unité à toute autre surface.
 Avertissement: Si cet appareil est utilisé d'une façon non spécifiée
dans le présent document, la protection qu'il procure
pourrait s'en trouver altérée.
PerkinElmer, Inc. v
Bitte nur gleichwertige Ersatzsicherungen des angegebenen Typs verwenden.
Das Gerät erst nach der Einarbeitung durch einen von PerkinElmer
geschulten Vertreter benutzen.
Reparatur- und Servicearbeiten sind nur von durch PerkinElmer geschulten
Personen durchzuführen.
An das Gerät darf nur IEC-registriertes Zubehör angeschlossen werden
(Computer, Drucker, Monitor usw.).
Funkentstörung
Das Gerät wurde getestet und entspricht den Vorschriften von VFG 243, VDE
0871 and EN 50 082-1.
Durch ƒnderungen oder Umbauten, die nicht ausdrücklich von PerkinElmer
genehmigt wurden, wird die Zulassung u.U. hinfällig.
Mit diesem Gerät nur isolierte Schnittstellenkabel verwenden.
Weist das Gerät bei der Entgegennahme Schäden auf, verlangen Sie bitte eine
sofortige Inspektion durch den Spediteur und den zuständigen
Kundendienstvertreter. PerkinElmer ist für Transportschäden nicht haftbar,
setzt sich jedoch gern dafür ein, mit dem Spediteur eine befriedigende Lösung
auszuarbeiten.
Nach Eingang aller Schadens- und Inspektionsberichte veranlaßt
PerkinElmer entweder die Reparatur oder den Umtausch des Geräts.
Für ordnungsgemäße Ventillation darf dieses Gerät nicht näher als 15cm von
einer Wand entfernt aufgestellt werden.
 Warnung: Wird das Gerät auf eine Weise benutzt, die hierin nicht
angegeben wird, kann der vom Gerät gebotene Schutz
beeinträchtigt werden.
vi PerkinElmer,Inc.
PerkinElmer, Inc. vii
Table of Contents
Chapter 1
About the Tri-Carb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Instrument Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Electrical Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Environmental Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Energy Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chi-Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Sample Changer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
External Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Observed Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Sample Cassettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Protocol Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Bar Code Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Sample Vials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Tri-Carb System Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Recommended Safety Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Customer Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Moving the Tri-Carb Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Decontamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Preventative Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Overview of System Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
System Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Front of Tri-Carb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Back of Tri-Carb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Right Side of the Tri-Carb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
viii PerkinElmer,Inc.
Chapter 2
How To.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
How to Get Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
How to Perform Self-Normalization and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SNC for an Instrument without Super Low Level Counting Ability . . . . . . . . . . . . . . . . . . . . . . 21
SNC for an Instrument with Super Low Level Counting Ability (with BGO Detector Guard) . . . . 23
How to Perform an Assay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
How to Create a Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
How to Associate an Assay to a Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
How to Count Samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
How to Disassociate an Assay from a Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
How to Edit an Assay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
How to Print an Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
How to Manually Print a Report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
How to Link a Quench Set to a Sample Nuclide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
How to Set Up a Quench Standards Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
How to Run an Alpha/Beta Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
How to Run an Alpha/Beta Standards Assay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
How to Use the Replay Feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
How to Calculate Radioactive Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Chapter 3
System Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
SpectraView Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Instrument Status Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Protocols Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Replay Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Output Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Menu Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
File Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Run Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Libraries Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Tools Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
IPA Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Diagnostics Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Window Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Help Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Spectral Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Spectral Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Spectrum Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
SpectraView Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Printed Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Electronic Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
PerkinElmer, Inc. ix
Chapter 4
Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Assay Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
CPM Assays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
DPM Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
FS DPM Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Direct DPM Assays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Alpha/Beta Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Alpha/Beta Standards Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Quench Standards Assays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
SPC Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Defining an Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Assay Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Count Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Count Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Report Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Report Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Special Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Worklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Chapter 5
Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Sample Nuclides Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Quench Standards Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Alpha/Beta Nuclides Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Alpha/Beta Standards Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Chapter 6
Normalization, Calibration, and IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
When to Perform These Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Defining an Instrument Performance Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
IPA Charts & Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
IPA Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Performing Self-Normalization and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
SNC for an Instrument without Super Low Level Counting Ability . . . . . . . . . . . . . . . . . . . . . 165
SNC for Super Low Level Counting (with BGO detector guard) . . . . . . . . . . . . . . . . . . . . . . . 167
x PerkinElmer,Inc.
Chapter 7
Advanced Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Priostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Group Priostat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Sample Priostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Replay Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Replay Conditions Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Report Definition Tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Report Output Tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Special Files Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Worklist Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
High Sensitivity and Low Level Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Super Low Level Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Alpha/Beta Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Tandem Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Bar Code Reader Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Bar Code Size and Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Chapter 8
Maintenance and Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Preventative Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Inspection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Storing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Back Up the Hard Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Folder Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Power Failure Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Power Fail Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Connect to Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Troubleshooting Operational Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Troubleshooting IPA Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Troubleshooting Warnings and Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
PerkinElmer, Inc. xi
Appendix A
Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Background Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Background Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Chi-Square Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
DPM (Disintegrations Per Minute) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Figure of Merit Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Half-life Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
IPA Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
LCR (Low Count Reject) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
LUM (% Luminescence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Radioactivity Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
2 Sigma % (%2s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Radionuclide Decay Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
% Reference (% Ref) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Appendix B
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Appendix C
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Low Level Counting Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Burst Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
High Sensitivity and Low Level Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Operational Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
High Sensitivity/Low Level Count Mode Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Precautions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Alpha/Beta Counting Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Pulse Decay Analysis (PDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Optimum Pulse Decay Discriminator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
xii PerkinElmer,Inc.
Tri-Carb® Reference Manual 1
Chapter 1
About the Tri-Carb
The Tri-Carb®
liquid scintillation counter relies on the interaction between a
beta-emitting radionuclide and a scintillator, a component of the scintillation
cocktail. The scintillator converts ionizing radiation from the radionuclide into
photons of light (scintillation). The intensity of the light produced during
scintillation is proportional to the initial energy of the beta particle.
By placing a vial containing a radionuclide and scintillation cocktail into a
dark detection enclosure (the instrument’s detector), the scintillation counter
can measure photon intensity. A photosensitive device amplifies the light
emitted from the sample vials and the amplified signal is converted to pulses
of electrical energy and registered as counts. The counts accumulated during
this process are sorted into separate channels, with the amplitude of the
signal determining the energy channel (keV) into which the counts are sorted.
The counts that are collected and sorted are used to generate the sample
spectrum. Using this spectrum, the system can perform various count
correction calculations and determine Counts Per Minute (CPM) for each
sample. To calculate Disintegrations Per Minute (DPM), the instrument will
determine the counting efficiency of each sample. Using a quench curve, the
instrument compares the quench index for the samples to the quench index for
the quench standards to determine sample counting efficiency and
subsequently calculate DPM for the unknown samples.
Figure 1-1 provides an overview of this process:
CHAPTER 1
2 PerkinElmer,Inc.
Figure 1-1. Overview of the Scintillation Counting Process.
The remainder of this chapter discusses the following topics about the Tri-
Carb system:
 Instrument Specifications (page 3)
 Tri-Carb System Configurations (page 9)
 Recommended Safety Procedures (page 11)
 Customer Service (page 12)
 Moving the Tri-Carb Instrument (page 12)
 Decontamination (page 13)
 Preventative Maintenance (page 13)
 Overview of System Hardware (page 14)
ABOUT THE TRI-CARB
Tri-Carb® Reference Manual 3
Instrument Specifications
All Tri-Carb instrument specifications are developed using sources whose
activity is referenced to NIST source activity and PerkinElmer reference
methods. Depending on the placement of the instrument in your laboratory,
some specifications may differ from those stated in this chapter.
The specifications for your Tri-Carb system are defined in the following
sections. These specifications include the following:
 Physical Dimensions (page 4)
 Electrical Requirements (page 4)
 Environmental Requirements (page 4)
 Energy Range (page 5)
 Efficiency (page 5)
 Chi-Square (page 5)
 Detectors (page 5)
 Sample Changer (page 6)
 External Standard (page 6)
 Observed Background (page 6)
 Sample Cassettes (page 7)
 Protocol Flags (page 8)
 Bar Code Reader (page 8)
 Shielding (page 8)
 Sample Vials (page 9)
CHAPTER 1
4 PerkinElmer,Inc.
Physical Dimensions
Electrical Requirements
Instrument:
Refrigeration Unit (optional on all models except 3180TR/SL):
Environmental Requirements
Height: 19 inches (48 cm)
Width: 40.6 inches (103 cm)
Depth: 32.36 inches (82 cm)
Weight: 470 pounds (214 kg) without refrigeration unit
515 pounds (234 kg) with refrigeration unit
60 Hz 50 Hz
Voltage (VAC): 100, 120 200, 240
Amperage (Amps): 2.5 1.8
Installation Category II, Pollution Degree 2
Fuse (Amps): 4.0 (type S)
(5 X 20 mm)
2.5 (type T)
(5 X 20 mm)
Wattage (Watts): 500 500
60 Hz 50 Hz
Voltage (VAC): 117 240
Amperage (Amps): 2.5 1.5
Fuse (Amps): Circuit Breaker Circuit Breaker
Wattage (Watts): 500 500
Operating Ambient Temperature: 15°C to 35°C (59°F to 95°F)
Operating Relative Humidity: 30% to 85% (Non-condensing;
system for indoor use only)
Altitude: Up to 2000 meters (6561 feet)
ABOUT THE TRI-CARB
Tri-Carb® Reference Manual 5
Energy Range
This table represents the preset regions for the following nuclides:
You can define preset regions for any nuclide in the Sample Nuclides Library.
Refer to Sample Nuclides Library (page 140) for more information.
Efficiency
For Tritium in the range 0–18.6 keV, the minimum acceptable efficiency is
60% (58% for 3180TR/SL). For Carbon-14 in the range 0-156 keV, the
minimum acceptable efficiency is 95% (94% for 3180TR/SL). These values
were generated by PerkinElmer at our Singapore facility. The exact values
obtained at other instrument locations may vary. Counting Efficiency is a
parameter measured as part of Instrument Performance Assessment (IPA®
).
 Note: The IPA Charts & Tables feature is optional on the 2810TR and
2910TR and comes standard on the 3110TR and 3180TR/SL.
Chi-Square
Chi-Square acceptable range: 7.63 to 36.19, performed as 20, 0.5 minute
repeat counts, and tested at the 99% confidence limits. Chi-Square is a
parameter measured as part of Instrument Performance Assessment (IPA).
 Note: The IPA Charts & Tables feature is optional on the 2810TR and
2910TR and comes standard on the 3110TR and 3180TR/SL.
Detectors
Two diametrically opposed high performance photomultiplier tubes (PMTs)
are coupled to a light-tight, reflective optical chamber. The detectors are
located below the sample changer at the rear of the instrument.
Preset Regions (keV)
Tritium 0–18.6
Carbon-14 0–156
Phosphorus-32 5–1700
Iodine-125 0–70
CHAPTER 1
6 PerkinElmer,Inc.
Sample Changer
The sample changer automatically moves the samples into position and loads
them down into the detector for counting. After the count is completed, the
sample is automatically unloaded, and the next sample is loaded.
The sample changer typically moves the cassettes in a forward
(counterclockwise) direction using a pair of synchronously driven transport
belts. If necessary, these belts can run in the reverse (clockwise) direction,
such as during recovery from a power failure.
The instrument can hold up to (depending on the configuration):
 408 large vials
 720 small vials
 720 4 mL vials
The Varisette™
option allows you to count large vial and small vial samples in
dedicated cassettes. The Varisette feature is optional on the 2810TR and
comes standard on the 2910TR, 3110TR and 3180TR/SL.
External Standard
133Ba, nominal less than 20μCi (for Tri-Carb models 2810TR, 2910TR, and
3110TR).
133Ba, nominal less than 1μCi (for Tri-Carb model 3180TR/SL).
Observed Background
Average values for Normal Count Mode:
Tritium: 17.3 CPM
Carbon-14: 24.3 CPM
These values were generated by PerkinElmer at our Singapore facility. The
exact values obtained at other instrument locations may vary.
ABOUT THE TRI-CARB
Tri-Carb® Reference Manual 7
Sample Cassettes
Cassettes are the plastic racks that hold sample vials and allow them to be
moved on the sample changer deck. Samples are placed into cassettes that
accommodate either standard or small vials without adapters (4 mL vials
require cassettes with adapters). The standard vial cassette can accommodate
up to 12, 15–20 mL vials, and the mini-vial cassettes up to 18, 6–7 mL mini-
vials. A protocol flag, which you attach to the cassette, identifies the protocol
and assay conditions that you have defined for use with your samples. The
individual cassettes are identified by unique numbers (cassette IDs) located at
the end of each cassette. The protocol flag and cassette ID are automatically
read by the instrument to provide Positive Sample Identification (PID) when
using Worklists.
Figure 1-2. Sample Cassette.
CHAPTER 1
8 PerkinElmer,Inc.
Protocol Flags
Protocol flags are numbered, plastic devices that contain an encoded,
reflective metal that the instrument uses to identify the appropriate assay
counting parameters for a set of samples. The counting parameters that the
instrument uses correspond to the parameters that you define during the
assay definition process (these are predefined by PerkinElmer for the Direct
DPM assay). These assay parameters become a functional part of a protocol
once you associate the assay to a protocol number.
Prior to counting samples, you must attach the correct protocol flag (the
protocol flag number to which you have associated the assay) to the first
cassette to be counted. Be sure the protocol flag is in the reset position (Figure
1-2). When the protocol number is recognized, a reset flag indicates that the
assay is being counted for the first time. If multiple cycles have been defined
for the assay, the cycle counting starts over. The system will physically SET
the flag after the cassette has been counted. Subsequent counting of the
protocol is considered to be the following cycles of the same samples. You
should RESET the protocol flag each time that you put new samples into the
cassette(s).
Bar Code Reader
The 2D Bar Code Reader is an optional feature that provides automated
sample tracking for the Tri-Carb system. To use the reader, a 2D bar code is
placed on a sample’s vial cap, and the label is read before the sample is loaded.
Refer to the following sections for more information about the Bar Code
Reader option:
 Configure Barcode Reader on page 75
 Barcode Settings on page 105
 Sample Name on page 135 (part of the Worklist tab description)
 Bar Code Reader Option on page 200
 Note: Linear 1D bar codes are also supported, provided that they can
fit onto the top of a vial cap. Use the barcode reader’s software to
configure the reader to accommodate linear 1D bar codes (see the
software’s help for instructions). When you do this, you should
also disable all other bar codes that are not used for maximum
speed and efficiency.
Shielding
The detector assembly is surrounded by a minimum of 2 inches of lead.
ABOUT THE TRI-CARB
Tri-Carb® Reference Manual 9
Sample Vials
Vials and caps must conform to the following sizes. Caps must not exceed the
diameter of the vials.
Tri-Carb System Configurations
The following table shows the various configurations of the Tri-Carb
instrument based on model number.
 Note: In the table below, S = Standard, O = Optional, and
NA = Not Available.
Large Vials Minimum Maximum
Vial Height: 58.4 mm 63.0 mm
Vial Diameter: 26.0 mm 28.1 mm
Cap Diameter: 22.0 mm  vial diameter
Small Vials Minimum Maximum
Vial Height: 53.0 mm 58.0 mm
Vial Diameter: 14.5 mm 17.8 mm
Cap Diameter: 13.0 mm  vial diameter
4 mL Vials Minimum Maximum
Vial Height: 53.0 mm 58.0 mm
Vial Diameter: 12.7 mm 14.5 mm
Cap Diameter: 12.0 mm  vial diameter
Tri-Carb Feature/Option 2810TR 2910TR 3110TR 3180TR/SL
External computer S S S S
QuantaSmart™ Software for Windows®
XP operating system
S S S S
TR-LSC background electronics S S S S
HSCM (High Sensitivity Count Mode) O O S NA
ULLCM (Ultra Low Level Count Mode) NA O O S
CHAPTER 1
10 PerkinElmer,Inc.
BGO detector guard NA NA NA S
Live spectral display and plotting S S S S
Enhanced Security (21 CFR Part 11
Compatibility)
NA O O O
Refrigeration Unit O O O S
2D Bar Code Reader O O O O
Sample numeric data screening S S S S
Direct DPM S S S S
Single/dual color-corrected DPM O S S S
Triple Label DPM O O S S
Varisette option O S S S
Replay™
sample recall and reprocessing O S S S
Group Priostat automatic priority
interrupt
S S S S
Luminescence correction O O S S
Single photon counting for
bioluminescence assays
S S S S
Sample Priostat manual special function
interrupt
NA O S S
Alpha/Beta discrimination NA O O O
IPA Charts and Tables O O S S
Worklist feature O O S S
Number of user acquisition protocols with
unlimited assays
15, 60
optional
30, 60
optional
60 60
Tri-Carb Feature/Option 2810TR 2910TR 3110TR 3180TR/SL
ABOUT THE TRI-CARB
Tri-Carb® Reference Manual 11
Recommended Safety Procedures
To ensure personal safety and to maximize the life of the Tri-Carb instrument,
do the following:
1. The AC power cord used to connect the Tri-Carb instrument to the AC
Mains must be rated for the appropriate input voltage (see page 4 for
voltage information). Make sure to use a grounded outlet. The system
provides automatic recovery after power failure.
Once the power cord is properly connected, the instrument can be turned
on and off using the power switch on the right side of the instrument
(Figure 1-5, page 17). The power switch also powers on and off the internal
computer.
2. Power to the temperature control unit should NOT be supplied through a
power strip. Connect the temperature control unit’s power cord only to a
grounded wall outlet with the appropriate voltage (see page 4 for voltage
information).
3. For proper ventilation of this equipment, a distance of 15 cm (5.9 in) must
be maintained from this unit to any other surface.
4. If the equipment is used in a manner not specified by the manufacturer, the
protection provided by the equipment may be impaired.
5. Do not attempt to make internal adjustments or replacements in the Tri-
Carb instrument. Servicing should only be performed by trained
PerkinElmer service personnel.
6. Make sure all connections to the Tri-Carb instrument are secure. See
page 17 and page 17 for information about Tri-Carb connections.
7. Do not operate the Tri-Carb instrument or its components in water or any
other liquid or fluid.
8. Do not allow flammable materials to come in contact with the Tri-Carb
instrument.
9. Keep the Tri-Carb instrument away from sources of radiation (X-ray
equipment, radiation storage vaults, etc.).
10. Do not allow direct sunlight or unscreened fluorescent light to enter the
sample changer. Direct sunlight affects the optical sensors within the
sample changer and can cause erratic operation. Direct sunlight can also
induce fluorescence within your samples, causing erratic results.
11. The Tri-Carb calibration sources contain 14C and 3H standards, and the
Tri-Carb instrument also contains a Barium-133 source for use as an
external standard. If it is necessary to dispose of these items, make sure to
dispose of them according to Good Laboratory Practice (GLP).
CHAPTER 1
12 PerkinElmer,Inc.
If the Tri-Carb instrument appears damaged or unsafe, do not operate the
instrument. The Tri-Carb may be unsafe if it exhibits any of the following
conditions:
 Shows visible damage.
 Fails to perform the intended measurement.
 Has been subjected to prolonged use or storage in unfavorable conditions
(refer to Environmental Requirements on page 4 for proper operating
conditions).
 Has been subjected to severe transport stresses.
If the Tri-Carb appears damaged or in need of repair, contact your
PerkinElmer service technician.
Customer Service
Company Name and Address:
PerkinElmer
710 Bridgeport Ave.
Shelton, CT 06484 USA
Telephone: (800) 762-4000
Internet: www.perkinelmer.com
Supplies, accessories, and replacement parts can be ordered directly from
PerkinElmer. To place an order for supplies and many replacement parts,
request a free catalog or visit our website (www.perkinelmer.com).
The most up-to-date information on part numbers, product brochures, spare
parts, and application notes are located on the PerkinElmer website.
Moving the Tri-Carb Instrument
If it is necessary to move the Tri-Carb instrument a short distance, make sure
to do the following:
 Remove power to the Tri-Carb instrument.
 Disconnect any cables that will be in the way when moving the
instrument (see page 17 and page 17 for the location of Tri-Carb
connectors).
 Use a cart to transport the Tri-Carb instrument.
 Use at least two people to lift the instrument onto the cart.
 Use caution when transporting the Tri-Carb instrument on the cart.
 When you have finished moving the instrument, position the Tri-Carb so
that it is properly ventilated. There should be a distance of at least 15 cm
(5.9 in) between the Tri-Carb and other surfaces.
ABOUT THE TRI-CARB
Tri-Carb® Reference Manual 13
Decontamination
Decontamination of the system is considered a necessary precaution whenever
shipping a potentially contaminated system (or parts from a potentially
contaminated system) to another location.
 For decontamination instructions, visit:
http://www.perkinelmer.com/deconprocedure
 To obtain a copy of the decontamination certificate, visit
http://www.perkinelmer.com/deconcertificate
If you have any questions about the decontamination process or certificate,
contact your PerkinElmer service representative.
Preventative Maintenance
With the exception of inspection and cleaning, there are no preventative
maintenance procedures that you should perform. For information on
inspection and cleaning, refer to page 203 of Chapter 8.
CHAPTER 1
14 PerkinElmer,Inc.
Overview of System Hardware
The following sections contain information about the Tri-Carb instrument’s
hardware:
 System Computer
 Front of Tri-Carb (page 15)
 Back of Tri-Carb (page 16)
 Right Side of the Tri-Carb (page 17)
 Right Side of the Tri-Carb (page 17)
System Computer
The system is controlled by an external Windows®-based computer. The
standard laptop computer is configured with a DVD-drive and one hard drive.
The computer contains 3 USB ports. All RS-232 communication occurs
through one of the USB ports via a USB to RS-232 converter. The external
computer and the instrument are connected with a USB cable. The system can
be attached to a network using the external computer’s Ethernet port.
Only IEC 60950 approved devices (monitors, printers, etc.) can be connected to
the Tri-Carb instrument. The devices sold with your Tri-Carb instrument are
IEC 60950 approved.
ABOUT THE TRI-CARB
Tri-Carb® Reference Manual 15
Front of Tri-Carb
Figure 1-3 shows the front of the Tri-Carb Liquid Scintillation Analyzer.
Figure 1-3. Front of Tri-Carb.
 Note: The two USB ports located on the left side of the instrument are
used for the external computer and the barcode reader .
Bar Code Reader
Adjustable Computer Support Arm
External Computer (laptop)
2 USB Ports located on left side of instrument
Power Switch, Power Connector, and
Fuse Holder located on right side of instrument
Adjustable Computer Support Arm
Power Switch, Power Connector, and
Fuse Holder located on right side of instrument
2 USB Ports located on left side of instrument
External Computer (laptop)
CHAPTER 1
16 PerkinElmer,Inc.
Back of Tri-Carb
Figure 1-4 shows the back of the Tri-Carb system—both with and without the
refrigeration unit (optional on all models except the 3180TR/SL).
Figure 1-4. Back of Tri-Carb.
With Refrigeration Unit
Refrigeration Unit
Without Refrigeration Unit
ABOUT THE TRI-CARB
Tri-Carb® Reference Manual 17
Right Side of the Tri-Carb
Figure 1-5 shows the location, on the right-hand side of the Tri-Carb, of the
power switch, power connector, and fuse holder.
Figure 1-5. Right Side View of Tri-Carb.
 Note: Make sure to leave room on the right-hand side of the Tri-Carb
so you can easily access the power switch.
Replacing a Fuse
The fuse holder is located on the right side of the Tri-Carb instrument (Figure
1-5). To replace a fuse, do the following:
1. Power off the Tri-Carb instrument and disconnect the power cord from the
Tri-Carb power connector.
Power Switch
Power Connector
Fuse Holder
CHAPTER 1
18 PerkinElmer,Inc.
2. Insert a small screwdriver (or similar tool) between the power connector
and the fuse holder (Figure 1-6). Then, carefully pull the fuse holder out of
the instrument.
Figure 1-6. Removing the Fuse Holder.
3. Remove and replace the fuse (or both fuses) in the fuse holder. Always
replace a fuse with a new one of the same type (see Electrical Requirements
on page 4 for the fuse type).
4. Insert the fuse holder back into the Tri-Carb instrument.
Screwdriver
Fuse Holder
Power Connector
Tri-Carb® Reference Manual 19
Chapter 2
How To...
This chapter presents a quick overview of common tasks performed with the
QuantaSmart™
software. The following tasks are discussed:
 How to Get Started (page 20)
 How to Perform Self-Normalization and Calibration (page 21)
 How to Perform an Assay (page 24)
 How to Create a Password (page 27)
 How to Associate an Assay to a Protocol (page 29)
 How to Count Samples (page 32)
 How to Disassociate an Assay from a Protocol (page 33)
 How to Edit an Assay (page 34)
 How to Print an Assay (page 36)
 How to Manually Print a Report (page 36)
 How to Link a Quench Set to a Sample Nuclide (page 37)
 How to Set Up a Quench Standards Assay (page 39)
 How to Run an Alpha/Beta Assay (page 40)
 How to Run an Alpha/Beta Standards Assay (page 41)
 How to Use the Replay Feature (page 43)
 How to Calculate Radioactive Decay (page 45)
CHAPTER 2
20 PerkinElmer,Inc.
How to Get Started
When you are ready to begin a counting procedure, you will need to perform
the following tasks:
 Note: The USB cable must be connected to the external computer and
the instrument before you begin.
1. Normalize and calibrate the instrument. See Normalization, Calibration,
and IPA on page 155.
2. Select an assay type: Alpha/Beta, Alpha/Beta Standards, CPM Assay, DPM
Single, DPM Dual, DPM Triple, FS DPM, Direct DPM, Quench Standards,
or Single Photon Counting. See Assays on page 89.
 Note: DPM Dual is optional on the 2810TR and comes standard on the
2910TR, 3110TR, and 3180TR/SL. DPM Triple is optional on
the 2810TR and 2910TR and comes standard on the 3110TR
and 3180TR/SL.
 Note: If you obtain the Triple Label DPM assay as an option on the
2810TR then the Single/Dual Color-Corrected DPM option is
also required.
3. For any DPM assay, except Direct DPM, create quench data. See page 91
for information on performing a DPM assay.
4. Define and save the new assay parameters. See Defining an Assay on
page 103.
5. Associate (link) the assay parameters to a protocol. See How to Associate an
Assay to a Protocol on page 29.
6. Attach the correct protocol flag to the first cassette to be counted and load
the cassette(s) with samples.
7. Click the green start button at the top of the main window to begin
counting.
 CAUTION: Do not use the system’s DVD writer while the
instrument is counting. Using the DVD writer while the
instrument is counting may interfere with the operation
of the sample changer.
HOWTO...
Tri-Carb® Reference Manual 21
How to Perform Self-Normalization and Calibration
You can perform Self-Normalization and Calibration (SNC) for the following:
an instrument without super low level counting ability and an instrument
with super low level counting ability (page 23).
SNC for an Instrument without Super Low Level Counting Ability
1. Select IPA | IPA Definition from the menu bar. In the IPA Definition window
(Figure 2-1), define the IPA parameters (see page 157).
Figure 2-1. IPA Definition Window.
2. Reset the SNC protocol flag to the reset position. To reset the flag, make
sure the flag is all of the way to the left when the plug is on the left end of
the cassette (Figure 2-11, page 32).
3. Load the purged, unquenched Carbon-14 standard into the first position of
the cassette. This is at the same end as the protocol plug.
CHAPTER 2
22 PerkinElmer,Inc.
 CAUTION: Do not use the unpurged, Low Level standards to calibrate the
instrument, even if the instrument is to be used in Low Level,
High Sensitivity, or Super Low Level count mode.
4. Load the purged, unquenched Tritium standard into the second cassette
position.
5. Load the purged background standard into the third cassette position.
6. Load the instrument with cassettes.
7. Click the green start button at the top of the main window to begin
counting.
 CAUTION: Do not use the system’s DVD writer while the
instrument is counting. Using the DVD writer while the
instrument is counting may interfere with the operation
of the sample changer.
HOWTO...
Tri-Carb® Reference Manual 23
SNC for an Instrument with Super Low Level Counting Ability (with
BGO Detector Guard)
1. Select IPA | IPA Definition from the menu bar. In the IPA Definition window
(Figure 2-1), define the IPA parameters (see page 157).
2. Reset the SNC protocol flag to the reset position. To reset the flag, make
sure the flag is all of the way to the left when the plug is on the left end of
the cassette (Figure 2-11, page 32).
3. Load the purged, unquenched Carbon-14 standard into the first position of
the cassette. This is at the same end as the protocol flag.
4. Load an empty vial into the second cassette position.
 Note: The empty vial must be of the same type and material that will
be used to count low level samples.
5. Load the purged, unquenched Tritium standard into the third cassette
position.
6. Load the purged background standard into the fourth cassette position.
7. Load the instrument with cassettes.
8. Click the green start button at the top of the main window to begin
counting.
 Note: If you wish to re-normalize the system for a different sample
counting vial, re-run SNC with only the new vial in position two
of the SNC cassette. An SNC cassette with an appropriate vial in
position two may precede any assay using different vial types.
 CAUTION: Do not use the system’s DVD writer while the
instrument is counting. Using the DVD writer while the
instrument is counting may interfere with the operation
of the sample changer.
CHAPTER 2
24 PerkinElmer,Inc.
How to Perform an Assay
1. Select File | New Assay from the menu bar.
2. In the Select Assay Type window (Figure 2-2), select an assay type and click
OK. For more information on the different assay types, see page 89.
Figure 2-2. Select Assay Type Window.
3. When the Assay Definition window appears, define the individual assay
parameters, as needed, on each of the window’s seven tabs. Then click Save
As and save the assay using a descriptive name.
4. In the Protocols tree of the main window (Figure 2-3), right-click on the
protocol flag number that you would like to associate with the assay. From
the menu that is displayed, select Associate Assay.
 Note: You can also associate an assay with a flag by selecting a flag
and then selecting File | Associate Assay from the menu bar.
HOWTO...
Tri-Carb® Reference Manual 25
Figure 2-3. Protocols Tree.
5. When the Associate Assay window appears (Figure 2-4), select the assay
that you would like to associate with the protocol flag number. Click the
Open button.
Figure 2-4. Associate Assay Window.
CHAPTER 2
26 PerkinElmer,Inc.
6. When the Data Paths window appears (Figure 2-5), do the following:
 Enter a User ID for the assay.
 Enter an Additional Header, if necessary.
 Enter an Output Data Path, if you would like the data to be saved in a
directory other than the default.
In the example in Figure 2-5, the default path is
C:PackardTriCarbResultsDefault14c_dpm
Figure 2-5. Data Paths Window.
7. Attach (to the cassette) the appropriate protocol flag in the reset position
(Figure 2-11, page 32).
8. Load the cassette(s) with samples.
9. Load the instrument with cassettes.
10. Click the green start button at the top of the main window to begin
counting.
 CAUTION: Do not use the system’s DVD writer while the
instrument is counting. Using the DVD writer while the
instrument is counting may interfere with the operation
of the sample changer.
HOWTO...
Tri-Carb® Reference Manual 27
How to Create a Password
1. Select File | New Assay from the menu bar. The Select Assay Type window
is displayed (Figure 2-6). From the list of assays, select the type of assay
you would like to create and click OK.
Figure 2-6. Select Assay Type Window.
2. When the Assay Definition window appears (Figure 2-7), select the Lock
Assay checkbox on the Assay Parameters tab. The Password field is now
enabled.
CHAPTER 2
28 PerkinElmer,Inc.
Figure 2-7. Assay Definition Window.
3. In the Password field, enter a descriptive password.
4. In the seven tabs of the Assay Definition window, define the individual
assay parameters, as needed. Refer to page 103 for more information.
5. When you have completed the assay definition process, click the Save As
button to save the assay. The password must be used to edit the assay after
the assay is saved.
HOWTO...
Tri-Carb® Reference Manual 29
How to Associate an Assay to a Protocol
1. In the Protocols tree of the main window (Figure 2-8), right-click on the
protocol flag number that you would like to associate with an assay. From
the menu that is displayed, select Associate Assay.
 Note: You can also associate an assay with a flag by selecting a flag
and then selecting File | Associate Assay from the menu bar.
Figure 2-8. Protocols Tree.
CHAPTER 2
30 PerkinElmer,Inc.
2. When the Associate Assay window appears (Figure 2-9), select the assay
that you would like to associate with the protocol flag number. Then click
the Open button.
Figure 2-9. Associate Assay Window.
HOWTO...
Tri-Carb® Reference Manual 31
3. When the Data Paths window appears (Figure 2-10), do the following:
 Enter a User ID for the assay.
 Enter an Additional Header, if necessary.
 Enter an Output Data Path, if you are generating either an RTF or
Delimited Text file for the assay and would like the data to be saved in
a directory other than the default. Select the Use Default Output Data
Path checkbox if you would like the data to be saved in the default
directory.
Figure 2-10. Data Paths Window.
CHAPTER 2
32 PerkinElmer,Inc.
How to Count Samples
1. Attach (to the cassette) the appropriate protocol flag.
2. Reset the protocol flag by moving the plastic arm all the way to the left. The
flag is all the way to the left when the flag is on the left end of the cassette
(Figure 2-11).
Figure 2-11. Cassette with Protocol Flag in Reset Position.
3. Place all of the background, reference, and sample vials into the
appropriate cassette positions.
4. Place the cassette(s) in the sample changer deck so that the protocol
number on the flag is facing you. The cassette should be positioned on the
right side along the far wall of the sample changer deck or after the last set
of cassettes already on the sample changer deck if the machine is in use.
5. Click the green start button at the top of the main window to begin
counting.
 CAUTION: Do not use the system’s DVD writer while the
instrument is counting. Using the DVD writer while the
instrument is counting may interfere with the operation
of the sample changer.
HOWTO...
Tri-Carb® Reference Manual 33
How to Disassociate an Assay from a Protocol
1. In the Protocols tree of the main window, select the assay you would like to
disassociate from a protocol number.
Figure 2-12. Protocols Tree.
2. Right-click on the selected assay, and from the menu that is displayed,
select Disassociate Assay.
 Note: You can also disassociate an assay from a flag by selecting the
protocol flag and then selecting File | Disassociate Assay from
the menu bar.
CHAPTER 2
34 PerkinElmer,Inc.
How to Edit an Assay
1. Select File | Open Assay from the menu bar.
2. When the Open Assay window appears (Figure 2-13), select the assay you
would like to edit. Then click the Open button.
Figure 2-13. Open Assay Window.
HOWTO...
Tri-Carb® Reference Manual 35
3. When the Assay Definition window appears (Figure 2-14), edit the assay
parameters, as needed, in each of the seven tabs. Refer to page 103 for
more information about the Assay Definition window.
Figure 2-14 Assay Definition Window.
4. Save your changes by doing one of the following:
 If you would like to save the assay with the same name, click the OK
button.
OR
 If you would like to save the assay using a different name, click the
Save As button. The Save As window is displayed. In the window, enter
an appropriate name for the assay and click the Save button.
CHAPTER 2
36 PerkinElmer,Inc.
How to Print an Assay
1. Select File | Print Assays Main from the menu bar.
2. When the Select Assays to Print window appears (Figure 2-15), select the
assay you would like to print and click the Open button.
Figure 2-15. Select Assays to Print Window.
3. When the Print window appears, select the appropriate print parameters
and click the OK button. A list of the Assay Parameters, Count Conditions,
Count Corrections, and Reports defined for the assay will print.
How to Manually Print a Report
1. In the Protocols tree of the main window, select the report icon ( ) that
you would like to print. The Output window is displayed.
2. In the Output window, select the print icon( ). The report of interest will
print once the icon is selected.
HOWTO...
Tri-Carb® Reference Manual 37
How to Link a Quench Set to a Sample Nuclide
 Note: For information on setting up a Quench Standards Assay, refer
to page 39. For 2810TR models, setting up a Quench Standards
assay requires the single/dual color-corrected DPM option.
1. Select Libraries | Sample Nuclides from the menu bar.
2. When the Sample Nuclides window appears (Figure 2-16), locate the
sample nuclide in the list and then click one of the Quench Set buttons for
the nuclide.
Select the Quench Set: Low button if you are counting one nuclide in one
counting region; select the Quench Set: Medium button if you are counting
a second radionuclide in a separate region; and select the Quench Set:
High button if you are counting a third radionuclide in a third region.
Figure 2-16. Sample Nuclides Window.
Quench Set
Buttons
CHAPTER 2
38 PerkinElmer,Inc.
3. After clicking a Quench Set button, the Quench Standards window will
appear (Figure 2-17). In the window, select the name of the quench set you
would like to link to the sample nuclide and then click OK.
The name of the quench set you selected should appear in the Sample
Nuclides Library window (Figure 2-16, page 37) on the Quench Set button.
Repeat steps 1 through 3 to link another quench set to the sample nuclide.
Figure 2-17. Quench Standards Window.
HOWTO...
Tri-Carb® Reference Manual 39
How to Set Up a Quench Standards Assay
The tasks listed below are required when performing a Quench Standards
assay.
 Note: For 2810TR models, setting up a Quench Standards assay
requires the single/dual color-corrected DPM option.
1. Normalize and calibrate the instrument, if necessary. See Chapter 6 for
more information.
2. Do one of the following:
 Create a new assay, choosing Quench Standards as the assay type
(page 100). Then define the new assay parameters.
Or
 Open an existing Quench Standards assay and edit or review the assay,
if necessary.
3. When you are finished creating/editing the assay definition, save the assay
in the Assays folder of the C:PackardTriCarb directory.
4. Associate (link) the assay parameters with a protocol number in the
Protocols tree and attach the corresponding protocol flag to the first
cassette to be counted.
5. Load the cassette(s) with vials and then load the instrument with cassettes.
6. Click the green start button at the top of the main window to begin
counting.
 Note: When using the Low Level count mode (if available), you must
NOT use quench standards that have been purged free of oxygen
with an inert gas. The oxygen quenching in unpurged standards
facilitates discrimination between background and true beta
events. Unpurged standards are available from PerkinElmer.
CHAPTER 2
40 PerkinElmer,Inc.
How to Run an Alpha/Beta Assay
 Note: The Alpha/Beta Discrimination feature is not available on the
2810TR and is optional on the 2910TR, 3110TR, and
3180TR/SL.
The following tasks are required when performing an Alpha/Beta Assay.
1. Normalize and calibrate the instrument, if necessary. See Chapter 6 for
more information.
2. Define and run an Alpha/Beta Standards assay (page 41 or page 98), if
necessary, to establish the optimal pulse decay discriminator value.
3. Define an alpha/beta nuclide in the Alpha/Beta Nuclides Library
(page 147). Choose the Standard Set from the Alpha/Beta Standards
Library (page 150) to use the discriminator setting from the Standard Set.
4. Do one of the following:
 Create a new assay, choosing Alpha/Beta as the assay type (page 95).
On the Count Conditions tab of the Assay Definition window, click the
Name button to select the desired alpha/beta radionuclide name from
the Alpha/Beta Nuclides Library. Define the other available parameters
as desired.
Or
 Open an existing Alpha/Beta assay and edit or review the assay, if
necessary.
5. When you are finished creating/editing the assay definition, save the assay
in the Assays folder of the C:PackardTriCarb directory.
6. Associate (link) the assay parameters with a protocol number in the
Protocols tree and attach the corresponding protocol flag to the first
cassette to be counted.
7. Load the cassette(s) with vials and then load the instrument with cassettes.
8. Click the green start button at the top of the main window to begin
counting.
HOWTO...
Tri-Carb® Reference Manual 41
How to Run an Alpha/Beta Standards Assay
 Note: The Alpha/Beta Discrimination feature is not available on the
2810TR and is optional on the 2910TR, 3110TR, and
3180TR/SL.
The following tasks are required to run the Alpha/Beta Standards Assay. Two
standards are required: a pure beta emitter and a pure alpha emitter.
1. Select Libraries | Alpha/Beta Standards from the menu bar.
2. In the Alpha Beta Standards window, click the Add button and enter a
name for the new Alpha/Beta Standard Set.
3. From the Discriminator Type drop-down field, select Automatic if your
pure alpha and pure beta standards have an activity of at least
50,000 CPM each. If the activity in either standard is less than
50,000 CPM, select Manual from the Discriminator Type field.
 Note: In the Manual acquisition mode, you will need to enter a
discriminator start and discriminator stop value within a 0-255
value range and the increment value for the discriminator.
 Note: The remaining fields in the Alpha Beta Standards window are
for information only. These fields contain either default values
or values computed by the instrument.
4. Do one of the following:
 Create a new assay, choosing Alpha/Beta Standards as the assay type
(page 98). On the Count Conditions tab of the Assay Definition window,
click the Name button to select the desired alpha/beta radionuclide
name from the Alpha/Beta Standards Library (page 150). Define the
other available parameters as desired. See page 103 for more
information on defining assays.
Or
 Open an existing Alpha/Beta Standards assay and edit or review the
assay, if necessary.
 Note: High Sensitivity or Low Level Count mode are not available
when counting Alpha/Beta Standards, but these modes will be
available when counting samples in an Alpha/Beta assay
5. When you are finished creating/editing the assay definition, save the assay
in the Assays folder of the C:PackardTriCarb directory.
CHAPTER 2
42 PerkinElmer,Inc.
6. Associate (link) the assay parameters with a protocol number in the
Protocols tree and attach the corresponding protocol flag on a cassette.
7. Place the pure beta emitter standard in cassette position 1 and the pure
alpha emitter standard in cassette position 2.
8. Load the cassette into the instrument.
9. Click the green start button at the top of the main window.
10. After counting is complete, the misclassification (or spillover) curve and the
optimum discriminator value will be stored for the Standard Set. Review
the curve and discriminator setting, if desired, from the Alpha/Beta
Standards Library (page 150).
HOWTO...
Tri-Carb® Reference Manual 43
How to Use the Replay Feature
 Note: The Replay™ feature is optional on the 2810TR. This feature
comes standard on the 2910TR, 3110TR, and 3180TR/SL.
1. In the main window, click on the Replay tab. The Replay tree is displayed
in the tab.
2. In the Replay tree, select the results file that you would like to analyze. A
listing of the results files is displayed in the Replay tree using filenames
with the following syntax:
User id  assay_name  yyyymmdd_militarytime
 Tip: To verify that you have the latest view of the Replay files,
select View | Refresh from the menu bar.
3. Right-click on the selected filename and select Open for Replay.
4. When the Replay window appears (Figure 2-18, page 44), do the following:
 In the Replay Conditions tab, define the parameters, as needed, for
reanalysis of sample data.
 In the Report Definition tab, define any printed or electronic reports
you would like to generate for the reanalysis of sample data.
 Click the Replay button. Any reports that you defined are generated
after the reanalysis of data occurs.
 Note: Data processed with the Replay feature does not change the
original data. All Replay changes are temporary.
CHAPTER 2
44 PerkinElmer,Inc.
Figure 2-18. Replay Conditions Tab of the Replay Window.
HOWTO...
Tri-Carb® Reference Manual 45
How to Calculate Radioactive Decay
1. Select Tools | Nuclide Decay from the menu bar. The Radionuclide Decay
window appears (Figure 2-19).
Figure 2-19. Radionuclide Decay Window.
2. From the Radionuclide drop-down field, select the nuclide of interest. If the
nuclide of interest does not appear in the list, select Manual to manually
enter the nuclide half-life information in the Half-Life and Half-Life Units
fields.
3. Enter the appropriate information in the Reference DPM Activity,
Reference Date, and Reference Time fields.
4. Click the Start Decay button.
The current DPM for the nuclide is displayed in the Current DPM Activity
field.
CHAPTER 2
46 PerkinElmer,Inc.
Tri-Carb® Reference Manual 47
Chapter 3
System Software
The QuantaSmart program is the Windows interface for the Tri-Carb Liquid
Scintillation Analyzer series of instruments. This innovative tool allows you to
take advantage of all of the instrument features via a main software window.
The main window uses standard Windows conventions and allows you to
easily access and control all of the system features and capabilities. It also
provides you with graphical representations of existing assay associations in
the Protocols tree and data analyses in the Output Report and SpectraView™
windows. Any assay data that is collected may be reanalyzed, without
recounting samples using the system’s optional Replay feature.
The system utilizes a set of Libraries to store standard and sample
information. For systems equipped with the single/dual label DPM feature,
the Sample Nuclides Library allows you the flexibility of selecting and using
the same standards sets in any number of different assays. The library also
provides you with a convenient means of saving and reusing specific nuclide
parameters and sample counting regions.
Software Security
Security is built into the QuantaSmart software. The same software cannot be
loaded on multiple systems due to this security feature.
CHAPTER 3
48 PerkinElmer,Inc.
Main Window
The main software window (Figure 3-1) is comprised of several functional
elements that allow you access to all instrument features.
Figure 3-1. Main Window.
The following information discusses the elements of the main window:
 SpectraView Window (page 49)
 Instrument Status Bar (page 51)
 Protocols Tree (page 52)
 Replay Tree (page 55)
 Output Window (page 56)
 Menu Bar (page 57)
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 49
SpectraView Window
The SpectraView window (Figure 3-2) is part of the main window. The
SpectraView window displays a two-dimensional, real-time view of the
spectrum for the current sample. The spectrum is updated every six seconds
and can be displayed using either linear or logarithmic axes. It provides you
with information about the status of a sample count and the region settings
used in the counting procedure. A number of display options are available for
the spectrum and are defined in this window.
Figure 3-2. SpectraView Window.
The SpectraView window is typically used for the following:
 Monitoring sample counting
 Detecting spectral distortions or compressions resulting from sample
quench
 Observing the effect of altering the counting region settings
 Viewing the spectrum in linear or logarithmic scale
The X-axis of the spectral display represents the energy (in keV) for each
counting channel up to the defined endpoint of the sample spectrum. The
Y-axis represents the gross counts for the current sample. The regions
settings are graphically displayed using solid line boxes.
CHAPTER 3
50 PerkinElmer,Inc.
The following information describes the fields in the SpectraView window:
 Sample Number – This field indicates the Sample Number of the sample
currently counting.
 Count Time – This field indicates the length of time each sample will be
counted, as defined in the assay.
 Pre-count Delay – This field indicates the length of time each sample will
remain in the instrument’s detection chamber prior to counting.
 Note: This process is dark adaption. It allows luminescence emanating
from a vial to dissipate prior to counting. Luminescence can
distort the count statistics of the sample and is particularly
problematic with low count rate samples.
 Acquisition Time – This is the length of time the current sample has been
counting.
 Apply AEC – If tSIE/AEC is selected as the quench indicating parameter
for the assay, the sample spectrum can be displayed with or without AEC
(Automatic Efficiency Correction). Activating this feature will adjust the
region settings to account for sample quench. Select this checkbox to
display the sample spectrum using AEC.
 keV Full Scale – This field allows you to alter the scale used to display the
X-axis of the sample spectrum. Enter a number in this field if you would
like to manually define the endpoint for the X-axis. By using the Auto
setting, the X-axis will automatically adjust between zero and the upper
level region limit defined in this window.
 Counts Full Scale – This field allows you to alter the scale used to display
the Y-axis of the sample spectrum. Enter a number in this field if you
would like to manually define the count maximum for the Y-axis. By
using the Auto setting, the Y-axis will automatically adjust to the count
rate of the sample.
 Log keV Scale – This radio button allows you to display the X-axis using
a logarithmic keV scale. The default setting plots the X-axis using a linear
scale.
 Log keV/Log Counts Scale – This radio button allows you to display both
the keV and counts using a logarithmic scale. This setting is for visual
representation only.
 Linear keV Scale – This radio button allows you to view the X-axis using a
linear scale. This is the default setting for the X-axis scale.
 Regions – These represent the Upper Level and Lower Level counting
region limits for regions A, B, and C.
 CPM – These fields display the CPM (Counts Per Minute) for Regions A,
B, and C. The gross counts per channel cumulatively equal the counts per
region. The gross counts per region are divided by the count time to
calculate CPM (Counts Per Minute) for each region.
 2S% – This represents the gross uncertainty in a count value (with 95%
confidence limits).
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 51
Instrument Status Bar
The Instrument Status Bar (Figure 3-3) contains a series of graphical buttons
that allow you to start and stop the instrument and end a current protocol.
The status bar also provides you with information regarding the status of a
current protocol and displays instrument messages.
The status bar is located at the top of the main window.
Figure 3-3. Instrument Status Bar.
The buttons in the status bar of the main software window allow you to start,
stop, and end a counting procedure.
Start/Resume Counting Button
Click this button to begin a counting protocol.
Figure 3-4. Start/Resume Counting Button.
Pause/Stop Counting Button
Click this button to end the current protocol and stop the instrument.
Figure 3-5. Pause/Stop Counting Button.
End Protocol Button
Click this button to end a counting protocol and continue counting the next
protocol.
Figure 3-6. End Protocol Button.
CHAPTER 3
52 PerkinElmer,Inc.
Connect Button
Click this button to re-establish the computer’s connection to the instrument.
Figure 3-7. Connect Button.
Protocols Tree
The Protocols tree, displayed in the Protocols tab (Figure 3-8), displays 15 to
60 available protocol flag numbers (depending on the Tri-Carb model and
configuration) and the assay names that you have associated with the flag
numbers. Existing reports are also shown in this view. During protocol
execution, this window uses different symbols to provide a visual indication of
which protocol is being executed, which protocols have remaining cycles, and
which protocols have been completed.
Figure 3-8. Protocols Tree.
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 53
Symbols Used in the Protocols Tree
When a sample counting cycle begins, the protocol flag associated with this
assay will change from white or yellow to green.
Figure 3-9. Protocols Tree Symbols.
The Priostat flag (Figure 3-10) is the only flag in the Protocols tree that is
normally red. It will turn from red to green when the Priostat protocol begins.
Figure 3-10. Priostat Flag.
A yellow flag (Figure 3-11) in the Protocols tree indicates that at least one
count cycle for this assay has been completed but that the protocol has
remaining count cycles. This yellow flag will also appear if you interrupt the
protocol for a Priostat operation.
Figure 3-11. Yellow Flag.
A checkered flag (Figure 3-12) is displayed when all the count cycles for the
assay are completed.
Figure 3-12. Checkered Flag.
A red prohibitory symbol (Figure 3-13) indicates that a protocol cannot be
counted. Typically, this will result when no assay is associated with a protocol
flag number that the instrument has detected. This symbol could also indicate
that an assay file has been deleted.
Figure 3-13. Red Prohibitory Symbol.
CHAPTER 3
54 PerkinElmer,Inc.
A yellow prohibitory symbol (Figure 3-14) indicates that data analysis cannot
be performed. Typically, this will result when an appropriate standard set is
missing from the Nuclides Library or has been modified in the library but not
recounted after the changes were made.
Figure 3-14. Yellow Prohibitory Symbol.
The page symbol (Figure 3-15) indicates that a report has been defined for this
assay. The report name appears next to this symbol in the Protocols tree.
Figure 3-15. Page Symbol.
A white flag (Figure 3-16) indicates an inactive protocol. If no assay name
appears adjacent to this flag, it is available to be associated to an assay.
Figure 3-16. White Flag.
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 55
Replay Tree
The Replay tree, displayed in the Replay tab (Figure 3-17), displays a
directory of folders containing previously collected data that can be reanalyzed
using different data reduction conditions without recounting the samples.
 Note: The Replay feature is optional on the 2810TR. This feature
comes standard on the 2910TR, 3110TR, and 3180TR/SL.
Figure 3-17. Replay Tree.
The Replay files have a fixed data storage path, but data can be exported to
user-defined paths.
CHAPTER 3
56 PerkinElmer,Inc.
Output Window
The Output window (Figure 3-18) is a multipurpose window that displays
various data items and assay parameters. It is a copy of the printer report, if
one is selected. The output is defined in the Report Definition (page 115) and
the Report Output tabs (page 124) of the Assay Definition window.
Figure 3-18 shows a typical Output window display.
Figure 3-18. Output Window.
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 57
Menu Bar
At the top of the QuantaSmart main window is the menu bar (Figure 3-19).
The menu bar consists of the File, Run, View, Libraries, Tools, IPA,
Diagnostics, Window, and Help menus. Each menu offers a variety of
selections and commands.
 Note: Some menu items represent optional features. If your instrument
is not equipped with the optional features, the corresponding
menu items will be disabled.
Figure 3-19. Menu Bar.
File Menu
To display the File menu (Figure 3-20), select File from the menu bar.
Figure 3-20. File Menu.
CHAPTER 3
58 PerkinElmer,Inc.
New Assay
The File | New Assay menu item allows you to define a new assay. Selecting
New Assay opens the Select Assay Type window (Figure 3-21). Refer to
page 89 for information on the different assay types.
Figure 3-21. Select Assay Type.
Once you select an assay type and click OK, the Assay Definition window
appears (page 103), where you can define the parameters for the new assay.
Open Assay
Select File | Open Assay to open the Open Assay window. From this window,
you can select and open an existing assay.
Associate Assay
Before selecting File | Associate Assay, you must select a protocol flag from
the Protocols tree. Once you have selected a protocol flag, select
File | Associate Assay to open the Associate Assay window, where you can
select an assay to associate (link) with the protocol flag number.
Alternatively, you can associate an assay by right-clicking on a protocol flag
number and selecting Associate Assay from the menu that is displayed.
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 59
Disassociate Assay
Before selecting File | Disassociate Assay, you must select a protocol flag
from the Protocols tree. Once you have selected a protocol flag number, you
can disassociate the assay linked to the protocol flag number by selecting
File | Disassociate Assay. The name of the assay will disappear from the
Protocols tree.
Alternatively, you can disassociate an assay by right-clicking on a protocol
flag number and selecting Disassociate Assay from the menu that is
displayed.
Data Paths
Select File | Data Paths to open the Data Paths window (Figure 3-22). From
this window, you can specify the location for storing data files generated by
the assay. You can choose this location based on additional applications that
you want to use to process the data or simply to comply with a data storage
strategy in your facility. You can also choose to save data to the default
directory by selecting the Use Default Output Data Path checkbox.
Figure 3-22. Data Paths Window.
 Note: This information is stored on a per protocol basis, as indicated
in the title bar of the Data Paths window (Figure 3-22).
CHAPTER 3
60 PerkinElmer,Inc.
Print Setup
Select File | Print Setup to open the Print Setup window. From this window,
you can define print parameters.
Print Assays
Select File | Print Assays to open the Select Assays to Print window. From this
window, you can select an assay and then print a list of parameters defined for
that assay.
Exit
Select File | Print Setup to close the QuantaSmart program.
Run Menu
To display the Run menu (Figure 3-23), select Run from the menu bar.
Figure 3-23. Run Menu.
Pause/Stop Counting
Select Run | Pause/Stop Counting to end the current protocol and stop the
instrument. This command is also available when you click the red button
(Figure 3-5) on the Instrument Status Bar.
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 61
Start/Resume Counting
Select Run | Start/Resume Counting to have the instrument load the sample
currently at the detector position and begin counting. This command is also
available when you click the green button (Figure 3-4) on the Instrument
Status Bar.
Next Sample
Select Run | Next Sample to have the instrument unload any sample in the
detector, move the next sample into the detector, and start counting.
Next Protocol
Select Run | Next Protocol to have the instrument unload any sample in the
detector and abort the current protocol. The instrument searches for the next
cassette with an active protocol flag and begins running that protocol.
End Protocol
Select Run | End Protocol to have the instrument unload any sample in the
detector and end the protocol; data reduction continues until data from the
last counted sample is reported. Then the system begins counting the next
protocol. This command is also available when you click the checkered button
(Figure 3-6) on the Instrument Status Bar.
Forward
Select Run | Forward to have the instrument unload any sample in the
detector and move the sample changer in a counterclockwise direction.
Reverse
Select Run | Reverse to have the instrument unload any sample in the
detector and move the sample changer in a clockwise direction.
Group Priostat
This menu item allows you to count a set of high priority samples
immediately, while temporarily interrupting the current protocol. Refer to
page 170 for more information.
Stop Group
This menu item terminates counting of the Priostat (priority) samples, and
resumes counting of the interrupted samples.
CHAPTER 3
62 PerkinElmer,Inc.
Sample Priostat
 Note: The Sample Priostat feature is not available on the 2810TR, is
optional on the 2910TR, and comes standard on the 3110TR and
3180TR/SL.
Sample Priostat (page 171) is a special interrupt mode that allows you to:
 preview sample count rates,
 determine optimal counting conditions for variable and constant quench
samples,
 identify an unknown nuclide in a sample, and
 determine the duration of luminescence.
The Sample Priostat menu item has the following options:
Decay
This menu item allows you to assess the duration of luminescence in a
radioactive sample via a decay histogram.
SPC Decay
This menu item allows you to assess the duration of luminescence in a non-
radioactive, luminescent sample via a decay histogram.
Identify Nuclide
This menu item allows you to identify an unknown nuclide in your sample
using the Quench Indicating Parameters SIS and tSIE.
Optimize Regions
This menu item allows you to optimize sample counting regions to provide the
highest figure of merit for Normal count mode.
Reverse Region
This menu item allows you to re-optimize sample counting region settings for
a sample and determine the equivalent unquenched region settings for
variable quench samples.
Low Level Optimize
This menu item allows you to optimize sample counting regions to provide the
highest figure of merit for Low Level count mode.
Alpha/Beta Preview
This menu item allows you to view the sample spectrum in the Alpha/Beta
mode and approximate the activity for a sample containing both an Alpha and
a Beta emitting nuclide.
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 63
Normal Preview
The menu item allows you to view the sample spectrum and approximate the
activity for a sample using Normal count mode.
Low Level Preview
This menu item allows you to view the sample spectrum and approximate the
activity for a sample using Low Level count mode.
View Menu
To display the View menu (Figure 3-24), select View from the menu bar.
Figure 3-24. View Menu.
The View menu has the following options:
Instrument Status Bar
Select View | Instrument Status Bar to view or hide the Instrument Status
Bar and its buttons (Figure 3-3). The Instrument Status Bar is located
beneath the menu bar in the main window.
Status Bar
Select View | Status Bar to view or hide the Status Bar located at the bottom
of the main window.
Refresh Trees
Select View | Refresh Trees to update the Protocols and Replay trees in the
main window. The Replay tree is automatically updated whenever a new
assay is counted. The Refresh Trees command is only necessary to clear
report entries from the tree displays.
CHAPTER 3
64 PerkinElmer,Inc.
Libraries Menu
To display the Libraries menu (Figure 3-25), select Libraries from the menu
bar.
Figure 3-25. Libraries Menu.
Radionuclide information is stored and accessed in the Nuclide Library. The
Nuclide Library consists of the Sample Nuclides and Quench Standards
Libraries. If your instrument is equipped with an Alpha/Beta option,
Alpha/Beta Nuclides Library and Alpha/Beta Standards Library will also be
included.
The Sample Nuclides Library allows you to specify and save nuclide names,
counting region limits, and quench sets for sample nuclides. Up to three
nuclides can be defined for each entry to support the counting of multiple
nuclides. These sample nuclide parameters are typically specified as part of
the assay definition process and may be edited as needed.
The Quench Standards Library (requires the single/dual/color DPM option on
the 2810TR) is comprised of quench sets, with each quench set containing
individual quench standards. The data from the quench standards is used to
construct quench curves for calculating DPM (Disintegrations Per Minute) in
DPM assays. Quench Standards are counted once, and the entire spectrum for
each quench standard is stored independent of assay information. This allows
you to select and use the same quench set in any number of assays and
construct a quench curve for each sample at the time the sample is counted.
The Alpha/Beta Standards and Alpha/Beta Nuclides Libraries (not available
on the 2810TR) are used in the same manner as the Quench Standards and
Sample Nuclides Libraries. The information stored in these libraries is
relevant only when performing Alpha/Beta assays, where both an Alpha-
emitting and a Beta-emitting radionuclide are quantified independently
within the same sample vial.
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 65
Sample Nuclides
Select Libraries | Sample Nuclides to display the Sample Nuclides window
(Figure 3-26), where you can enter information into and retrieve information
from the Sample Nuclides Library. The Sample Nuclides Library is a
repository of information regarding sample nuclides.
Figure 3-26. Sample Nuclides Window.
For assays, use the Sample Nuclides Library to define and save nuclide names
and counting region limits for radionuclides. You can also select a quench set
for each sample nuclide using the Quench Set buttons in this window (Figure
3-26).
In Replay (page 187), use the Sample Nuclides Library to select a radionuclide
for the purpose of reanalyzing sample data.
 Note: The fields that are enabled in the Sample Nuclides Library will
be different when accessed from different locations within the
software. The list of nuclides that are displayed is dependent on
the assay type, the nuclide, and the number of quench sets
associated with the nuclide. See the Libraries chapter (Chapter
5) for information on adding a sample nuclide name.
Quench Set
Buttons
CHAPTER 3
66 PerkinElmer,Inc.
Quench Standards
Select Libraries | Quench Standards to display the Quench Standards
window (Figure 3-27). From this window, you can define a new quench set to
be stored or select a quench standards set for DPM assays or data reanalysis
in Replay. The data from these quench sets is used to construct quench curves
for determining sample DPM (Disintegrations Per Minute).
 Note: The Name, Max keV, and DPM fields are the only entries
required when entering a new quench set. The remaining
parameters stored in the library are retrieved from the assay
parameters that were selected when defining an assay. The
number of standards (up to twenty) is determined automatically
during counting.
For additional information, refer to the Libraries chapter (Chapter 5).
Figure 3-27. Quench Standards Window.
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 67
Alpha/Beta Nuclides
 Note: The Alpha/Beta Discrimination feature is not available on the
2810TR and is optional on the 2910TR, 3110TR, and
3180TR/SL.
Select Libraries | Alpha/Beta Nuclides to display the Alpha Beta Nuclides
window (Figure 3-28), where you can add information to or delete information
from the Alpha/Beta Nuclides Library. The Alpha/Beta Nuclides Library is a
repository of information regarding previously defined Alpha and Beta
emitting nuclides counted in Alpha/Beta assays.
For additional information, refer to the Libraries chapter (Chapter 5).
Figure 3-28. Alpha Beta Nuclides Window.
CHAPTER 3
68 PerkinElmer,Inc.
Alpha/Beta Standards
Select Libraries | Alpha/Beta Standards to display the Alpha Beta Standards
window (Figure 3-29), where you can add information to or delete information
from the Alpha/Beta Standards Library. The Alpha/Beta Standards Library is
a repository of information regarding previously defined standards used in
Alpha/Beta assays.
For additional information, refer to the Libraries chapter (Chapter 5).
Figure 3-29. Alpha Beta Standards Window.
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 69
Tools Menu
To display the Tools menu (Figure 3-30), select Tools from the menu bar.
Figure 3-30. Tools Menu.
CHAPTER 3
70 PerkinElmer,Inc.
Nuclide Decay
Select Tools | Nuclide Decay to open the Radionuclide Decay window (Figure
3-31), where you can calculate the Disintegrations Per Minute (DPM) of
radionuclides.
Figure 3-31. Radionuclide Decay Window.
The following information describes the fields and buttons in the Radionuclide
Decay window (Figure 3-31).
 Radionuclide – From this drop-down field, select a radionuclide for
calculating decay. If you select a radionuclide from this list, the half-life
and half-life units will be entered automatically in the corresponding
fields. If you select Manual from the Radionuclide field, you will need to
enter the half-life and half-life units for the radionuclide.
 Half-Life – If you selected a radionuclide from the Radionuclide field, the
half-life of that radionuclide will be displayed in Half-Life field. If you
selected Manual from the Radionuclide field, enter the half-life of the
radionuclide.
 Half-Life Units – If you selected a radionuclide from the Radionuclide
field, the half-life units of that radionuclide will be displayed in this field.
If you selected Manual from the Radionuclide field, enter the half-life
units of the radionuclide.
 Reference DPM Activity – Enter the Reference DPM Activity for the
radionuclide. This is the DPM of the radionuclide at the Reference Date.
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 71
 Reference Date – Enter the Reference Date of the radionuclide. This is
the date on which the radionuclide has the specified amount of activity.
 Reference Time – Enter the Reference Time for the radionuclide. This is
the time at which the radionuclide has the specified amount of activity.
 Note: Typically, this parameter is defined only for radionuclides with
very short half-lives.
 Current DPM Activity – This field displays the current DPM activity of the
radionuclide after the decay calculation has been performed. This value
will only be displayed after you have specified all of the parameters in the
current window and clicked the Start Decay button.
 Start Decay – Click this button after you have specified all of the
parameters in the current window. Once you click the Start Decay button,
the decay calculation is performed, and the current DPM activity will be
displayed in the Current DPM Activity field.
 Copy Activity – Click this button to copy the Reference DPM Activity. You
can then paste the activity into the DPM field of the Quench Standards
window.
Options
Select Tools | Options to open the Options window (Figure 3-32). From this
window, you can select a format for the Spectrum Files created in High
Sensitivity and Low Level Count Modes and activate the feature that allows
negative CPM and DPM reporting.
Figure 3-32. Options Menu.
CHAPTER 3
72 PerkinElmer,Inc.
Show Protocol Errors
Select Tools | Protocol Errors to display certain error messages that are
associated with an assay (Figure 3-33). You must select a protocol flag before
selecting the Protocol Errors command.
Figure 3-33. Show Protocol Errors.
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 73
Spectral Mapping
Select Tools | Spectral Mapping to view a three-dimensional spectral map for
a sample and quench standards (Figure 3-34). This option is used for single-
label DPM samples. You must select a protocol flag before selecting the
Spectral Mapping command
Figure 3-34. Spectral Mapping.
CHAPTER 3
74 PerkinElmer,Inc.
Spectrum Unfolding
Select Tools | Spectrum Unfolding to view a three-dimensional display of the
separated, individual spectra for each nuclide in a Dual-label or Full
Spectrum (FS) DPM sample counting procedure (Figure 3-35).
Figure 3-35. Spectrum Unfolding.
Spectraview Report Size
Select Tools | Spectraview Report Size to choose the size of the spectrum
graph in the report output file. This size selection is a global change, affecting
all report output files; the size selection does not affect the size of spectrum
graph on the screen (displayed in the SpectraView window).
SYSTEMSOFTWARE
Tri-Carb® Reference Manual 75
Configure Barcode Reader
 Note: The bar code reader is optional for all Tri-Carb models.
Select Tools | Configure Barcode Reader to open the Bar Code Scanner
Configuration window (Figure 3-36).
Figure 3-36. Bar Code Scanner Configuration Window.
The following information describes the fields and buttons in the Bar Code
Scanner Configuration window.
 Enable Barcode Reader checkbox – Select this checkbox to make the bar
code reader available for all assays. When this checkbox is selected, the
Barcode Settings area (page 105) of the Assay Parameters tab is
available (not grayed out). You should only select this checkbox if you
have the Bar Code Reader option installed.
 Port field – Select the serial port that the bar code reader is using.
If you are unsure which COM port the reader is using, you can locate the
COM port number in Windows Device Manager. In the Device Manager
window, locate the COM number for ATEN USB to Serial Cable (expand
the Ports category).
 Stop Bits, Parity, Baud, Data Bits fields – The default selections in these
fields match the settings in the bar code reader configuration file and do
not need to be modified.
CHAPTER 3
76 PerkinElmer,Inc.
 Retries field – In this field, you can specify the maximum number of times
the system should re-read one bar code label if the reader fails to read the
label successfully. Once the bar code label is read successfully, the next
sample is read.
 Maximum Read Time (sec.) field – In this field, you can specify the
maximum number of seconds the system needs to pause to read a
bar code. Once the reader successfully reads a label, the next sample is
read. The reader does not wait until the time is up. For example, if the
reader reads a label in 0.10 seconds, the next sample will immediately be
scanned; the reader will not wait the whole 1 second before scanning the
next sample.
 On Error field – In this field, you can determine the system’s response to
missing bar codes or bar codes that are unreadable.
 Select Ignore to have the system continue processing the current assay
and not log the error.
 Select Abort to have the system stop processing the current assay when
a bar code error occurs. The system will then move on to the next assay.
 Select Log Error and Continue to have the system record the error
condition in the report and proceed with the assay.
 Set Defaults button – Click this button to populate the fields with the
recommended default settings.
 OK button – Click this button to save your bar code configuration settings
and close the window.
 Cancel button – Click this button to close the window without saving your
changes.
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual
8860039 c tri carb reference manual

More Related Content

What's hot

xray diffraction instrumentation
xray diffraction instrumentationxray diffraction instrumentation
xray diffraction instrumentationBindu Kshtriya
 
Thermal detectors
Thermal detectorsThermal detectors
Thermal detectorsnaseefa
 
Radiation detection and measurement
Radiation detection and measurement Radiation detection and measurement
Radiation detection and measurement Shahid Younas
 
X ray diffraction ppt
X ray diffraction pptX ray diffraction ppt
X ray diffraction pptVanithaVaniN1
 
Nuclearmedicine radiation therapy
Nuclearmedicine radiation therapy Nuclearmedicine radiation therapy
Nuclearmedicine radiation therapy ChienNguyenNgoc2
 
Calibration and limitation of Instruments
Calibration and limitation of InstrumentsCalibration and limitation of Instruments
Calibration and limitation of Instrumentsmahbubul hassan
 
Relaxation in NMR
Relaxation in NMR Relaxation in NMR
Relaxation in NMR RM42
 
RADIATION DETECTION AND MEASUREMENT ppt 2.pptx
RADIATION DETECTION AND MEASUREMENT ppt 2.pptxRADIATION DETECTION AND MEASUREMENT ppt 2.pptx
RADIATION DETECTION AND MEASUREMENT ppt 2.pptxSrinath Chowdary
 
Ultrasonic applications
Ultrasonic applicationsUltrasonic applications
Ultrasonic applicationsOmar Salah
 
X-ray spectroscopy
X-ray spectroscopyX-ray spectroscopy
X-ray spectroscopyVinit Gohel
 
Introduction and applications of FT- IR spectroscopy
Introduction and applications of FT- IR spectroscopyIntroduction and applications of FT- IR spectroscopy
Introduction and applications of FT- IR spectroscopyKANDASAMY K
 
Radiation Protection and Safety of Radiation Sources: International Basic Saf...
Radiation Protection and Safety of Radiation Sources: International Basic Saf...Radiation Protection and Safety of Radiation Sources: International Basic Saf...
Radiation Protection and Safety of Radiation Sources: International Basic Saf...Omar Alonso Suarez Oquendo
 
Atomic absorption spectroscopy (AAS)
Atomic absorption spectroscopy (AAS)Atomic absorption spectroscopy (AAS)
Atomic absorption spectroscopy (AAS)SarmisthaPanwar
 
X ray powder diffraction
X ray powder diffractionX ray powder diffraction
X ray powder diffractionAmit Shah
 
Guidelines for X-Ray Equipments.pptx
Guidelines for X-Ray Equipments.pptxGuidelines for X-Ray Equipments.pptx
Guidelines for X-Ray Equipments.pptxDr. Dheeraj Kumar
 
Fourier Transform Infrared Spectroscopy Ftir
Fourier Transform Infrared Spectroscopy FtirFourier Transform Infrared Spectroscopy Ftir
Fourier Transform Infrared Spectroscopy FtirGamal Abdel Hamid
 

What's hot (20)

xray diffraction instrumentation
xray diffraction instrumentationxray diffraction instrumentation
xray diffraction instrumentation
 
Thermal detectors
Thermal detectorsThermal detectors
Thermal detectors
 
Radiation detection and measurement
Radiation detection and measurement Radiation detection and measurement
Radiation detection and measurement
 
X ray diffraction ppt
X ray diffraction pptX ray diffraction ppt
X ray diffraction ppt
 
Nuclearmedicine radiation therapy
Nuclearmedicine radiation therapy Nuclearmedicine radiation therapy
Nuclearmedicine radiation therapy
 
Calibration and limitation of Instruments
Calibration and limitation of InstrumentsCalibration and limitation of Instruments
Calibration and limitation of Instruments
 
Language of Analytical Chemistry 21.8.2021
Language of Analytical  Chemistry 21.8.2021Language of Analytical  Chemistry 21.8.2021
Language of Analytical Chemistry 21.8.2021
 
Relaxation in NMR
Relaxation in NMR Relaxation in NMR
Relaxation in NMR
 
RADIATION DETECTION AND MEASUREMENT ppt 2.pptx
RADIATION DETECTION AND MEASUREMENT ppt 2.pptxRADIATION DETECTION AND MEASUREMENT ppt 2.pptx
RADIATION DETECTION AND MEASUREMENT ppt 2.pptx
 
التحليل الوزني--Gravimetric Analysis
التحليل الوزني--Gravimetric Analysis التحليل الوزني--Gravimetric Analysis
التحليل الوزني--Gravimetric Analysis
 
Ultrasonic applications
Ultrasonic applicationsUltrasonic applications
Ultrasonic applications
 
X-ray spectroscopy
X-ray spectroscopyX-ray spectroscopy
X-ray spectroscopy
 
IR spectroscopy
IR spectroscopyIR spectroscopy
IR spectroscopy
 
Introduction and applications of FT- IR spectroscopy
Introduction and applications of FT- IR spectroscopyIntroduction and applications of FT- IR spectroscopy
Introduction and applications of FT- IR spectroscopy
 
Radiation Protection and Safety of Radiation Sources: International Basic Saf...
Radiation Protection and Safety of Radiation Sources: International Basic Saf...Radiation Protection and Safety of Radiation Sources: International Basic Saf...
Radiation Protection and Safety of Radiation Sources: International Basic Saf...
 
Atomic absorption spectroscopy (AAS)
Atomic absorption spectroscopy (AAS)Atomic absorption spectroscopy (AAS)
Atomic absorption spectroscopy (AAS)
 
X ray powder diffraction
X ray powder diffractionX ray powder diffraction
X ray powder diffraction
 
Guidelines for X-Ray Equipments.pptx
Guidelines for X-Ray Equipments.pptxGuidelines for X-Ray Equipments.pptx
Guidelines for X-Ray Equipments.pptx
 
Ir spectroscopy slide
Ir spectroscopy slideIr spectroscopy slide
Ir spectroscopy slide
 
Fourier Transform Infrared Spectroscopy Ftir
Fourier Transform Infrared Spectroscopy FtirFourier Transform Infrared Spectroscopy Ftir
Fourier Transform Infrared Spectroscopy Ftir
 

Similar to 8860039 c tri carb reference manual

Vortex vn2000 manual badger meter flow meters hot tap insertion meter
Vortex vn2000 manual badger meter flow meters hot tap insertion meterVortex vn2000 manual badger meter flow meters hot tap insertion meter
Vortex vn2000 manual badger meter flow meters hot tap insertion meterENVIMART
 
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa JaminanKTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa JaminanPinjamanTanpaJaminan
 
Ventilator Manual
Ventilator ManualVentilator Manual
Ventilator ManualMimi Kotner
 
Dynasonics u500w manual badger meter ultrasonic cold water meter_product line 2
Dynasonics u500w manual badger meter ultrasonic cold water meter_product line 2Dynasonics u500w manual badger meter ultrasonic cold water meter_product line 2
Dynasonics u500w manual badger meter ultrasonic cold water meter_product line 2ENVIMART
 
1640 99 004 6 18.04.2011 tattoo-star usermanual
1640 99 004 6 18.04.2011 tattoo-star usermanual1640 99 004 6 18.04.2011 tattoo-star usermanual
1640 99 004 6 18.04.2011 tattoo-star usermanualgalex85
 
Elcometer 355 Coating Thickness Gauge Standard Model instructions
Elcometer 355 Coating Thickness Gauge Standard Model instructionsElcometer 355 Coating Thickness Gauge Standard Model instructions
Elcometer 355 Coating Thickness Gauge Standard Model instructionsDFT TECH
 
scarlett2i4-user-guide.pdf
scarlett2i4-user-guide.pdfscarlett2i4-user-guide.pdf
scarlett2i4-user-guide.pdfssusera78a1c
 
Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...
Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...
Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...ENVIMART
 
(Sm) aq07 tsbnser eng
(Sm) aq07 tsbnser eng(Sm) aq07 tsbnser eng
(Sm) aq07 tsbnser engislamrabie5
 
Coriolis rct1000 manual badger meter rct1000
Coriolis rct1000 manual badger meter rct1000Coriolis rct1000 manual badger meter rct1000
Coriolis rct1000 manual badger meter rct1000ENVIMART
 
Manual of RKI GX-2009 Download.pdf
Manual of RKI GX-2009 Download.pdfManual of RKI GX-2009 Download.pdf
Manual of RKI GX-2009 Download.pdfLivsonLima
 

Similar to 8860039 c tri carb reference manual (18)

In ultramat 23
In ultramat  23In ultramat  23
In ultramat 23
 
Jerome 431 manual
Jerome 431 manualJerome 431 manual
Jerome 431 manual
 
Service instructions
Service instructionsService instructions
Service instructions
 
Oxymat 61 o2 analyzer
Oxymat 61  o2 analyzerOxymat 61  o2 analyzer
Oxymat 61 o2 analyzer
 
Vortex vn2000 manual badger meter flow meters hot tap insertion meter
Vortex vn2000 manual badger meter flow meters hot tap insertion meterVortex vn2000 manual badger meter flow meters hot tap insertion meter
Vortex vn2000 manual badger meter flow meters hot tap insertion meter
 
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa JaminanKTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
 
Ventilator Manual
Ventilator ManualVentilator Manual
Ventilator Manual
 
Dynasonics u500w manual badger meter ultrasonic cold water meter_product line 2
Dynasonics u500w manual badger meter ultrasonic cold water meter_product line 2Dynasonics u500w manual badger meter ultrasonic cold water meter_product line 2
Dynasonics u500w manual badger meter ultrasonic cold water meter_product line 2
 
1640 99 004 6 18.04.2011 tattoo-star usermanual
1640 99 004 6 18.04.2011 tattoo-star usermanual1640 99 004 6 18.04.2011 tattoo-star usermanual
1640 99 004 6 18.04.2011 tattoo-star usermanual
 
Elcometer 355 Coating Thickness Gauge Standard Model instructions
Elcometer 355 Coating Thickness Gauge Standard Model instructionsElcometer 355 Coating Thickness Gauge Standard Model instructions
Elcometer 355 Coating Thickness Gauge Standard Model instructions
 
ISCO-3700-Manual.pdf
ISCO-3700-Manual.pdfISCO-3700-Manual.pdf
ISCO-3700-Manual.pdf
 
scarlett2i4-user-guide.pdf
scarlett2i4-user-guide.pdfscarlett2i4-user-guide.pdf
scarlett2i4-user-guide.pdf
 
Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...
Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...
Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...
 
St3300655 lw
St3300655 lwSt3300655 lw
St3300655 lw
 
(Sm) aq07 tsbnser eng
(Sm) aq07 tsbnser eng(Sm) aq07 tsbnser eng
(Sm) aq07 tsbnser eng
 
80_11_80001_CloudSpeed_1K_Product_Spec_v1
80_11_80001_CloudSpeed_1K_Product_Spec_v180_11_80001_CloudSpeed_1K_Product_Spec_v1
80_11_80001_CloudSpeed_1K_Product_Spec_v1
 
Coriolis rct1000 manual badger meter rct1000
Coriolis rct1000 manual badger meter rct1000Coriolis rct1000 manual badger meter rct1000
Coriolis rct1000 manual badger meter rct1000
 
Manual of RKI GX-2009 Download.pdf
Manual of RKI GX-2009 Download.pdfManual of RKI GX-2009 Download.pdf
Manual of RKI GX-2009 Download.pdf
 

More from Mahbubul Hassan

#1 guidelines for expression of stable isotope ratio results
#1 guidelines for expression of stable isotope ratio results#1 guidelines for expression of stable isotope ratio results
#1 guidelines for expression of stable isotope ratio resultsMahbubul Hassan
 
#1 irms guide finalv3.1 web +++++
#1 irms guide finalv3.1 web +++++#1 irms guide finalv3.1 web +++++
#1 irms guide finalv3.1 web +++++Mahbubul Hassan
 
#1 isotope guidelines coplen 2011
#1 isotope guidelines   coplen 2011#1 isotope guidelines   coplen 2011
#1 isotope guidelines coplen 2011Mahbubul Hassan
 
#1 stable isotope deltas tiny yet robust signatures in nature
#1 stable isotope deltas tiny yet robust signatures in nature#1 stable isotope deltas tiny yet robust signatures in nature
#1 stable isotope deltas tiny yet robust signatures in natureMahbubul Hassan
 
#2 determination of o 18 of water and c-13 of dic using simple modification o...
#2 determination of o 18 of water and c-13 of dic using simple modification o...#2 determination of o 18 of water and c-13 of dic using simple modification o...
#2 determination of o 18 of water and c-13 of dic using simple modification o...Mahbubul Hassan
 
13 c analyses of calcium carbonate comparison between gb and ea
13 c analyses of calcium carbonate comparison between gb and ea13 c analyses of calcium carbonate comparison between gb and ea
13 c analyses of calcium carbonate comparison between gb and eaMahbubul Hassan
 
13 doc analysis technique - isotope tracer tech inc
13 doc analysis technique - isotope tracer tech inc13 doc analysis technique - isotope tracer tech inc
13 doc analysis technique - isotope tracer tech incMahbubul Hassan
 
2016 new organic reference materials for h, c, n measurements supporting in...
2016 new organic reference materials for h, c, n measurements   supporting in...2016 new organic reference materials for h, c, n measurements   supporting in...
2016 new organic reference materials for h, c, n measurements supporting in...Mahbubul Hassan
 
Absolute isotopic scale for deuterium analysis of natural waters
Absolute isotopic scale for deuterium analysis of natural watersAbsolute isotopic scale for deuterium analysis of natural waters
Absolute isotopic scale for deuterium analysis of natural watersMahbubul Hassan
 
Acid fumigation preparing c-13 solid samples for organic analysis
Acid fumigation   preparing c-13 solid samples for organic analysisAcid fumigation   preparing c-13 solid samples for organic analysis
Acid fumigation preparing c-13 solid samples for organic analysisMahbubul Hassan
 
Acid fumigation of soils to remove co3 prior to c 13 isotopic analysis
Acid fumigation of soils to remove co3 prior to c 13 isotopic analysisAcid fumigation of soils to remove co3 prior to c 13 isotopic analysis
Acid fumigation of soils to remove co3 prior to c 13 isotopic analysisMahbubul Hassan
 
Carbonate removal by acid fumigation for measuring 13 c
Carbonate removal by acid fumigation for measuring 13 cCarbonate removal by acid fumigation for measuring 13 c
Carbonate removal by acid fumigation for measuring 13 cMahbubul Hassan
 
Carbonate removal from coastal sediments for the determination of organic c a...
Carbonate removal from coastal sediments for the determination of organic c a...Carbonate removal from coastal sediments for the determination of organic c a...
Carbonate removal from coastal sediments for the determination of organic c a...Mahbubul Hassan
 
Forensic application of irms
Forensic application of irmsForensic application of irms
Forensic application of irmsMahbubul Hassan
 
Improved method for analysis of dic in natural water samples
Improved method for analysis of dic in natural water samplesImproved method for analysis of dic in natural water samples
Improved method for analysis of dic in natural water samplesMahbubul Hassan
 
Introduction to isotopic calculation
Introduction to isotopic calculationIntroduction to isotopic calculation
Introduction to isotopic calculationMahbubul Hassan
 
Isotope ratio mass spectrometry minireview
Isotope ratio mass spectrometry   minireviewIsotope ratio mass spectrometry   minireview
Isotope ratio mass spectrometry minireviewMahbubul Hassan
 
Measurement of slap2 and gisp 17 o and proposed vsmow slap normalization
Measurement of slap2 and gisp 17 o and proposed vsmow slap normalizationMeasurement of slap2 and gisp 17 o and proposed vsmow slap normalization
Measurement of slap2 and gisp 17 o and proposed vsmow slap normalizationMahbubul Hassan
 
Method of sampling and analysis of 13 c dic in groundwaters
Method of sampling and analysis of 13 c dic in groundwatersMethod of sampling and analysis of 13 c dic in groundwaters
Method of sampling and analysis of 13 c dic in groundwatersMahbubul Hassan
 

More from Mahbubul Hassan (20)

#1 guidelines for expression of stable isotope ratio results
#1 guidelines for expression of stable isotope ratio results#1 guidelines for expression of stable isotope ratio results
#1 guidelines for expression of stable isotope ratio results
 
#1 irms guide finalv3.1 web +++++
#1 irms guide finalv3.1 web +++++#1 irms guide finalv3.1 web +++++
#1 irms guide finalv3.1 web +++++
 
#1 isotope guidelines coplen 2011
#1 isotope guidelines   coplen 2011#1 isotope guidelines   coplen 2011
#1 isotope guidelines coplen 2011
 
#1 stable isotope deltas tiny yet robust signatures in nature
#1 stable isotope deltas tiny yet robust signatures in nature#1 stable isotope deltas tiny yet robust signatures in nature
#1 stable isotope deltas tiny yet robust signatures in nature
 
#2 determination of o 18 of water and c-13 of dic using simple modification o...
#2 determination of o 18 of water and c-13 of dic using simple modification o...#2 determination of o 18 of water and c-13 of dic using simple modification o...
#2 determination of o 18 of water and c-13 of dic using simple modification o...
 
13 c analyses of calcium carbonate comparison between gb and ea
13 c analyses of calcium carbonate comparison between gb and ea13 c analyses of calcium carbonate comparison between gb and ea
13 c analyses of calcium carbonate comparison between gb and ea
 
13 doc analysis technique - isotope tracer tech inc
13 doc analysis technique - isotope tracer tech inc13 doc analysis technique - isotope tracer tech inc
13 doc analysis technique - isotope tracer tech inc
 
2013 sk~1
2013 sk~12013 sk~1
2013 sk~1
 
2016 new organic reference materials for h, c, n measurements supporting in...
2016 new organic reference materials for h, c, n measurements   supporting in...2016 new organic reference materials for h, c, n measurements   supporting in...
2016 new organic reference materials for h, c, n measurements supporting in...
 
Absolute isotopic scale for deuterium analysis of natural waters
Absolute isotopic scale for deuterium analysis of natural watersAbsolute isotopic scale for deuterium analysis of natural waters
Absolute isotopic scale for deuterium analysis of natural waters
 
Acid fumigation preparing c-13 solid samples for organic analysis
Acid fumigation   preparing c-13 solid samples for organic analysisAcid fumigation   preparing c-13 solid samples for organic analysis
Acid fumigation preparing c-13 solid samples for organic analysis
 
Acid fumigation of soils to remove co3 prior to c 13 isotopic analysis
Acid fumigation of soils to remove co3 prior to c 13 isotopic analysisAcid fumigation of soils to remove co3 prior to c 13 isotopic analysis
Acid fumigation of soils to remove co3 prior to c 13 isotopic analysis
 
Carbonate removal by acid fumigation for measuring 13 c
Carbonate removal by acid fumigation for measuring 13 cCarbonate removal by acid fumigation for measuring 13 c
Carbonate removal by acid fumigation for measuring 13 c
 
Carbonate removal from coastal sediments for the determination of organic c a...
Carbonate removal from coastal sediments for the determination of organic c a...Carbonate removal from coastal sediments for the determination of organic c a...
Carbonate removal from coastal sediments for the determination of organic c a...
 
Forensic application of irms
Forensic application of irmsForensic application of irms
Forensic application of irms
 
Improved method for analysis of dic in natural water samples
Improved method for analysis of dic in natural water samplesImproved method for analysis of dic in natural water samples
Improved method for analysis of dic in natural water samples
 
Introduction to isotopic calculation
Introduction to isotopic calculationIntroduction to isotopic calculation
Introduction to isotopic calculation
 
Isotope ratio mass spectrometry minireview
Isotope ratio mass spectrometry   minireviewIsotope ratio mass spectrometry   minireview
Isotope ratio mass spectrometry minireview
 
Measurement of slap2 and gisp 17 o and proposed vsmow slap normalization
Measurement of slap2 and gisp 17 o and proposed vsmow slap normalizationMeasurement of slap2 and gisp 17 o and proposed vsmow slap normalization
Measurement of slap2 and gisp 17 o and proposed vsmow slap normalization
 
Method of sampling and analysis of 13 c dic in groundwaters
Method of sampling and analysis of 13 c dic in groundwatersMethod of sampling and analysis of 13 c dic in groundwaters
Method of sampling and analysis of 13 c dic in groundwaters
 

Recently uploaded

Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxjana861314
 

Recently uploaded (20)

Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
 

8860039 c tri carb reference manual

  • 1. Tri-Carb® Liquid Scintillation Analyzer (Models B2810TR, B2910TR, B3110TR, and B3180TR/SL) Reference Manual PerkinElmer Singapore Pte Ltd 28 Ayer Rajah Crescent #04-01 Singapore 139959 Tel (65) 6868 1688, Fax (65) 6779 6567 Website: www.perkinelmer.com Email: info@perkinelmer.com Manual Reorder Number 8860039 Rev. C Printed in U.S.A. Copyright © 2011, PerkinElmer, Inc. All Rights Reserved
  • 2. Trademark Acknowledgement PerkinElmer® and Tri-Carb® are registered trademarks of PerkinElmer, Inc. IPA™ is a trademark of PerkinElmer, Inc. Ultima Gold™ is a trademark of PerkinElmer, Inc. QuantaSmart™ is a trademark of PerkinElmer, Inc. Replay™ is a trademark of PerkinElmer, Inc. SpectraView™ is a trademark of PerkinElmer, Inc. Varisette™ is a trademark of PerkinElmer, Inc. Teflon® is a registered trademark of E.I. DuPont Company. Lotus® is a registered trademark of Lotus Development Corporation. Microsoft® and Windows® are registered trademarks of Microsoft Corporation.
  • 3. PerkinElmer, Inc. i Explanation of Symbols Signification des symboles Erklärung der Symbole Symbol Symbol Symboles Beschreibung Alternating current Courant alternatif Wechselstrom Protective Earth Ground Mise à la terre Schutz - Erdung On (Supply) Off (Supply) Marche (alimentation) Arrêt (alimentation) Ein Aus Caution - Risk of Electrical Shock Attention: Risque de choc électrique Vorsicht - Gefährliche Spannung Caution (refer to accompanying documents) Attention: Voir les documents ci-joints Vorsicht - Siehe Begleitinformation Serial Out Sortie série Serieller Ausgang Printer Imprimante Drucker Monitor Moniteur Bildschirm
  • 4. ii PerkinElmer,Inc. Fuse Label / Current Warning Étiquette d’advertissement relatif au type et au courant du fusible Sicherung/ Stromstärke Warning High Leakage Current, Ensure Proper Grounding Avertissement: Courant de fuite élevé, Mettre correctement à la terre Warnung: Hoher Leckstrom- Ordnungsgemäße Erdung sicherstellen Warning Laser Product Avoid Direct Exposure to Beam Avertissement: Appareil à laser exposition au faisceau dangereuse Warnung: Laserstrahlung, nicht in den lichtstrahl blicken, unsicht bare laserstrahlung. Pinch Hazard Pincement Hasard Vorsicht- Verletzungsgefahr! Hot Surface Surface Chaude Heiße Oberfläche Waste Electrical & Electronic Equipment Dispositions Relatives à La Composition Des Équipements Électriques et Électroniques Überschüssige elektrische und elektronische Ausrüstung Symbol Symbol Symboles Beschreibung 100, 120 VAC, 50/60 Hz, X amps 200, 220 VAC, 50 Hz, X amps ! Warning High Leakage Current, Ensure Proper Grounding
  • 5. PerkinElmer, Inc. iii Regulatory Compliance This equipment must be used only by authorized personnel, in a controlled laboratory environment. Refer all detailed questions to the PerkinElmer Operation and Reference manuals. This equipment must only be used with IEC listed accessories (computer, printer, monitor, etc.). RFI Compliance This equipment has been tested and found to comply with the limits of VFG 243, VDE 0871 and EN 50 082-1. Any changes or modifications not expressly approved by PerkinElmer could adversely affect compliance. Use only shielded interface cables with this equipment. If the instrument is received in a damaged condition, request an immediate inspection by the carrier and local technical service representative. PerkinElmer is not responsible for damage occurring during transit. However, PerkinElmer will assist in ensuring a satisfactory settlement from the carrier. Upon receipt of all damage/inspection reports, PerkinElmer will arrange for either instrument repair or replacement. For proper ventilation of this equipment, a distance of 15cm must be maintained from this unit to any other surface.  Warning: If the equipment is used in a manner not specified herein, the protection provided by the equipment may be impaired.
  • 6. iv PerkinElmer,Inc. Ce matériel doit être utilisé seul par Personnel autorisé, a commandé dans un l’environnement du Laboratoire. Reportez à toutes questions détaillées au PerkinElmer Opération et manuels de la Référence. Reportez à tout service, a formé à un PerkinElmer le personnel du service seul. Ce matériel, faut seul est utilisé avec IEC a Inscrit des Accessoires. (Ordinateur, Imprimeur, Moniteur, [etc]) RFI Acquiescement Ce matériel a été testé et a trouvé conformer à avec les limites de VFG 243, VDE 0871 and EN 50 082-1. Tous changements ou modifications pas expressément approuvé Instrumente par PerkinElmer pouvait, [incorrigible] effectue l’acquiescement. Utilisez seul a protégé des câbles de l’interface avec ce matériel. Si l’instrument est reçu dans une condition endommagée, demande une inspection immédiate par le porteur et représentant du service local technique. PerkinElmer n’est pas responsable pour dégât produit pendant passage. De quelque manière que, PerkinElmer aidera dans assurer un règlement satisfaisant du porteur. Rapporte sur reçu de toute inspection du dégât, PerkinElmer arrangera la réparation de l’instrument a l’un ou l’autre ou remise en place. Pour ventilation adéquate de ce matériel, une distance de 15cm doit être maintenue, de cette unité à toute autre surface.  Avertissement: Si cet appareil est utilisé d'une façon non spécifiée dans le présent document, la protection qu'il procure pourrait s'en trouver altérée.
  • 7. PerkinElmer, Inc. v Bitte nur gleichwertige Ersatzsicherungen des angegebenen Typs verwenden. Das Gerät erst nach der Einarbeitung durch einen von PerkinElmer geschulten Vertreter benutzen. Reparatur- und Servicearbeiten sind nur von durch PerkinElmer geschulten Personen durchzuführen. An das Gerät darf nur IEC-registriertes Zubehör angeschlossen werden (Computer, Drucker, Monitor usw.). Funkentstörung Das Gerät wurde getestet und entspricht den Vorschriften von VFG 243, VDE 0871 and EN 50 082-1. Durch ƒnderungen oder Umbauten, die nicht ausdrücklich von PerkinElmer genehmigt wurden, wird die Zulassung u.U. hinfällig. Mit diesem Gerät nur isolierte Schnittstellenkabel verwenden. Weist das Gerät bei der Entgegennahme Schäden auf, verlangen Sie bitte eine sofortige Inspektion durch den Spediteur und den zuständigen Kundendienstvertreter. PerkinElmer ist für Transportschäden nicht haftbar, setzt sich jedoch gern dafür ein, mit dem Spediteur eine befriedigende Lösung auszuarbeiten. Nach Eingang aller Schadens- und Inspektionsberichte veranlaßt PerkinElmer entweder die Reparatur oder den Umtausch des Geräts. Für ordnungsgemäße Ventillation darf dieses Gerät nicht näher als 15cm von einer Wand entfernt aufgestellt werden.  Warnung: Wird das Gerät auf eine Weise benutzt, die hierin nicht angegeben wird, kann der vom Gerät gebotene Schutz beeinträchtigt werden.
  • 9. PerkinElmer, Inc. vii Table of Contents Chapter 1 About the Tri-Carb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Instrument Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Electrical Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Environmental Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Energy Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chi-Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Sample Changer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 External Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Observed Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Sample Cassettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Protocol Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Bar Code Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Sample Vials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Tri-Carb System Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Recommended Safety Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Customer Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Moving the Tri-Carb Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Decontamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Preventative Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Overview of System Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 System Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Front of Tri-Carb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Back of Tri-Carb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Right Side of the Tri-Carb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
  • 10. viii PerkinElmer,Inc. Chapter 2 How To.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 How to Get Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 How to Perform Self-Normalization and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 SNC for an Instrument without Super Low Level Counting Ability . . . . . . . . . . . . . . . . . . . . . . 21 SNC for an Instrument with Super Low Level Counting Ability (with BGO Detector Guard) . . . . 23 How to Perform an Assay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 How to Create a Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 How to Associate an Assay to a Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 How to Count Samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 How to Disassociate an Assay from a Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 How to Edit an Assay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 How to Print an Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 How to Manually Print a Report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 How to Link a Quench Set to a Sample Nuclide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 How to Set Up a Quench Standards Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 How to Run an Alpha/Beta Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 How to Run an Alpha/Beta Standards Assay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 How to Use the Replay Feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 How to Calculate Radioactive Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Chapter 3 System Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 SpectraView Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Instrument Status Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Protocols Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Replay Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Output Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Menu Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 File Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Run Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Libraries Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Tools Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 IPA Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Diagnostics Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Window Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Help Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Spectral Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Spectral Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Spectrum Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 SpectraView Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Printed Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Electronic Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
  • 11. PerkinElmer, Inc. ix Chapter 4 Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Assay Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 CPM Assays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 DPM Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 FS DPM Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Direct DPM Assays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Alpha/Beta Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Alpha/Beta Standards Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Quench Standards Assays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 SPC Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Defining an Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Assay Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Count Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Count Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Report Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Report Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Special Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Worklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Chapter 5 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Sample Nuclides Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Quench Standards Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Alpha/Beta Nuclides Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Alpha/Beta Standards Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Chapter 6 Normalization, Calibration, and IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 When to Perform These Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Defining an Instrument Performance Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 IPA Charts & Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 IPA Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Performing Self-Normalization and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 SNC for an Instrument without Super Low Level Counting Ability . . . . . . . . . . . . . . . . . . . . . 165 SNC for Super Low Level Counting (with BGO detector guard) . . . . . . . . . . . . . . . . . . . . . . . 167
  • 12. x PerkinElmer,Inc. Chapter 7 Advanced Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Priostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Group Priostat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Sample Priostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Replay Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Replay Conditions Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Report Definition Tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Report Output Tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Special Files Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Worklist Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 High Sensitivity and Low Level Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Super Low Level Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Alpha/Beta Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Tandem Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Bar Code Reader Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Bar Code Size and Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Chapter 8 Maintenance and Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Preventative Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Inspection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Storing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Back Up the Hard Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Folder Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Power Failure Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Power Fail Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Connect to Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Troubleshooting Operational Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 Troubleshooting IPA Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Troubleshooting Warnings and Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
  • 13. PerkinElmer, Inc. xi Appendix A Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Background Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Background Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 Chi-Square Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 DPM (Disintegrations Per Minute) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 Figure of Merit Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 Half-life Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 IPA Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 LCR (Low Count Reject) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 LUM (% Luminescence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 Radioactivity Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 2 Sigma % (%2s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Radionuclide Decay Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 % Reference (% Ref) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Appendix B Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Appendix C Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Low Level Counting Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Burst Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 High Sensitivity and Low Level Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Operational Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 High Sensitivity/Low Level Count Mode Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Precautions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Alpha/Beta Counting Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Pulse Decay Analysis (PDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Optimum Pulse Decay Discriminator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
  • 15. Tri-Carb® Reference Manual 1 Chapter 1 About the Tri-Carb The Tri-Carb® liquid scintillation counter relies on the interaction between a beta-emitting radionuclide and a scintillator, a component of the scintillation cocktail. The scintillator converts ionizing radiation from the radionuclide into photons of light (scintillation). The intensity of the light produced during scintillation is proportional to the initial energy of the beta particle. By placing a vial containing a radionuclide and scintillation cocktail into a dark detection enclosure (the instrument’s detector), the scintillation counter can measure photon intensity. A photosensitive device amplifies the light emitted from the sample vials and the amplified signal is converted to pulses of electrical energy and registered as counts. The counts accumulated during this process are sorted into separate channels, with the amplitude of the signal determining the energy channel (keV) into which the counts are sorted. The counts that are collected and sorted are used to generate the sample spectrum. Using this spectrum, the system can perform various count correction calculations and determine Counts Per Minute (CPM) for each sample. To calculate Disintegrations Per Minute (DPM), the instrument will determine the counting efficiency of each sample. Using a quench curve, the instrument compares the quench index for the samples to the quench index for the quench standards to determine sample counting efficiency and subsequently calculate DPM for the unknown samples. Figure 1-1 provides an overview of this process:
  • 16. CHAPTER 1 2 PerkinElmer,Inc. Figure 1-1. Overview of the Scintillation Counting Process. The remainder of this chapter discusses the following topics about the Tri- Carb system:  Instrument Specifications (page 3)  Tri-Carb System Configurations (page 9)  Recommended Safety Procedures (page 11)  Customer Service (page 12)  Moving the Tri-Carb Instrument (page 12)  Decontamination (page 13)  Preventative Maintenance (page 13)  Overview of System Hardware (page 14)
  • 17. ABOUT THE TRI-CARB Tri-Carb® Reference Manual 3 Instrument Specifications All Tri-Carb instrument specifications are developed using sources whose activity is referenced to NIST source activity and PerkinElmer reference methods. Depending on the placement of the instrument in your laboratory, some specifications may differ from those stated in this chapter. The specifications for your Tri-Carb system are defined in the following sections. These specifications include the following:  Physical Dimensions (page 4)  Electrical Requirements (page 4)  Environmental Requirements (page 4)  Energy Range (page 5)  Efficiency (page 5)  Chi-Square (page 5)  Detectors (page 5)  Sample Changer (page 6)  External Standard (page 6)  Observed Background (page 6)  Sample Cassettes (page 7)  Protocol Flags (page 8)  Bar Code Reader (page 8)  Shielding (page 8)  Sample Vials (page 9)
  • 18. CHAPTER 1 4 PerkinElmer,Inc. Physical Dimensions Electrical Requirements Instrument: Refrigeration Unit (optional on all models except 3180TR/SL): Environmental Requirements Height: 19 inches (48 cm) Width: 40.6 inches (103 cm) Depth: 32.36 inches (82 cm) Weight: 470 pounds (214 kg) without refrigeration unit 515 pounds (234 kg) with refrigeration unit 60 Hz 50 Hz Voltage (VAC): 100, 120 200, 240 Amperage (Amps): 2.5 1.8 Installation Category II, Pollution Degree 2 Fuse (Amps): 4.0 (type S) (5 X 20 mm) 2.5 (type T) (5 X 20 mm) Wattage (Watts): 500 500 60 Hz 50 Hz Voltage (VAC): 117 240 Amperage (Amps): 2.5 1.5 Fuse (Amps): Circuit Breaker Circuit Breaker Wattage (Watts): 500 500 Operating Ambient Temperature: 15°C to 35°C (59°F to 95°F) Operating Relative Humidity: 30% to 85% (Non-condensing; system for indoor use only) Altitude: Up to 2000 meters (6561 feet)
  • 19. ABOUT THE TRI-CARB Tri-Carb® Reference Manual 5 Energy Range This table represents the preset regions for the following nuclides: You can define preset regions for any nuclide in the Sample Nuclides Library. Refer to Sample Nuclides Library (page 140) for more information. Efficiency For Tritium in the range 0–18.6 keV, the minimum acceptable efficiency is 60% (58% for 3180TR/SL). For Carbon-14 in the range 0-156 keV, the minimum acceptable efficiency is 95% (94% for 3180TR/SL). These values were generated by PerkinElmer at our Singapore facility. The exact values obtained at other instrument locations may vary. Counting Efficiency is a parameter measured as part of Instrument Performance Assessment (IPA® ).  Note: The IPA Charts & Tables feature is optional on the 2810TR and 2910TR and comes standard on the 3110TR and 3180TR/SL. Chi-Square Chi-Square acceptable range: 7.63 to 36.19, performed as 20, 0.5 minute repeat counts, and tested at the 99% confidence limits. Chi-Square is a parameter measured as part of Instrument Performance Assessment (IPA).  Note: The IPA Charts & Tables feature is optional on the 2810TR and 2910TR and comes standard on the 3110TR and 3180TR/SL. Detectors Two diametrically opposed high performance photomultiplier tubes (PMTs) are coupled to a light-tight, reflective optical chamber. The detectors are located below the sample changer at the rear of the instrument. Preset Regions (keV) Tritium 0–18.6 Carbon-14 0–156 Phosphorus-32 5–1700 Iodine-125 0–70
  • 20. CHAPTER 1 6 PerkinElmer,Inc. Sample Changer The sample changer automatically moves the samples into position and loads them down into the detector for counting. After the count is completed, the sample is automatically unloaded, and the next sample is loaded. The sample changer typically moves the cassettes in a forward (counterclockwise) direction using a pair of synchronously driven transport belts. If necessary, these belts can run in the reverse (clockwise) direction, such as during recovery from a power failure. The instrument can hold up to (depending on the configuration):  408 large vials  720 small vials  720 4 mL vials The Varisette™ option allows you to count large vial and small vial samples in dedicated cassettes. The Varisette feature is optional on the 2810TR and comes standard on the 2910TR, 3110TR and 3180TR/SL. External Standard 133Ba, nominal less than 20μCi (for Tri-Carb models 2810TR, 2910TR, and 3110TR). 133Ba, nominal less than 1μCi (for Tri-Carb model 3180TR/SL). Observed Background Average values for Normal Count Mode: Tritium: 17.3 CPM Carbon-14: 24.3 CPM These values were generated by PerkinElmer at our Singapore facility. The exact values obtained at other instrument locations may vary.
  • 21. ABOUT THE TRI-CARB Tri-Carb® Reference Manual 7 Sample Cassettes Cassettes are the plastic racks that hold sample vials and allow them to be moved on the sample changer deck. Samples are placed into cassettes that accommodate either standard or small vials without adapters (4 mL vials require cassettes with adapters). The standard vial cassette can accommodate up to 12, 15–20 mL vials, and the mini-vial cassettes up to 18, 6–7 mL mini- vials. A protocol flag, which you attach to the cassette, identifies the protocol and assay conditions that you have defined for use with your samples. The individual cassettes are identified by unique numbers (cassette IDs) located at the end of each cassette. The protocol flag and cassette ID are automatically read by the instrument to provide Positive Sample Identification (PID) when using Worklists. Figure 1-2. Sample Cassette.
  • 22. CHAPTER 1 8 PerkinElmer,Inc. Protocol Flags Protocol flags are numbered, plastic devices that contain an encoded, reflective metal that the instrument uses to identify the appropriate assay counting parameters for a set of samples. The counting parameters that the instrument uses correspond to the parameters that you define during the assay definition process (these are predefined by PerkinElmer for the Direct DPM assay). These assay parameters become a functional part of a protocol once you associate the assay to a protocol number. Prior to counting samples, you must attach the correct protocol flag (the protocol flag number to which you have associated the assay) to the first cassette to be counted. Be sure the protocol flag is in the reset position (Figure 1-2). When the protocol number is recognized, a reset flag indicates that the assay is being counted for the first time. If multiple cycles have been defined for the assay, the cycle counting starts over. The system will physically SET the flag after the cassette has been counted. Subsequent counting of the protocol is considered to be the following cycles of the same samples. You should RESET the protocol flag each time that you put new samples into the cassette(s). Bar Code Reader The 2D Bar Code Reader is an optional feature that provides automated sample tracking for the Tri-Carb system. To use the reader, a 2D bar code is placed on a sample’s vial cap, and the label is read before the sample is loaded. Refer to the following sections for more information about the Bar Code Reader option:  Configure Barcode Reader on page 75  Barcode Settings on page 105  Sample Name on page 135 (part of the Worklist tab description)  Bar Code Reader Option on page 200  Note: Linear 1D bar codes are also supported, provided that they can fit onto the top of a vial cap. Use the barcode reader’s software to configure the reader to accommodate linear 1D bar codes (see the software’s help for instructions). When you do this, you should also disable all other bar codes that are not used for maximum speed and efficiency. Shielding The detector assembly is surrounded by a minimum of 2 inches of lead.
  • 23. ABOUT THE TRI-CARB Tri-Carb® Reference Manual 9 Sample Vials Vials and caps must conform to the following sizes. Caps must not exceed the diameter of the vials. Tri-Carb System Configurations The following table shows the various configurations of the Tri-Carb instrument based on model number.  Note: In the table below, S = Standard, O = Optional, and NA = Not Available. Large Vials Minimum Maximum Vial Height: 58.4 mm 63.0 mm Vial Diameter: 26.0 mm 28.1 mm Cap Diameter: 22.0 mm  vial diameter Small Vials Minimum Maximum Vial Height: 53.0 mm 58.0 mm Vial Diameter: 14.5 mm 17.8 mm Cap Diameter: 13.0 mm  vial diameter 4 mL Vials Minimum Maximum Vial Height: 53.0 mm 58.0 mm Vial Diameter: 12.7 mm 14.5 mm Cap Diameter: 12.0 mm  vial diameter Tri-Carb Feature/Option 2810TR 2910TR 3110TR 3180TR/SL External computer S S S S QuantaSmart™ Software for Windows® XP operating system S S S S TR-LSC background electronics S S S S HSCM (High Sensitivity Count Mode) O O S NA ULLCM (Ultra Low Level Count Mode) NA O O S
  • 24. CHAPTER 1 10 PerkinElmer,Inc. BGO detector guard NA NA NA S Live spectral display and plotting S S S S Enhanced Security (21 CFR Part 11 Compatibility) NA O O O Refrigeration Unit O O O S 2D Bar Code Reader O O O O Sample numeric data screening S S S S Direct DPM S S S S Single/dual color-corrected DPM O S S S Triple Label DPM O O S S Varisette option O S S S Replay™ sample recall and reprocessing O S S S Group Priostat automatic priority interrupt S S S S Luminescence correction O O S S Single photon counting for bioluminescence assays S S S S Sample Priostat manual special function interrupt NA O S S Alpha/Beta discrimination NA O O O IPA Charts and Tables O O S S Worklist feature O O S S Number of user acquisition protocols with unlimited assays 15, 60 optional 30, 60 optional 60 60 Tri-Carb Feature/Option 2810TR 2910TR 3110TR 3180TR/SL
  • 25. ABOUT THE TRI-CARB Tri-Carb® Reference Manual 11 Recommended Safety Procedures To ensure personal safety and to maximize the life of the Tri-Carb instrument, do the following: 1. The AC power cord used to connect the Tri-Carb instrument to the AC Mains must be rated for the appropriate input voltage (see page 4 for voltage information). Make sure to use a grounded outlet. The system provides automatic recovery after power failure. Once the power cord is properly connected, the instrument can be turned on and off using the power switch on the right side of the instrument (Figure 1-5, page 17). The power switch also powers on and off the internal computer. 2. Power to the temperature control unit should NOT be supplied through a power strip. Connect the temperature control unit’s power cord only to a grounded wall outlet with the appropriate voltage (see page 4 for voltage information). 3. For proper ventilation of this equipment, a distance of 15 cm (5.9 in) must be maintained from this unit to any other surface. 4. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired. 5. Do not attempt to make internal adjustments or replacements in the Tri- Carb instrument. Servicing should only be performed by trained PerkinElmer service personnel. 6. Make sure all connections to the Tri-Carb instrument are secure. See page 17 and page 17 for information about Tri-Carb connections. 7. Do not operate the Tri-Carb instrument or its components in water or any other liquid or fluid. 8. Do not allow flammable materials to come in contact with the Tri-Carb instrument. 9. Keep the Tri-Carb instrument away from sources of radiation (X-ray equipment, radiation storage vaults, etc.). 10. Do not allow direct sunlight or unscreened fluorescent light to enter the sample changer. Direct sunlight affects the optical sensors within the sample changer and can cause erratic operation. Direct sunlight can also induce fluorescence within your samples, causing erratic results. 11. The Tri-Carb calibration sources contain 14C and 3H standards, and the Tri-Carb instrument also contains a Barium-133 source for use as an external standard. If it is necessary to dispose of these items, make sure to dispose of them according to Good Laboratory Practice (GLP).
  • 26. CHAPTER 1 12 PerkinElmer,Inc. If the Tri-Carb instrument appears damaged or unsafe, do not operate the instrument. The Tri-Carb may be unsafe if it exhibits any of the following conditions:  Shows visible damage.  Fails to perform the intended measurement.  Has been subjected to prolonged use or storage in unfavorable conditions (refer to Environmental Requirements on page 4 for proper operating conditions).  Has been subjected to severe transport stresses. If the Tri-Carb appears damaged or in need of repair, contact your PerkinElmer service technician. Customer Service Company Name and Address: PerkinElmer 710 Bridgeport Ave. Shelton, CT 06484 USA Telephone: (800) 762-4000 Internet: www.perkinelmer.com Supplies, accessories, and replacement parts can be ordered directly from PerkinElmer. To place an order for supplies and many replacement parts, request a free catalog or visit our website (www.perkinelmer.com). The most up-to-date information on part numbers, product brochures, spare parts, and application notes are located on the PerkinElmer website. Moving the Tri-Carb Instrument If it is necessary to move the Tri-Carb instrument a short distance, make sure to do the following:  Remove power to the Tri-Carb instrument.  Disconnect any cables that will be in the way when moving the instrument (see page 17 and page 17 for the location of Tri-Carb connectors).  Use a cart to transport the Tri-Carb instrument.  Use at least two people to lift the instrument onto the cart.  Use caution when transporting the Tri-Carb instrument on the cart.  When you have finished moving the instrument, position the Tri-Carb so that it is properly ventilated. There should be a distance of at least 15 cm (5.9 in) between the Tri-Carb and other surfaces.
  • 27. ABOUT THE TRI-CARB Tri-Carb® Reference Manual 13 Decontamination Decontamination of the system is considered a necessary precaution whenever shipping a potentially contaminated system (or parts from a potentially contaminated system) to another location.  For decontamination instructions, visit: http://www.perkinelmer.com/deconprocedure  To obtain a copy of the decontamination certificate, visit http://www.perkinelmer.com/deconcertificate If you have any questions about the decontamination process or certificate, contact your PerkinElmer service representative. Preventative Maintenance With the exception of inspection and cleaning, there are no preventative maintenance procedures that you should perform. For information on inspection and cleaning, refer to page 203 of Chapter 8.
  • 28. CHAPTER 1 14 PerkinElmer,Inc. Overview of System Hardware The following sections contain information about the Tri-Carb instrument’s hardware:  System Computer  Front of Tri-Carb (page 15)  Back of Tri-Carb (page 16)  Right Side of the Tri-Carb (page 17)  Right Side of the Tri-Carb (page 17) System Computer The system is controlled by an external Windows®-based computer. The standard laptop computer is configured with a DVD-drive and one hard drive. The computer contains 3 USB ports. All RS-232 communication occurs through one of the USB ports via a USB to RS-232 converter. The external computer and the instrument are connected with a USB cable. The system can be attached to a network using the external computer’s Ethernet port. Only IEC 60950 approved devices (monitors, printers, etc.) can be connected to the Tri-Carb instrument. The devices sold with your Tri-Carb instrument are IEC 60950 approved.
  • 29. ABOUT THE TRI-CARB Tri-Carb® Reference Manual 15 Front of Tri-Carb Figure 1-3 shows the front of the Tri-Carb Liquid Scintillation Analyzer. Figure 1-3. Front of Tri-Carb.  Note: The two USB ports located on the left side of the instrument are used for the external computer and the barcode reader . Bar Code Reader Adjustable Computer Support Arm External Computer (laptop) 2 USB Ports located on left side of instrument Power Switch, Power Connector, and Fuse Holder located on right side of instrument Adjustable Computer Support Arm Power Switch, Power Connector, and Fuse Holder located on right side of instrument 2 USB Ports located on left side of instrument External Computer (laptop)
  • 30. CHAPTER 1 16 PerkinElmer,Inc. Back of Tri-Carb Figure 1-4 shows the back of the Tri-Carb system—both with and without the refrigeration unit (optional on all models except the 3180TR/SL). Figure 1-4. Back of Tri-Carb. With Refrigeration Unit Refrigeration Unit Without Refrigeration Unit
  • 31. ABOUT THE TRI-CARB Tri-Carb® Reference Manual 17 Right Side of the Tri-Carb Figure 1-5 shows the location, on the right-hand side of the Tri-Carb, of the power switch, power connector, and fuse holder. Figure 1-5. Right Side View of Tri-Carb.  Note: Make sure to leave room on the right-hand side of the Tri-Carb so you can easily access the power switch. Replacing a Fuse The fuse holder is located on the right side of the Tri-Carb instrument (Figure 1-5). To replace a fuse, do the following: 1. Power off the Tri-Carb instrument and disconnect the power cord from the Tri-Carb power connector. Power Switch Power Connector Fuse Holder
  • 32. CHAPTER 1 18 PerkinElmer,Inc. 2. Insert a small screwdriver (or similar tool) between the power connector and the fuse holder (Figure 1-6). Then, carefully pull the fuse holder out of the instrument. Figure 1-6. Removing the Fuse Holder. 3. Remove and replace the fuse (or both fuses) in the fuse holder. Always replace a fuse with a new one of the same type (see Electrical Requirements on page 4 for the fuse type). 4. Insert the fuse holder back into the Tri-Carb instrument. Screwdriver Fuse Holder Power Connector
  • 33. Tri-Carb® Reference Manual 19 Chapter 2 How To... This chapter presents a quick overview of common tasks performed with the QuantaSmart™ software. The following tasks are discussed:  How to Get Started (page 20)  How to Perform Self-Normalization and Calibration (page 21)  How to Perform an Assay (page 24)  How to Create a Password (page 27)  How to Associate an Assay to a Protocol (page 29)  How to Count Samples (page 32)  How to Disassociate an Assay from a Protocol (page 33)  How to Edit an Assay (page 34)  How to Print an Assay (page 36)  How to Manually Print a Report (page 36)  How to Link a Quench Set to a Sample Nuclide (page 37)  How to Set Up a Quench Standards Assay (page 39)  How to Run an Alpha/Beta Assay (page 40)  How to Run an Alpha/Beta Standards Assay (page 41)  How to Use the Replay Feature (page 43)  How to Calculate Radioactive Decay (page 45)
  • 34. CHAPTER 2 20 PerkinElmer,Inc. How to Get Started When you are ready to begin a counting procedure, you will need to perform the following tasks:  Note: The USB cable must be connected to the external computer and the instrument before you begin. 1. Normalize and calibrate the instrument. See Normalization, Calibration, and IPA on page 155. 2. Select an assay type: Alpha/Beta, Alpha/Beta Standards, CPM Assay, DPM Single, DPM Dual, DPM Triple, FS DPM, Direct DPM, Quench Standards, or Single Photon Counting. See Assays on page 89.  Note: DPM Dual is optional on the 2810TR and comes standard on the 2910TR, 3110TR, and 3180TR/SL. DPM Triple is optional on the 2810TR and 2910TR and comes standard on the 3110TR and 3180TR/SL.  Note: If you obtain the Triple Label DPM assay as an option on the 2810TR then the Single/Dual Color-Corrected DPM option is also required. 3. For any DPM assay, except Direct DPM, create quench data. See page 91 for information on performing a DPM assay. 4. Define and save the new assay parameters. See Defining an Assay on page 103. 5. Associate (link) the assay parameters to a protocol. See How to Associate an Assay to a Protocol on page 29. 6. Attach the correct protocol flag to the first cassette to be counted and load the cassette(s) with samples. 7. Click the green start button at the top of the main window to begin counting.  CAUTION: Do not use the system’s DVD writer while the instrument is counting. Using the DVD writer while the instrument is counting may interfere with the operation of the sample changer.
  • 35. HOWTO... Tri-Carb® Reference Manual 21 How to Perform Self-Normalization and Calibration You can perform Self-Normalization and Calibration (SNC) for the following: an instrument without super low level counting ability and an instrument with super low level counting ability (page 23). SNC for an Instrument without Super Low Level Counting Ability 1. Select IPA | IPA Definition from the menu bar. In the IPA Definition window (Figure 2-1), define the IPA parameters (see page 157). Figure 2-1. IPA Definition Window. 2. Reset the SNC protocol flag to the reset position. To reset the flag, make sure the flag is all of the way to the left when the plug is on the left end of the cassette (Figure 2-11, page 32). 3. Load the purged, unquenched Carbon-14 standard into the first position of the cassette. This is at the same end as the protocol plug.
  • 36. CHAPTER 2 22 PerkinElmer,Inc.  CAUTION: Do not use the unpurged, Low Level standards to calibrate the instrument, even if the instrument is to be used in Low Level, High Sensitivity, or Super Low Level count mode. 4. Load the purged, unquenched Tritium standard into the second cassette position. 5. Load the purged background standard into the third cassette position. 6. Load the instrument with cassettes. 7. Click the green start button at the top of the main window to begin counting.  CAUTION: Do not use the system’s DVD writer while the instrument is counting. Using the DVD writer while the instrument is counting may interfere with the operation of the sample changer.
  • 37. HOWTO... Tri-Carb® Reference Manual 23 SNC for an Instrument with Super Low Level Counting Ability (with BGO Detector Guard) 1. Select IPA | IPA Definition from the menu bar. In the IPA Definition window (Figure 2-1), define the IPA parameters (see page 157). 2. Reset the SNC protocol flag to the reset position. To reset the flag, make sure the flag is all of the way to the left when the plug is on the left end of the cassette (Figure 2-11, page 32). 3. Load the purged, unquenched Carbon-14 standard into the first position of the cassette. This is at the same end as the protocol flag. 4. Load an empty vial into the second cassette position.  Note: The empty vial must be of the same type and material that will be used to count low level samples. 5. Load the purged, unquenched Tritium standard into the third cassette position. 6. Load the purged background standard into the fourth cassette position. 7. Load the instrument with cassettes. 8. Click the green start button at the top of the main window to begin counting.  Note: If you wish to re-normalize the system for a different sample counting vial, re-run SNC with only the new vial in position two of the SNC cassette. An SNC cassette with an appropriate vial in position two may precede any assay using different vial types.  CAUTION: Do not use the system’s DVD writer while the instrument is counting. Using the DVD writer while the instrument is counting may interfere with the operation of the sample changer.
  • 38. CHAPTER 2 24 PerkinElmer,Inc. How to Perform an Assay 1. Select File | New Assay from the menu bar. 2. In the Select Assay Type window (Figure 2-2), select an assay type and click OK. For more information on the different assay types, see page 89. Figure 2-2. Select Assay Type Window. 3. When the Assay Definition window appears, define the individual assay parameters, as needed, on each of the window’s seven tabs. Then click Save As and save the assay using a descriptive name. 4. In the Protocols tree of the main window (Figure 2-3), right-click on the protocol flag number that you would like to associate with the assay. From the menu that is displayed, select Associate Assay.  Note: You can also associate an assay with a flag by selecting a flag and then selecting File | Associate Assay from the menu bar.
  • 39. HOWTO... Tri-Carb® Reference Manual 25 Figure 2-3. Protocols Tree. 5. When the Associate Assay window appears (Figure 2-4), select the assay that you would like to associate with the protocol flag number. Click the Open button. Figure 2-4. Associate Assay Window.
  • 40. CHAPTER 2 26 PerkinElmer,Inc. 6. When the Data Paths window appears (Figure 2-5), do the following:  Enter a User ID for the assay.  Enter an Additional Header, if necessary.  Enter an Output Data Path, if you would like the data to be saved in a directory other than the default. In the example in Figure 2-5, the default path is C:PackardTriCarbResultsDefault14c_dpm Figure 2-5. Data Paths Window. 7. Attach (to the cassette) the appropriate protocol flag in the reset position (Figure 2-11, page 32). 8. Load the cassette(s) with samples. 9. Load the instrument with cassettes. 10. Click the green start button at the top of the main window to begin counting.  CAUTION: Do not use the system’s DVD writer while the instrument is counting. Using the DVD writer while the instrument is counting may interfere with the operation of the sample changer.
  • 41. HOWTO... Tri-Carb® Reference Manual 27 How to Create a Password 1. Select File | New Assay from the menu bar. The Select Assay Type window is displayed (Figure 2-6). From the list of assays, select the type of assay you would like to create and click OK. Figure 2-6. Select Assay Type Window. 2. When the Assay Definition window appears (Figure 2-7), select the Lock Assay checkbox on the Assay Parameters tab. The Password field is now enabled.
  • 42. CHAPTER 2 28 PerkinElmer,Inc. Figure 2-7. Assay Definition Window. 3. In the Password field, enter a descriptive password. 4. In the seven tabs of the Assay Definition window, define the individual assay parameters, as needed. Refer to page 103 for more information. 5. When you have completed the assay definition process, click the Save As button to save the assay. The password must be used to edit the assay after the assay is saved.
  • 43. HOWTO... Tri-Carb® Reference Manual 29 How to Associate an Assay to a Protocol 1. In the Protocols tree of the main window (Figure 2-8), right-click on the protocol flag number that you would like to associate with an assay. From the menu that is displayed, select Associate Assay.  Note: You can also associate an assay with a flag by selecting a flag and then selecting File | Associate Assay from the menu bar. Figure 2-8. Protocols Tree.
  • 44. CHAPTER 2 30 PerkinElmer,Inc. 2. When the Associate Assay window appears (Figure 2-9), select the assay that you would like to associate with the protocol flag number. Then click the Open button. Figure 2-9. Associate Assay Window.
  • 45. HOWTO... Tri-Carb® Reference Manual 31 3. When the Data Paths window appears (Figure 2-10), do the following:  Enter a User ID for the assay.  Enter an Additional Header, if necessary.  Enter an Output Data Path, if you are generating either an RTF or Delimited Text file for the assay and would like the data to be saved in a directory other than the default. Select the Use Default Output Data Path checkbox if you would like the data to be saved in the default directory. Figure 2-10. Data Paths Window.
  • 46. CHAPTER 2 32 PerkinElmer,Inc. How to Count Samples 1. Attach (to the cassette) the appropriate protocol flag. 2. Reset the protocol flag by moving the plastic arm all the way to the left. The flag is all the way to the left when the flag is on the left end of the cassette (Figure 2-11). Figure 2-11. Cassette with Protocol Flag in Reset Position. 3. Place all of the background, reference, and sample vials into the appropriate cassette positions. 4. Place the cassette(s) in the sample changer deck so that the protocol number on the flag is facing you. The cassette should be positioned on the right side along the far wall of the sample changer deck or after the last set of cassettes already on the sample changer deck if the machine is in use. 5. Click the green start button at the top of the main window to begin counting.  CAUTION: Do not use the system’s DVD writer while the instrument is counting. Using the DVD writer while the instrument is counting may interfere with the operation of the sample changer.
  • 47. HOWTO... Tri-Carb® Reference Manual 33 How to Disassociate an Assay from a Protocol 1. In the Protocols tree of the main window, select the assay you would like to disassociate from a protocol number. Figure 2-12. Protocols Tree. 2. Right-click on the selected assay, and from the menu that is displayed, select Disassociate Assay.  Note: You can also disassociate an assay from a flag by selecting the protocol flag and then selecting File | Disassociate Assay from the menu bar.
  • 48. CHAPTER 2 34 PerkinElmer,Inc. How to Edit an Assay 1. Select File | Open Assay from the menu bar. 2. When the Open Assay window appears (Figure 2-13), select the assay you would like to edit. Then click the Open button. Figure 2-13. Open Assay Window.
  • 49. HOWTO... Tri-Carb® Reference Manual 35 3. When the Assay Definition window appears (Figure 2-14), edit the assay parameters, as needed, in each of the seven tabs. Refer to page 103 for more information about the Assay Definition window. Figure 2-14 Assay Definition Window. 4. Save your changes by doing one of the following:  If you would like to save the assay with the same name, click the OK button. OR  If you would like to save the assay using a different name, click the Save As button. The Save As window is displayed. In the window, enter an appropriate name for the assay and click the Save button.
  • 50. CHAPTER 2 36 PerkinElmer,Inc. How to Print an Assay 1. Select File | Print Assays Main from the menu bar. 2. When the Select Assays to Print window appears (Figure 2-15), select the assay you would like to print and click the Open button. Figure 2-15. Select Assays to Print Window. 3. When the Print window appears, select the appropriate print parameters and click the OK button. A list of the Assay Parameters, Count Conditions, Count Corrections, and Reports defined for the assay will print. How to Manually Print a Report 1. In the Protocols tree of the main window, select the report icon ( ) that you would like to print. The Output window is displayed. 2. In the Output window, select the print icon( ). The report of interest will print once the icon is selected.
  • 51. HOWTO... Tri-Carb® Reference Manual 37 How to Link a Quench Set to a Sample Nuclide  Note: For information on setting up a Quench Standards Assay, refer to page 39. For 2810TR models, setting up a Quench Standards assay requires the single/dual color-corrected DPM option. 1. Select Libraries | Sample Nuclides from the menu bar. 2. When the Sample Nuclides window appears (Figure 2-16), locate the sample nuclide in the list and then click one of the Quench Set buttons for the nuclide. Select the Quench Set: Low button if you are counting one nuclide in one counting region; select the Quench Set: Medium button if you are counting a second radionuclide in a separate region; and select the Quench Set: High button if you are counting a third radionuclide in a third region. Figure 2-16. Sample Nuclides Window. Quench Set Buttons
  • 52. CHAPTER 2 38 PerkinElmer,Inc. 3. After clicking a Quench Set button, the Quench Standards window will appear (Figure 2-17). In the window, select the name of the quench set you would like to link to the sample nuclide and then click OK. The name of the quench set you selected should appear in the Sample Nuclides Library window (Figure 2-16, page 37) on the Quench Set button. Repeat steps 1 through 3 to link another quench set to the sample nuclide. Figure 2-17. Quench Standards Window.
  • 53. HOWTO... Tri-Carb® Reference Manual 39 How to Set Up a Quench Standards Assay The tasks listed below are required when performing a Quench Standards assay.  Note: For 2810TR models, setting up a Quench Standards assay requires the single/dual color-corrected DPM option. 1. Normalize and calibrate the instrument, if necessary. See Chapter 6 for more information. 2. Do one of the following:  Create a new assay, choosing Quench Standards as the assay type (page 100). Then define the new assay parameters. Or  Open an existing Quench Standards assay and edit or review the assay, if necessary. 3. When you are finished creating/editing the assay definition, save the assay in the Assays folder of the C:PackardTriCarb directory. 4. Associate (link) the assay parameters with a protocol number in the Protocols tree and attach the corresponding protocol flag to the first cassette to be counted. 5. Load the cassette(s) with vials and then load the instrument with cassettes. 6. Click the green start button at the top of the main window to begin counting.  Note: When using the Low Level count mode (if available), you must NOT use quench standards that have been purged free of oxygen with an inert gas. The oxygen quenching in unpurged standards facilitates discrimination between background and true beta events. Unpurged standards are available from PerkinElmer.
  • 54. CHAPTER 2 40 PerkinElmer,Inc. How to Run an Alpha/Beta Assay  Note: The Alpha/Beta Discrimination feature is not available on the 2810TR and is optional on the 2910TR, 3110TR, and 3180TR/SL. The following tasks are required when performing an Alpha/Beta Assay. 1. Normalize and calibrate the instrument, if necessary. See Chapter 6 for more information. 2. Define and run an Alpha/Beta Standards assay (page 41 or page 98), if necessary, to establish the optimal pulse decay discriminator value. 3. Define an alpha/beta nuclide in the Alpha/Beta Nuclides Library (page 147). Choose the Standard Set from the Alpha/Beta Standards Library (page 150) to use the discriminator setting from the Standard Set. 4. Do one of the following:  Create a new assay, choosing Alpha/Beta as the assay type (page 95). On the Count Conditions tab of the Assay Definition window, click the Name button to select the desired alpha/beta radionuclide name from the Alpha/Beta Nuclides Library. Define the other available parameters as desired. Or  Open an existing Alpha/Beta assay and edit or review the assay, if necessary. 5. When you are finished creating/editing the assay definition, save the assay in the Assays folder of the C:PackardTriCarb directory. 6. Associate (link) the assay parameters with a protocol number in the Protocols tree and attach the corresponding protocol flag to the first cassette to be counted. 7. Load the cassette(s) with vials and then load the instrument with cassettes. 8. Click the green start button at the top of the main window to begin counting.
  • 55. HOWTO... Tri-Carb® Reference Manual 41 How to Run an Alpha/Beta Standards Assay  Note: The Alpha/Beta Discrimination feature is not available on the 2810TR and is optional on the 2910TR, 3110TR, and 3180TR/SL. The following tasks are required to run the Alpha/Beta Standards Assay. Two standards are required: a pure beta emitter and a pure alpha emitter. 1. Select Libraries | Alpha/Beta Standards from the menu bar. 2. In the Alpha Beta Standards window, click the Add button and enter a name for the new Alpha/Beta Standard Set. 3. From the Discriminator Type drop-down field, select Automatic if your pure alpha and pure beta standards have an activity of at least 50,000 CPM each. If the activity in either standard is less than 50,000 CPM, select Manual from the Discriminator Type field.  Note: In the Manual acquisition mode, you will need to enter a discriminator start and discriminator stop value within a 0-255 value range and the increment value for the discriminator.  Note: The remaining fields in the Alpha Beta Standards window are for information only. These fields contain either default values or values computed by the instrument. 4. Do one of the following:  Create a new assay, choosing Alpha/Beta Standards as the assay type (page 98). On the Count Conditions tab of the Assay Definition window, click the Name button to select the desired alpha/beta radionuclide name from the Alpha/Beta Standards Library (page 150). Define the other available parameters as desired. See page 103 for more information on defining assays. Or  Open an existing Alpha/Beta Standards assay and edit or review the assay, if necessary.  Note: High Sensitivity or Low Level Count mode are not available when counting Alpha/Beta Standards, but these modes will be available when counting samples in an Alpha/Beta assay 5. When you are finished creating/editing the assay definition, save the assay in the Assays folder of the C:PackardTriCarb directory.
  • 56. CHAPTER 2 42 PerkinElmer,Inc. 6. Associate (link) the assay parameters with a protocol number in the Protocols tree and attach the corresponding protocol flag on a cassette. 7. Place the pure beta emitter standard in cassette position 1 and the pure alpha emitter standard in cassette position 2. 8. Load the cassette into the instrument. 9. Click the green start button at the top of the main window. 10. After counting is complete, the misclassification (or spillover) curve and the optimum discriminator value will be stored for the Standard Set. Review the curve and discriminator setting, if desired, from the Alpha/Beta Standards Library (page 150).
  • 57. HOWTO... Tri-Carb® Reference Manual 43 How to Use the Replay Feature  Note: The Replay™ feature is optional on the 2810TR. This feature comes standard on the 2910TR, 3110TR, and 3180TR/SL. 1. In the main window, click on the Replay tab. The Replay tree is displayed in the tab. 2. In the Replay tree, select the results file that you would like to analyze. A listing of the results files is displayed in the Replay tree using filenames with the following syntax: User id assay_name yyyymmdd_militarytime  Tip: To verify that you have the latest view of the Replay files, select View | Refresh from the menu bar. 3. Right-click on the selected filename and select Open for Replay. 4. When the Replay window appears (Figure 2-18, page 44), do the following:  In the Replay Conditions tab, define the parameters, as needed, for reanalysis of sample data.  In the Report Definition tab, define any printed or electronic reports you would like to generate for the reanalysis of sample data.  Click the Replay button. Any reports that you defined are generated after the reanalysis of data occurs.  Note: Data processed with the Replay feature does not change the original data. All Replay changes are temporary.
  • 58. CHAPTER 2 44 PerkinElmer,Inc. Figure 2-18. Replay Conditions Tab of the Replay Window.
  • 59. HOWTO... Tri-Carb® Reference Manual 45 How to Calculate Radioactive Decay 1. Select Tools | Nuclide Decay from the menu bar. The Radionuclide Decay window appears (Figure 2-19). Figure 2-19. Radionuclide Decay Window. 2. From the Radionuclide drop-down field, select the nuclide of interest. If the nuclide of interest does not appear in the list, select Manual to manually enter the nuclide half-life information in the Half-Life and Half-Life Units fields. 3. Enter the appropriate information in the Reference DPM Activity, Reference Date, and Reference Time fields. 4. Click the Start Decay button. The current DPM for the nuclide is displayed in the Current DPM Activity field.
  • 61. Tri-Carb® Reference Manual 47 Chapter 3 System Software The QuantaSmart program is the Windows interface for the Tri-Carb Liquid Scintillation Analyzer series of instruments. This innovative tool allows you to take advantage of all of the instrument features via a main software window. The main window uses standard Windows conventions and allows you to easily access and control all of the system features and capabilities. It also provides you with graphical representations of existing assay associations in the Protocols tree and data analyses in the Output Report and SpectraView™ windows. Any assay data that is collected may be reanalyzed, without recounting samples using the system’s optional Replay feature. The system utilizes a set of Libraries to store standard and sample information. For systems equipped with the single/dual label DPM feature, the Sample Nuclides Library allows you the flexibility of selecting and using the same standards sets in any number of different assays. The library also provides you with a convenient means of saving and reusing specific nuclide parameters and sample counting regions. Software Security Security is built into the QuantaSmart software. The same software cannot be loaded on multiple systems due to this security feature.
  • 62. CHAPTER 3 48 PerkinElmer,Inc. Main Window The main software window (Figure 3-1) is comprised of several functional elements that allow you access to all instrument features. Figure 3-1. Main Window. The following information discusses the elements of the main window:  SpectraView Window (page 49)  Instrument Status Bar (page 51)  Protocols Tree (page 52)  Replay Tree (page 55)  Output Window (page 56)  Menu Bar (page 57)
  • 63. SYSTEMSOFTWARE Tri-Carb® Reference Manual 49 SpectraView Window The SpectraView window (Figure 3-2) is part of the main window. The SpectraView window displays a two-dimensional, real-time view of the spectrum for the current sample. The spectrum is updated every six seconds and can be displayed using either linear or logarithmic axes. It provides you with information about the status of a sample count and the region settings used in the counting procedure. A number of display options are available for the spectrum and are defined in this window. Figure 3-2. SpectraView Window. The SpectraView window is typically used for the following:  Monitoring sample counting  Detecting spectral distortions or compressions resulting from sample quench  Observing the effect of altering the counting region settings  Viewing the spectrum in linear or logarithmic scale The X-axis of the spectral display represents the energy (in keV) for each counting channel up to the defined endpoint of the sample spectrum. The Y-axis represents the gross counts for the current sample. The regions settings are graphically displayed using solid line boxes.
  • 64. CHAPTER 3 50 PerkinElmer,Inc. The following information describes the fields in the SpectraView window:  Sample Number – This field indicates the Sample Number of the sample currently counting.  Count Time – This field indicates the length of time each sample will be counted, as defined in the assay.  Pre-count Delay – This field indicates the length of time each sample will remain in the instrument’s detection chamber prior to counting.  Note: This process is dark adaption. It allows luminescence emanating from a vial to dissipate prior to counting. Luminescence can distort the count statistics of the sample and is particularly problematic with low count rate samples.  Acquisition Time – This is the length of time the current sample has been counting.  Apply AEC – If tSIE/AEC is selected as the quench indicating parameter for the assay, the sample spectrum can be displayed with or without AEC (Automatic Efficiency Correction). Activating this feature will adjust the region settings to account for sample quench. Select this checkbox to display the sample spectrum using AEC.  keV Full Scale – This field allows you to alter the scale used to display the X-axis of the sample spectrum. Enter a number in this field if you would like to manually define the endpoint for the X-axis. By using the Auto setting, the X-axis will automatically adjust between zero and the upper level region limit defined in this window.  Counts Full Scale – This field allows you to alter the scale used to display the Y-axis of the sample spectrum. Enter a number in this field if you would like to manually define the count maximum for the Y-axis. By using the Auto setting, the Y-axis will automatically adjust to the count rate of the sample.  Log keV Scale – This radio button allows you to display the X-axis using a logarithmic keV scale. The default setting plots the X-axis using a linear scale.  Log keV/Log Counts Scale – This radio button allows you to display both the keV and counts using a logarithmic scale. This setting is for visual representation only.  Linear keV Scale – This radio button allows you to view the X-axis using a linear scale. This is the default setting for the X-axis scale.  Regions – These represent the Upper Level and Lower Level counting region limits for regions A, B, and C.  CPM – These fields display the CPM (Counts Per Minute) for Regions A, B, and C. The gross counts per channel cumulatively equal the counts per region. The gross counts per region are divided by the count time to calculate CPM (Counts Per Minute) for each region.  2S% – This represents the gross uncertainty in a count value (with 95% confidence limits).
  • 65. SYSTEMSOFTWARE Tri-Carb® Reference Manual 51 Instrument Status Bar The Instrument Status Bar (Figure 3-3) contains a series of graphical buttons that allow you to start and stop the instrument and end a current protocol. The status bar also provides you with information regarding the status of a current protocol and displays instrument messages. The status bar is located at the top of the main window. Figure 3-3. Instrument Status Bar. The buttons in the status bar of the main software window allow you to start, stop, and end a counting procedure. Start/Resume Counting Button Click this button to begin a counting protocol. Figure 3-4. Start/Resume Counting Button. Pause/Stop Counting Button Click this button to end the current protocol and stop the instrument. Figure 3-5. Pause/Stop Counting Button. End Protocol Button Click this button to end a counting protocol and continue counting the next protocol. Figure 3-6. End Protocol Button.
  • 66. CHAPTER 3 52 PerkinElmer,Inc. Connect Button Click this button to re-establish the computer’s connection to the instrument. Figure 3-7. Connect Button. Protocols Tree The Protocols tree, displayed in the Protocols tab (Figure 3-8), displays 15 to 60 available protocol flag numbers (depending on the Tri-Carb model and configuration) and the assay names that you have associated with the flag numbers. Existing reports are also shown in this view. During protocol execution, this window uses different symbols to provide a visual indication of which protocol is being executed, which protocols have remaining cycles, and which protocols have been completed. Figure 3-8. Protocols Tree.
  • 67. SYSTEMSOFTWARE Tri-Carb® Reference Manual 53 Symbols Used in the Protocols Tree When a sample counting cycle begins, the protocol flag associated with this assay will change from white or yellow to green. Figure 3-9. Protocols Tree Symbols. The Priostat flag (Figure 3-10) is the only flag in the Protocols tree that is normally red. It will turn from red to green when the Priostat protocol begins. Figure 3-10. Priostat Flag. A yellow flag (Figure 3-11) in the Protocols tree indicates that at least one count cycle for this assay has been completed but that the protocol has remaining count cycles. This yellow flag will also appear if you interrupt the protocol for a Priostat operation. Figure 3-11. Yellow Flag. A checkered flag (Figure 3-12) is displayed when all the count cycles for the assay are completed. Figure 3-12. Checkered Flag. A red prohibitory symbol (Figure 3-13) indicates that a protocol cannot be counted. Typically, this will result when no assay is associated with a protocol flag number that the instrument has detected. This symbol could also indicate that an assay file has been deleted. Figure 3-13. Red Prohibitory Symbol.
  • 68. CHAPTER 3 54 PerkinElmer,Inc. A yellow prohibitory symbol (Figure 3-14) indicates that data analysis cannot be performed. Typically, this will result when an appropriate standard set is missing from the Nuclides Library or has been modified in the library but not recounted after the changes were made. Figure 3-14. Yellow Prohibitory Symbol. The page symbol (Figure 3-15) indicates that a report has been defined for this assay. The report name appears next to this symbol in the Protocols tree. Figure 3-15. Page Symbol. A white flag (Figure 3-16) indicates an inactive protocol. If no assay name appears adjacent to this flag, it is available to be associated to an assay. Figure 3-16. White Flag.
  • 69. SYSTEMSOFTWARE Tri-Carb® Reference Manual 55 Replay Tree The Replay tree, displayed in the Replay tab (Figure 3-17), displays a directory of folders containing previously collected data that can be reanalyzed using different data reduction conditions without recounting the samples.  Note: The Replay feature is optional on the 2810TR. This feature comes standard on the 2910TR, 3110TR, and 3180TR/SL. Figure 3-17. Replay Tree. The Replay files have a fixed data storage path, but data can be exported to user-defined paths.
  • 70. CHAPTER 3 56 PerkinElmer,Inc. Output Window The Output window (Figure 3-18) is a multipurpose window that displays various data items and assay parameters. It is a copy of the printer report, if one is selected. The output is defined in the Report Definition (page 115) and the Report Output tabs (page 124) of the Assay Definition window. Figure 3-18 shows a typical Output window display. Figure 3-18. Output Window.
  • 71. SYSTEMSOFTWARE Tri-Carb® Reference Manual 57 Menu Bar At the top of the QuantaSmart main window is the menu bar (Figure 3-19). The menu bar consists of the File, Run, View, Libraries, Tools, IPA, Diagnostics, Window, and Help menus. Each menu offers a variety of selections and commands.  Note: Some menu items represent optional features. If your instrument is not equipped with the optional features, the corresponding menu items will be disabled. Figure 3-19. Menu Bar. File Menu To display the File menu (Figure 3-20), select File from the menu bar. Figure 3-20. File Menu.
  • 72. CHAPTER 3 58 PerkinElmer,Inc. New Assay The File | New Assay menu item allows you to define a new assay. Selecting New Assay opens the Select Assay Type window (Figure 3-21). Refer to page 89 for information on the different assay types. Figure 3-21. Select Assay Type. Once you select an assay type and click OK, the Assay Definition window appears (page 103), where you can define the parameters for the new assay. Open Assay Select File | Open Assay to open the Open Assay window. From this window, you can select and open an existing assay. Associate Assay Before selecting File | Associate Assay, you must select a protocol flag from the Protocols tree. Once you have selected a protocol flag, select File | Associate Assay to open the Associate Assay window, where you can select an assay to associate (link) with the protocol flag number. Alternatively, you can associate an assay by right-clicking on a protocol flag number and selecting Associate Assay from the menu that is displayed.
  • 73. SYSTEMSOFTWARE Tri-Carb® Reference Manual 59 Disassociate Assay Before selecting File | Disassociate Assay, you must select a protocol flag from the Protocols tree. Once you have selected a protocol flag number, you can disassociate the assay linked to the protocol flag number by selecting File | Disassociate Assay. The name of the assay will disappear from the Protocols tree. Alternatively, you can disassociate an assay by right-clicking on a protocol flag number and selecting Disassociate Assay from the menu that is displayed. Data Paths Select File | Data Paths to open the Data Paths window (Figure 3-22). From this window, you can specify the location for storing data files generated by the assay. You can choose this location based on additional applications that you want to use to process the data or simply to comply with a data storage strategy in your facility. You can also choose to save data to the default directory by selecting the Use Default Output Data Path checkbox. Figure 3-22. Data Paths Window.  Note: This information is stored on a per protocol basis, as indicated in the title bar of the Data Paths window (Figure 3-22).
  • 74. CHAPTER 3 60 PerkinElmer,Inc. Print Setup Select File | Print Setup to open the Print Setup window. From this window, you can define print parameters. Print Assays Select File | Print Assays to open the Select Assays to Print window. From this window, you can select an assay and then print a list of parameters defined for that assay. Exit Select File | Print Setup to close the QuantaSmart program. Run Menu To display the Run menu (Figure 3-23), select Run from the menu bar. Figure 3-23. Run Menu. Pause/Stop Counting Select Run | Pause/Stop Counting to end the current protocol and stop the instrument. This command is also available when you click the red button (Figure 3-5) on the Instrument Status Bar.
  • 75. SYSTEMSOFTWARE Tri-Carb® Reference Manual 61 Start/Resume Counting Select Run | Start/Resume Counting to have the instrument load the sample currently at the detector position and begin counting. This command is also available when you click the green button (Figure 3-4) on the Instrument Status Bar. Next Sample Select Run | Next Sample to have the instrument unload any sample in the detector, move the next sample into the detector, and start counting. Next Protocol Select Run | Next Protocol to have the instrument unload any sample in the detector and abort the current protocol. The instrument searches for the next cassette with an active protocol flag and begins running that protocol. End Protocol Select Run | End Protocol to have the instrument unload any sample in the detector and end the protocol; data reduction continues until data from the last counted sample is reported. Then the system begins counting the next protocol. This command is also available when you click the checkered button (Figure 3-6) on the Instrument Status Bar. Forward Select Run | Forward to have the instrument unload any sample in the detector and move the sample changer in a counterclockwise direction. Reverse Select Run | Reverse to have the instrument unload any sample in the detector and move the sample changer in a clockwise direction. Group Priostat This menu item allows you to count a set of high priority samples immediately, while temporarily interrupting the current protocol. Refer to page 170 for more information. Stop Group This menu item terminates counting of the Priostat (priority) samples, and resumes counting of the interrupted samples.
  • 76. CHAPTER 3 62 PerkinElmer,Inc. Sample Priostat  Note: The Sample Priostat feature is not available on the 2810TR, is optional on the 2910TR, and comes standard on the 3110TR and 3180TR/SL. Sample Priostat (page 171) is a special interrupt mode that allows you to:  preview sample count rates,  determine optimal counting conditions for variable and constant quench samples,  identify an unknown nuclide in a sample, and  determine the duration of luminescence. The Sample Priostat menu item has the following options: Decay This menu item allows you to assess the duration of luminescence in a radioactive sample via a decay histogram. SPC Decay This menu item allows you to assess the duration of luminescence in a non- radioactive, luminescent sample via a decay histogram. Identify Nuclide This menu item allows you to identify an unknown nuclide in your sample using the Quench Indicating Parameters SIS and tSIE. Optimize Regions This menu item allows you to optimize sample counting regions to provide the highest figure of merit for Normal count mode. Reverse Region This menu item allows you to re-optimize sample counting region settings for a sample and determine the equivalent unquenched region settings for variable quench samples. Low Level Optimize This menu item allows you to optimize sample counting regions to provide the highest figure of merit for Low Level count mode. Alpha/Beta Preview This menu item allows you to view the sample spectrum in the Alpha/Beta mode and approximate the activity for a sample containing both an Alpha and a Beta emitting nuclide.
  • 77. SYSTEMSOFTWARE Tri-Carb® Reference Manual 63 Normal Preview The menu item allows you to view the sample spectrum and approximate the activity for a sample using Normal count mode. Low Level Preview This menu item allows you to view the sample spectrum and approximate the activity for a sample using Low Level count mode. View Menu To display the View menu (Figure 3-24), select View from the menu bar. Figure 3-24. View Menu. The View menu has the following options: Instrument Status Bar Select View | Instrument Status Bar to view or hide the Instrument Status Bar and its buttons (Figure 3-3). The Instrument Status Bar is located beneath the menu bar in the main window. Status Bar Select View | Status Bar to view or hide the Status Bar located at the bottom of the main window. Refresh Trees Select View | Refresh Trees to update the Protocols and Replay trees in the main window. The Replay tree is automatically updated whenever a new assay is counted. The Refresh Trees command is only necessary to clear report entries from the tree displays.
  • 78. CHAPTER 3 64 PerkinElmer,Inc. Libraries Menu To display the Libraries menu (Figure 3-25), select Libraries from the menu bar. Figure 3-25. Libraries Menu. Radionuclide information is stored and accessed in the Nuclide Library. The Nuclide Library consists of the Sample Nuclides and Quench Standards Libraries. If your instrument is equipped with an Alpha/Beta option, Alpha/Beta Nuclides Library and Alpha/Beta Standards Library will also be included. The Sample Nuclides Library allows you to specify and save nuclide names, counting region limits, and quench sets for sample nuclides. Up to three nuclides can be defined for each entry to support the counting of multiple nuclides. These sample nuclide parameters are typically specified as part of the assay definition process and may be edited as needed. The Quench Standards Library (requires the single/dual/color DPM option on the 2810TR) is comprised of quench sets, with each quench set containing individual quench standards. The data from the quench standards is used to construct quench curves for calculating DPM (Disintegrations Per Minute) in DPM assays. Quench Standards are counted once, and the entire spectrum for each quench standard is stored independent of assay information. This allows you to select and use the same quench set in any number of assays and construct a quench curve for each sample at the time the sample is counted. The Alpha/Beta Standards and Alpha/Beta Nuclides Libraries (not available on the 2810TR) are used in the same manner as the Quench Standards and Sample Nuclides Libraries. The information stored in these libraries is relevant only when performing Alpha/Beta assays, where both an Alpha- emitting and a Beta-emitting radionuclide are quantified independently within the same sample vial.
  • 79. SYSTEMSOFTWARE Tri-Carb® Reference Manual 65 Sample Nuclides Select Libraries | Sample Nuclides to display the Sample Nuclides window (Figure 3-26), where you can enter information into and retrieve information from the Sample Nuclides Library. The Sample Nuclides Library is a repository of information regarding sample nuclides. Figure 3-26. Sample Nuclides Window. For assays, use the Sample Nuclides Library to define and save nuclide names and counting region limits for radionuclides. You can also select a quench set for each sample nuclide using the Quench Set buttons in this window (Figure 3-26). In Replay (page 187), use the Sample Nuclides Library to select a radionuclide for the purpose of reanalyzing sample data.  Note: The fields that are enabled in the Sample Nuclides Library will be different when accessed from different locations within the software. The list of nuclides that are displayed is dependent on the assay type, the nuclide, and the number of quench sets associated with the nuclide. See the Libraries chapter (Chapter 5) for information on adding a sample nuclide name. Quench Set Buttons
  • 80. CHAPTER 3 66 PerkinElmer,Inc. Quench Standards Select Libraries | Quench Standards to display the Quench Standards window (Figure 3-27). From this window, you can define a new quench set to be stored or select a quench standards set for DPM assays or data reanalysis in Replay. The data from these quench sets is used to construct quench curves for determining sample DPM (Disintegrations Per Minute).  Note: The Name, Max keV, and DPM fields are the only entries required when entering a new quench set. The remaining parameters stored in the library are retrieved from the assay parameters that were selected when defining an assay. The number of standards (up to twenty) is determined automatically during counting. For additional information, refer to the Libraries chapter (Chapter 5). Figure 3-27. Quench Standards Window.
  • 81. SYSTEMSOFTWARE Tri-Carb® Reference Manual 67 Alpha/Beta Nuclides  Note: The Alpha/Beta Discrimination feature is not available on the 2810TR and is optional on the 2910TR, 3110TR, and 3180TR/SL. Select Libraries | Alpha/Beta Nuclides to display the Alpha Beta Nuclides window (Figure 3-28), where you can add information to or delete information from the Alpha/Beta Nuclides Library. The Alpha/Beta Nuclides Library is a repository of information regarding previously defined Alpha and Beta emitting nuclides counted in Alpha/Beta assays. For additional information, refer to the Libraries chapter (Chapter 5). Figure 3-28. Alpha Beta Nuclides Window.
  • 82. CHAPTER 3 68 PerkinElmer,Inc. Alpha/Beta Standards Select Libraries | Alpha/Beta Standards to display the Alpha Beta Standards window (Figure 3-29), where you can add information to or delete information from the Alpha/Beta Standards Library. The Alpha/Beta Standards Library is a repository of information regarding previously defined standards used in Alpha/Beta assays. For additional information, refer to the Libraries chapter (Chapter 5). Figure 3-29. Alpha Beta Standards Window.
  • 83. SYSTEMSOFTWARE Tri-Carb® Reference Manual 69 Tools Menu To display the Tools menu (Figure 3-30), select Tools from the menu bar. Figure 3-30. Tools Menu.
  • 84. CHAPTER 3 70 PerkinElmer,Inc. Nuclide Decay Select Tools | Nuclide Decay to open the Radionuclide Decay window (Figure 3-31), where you can calculate the Disintegrations Per Minute (DPM) of radionuclides. Figure 3-31. Radionuclide Decay Window. The following information describes the fields and buttons in the Radionuclide Decay window (Figure 3-31).  Radionuclide – From this drop-down field, select a radionuclide for calculating decay. If you select a radionuclide from this list, the half-life and half-life units will be entered automatically in the corresponding fields. If you select Manual from the Radionuclide field, you will need to enter the half-life and half-life units for the radionuclide.  Half-Life – If you selected a radionuclide from the Radionuclide field, the half-life of that radionuclide will be displayed in Half-Life field. If you selected Manual from the Radionuclide field, enter the half-life of the radionuclide.  Half-Life Units – If you selected a radionuclide from the Radionuclide field, the half-life units of that radionuclide will be displayed in this field. If you selected Manual from the Radionuclide field, enter the half-life units of the radionuclide.  Reference DPM Activity – Enter the Reference DPM Activity for the radionuclide. This is the DPM of the radionuclide at the Reference Date.
  • 85. SYSTEMSOFTWARE Tri-Carb® Reference Manual 71  Reference Date – Enter the Reference Date of the radionuclide. This is the date on which the radionuclide has the specified amount of activity.  Reference Time – Enter the Reference Time for the radionuclide. This is the time at which the radionuclide has the specified amount of activity.  Note: Typically, this parameter is defined only for radionuclides with very short half-lives.  Current DPM Activity – This field displays the current DPM activity of the radionuclide after the decay calculation has been performed. This value will only be displayed after you have specified all of the parameters in the current window and clicked the Start Decay button.  Start Decay – Click this button after you have specified all of the parameters in the current window. Once you click the Start Decay button, the decay calculation is performed, and the current DPM activity will be displayed in the Current DPM Activity field.  Copy Activity – Click this button to copy the Reference DPM Activity. You can then paste the activity into the DPM field of the Quench Standards window. Options Select Tools | Options to open the Options window (Figure 3-32). From this window, you can select a format for the Spectrum Files created in High Sensitivity and Low Level Count Modes and activate the feature that allows negative CPM and DPM reporting. Figure 3-32. Options Menu.
  • 86. CHAPTER 3 72 PerkinElmer,Inc. Show Protocol Errors Select Tools | Protocol Errors to display certain error messages that are associated with an assay (Figure 3-33). You must select a protocol flag before selecting the Protocol Errors command. Figure 3-33. Show Protocol Errors.
  • 87. SYSTEMSOFTWARE Tri-Carb® Reference Manual 73 Spectral Mapping Select Tools | Spectral Mapping to view a three-dimensional spectral map for a sample and quench standards (Figure 3-34). This option is used for single- label DPM samples. You must select a protocol flag before selecting the Spectral Mapping command Figure 3-34. Spectral Mapping.
  • 88. CHAPTER 3 74 PerkinElmer,Inc. Spectrum Unfolding Select Tools | Spectrum Unfolding to view a three-dimensional display of the separated, individual spectra for each nuclide in a Dual-label or Full Spectrum (FS) DPM sample counting procedure (Figure 3-35). Figure 3-35. Spectrum Unfolding. Spectraview Report Size Select Tools | Spectraview Report Size to choose the size of the spectrum graph in the report output file. This size selection is a global change, affecting all report output files; the size selection does not affect the size of spectrum graph on the screen (displayed in the SpectraView window).
  • 89. SYSTEMSOFTWARE Tri-Carb® Reference Manual 75 Configure Barcode Reader  Note: The bar code reader is optional for all Tri-Carb models. Select Tools | Configure Barcode Reader to open the Bar Code Scanner Configuration window (Figure 3-36). Figure 3-36. Bar Code Scanner Configuration Window. The following information describes the fields and buttons in the Bar Code Scanner Configuration window.  Enable Barcode Reader checkbox – Select this checkbox to make the bar code reader available for all assays. When this checkbox is selected, the Barcode Settings area (page 105) of the Assay Parameters tab is available (not grayed out). You should only select this checkbox if you have the Bar Code Reader option installed.  Port field – Select the serial port that the bar code reader is using. If you are unsure which COM port the reader is using, you can locate the COM port number in Windows Device Manager. In the Device Manager window, locate the COM number for ATEN USB to Serial Cable (expand the Ports category).  Stop Bits, Parity, Baud, Data Bits fields – The default selections in these fields match the settings in the bar code reader configuration file and do not need to be modified.
  • 90. CHAPTER 3 76 PerkinElmer,Inc.  Retries field – In this field, you can specify the maximum number of times the system should re-read one bar code label if the reader fails to read the label successfully. Once the bar code label is read successfully, the next sample is read.  Maximum Read Time (sec.) field – In this field, you can specify the maximum number of seconds the system needs to pause to read a bar code. Once the reader successfully reads a label, the next sample is read. The reader does not wait until the time is up. For example, if the reader reads a label in 0.10 seconds, the next sample will immediately be scanned; the reader will not wait the whole 1 second before scanning the next sample.  On Error field – In this field, you can determine the system’s response to missing bar codes or bar codes that are unreadable.  Select Ignore to have the system continue processing the current assay and not log the error.  Select Abort to have the system stop processing the current assay when a bar code error occurs. The system will then move on to the next assay.  Select Log Error and Continue to have the system record the error condition in the report and proceed with the assay.  Set Defaults button – Click this button to populate the fields with the recommended default settings.  OK button – Click this button to save your bar code configuration settings and close the window.  Cancel button – Click this button to close the window without saving your changes.