SlideShare a Scribd company logo
1 of 27
Download to read offline
Discrete Mathematical Structures
Fundamentals of Logic
BY,
Lakshmi R
Asst. Professor
Dept. of ISE
Logical Equivalence
• Two propositions u and v are said to be logically equivalent whenever
u and v have the same truth value.
• Symbol used ⇔
• Eg: (p → q) ⇔ (¬p ∨ q)
Lakshmi R, Asst. Professor, Dept. Of ISE
¬ ∧ ∨ ⊻ → ↔
p q ¬p (p → q) (¬p ∨ q)
0 0 1 1 1
0 1 1 1 1
1 0 0 0 0
1 1 0 1 1
Logical Equivalence contd.,
• Eg: [(p ∨ q) ∧ (¬ p ∨ ¬ q) ] ⇔ p ⊻ q
Lakshmi R, Asst. Professor, Dept. Of ISE
¬ ∧ ∨ ⊻ → ↔
p q ¬p ¬q (p ∨ q) (¬p ∨ ¬q) (p ∨ q) ∧ (¬ p ∨ ¬ q) p ⊻ q
0 0 1 1 0 1 0 0
0 1 1 0 1 1 1 1
1 0 0 1 1 1 1 1
1 1 0 0 1 0 0 0
Logical Equivalence contd.,
• Eg: [p → (q ∧ r) ] ⇔ [(p → q) ∧ (p → r)]
Lakshmi R, Asst. Professor, Dept. Of ISE
¬ ∧ ∨ ⊻ → ↔
p q r (q ∧ r) (p → q) (p → r) p → (q ∧ r) (p → q) ∧ (p → r)
0 0 0 0 1 1 1 1
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0
1 1 0 0 1 0 0 0
1 1 1 1 1 1 1 1
Logical Equivalence contd.,
• Eg: [p ∧ (¬ q ∨ r) ] ⇔ [p ∨ (q ∧ ¬r) ]
Lakshmi R, Asst. Professor, Dept. Of ISE
¬ ∧ ∨ ⊻ → ↔
p q r ¬ q (¬ q ∨ r) p ∧ (¬ q ∨ r) ¬r (q ∧ ¬r) p ∨ (q ∧ ¬r)
0 0 0 1 1 0 1 0 0
0 0 1 1 1 0 0 0 0
0 1 0 0 0 0 1 1 1
0 1 1 0 1 0 0 0 0
1 0 0 1 1 1 1 0 1
1 0 1 1 1 1 0 0 1
1 1 0 0 0 0 1 1 1
1 1 1 0 1 1 0 0 1
Laws of Logic
Lakshmi R, Asst. Professor, Dept. Of ISE
¬ ∧ ∨ ⊻ → ↔
1. Law of double
negation
¬ ¬ p ⇔ p
2. DeMorgan’s
Laws
i. ¬ (p ∨ q) ⇔ ¬p ∧ ¬q
ii. ¬ (p ∧ q) ⇔ ¬p ∨ ¬q
3. Commutative
Laws
i. (p ∧ q) ⇔ (q ∧ p)
ii. (p ∨ q) ⇔ (q ∨ p)
4. Associative
Laws
i. p ∨ (q ∨ r) ⇔ (p ∨ q ) ∨ r
ii. p ∧ (q ∧ r) ⇔ (p ∧ q ) ∧ r
5. Distributive
Laws
i. p ∨ (q ∧ r) ⇔ (p ∨ q ) ∧ (p ∨ r )
ii. p ∧ (q ∨ r) ⇔ (p ∧ q ) ∨ (p ∧ r )
6. Idempotent
Laws
i. (p ∨ p) ⇔ p
ii. (p ∧ p) ⇔ p
7. Identity Laws
i. (p ∨ F) ⇔ p
ii. (p ∧ T) ⇔ p
8. Inverse Laws
i. (p ∨ ¬p) ⇔ T
ii. (p ∧ ¬p) ⇔ F
9. Domination
Laws
i. (p ∨ T) ⇔ T
ii. (p ∧ F) ⇔ F
10. Absorption
Laws
i. p ∨ (p ∧ q )⇔ p
ii. p ∧ (p ∨ q ) ⇔ p
Important p → q ⇔ ¬ p ∨ q
Law of negation for a conditional
• Let x be a specific number. Write the negation of the following conditional.
“if x is an integer, then x is a rational number”
Lakshmi R, Asst. Professor, Dept. Of ISE
¬ ∧ ∨ ⊻ → ↔
Let
p: x is an integer
q: x is a rational number
The given statement can be symbolically
represented as
p → q
We need to find ¬ (p → q)
Important p → q ⇔ ¬ p ∨ q
¬ (p → q) ⇔ ¬ (¬p ∨ q)
⇔ ¬ ¬p ∧ ¬q (using DeMorgan’s Law)
⇔ p ∧ ¬q (using law of double negation)
 ¬ (p → q) is
“x is an integer and x is not a rational number”
Solution
Problem 9:
Law of negation for a conditional
• Let x be a specific number. Write the negation of the following conditional.
“if x is not a real number, then it is not a rational number and not an
irrational number”
Lakshmi R, Asst. Professor, Dept. Of ISE
¬ ∧ ∨ ⊻ → ↔
Let
p: x is a real number
q: x is a rational number
r: x is an irrational number
The given statement can be symbolically
represented as
¬p →( ¬q ∧ ¬r)
We need to find ¬ (¬p →( ¬q ∧ ¬r))
¬ (¬p →( ¬q ∧ ¬r)) ⇔ ¬ (¬ ¬ p ∨ (¬q ∧ ¬r))
⇔ ¬ ( p ∨ (¬q ∧ ¬r)) (using law of double
negation)
⇔ ¬p ∧ ¬(¬q ∧ ¬r) (using DeMorgan’s Law)
⇔ ¬ p ∧ (¬ ¬q ∨ ¬ ¬r) (using DeMorgan’s Law)
⇔ ¬ p ∧ (q ∨ r) (law of double negation)
 ¬ (¬p →( ¬q ∧ ¬r)) is
“x is not a real number and it is a rational number or an
irrational number”
Solution
1. Prove the following logical equivalences without using truth tables.
i. p ∨ [p ∧ (p ∨ q) ] ⇔ p
ii. [p ∨ q ∨ (¬ p ∧ ¬ q ∧ r) ] ⇔ (p ∨ q ∨ r)
iii. [(¬ p ∨ ¬ q) → (p ∧ q ∧ r) ] ⇔ p ∧ q
Compulsorily you have to use laws of logic to solve
Lakshmi R, Asst. Professor, Dept. Of ISE
¬ ∧ ∨ ⊻ → ↔
Solution i:
To prove that, p ∨ [p ∧ (p ∨ q) ] ⇔ p
p ∨ [p ∧ (p ∨ q) ]
⇔ p ∨ [ p ] ---- Absorption law
⇔ p ---- Idempotent Law
Lakshmi R, Asst. Professor, Dept. Of ISE
¬ ∧ ∨ ⊻ → ↔
Solution ii:
To prove that, [p ∨ q ∨ (¬ p ∧ ¬ q ∧ r) ] ⇔ (p ∨ q ∨ r)
[( p ∨ q) ∨ ( ¬ p ∧ ¬ q ∧ r) ]
⇔ [( p ∨ q ) ∨ ( ¬ ( p ∨ q ) ∧ r) ] ----- DeMorgan’s Law – eq(1)
Let P = ( p ∨ q ) an d Q = ¬ ( p ∨ q ) , eq ( 1 ) b ecomes
⇔ [P ∨ ( Q ∧ r ) ]
⇔ [ ( P ∨ Q ) ∧ ( P ∨ r) ] --- Distributive Law - eq(2)
Substituting P = ( p ∨ q ) an d Q = ¬ ( p ∨ q ) in eq ( 2 )
⇔ [ { ( p ∨ q ) ∨ ¬ ( p ∨ q ) } ∧ ( p ∨ q ∨ r) ]
⇔ [ T ∧ ( p ∨ q ∨ r) ] ---- Inverse Law
⇔ ( p ∨ q ∨ r) ---- Identity Law
Lakshmi R, Asst. Professor, Dept. Of ISE
5. Distributive
Laws
8. Inverse Laws
i. (p ∨ ¬p) ⇔ T
ii. (p ∧ ¬p) ⇔ F
i. p ∨ (q ∧ r) ⇔ (p ∨ q ) ∧ (p ∨ r )
ii. p ∧ (q ∨ r) ⇔ (p ∧ q ) ∨ (p ∧ r )
5. Distributive
Laws
7. Identity Laws
i. (p ∨ F) ⇔ p
ii. (p ∧ T) ⇔ p
Exercise
iii. [(¬ p ∨ ¬ q) → (p ∧ q ∧ r) ] ⇔ p ∧ q
iv. [(p ∨ q) ∧ (p ∨ ¬ q)] ∨ q ⇔ p ∨q
Lakshmi R, Asst. Professor, Dept. Of ISE
Prove that (p → q)∧ [(¬ q ∧ (r ∨ ¬ q)] ⇔ ¬ (q ∨ p)
Solution:
(p → q)∧ [(¬ q ∧ (r ∨ ¬ q)]
⇔ (p → q)∧ [(¬ q ∧ (¬ q ∨ r)] --- Commutative Law
⇔ (p → q)∧ ¬ q -------------------- Absorption Law
⇔ (¬p ∨ q) ∧ ¬ q ------------------ Fact p → q ⇔ ¬ p ∨ q
⇔ ¬ q ∧ (¬p ∨ q) ----------------- Commutative Law
⇔ (¬ q ∧ ¬p) ∨ (¬ q ∧ q) --------- Distributive Law
⇔ (¬ q ∧ ¬p) ∨ F ------------------ Inverse Law
⇔ (¬ q ∧ ¬p) ----------------------- Identity Law
⇔ ¬(q ∨ p) ------------------------- DeMorgan’s Law
Lakshmi R, Asst. Professor, Dept. Of ISE
Prove that [¬p ∧ (¬ q ∧ r ) ] ∨ (q ∧ r) ∨ ( p ∧ r) ⇔ r
Solution:
[¬p ∧ (¬ q ∧ r ) ] ∨ (q ∧ r) ∨ ( p ∧ r)
⇔ [¬p ∧ (¬ q ∧ r ) ] ∨ (r ∧ q) ∨ ( r ∧ p) ----- Commutative Law
⇔ [(¬p ∧ ¬ q ) ∧ r ] ∨ (r ∧ q) ∨ ( r ∧ p) ----- Associative Law
⇔ [¬(p ∨ q ) ∧ r ] ∨ (r ∧ q) ∨ ( r ∧ p) ------- DeMorgan’s Law
⇔ [¬(p ∨ q ) ∧ r ] ∨ r ∧ (q ∨ p) -------------- Distributive Law
⇔ [r ∧ ¬(p ∨ q ) ] ∨ [r ∧ (p ∨ q)] ------------- Commutative Law
Let A = ¬(p ∨ q ) and B = (p ∨ q)
⇔ [r ∧ A] ∨ [r ∧ B]
⇔ r ∧ [ A ∨ B ] ------------------------------------ Distributive Law
Substituting A = ¬(p ∨ q ) and B = (p ∨ q) in the above equation
⇔ r ∧ [¬(p ∨ q ) ∨ (p ∨ q) ] ⇔ r ∧ T --------------- Inverse Law
⇔ r -------------- Identity Law
Lakshmi R, Asst. Professor, Dept. Of ISE
Prove that
[ ( p ∨ q) ∧ ¬ {¬p ∧ (¬ q ∨ ¬r ) } ] ∨ (¬ p ∧ ¬q ) ∨ (¬ p ∧ ¬r )
is a tautology without using truth tables.
Solution:
To prove that
[ ( p ∨ q) ∧ ¬ {¬p ∧ (¬ q ∨ ¬r ) } ] ∨ (¬ p ∧ ¬q ) ∨ (¬ p ∧ ¬r ) = T
Lakshmi R, Asst. Professor, Dept. Of ISE
[ ( p ∨ q ) ∧ ¬ { ¬ p ∧ ( ¬ q ∨ ¬ r ) } ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r )
⇔ [ ( p ∨ q ) ∧ ¬ { ¬ p ∧ ¬ ( q ∧ r ) } ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r )
- - - - - DeMorgan’s Law
⇔ [ ( p ∨ q ) ∧ { ¬ ¬ p ∨ ¬ ¬ ( q ∧ r ) } ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r )
- - - - - DeMorgan’s Law
⇔ [ ( p ∨ q ) ∧ { p ∨ ( q ∧ r ) } ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r )
- - - - - Law of Double Negation
⇔ [ p ∨ ( q ∧ ( q ∧ r ) ) ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r ) - - - - - - - - - - - - Distributive Law
⇔ [ p ∨ ( ( q ∧ q ) ∧ r ) ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r ) - - - - - - - - - - - - - Associative Law
⇔ [ p ∨ ( q ∧ r ) ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r ) - - - - - - - - - - - - - Idempotent Law
⇔ [ p ∨ ( q ∧ r ) ] ∨ ¬ ( p ∨ q ) ∨ ¬ ( p ∨ r ) - - - - - - - - - - - - - DeMorgan’s Law
⇔ [ p ∨ ( q ∧ r ) ] ∨ ¬ [ ( p ∨ q ) ∧ ( p ∨ r ) ] - - - - - - - - - - - - - DeMorgan’s Law
⇔ [ p ∨ ( q ∧ r ) ] ∨ ¬ [ ( p ∨ ( q ∧ r ) ] - - - - - - - - - - - - - Distributive Law
Let u = p ∨ ( q ∧ r )
⇔ [ p ∨ ( q ∧ r ) ] ∨ ¬ [ ( p ∨ ( q ∧ r ) ] ⇔ u ∨ ¬ u ⇔ T - - - - - - - - Inverse Law
Lakshmi R, Asst. Professor, Dept. Of ISE
Application to switching networks
• We can relate switches and their states with propositions and their truth
values.
• Value 0 ----> when switch is open
• Value 1 ----> when switch is closed
• Laws of logic – simplify the complex switching networks.
Lakshmi R, Asst. Professor, Dept. Of ISE
Application to switching networks
1. Simplify the switching network.
Lakshmi R, Asst. Professor, Dept. Of ISE
Solution:
We write the given network as:
[p ∧ (¬ r ∨ q ∨ ¬ q )] ∨ [(r ∨ t V ¬ r) ∧ ¬ q ]
r
t
¬ r
¬ r
q
¬q
p
T1 T2
¬q
Lakshmi R, Asst. Professor, Dept. Of ISE
[p ∧ (¬ r ∨ q ∨ ¬ q )] ∨ [(r ∨ t V ¬ r) ∧ ¬ q ]
⇔ [p ∧ (¬ r ∨ T)] ∨ [(t V T) ∧ ¬ q ] --- Inverse Law
⇔ [p ∧ (T)] ∨ [(T) ∧ ¬ q ] --- Domination Law
⇔ [p ∨ ¬ q ] --- Identity Law
p
¬q
T1 T2
The simplified network is
Application to switching networks
2. Simplify the switching network.
Lakshmi R, Asst. Professor, Dept. Of ISE
p
q
r
p
t
¬q
p
¬ t
r
T1 T2
Solution:
We write the given network as:
(p ∨ q ∨ r) ∧ (p ∨ t ∨ ¬ q ) ∧ (p ∨ ¬ t V r)
Lakshmi R, Asst. Professor, Dept. Of ISE
(p ∨ q ∨ r) ∧ (p ∨ t ∨ ¬ q ) ∧ (p ∨ ¬ t V r)
⇔ [p ∨ ((q ∨ r) ∧( t ∨ ¬ q) )] ∧ (p ∨ ¬ t V r)
Distributive Law
⇔ p ∨ [((q ∨ r) ∧( t ∨ ¬ q)) ∧ (¬ t V r) ]Distributive Law
⇔ p ∨ [((q ∨ r) ∧ (¬ t V r)) ∧ ( t ∨ ¬ q)]Associative law
⇔ p ∨ [((r ∨ q) ∧ (r V ¬ t)) ∧ ( t ∨ ¬ q)]Commutative law
⇔ p ∨ [r ∨ ( q ∧ ¬ t)] ∧ ( t ∨ ¬ q)] Distributive Law
Lakshmi R, Asst. Professor, Dept. Of ISE
⇔ p ∨ [r ∨ ( q ∧ ¬ t)] ∧ ( t ∨ ¬ q)]
⇔ p ∨ [( t ∨ ¬ q) ∧ [r ∨ ( q ∧ ¬ t)]] Commutative Law
⇔ p ∨ [[( t ∨ ¬ q) ∧ r] ∨ [( t ∨ ¬ q) ∧ ( q ∧ ¬ t)]] -Distributive Law
⇔ p ∨ [[( t ∨ ¬ q) ∧ r] ∨ [( t ∨ ¬ q) ∧ (¬ t ∧ q)]] -Commutative law
⇔ p ∨ [[( t ∨ ¬ q) ∧ r] ∨ [( t ∨ ¬ q) ∧ ¬ (t ∨ ¬ q)]] -DeMorgan’s Law
⇔ p ∨ [[( t ∨ ¬ q) ∧ r] ∨ [( t ∨ ¬ q) ∧ ¬ (t ∨ ¬ q)]]
⇔ p ∨ [( t ∨ ¬ q) ∧ r] ∨ F] -Inverse Law
⇔ p ∨ [( t ∨ ¬ q) ∧ r] -Identity Law
p
t
¬q
rT1 T2
Lakshmi R, Asst. Professor, Dept. Of ISE
p
q
r
p
t
¬q
p
¬ t
r
T1 T2
Simplified circuit is
p
t
¬q
rT1 T2
Given circuit is
Exercise
Prove the following logical equivalences without using truth tables.
i. [(¬ p ∨ ¬ q) → (p ∧ q ∧ r) ] ⇔ p ∧ q
ii. [(p ∨ q) ∧ (p ∨ ¬ q)] ∨ q ⇔ p ∨q
iii. p → (q → r) ⇔ (p ∧ q) → r
iv. ¬ [{(p ∨ q) ∧ r} → ¬q] ⇔ ¬ (¬ {(p ∨ q) ∧r} ∨ ¬q) ⇔ q ∧ r
Exercise
¬ p
p
q
r r
T1 T2
¬q
r
Simplify the following switching networks
¬ p ¬q r
p r
q rT1 T2
2
1
Converse, Inverse, and Contrapositive
Consider a conditional p → q. then,
i. q →p is called the converse of p → q
ii. ¬p → ¬q is called the inverse of p → q
iii. ¬q → ¬p is called the contrapositive of p → q
Lakshmi R, Asst. Professor, Dept. Of ISE
p q ¬ p ¬ q p → q q → p ¬ p → ¬ q ¬ q → ¬ p
0 0 1 1 1 1 1 1
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
1 1 0 0 1 1 1 1
p → q q → p ¬ p → ¬ q ¬ q → ¬ p
1 1 1 1
1 0 0 1
0 1 1 0
1 1 1 1
p → q ⇔ ¬q→¬p
q → p ⇔ ¬p→ ¬q
Conditional ⇔ Contrapositive
Converse ⇔ Inverse
Converse, Inverse, and Contrapositive cont.,
State converse, inverse, and contrapositive of the following implication.
“If a triangle is not isosceles, then it is not equilateral”
Solution: The given implication p → q is If a triangle is not isosceles, then it is
not equilateral
Let p: Triangle is not isosceles
q: Triangle is not equilateral
Converse: q →p : If a triangle is not equilateral, then it is not isosceles
Inverse: ¬p → ¬q : If a triangle is isosceles, then it is equilateral.
Contrapositive: ¬q → ¬p: If a triangle is equilateral, then it is isosceles.
Lakshmi R, Asst. Professor, Dept. Of ISE

More Related Content

What's hot

Chapter 2: Relations
Chapter 2: RelationsChapter 2: Relations
Chapter 2: Relationsnszakir
 
CMSC 56 | Lecture 1: Propositional Logic
CMSC 56 | Lecture 1: Propositional LogicCMSC 56 | Lecture 1: Propositional Logic
CMSC 56 | Lecture 1: Propositional Logicallyn joy calcaben
 
Logic (PROPOSITIONS)
Logic (PROPOSITIONS)Logic (PROPOSITIONS)
Logic (PROPOSITIONS)D Nayanathara
 
Mathematical induction by Animesh Sarkar
Mathematical induction by Animesh SarkarMathematical induction by Animesh Sarkar
Mathematical induction by Animesh SarkarAnimesh Sarkar
 
Method of direct proof
Method of direct proofMethod of direct proof
Method of direct proofAbdur Rehman
 
Logic (slides)
Logic (slides)Logic (slides)
Logic (slides)IIUM
 
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكروDiscrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكروDr. Khaled Bakro
 
Counting, mathematical induction and discrete probability
Counting, mathematical induction and discrete probabilityCounting, mathematical induction and discrete probability
Counting, mathematical induction and discrete probabilitySURBHI SAROHA
 
CMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical InductionCMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical Inductionallyn joy calcaben
 
Discrete Mathematics Lecture
Discrete Mathematics LectureDiscrete Mathematics Lecture
Discrete Mathematics LectureGenie Rose Santos
 
Rules of inference
Rules of inferenceRules of inference
Rules of inferenceharman kaur
 
Lecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inferenceLecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inferenceasimnawaz54
 
NAND and NOR connectives
NAND and NOR connectivesNAND and NOR connectives
NAND and NOR connectivesLakshmi R
 
5.4 mathematical induction
5.4 mathematical induction5.4 mathematical induction
5.4 mathematical inductionmath260
 

What's hot (20)

Formal Logic - Lesson 7 - Rules of Inference
Formal Logic - Lesson 7 - Rules of InferenceFormal Logic - Lesson 7 - Rules of Inference
Formal Logic - Lesson 7 - Rules of Inference
 
Chapter1p3.pptx
Chapter1p3.pptxChapter1p3.pptx
Chapter1p3.pptx
 
Chapter 2: Relations
Chapter 2: RelationsChapter 2: Relations
Chapter 2: Relations
 
CMSC 56 | Lecture 1: Propositional Logic
CMSC 56 | Lecture 1: Propositional LogicCMSC 56 | Lecture 1: Propositional Logic
CMSC 56 | Lecture 1: Propositional Logic
 
Logic (PROPOSITIONS)
Logic (PROPOSITIONS)Logic (PROPOSITIONS)
Logic (PROPOSITIONS)
 
Mathematical induction by Animesh Sarkar
Mathematical induction by Animesh SarkarMathematical induction by Animesh Sarkar
Mathematical induction by Animesh Sarkar
 
Method of direct proof
Method of direct proofMethod of direct proof
Method of direct proof
 
Truth table
Truth tableTruth table
Truth table
 
Logic (slides)
Logic (slides)Logic (slides)
Logic (slides)
 
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكروDiscrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
 
Recursion DM
Recursion DMRecursion DM
Recursion DM
 
Counting, mathematical induction and discrete probability
Counting, mathematical induction and discrete probabilityCounting, mathematical induction and discrete probability
Counting, mathematical induction and discrete probability
 
CMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical InductionCMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical Induction
 
Discrete Mathematics Lecture
Discrete Mathematics LectureDiscrete Mathematics Lecture
Discrete Mathematics Lecture
 
Rules of inference
Rules of inferenceRules of inference
Rules of inference
 
Lecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inferenceLecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inference
 
NAND and NOR connectives
NAND and NOR connectivesNAND and NOR connectives
NAND and NOR connectives
 
discrete maths notes.ppt
discrete maths notes.pptdiscrete maths notes.ppt
discrete maths notes.ppt
 
Proof by contradiction
Proof by contradictionProof by contradiction
Proof by contradiction
 
5.4 mathematical induction
5.4 mathematical induction5.4 mathematical induction
5.4 mathematical induction
 

Similar to Logical equivalence, laws of logic

Discrete Mathematical Structures - Fundamentals of Logic - Principle of duality
Discrete Mathematical Structures - Fundamentals of Logic - Principle of dualityDiscrete Mathematical Structures - Fundamentals of Logic - Principle of duality
Discrete Mathematical Structures - Fundamentals of Logic - Principle of dualityLakshmi R
 
Discrete mathematics
Discrete mathematicsDiscrete mathematics
Discrete mathematicsM.Saber
 
[gaNita] 2. Propositional Equivalences [math.fsu.edu].pdf
[gaNita] 2. Propositional Equivalences [math.fsu.edu].pdf[gaNita] 2. Propositional Equivalences [math.fsu.edu].pdf
[gaNita] 2. Propositional Equivalences [math.fsu.edu].pdfrAjyarAjanItjJa
 
Discrete-Chapter 04 Logic Part II
Discrete-Chapter 04 Logic Part IIDiscrete-Chapter 04 Logic Part II
Discrete-Chapter 04 Logic Part IIWongyos Keardsri
 
Logic and proof
Logic and proofLogic and proof
Logic and proofSuresh Ram
 
Algorithmic foundations.docx
Algorithmic foundations.docxAlgorithmic foundations.docx
Algorithmic foundations.docxedwin orege
 
Computational logic First Order Logic
Computational logic First Order LogicComputational logic First Order Logic
Computational logic First Order Logicbanujahir1
 
Computational logic Propositional Calculus proof system
Computational logic Propositional Calculus proof system Computational logic Propositional Calculus proof system
Computational logic Propositional Calculus proof system banujahir1
 
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...vcuesta
 
Lecture 3 qualtifed rules of inference
Lecture 3 qualtifed rules of inferenceLecture 3 qualtifed rules of inference
Lecture 3 qualtifed rules of inferenceasimnawaz54
 
Computational logic First Order Logic_part2
Computational logic First Order Logic_part2Computational logic First Order Logic_part2
Computational logic First Order Logic_part2banujahir1
 
Resolution method in AI.pptx
Resolution method in AI.pptxResolution method in AI.pptx
Resolution method in AI.pptxAbdullah251975
 
Discrete mathematic question answers
Discrete mathematic question answersDiscrete mathematic question answers
Discrete mathematic question answersSamet öztoprak
 
CMSC 56 | Lecture 2: Propositional Equivalences
CMSC 56 | Lecture 2: Propositional EquivalencesCMSC 56 | Lecture 2: Propositional Equivalences
CMSC 56 | Lecture 2: Propositional Equivalencesallyn joy calcaben
 
Fundamentals of logic 1
Fundamentals of logic   1Fundamentals of logic   1
Fundamentals of logic 1Lakshmi R
 

Similar to Logical equivalence, laws of logic (20)

Discrete Mathematical Structures - Fundamentals of Logic - Principle of duality
Discrete Mathematical Structures - Fundamentals of Logic - Principle of dualityDiscrete Mathematical Structures - Fundamentals of Logic - Principle of duality
Discrete Mathematical Structures - Fundamentals of Logic - Principle of duality
 
Formal Logic - Lesson 6 - Switching Circuits
Formal Logic - Lesson 6 - Switching CircuitsFormal Logic - Lesson 6 - Switching Circuits
Formal Logic - Lesson 6 - Switching Circuits
 
Discrete mathematics
Discrete mathematicsDiscrete mathematics
Discrete mathematics
 
[gaNita] 2. Propositional Equivalences [math.fsu.edu].pdf
[gaNita] 2. Propositional Equivalences [math.fsu.edu].pdf[gaNita] 2. Propositional Equivalences [math.fsu.edu].pdf
[gaNita] 2. Propositional Equivalences [math.fsu.edu].pdf
 
Discrete-Chapter 04 Logic Part II
Discrete-Chapter 04 Logic Part IIDiscrete-Chapter 04 Logic Part II
Discrete-Chapter 04 Logic Part II
 
Logic and proof
Logic and proofLogic and proof
Logic and proof
 
Algorithmic foundations.docx
Algorithmic foundations.docxAlgorithmic foundations.docx
Algorithmic foundations.docx
 
Computational logic First Order Logic
Computational logic First Order LogicComputational logic First Order Logic
Computational logic First Order Logic
 
Computational logic Propositional Calculus proof system
Computational logic Propositional Calculus proof system Computational logic Propositional Calculus proof system
Computational logic Propositional Calculus proof system
 
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
 
Lecture 3 qualtifed rules of inference
Lecture 3 qualtifed rules of inferenceLecture 3 qualtifed rules of inference
Lecture 3 qualtifed rules of inference
 
DS Lecture 2.ppt
DS Lecture 2.pptDS Lecture 2.ppt
DS Lecture 2.ppt
 
Computational logic First Order Logic_part2
Computational logic First Order Logic_part2Computational logic First Order Logic_part2
Computational logic First Order Logic_part2
 
Resolution method in AI.pptx
Resolution method in AI.pptxResolution method in AI.pptx
Resolution method in AI.pptx
 
Discrete mathematic question answers
Discrete mathematic question answersDiscrete mathematic question answers
Discrete mathematic question answers
 
CMSC 56 | Lecture 2: Propositional Equivalences
CMSC 56 | Lecture 2: Propositional EquivalencesCMSC 56 | Lecture 2: Propositional Equivalences
CMSC 56 | Lecture 2: Propositional Equivalences
 
Chap05
Chap05Chap05
Chap05
 
Fundamentals of logic 1
Fundamentals of logic   1Fundamentals of logic   1
Fundamentals of logic 1
 
dma_ppt.pdf
dma_ppt.pdfdma_ppt.pdf
dma_ppt.pdf
 
Logic
LogicLogic
Logic
 

More from Lakshmi R

Proofs and disproofs
Proofs and disproofsProofs and disproofs
Proofs and disproofsLakshmi R
 
Use of quantifiers
Use of quantifiersUse of quantifiers
Use of quantifiersLakshmi R
 
Logical implication - Necessary and Sufficient conditions
Logical implication  -  Necessary and Sufficient conditionsLogical implication  -  Necessary and Sufficient conditions
Logical implication - Necessary and Sufficient conditionsLakshmi R
 
Java Collection Framework
Java Collection FrameworkJava Collection Framework
Java Collection FrameworkLakshmi R
 
Jsp presentation
Jsp presentationJsp presentation
Jsp presentationLakshmi R
 

More from Lakshmi R (7)

Proofs and disproofs
Proofs and disproofsProofs and disproofs
Proofs and disproofs
 
Use of quantifiers
Use of quantifiersUse of quantifiers
Use of quantifiers
 
Css basics
Css basicsCss basics
Css basics
 
Html basics
Html basicsHtml basics
Html basics
 
Logical implication - Necessary and Sufficient conditions
Logical implication  -  Necessary and Sufficient conditionsLogical implication  -  Necessary and Sufficient conditions
Logical implication - Necessary and Sufficient conditions
 
Java Collection Framework
Java Collection FrameworkJava Collection Framework
Java Collection Framework
 
Jsp presentation
Jsp presentationJsp presentation
Jsp presentation
 

Recently uploaded

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 

Recently uploaded (20)

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 

Logical equivalence, laws of logic

  • 1. Discrete Mathematical Structures Fundamentals of Logic BY, Lakshmi R Asst. Professor Dept. of ISE
  • 2. Logical Equivalence • Two propositions u and v are said to be logically equivalent whenever u and v have the same truth value. • Symbol used ⇔ • Eg: (p → q) ⇔ (¬p ∨ q) Lakshmi R, Asst. Professor, Dept. Of ISE ¬ ∧ ∨ ⊻ → ↔ p q ¬p (p → q) (¬p ∨ q) 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 1 1
  • 3. Logical Equivalence contd., • Eg: [(p ∨ q) ∧ (¬ p ∨ ¬ q) ] ⇔ p ⊻ q Lakshmi R, Asst. Professor, Dept. Of ISE ¬ ∧ ∨ ⊻ → ↔ p q ¬p ¬q (p ∨ q) (¬p ∨ ¬q) (p ∨ q) ∧ (¬ p ∨ ¬ q) p ⊻ q 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0
  • 4. Logical Equivalence contd., • Eg: [p → (q ∧ r) ] ⇔ [(p → q) ∧ (p → r)] Lakshmi R, Asst. Professor, Dept. Of ISE ¬ ∧ ∨ ⊻ → ↔ p q r (q ∧ r) (p → q) (p → r) p → (q ∧ r) (p → q) ∧ (p → r) 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1
  • 5. Logical Equivalence contd., • Eg: [p ∧ (¬ q ∨ r) ] ⇔ [p ∨ (q ∧ ¬r) ] Lakshmi R, Asst. Professor, Dept. Of ISE ¬ ∧ ∨ ⊻ → ↔ p q r ¬ q (¬ q ∨ r) p ∧ (¬ q ∨ r) ¬r (q ∧ ¬r) p ∨ (q ∧ ¬r) 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1
  • 6. Laws of Logic Lakshmi R, Asst. Professor, Dept. Of ISE ¬ ∧ ∨ ⊻ → ↔ 1. Law of double negation ¬ ¬ p ⇔ p 2. DeMorgan’s Laws i. ¬ (p ∨ q) ⇔ ¬p ∧ ¬q ii. ¬ (p ∧ q) ⇔ ¬p ∨ ¬q 3. Commutative Laws i. (p ∧ q) ⇔ (q ∧ p) ii. (p ∨ q) ⇔ (q ∨ p) 4. Associative Laws i. p ∨ (q ∨ r) ⇔ (p ∨ q ) ∨ r ii. p ∧ (q ∧ r) ⇔ (p ∧ q ) ∧ r 5. Distributive Laws i. p ∨ (q ∧ r) ⇔ (p ∨ q ) ∧ (p ∨ r ) ii. p ∧ (q ∨ r) ⇔ (p ∧ q ) ∨ (p ∧ r ) 6. Idempotent Laws i. (p ∨ p) ⇔ p ii. (p ∧ p) ⇔ p 7. Identity Laws i. (p ∨ F) ⇔ p ii. (p ∧ T) ⇔ p 8. Inverse Laws i. (p ∨ ¬p) ⇔ T ii. (p ∧ ¬p) ⇔ F 9. Domination Laws i. (p ∨ T) ⇔ T ii. (p ∧ F) ⇔ F 10. Absorption Laws i. p ∨ (p ∧ q )⇔ p ii. p ∧ (p ∨ q ) ⇔ p Important p → q ⇔ ¬ p ∨ q
  • 7. Law of negation for a conditional • Let x be a specific number. Write the negation of the following conditional. “if x is an integer, then x is a rational number” Lakshmi R, Asst. Professor, Dept. Of ISE ¬ ∧ ∨ ⊻ → ↔ Let p: x is an integer q: x is a rational number The given statement can be symbolically represented as p → q We need to find ¬ (p → q) Important p → q ⇔ ¬ p ∨ q ¬ (p → q) ⇔ ¬ (¬p ∨ q) ⇔ ¬ ¬p ∧ ¬q (using DeMorgan’s Law) ⇔ p ∧ ¬q (using law of double negation)  ¬ (p → q) is “x is an integer and x is not a rational number” Solution Problem 9:
  • 8. Law of negation for a conditional • Let x be a specific number. Write the negation of the following conditional. “if x is not a real number, then it is not a rational number and not an irrational number” Lakshmi R, Asst. Professor, Dept. Of ISE ¬ ∧ ∨ ⊻ → ↔ Let p: x is a real number q: x is a rational number r: x is an irrational number The given statement can be symbolically represented as ¬p →( ¬q ∧ ¬r) We need to find ¬ (¬p →( ¬q ∧ ¬r)) ¬ (¬p →( ¬q ∧ ¬r)) ⇔ ¬ (¬ ¬ p ∨ (¬q ∧ ¬r)) ⇔ ¬ ( p ∨ (¬q ∧ ¬r)) (using law of double negation) ⇔ ¬p ∧ ¬(¬q ∧ ¬r) (using DeMorgan’s Law) ⇔ ¬ p ∧ (¬ ¬q ∨ ¬ ¬r) (using DeMorgan’s Law) ⇔ ¬ p ∧ (q ∨ r) (law of double negation)  ¬ (¬p →( ¬q ∧ ¬r)) is “x is not a real number and it is a rational number or an irrational number” Solution
  • 9. 1. Prove the following logical equivalences without using truth tables. i. p ∨ [p ∧ (p ∨ q) ] ⇔ p ii. [p ∨ q ∨ (¬ p ∧ ¬ q ∧ r) ] ⇔ (p ∨ q ∨ r) iii. [(¬ p ∨ ¬ q) → (p ∧ q ∧ r) ] ⇔ p ∧ q Compulsorily you have to use laws of logic to solve Lakshmi R, Asst. Professor, Dept. Of ISE ¬ ∧ ∨ ⊻ → ↔
  • 10. Solution i: To prove that, p ∨ [p ∧ (p ∨ q) ] ⇔ p p ∨ [p ∧ (p ∨ q) ] ⇔ p ∨ [ p ] ---- Absorption law ⇔ p ---- Idempotent Law Lakshmi R, Asst. Professor, Dept. Of ISE ¬ ∧ ∨ ⊻ → ↔
  • 11. Solution ii: To prove that, [p ∨ q ∨ (¬ p ∧ ¬ q ∧ r) ] ⇔ (p ∨ q ∨ r) [( p ∨ q) ∨ ( ¬ p ∧ ¬ q ∧ r) ] ⇔ [( p ∨ q ) ∨ ( ¬ ( p ∨ q ) ∧ r) ] ----- DeMorgan’s Law – eq(1) Let P = ( p ∨ q ) an d Q = ¬ ( p ∨ q ) , eq ( 1 ) b ecomes ⇔ [P ∨ ( Q ∧ r ) ] ⇔ [ ( P ∨ Q ) ∧ ( P ∨ r) ] --- Distributive Law - eq(2) Substituting P = ( p ∨ q ) an d Q = ¬ ( p ∨ q ) in eq ( 2 ) ⇔ [ { ( p ∨ q ) ∨ ¬ ( p ∨ q ) } ∧ ( p ∨ q ∨ r) ] ⇔ [ T ∧ ( p ∨ q ∨ r) ] ---- Inverse Law ⇔ ( p ∨ q ∨ r) ---- Identity Law Lakshmi R, Asst. Professor, Dept. Of ISE 5. Distributive Laws 8. Inverse Laws i. (p ∨ ¬p) ⇔ T ii. (p ∧ ¬p) ⇔ F i. p ∨ (q ∧ r) ⇔ (p ∨ q ) ∧ (p ∨ r ) ii. p ∧ (q ∨ r) ⇔ (p ∧ q ) ∨ (p ∧ r ) 5. Distributive Laws 7. Identity Laws i. (p ∨ F) ⇔ p ii. (p ∧ T) ⇔ p
  • 12. Exercise iii. [(¬ p ∨ ¬ q) → (p ∧ q ∧ r) ] ⇔ p ∧ q iv. [(p ∨ q) ∧ (p ∨ ¬ q)] ∨ q ⇔ p ∨q Lakshmi R, Asst. Professor, Dept. Of ISE
  • 13. Prove that (p → q)∧ [(¬ q ∧ (r ∨ ¬ q)] ⇔ ¬ (q ∨ p) Solution: (p → q)∧ [(¬ q ∧ (r ∨ ¬ q)] ⇔ (p → q)∧ [(¬ q ∧ (¬ q ∨ r)] --- Commutative Law ⇔ (p → q)∧ ¬ q -------------------- Absorption Law ⇔ (¬p ∨ q) ∧ ¬ q ------------------ Fact p → q ⇔ ¬ p ∨ q ⇔ ¬ q ∧ (¬p ∨ q) ----------------- Commutative Law ⇔ (¬ q ∧ ¬p) ∨ (¬ q ∧ q) --------- Distributive Law ⇔ (¬ q ∧ ¬p) ∨ F ------------------ Inverse Law ⇔ (¬ q ∧ ¬p) ----------------------- Identity Law ⇔ ¬(q ∨ p) ------------------------- DeMorgan’s Law Lakshmi R, Asst. Professor, Dept. Of ISE
  • 14. Prove that [¬p ∧ (¬ q ∧ r ) ] ∨ (q ∧ r) ∨ ( p ∧ r) ⇔ r Solution: [¬p ∧ (¬ q ∧ r ) ] ∨ (q ∧ r) ∨ ( p ∧ r) ⇔ [¬p ∧ (¬ q ∧ r ) ] ∨ (r ∧ q) ∨ ( r ∧ p) ----- Commutative Law ⇔ [(¬p ∧ ¬ q ) ∧ r ] ∨ (r ∧ q) ∨ ( r ∧ p) ----- Associative Law ⇔ [¬(p ∨ q ) ∧ r ] ∨ (r ∧ q) ∨ ( r ∧ p) ------- DeMorgan’s Law ⇔ [¬(p ∨ q ) ∧ r ] ∨ r ∧ (q ∨ p) -------------- Distributive Law ⇔ [r ∧ ¬(p ∨ q ) ] ∨ [r ∧ (p ∨ q)] ------------- Commutative Law Let A = ¬(p ∨ q ) and B = (p ∨ q) ⇔ [r ∧ A] ∨ [r ∧ B] ⇔ r ∧ [ A ∨ B ] ------------------------------------ Distributive Law Substituting A = ¬(p ∨ q ) and B = (p ∨ q) in the above equation ⇔ r ∧ [¬(p ∨ q ) ∨ (p ∨ q) ] ⇔ r ∧ T --------------- Inverse Law ⇔ r -------------- Identity Law Lakshmi R, Asst. Professor, Dept. Of ISE
  • 15. Prove that [ ( p ∨ q) ∧ ¬ {¬p ∧ (¬ q ∨ ¬r ) } ] ∨ (¬ p ∧ ¬q ) ∨ (¬ p ∧ ¬r ) is a tautology without using truth tables. Solution: To prove that [ ( p ∨ q) ∧ ¬ {¬p ∧ (¬ q ∨ ¬r ) } ] ∨ (¬ p ∧ ¬q ) ∨ (¬ p ∧ ¬r ) = T Lakshmi R, Asst. Professor, Dept. Of ISE
  • 16. [ ( p ∨ q ) ∧ ¬ { ¬ p ∧ ( ¬ q ∨ ¬ r ) } ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r ) ⇔ [ ( p ∨ q ) ∧ ¬ { ¬ p ∧ ¬ ( q ∧ r ) } ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r ) - - - - - DeMorgan’s Law ⇔ [ ( p ∨ q ) ∧ { ¬ ¬ p ∨ ¬ ¬ ( q ∧ r ) } ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r ) - - - - - DeMorgan’s Law ⇔ [ ( p ∨ q ) ∧ { p ∨ ( q ∧ r ) } ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r ) - - - - - Law of Double Negation ⇔ [ p ∨ ( q ∧ ( q ∧ r ) ) ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r ) - - - - - - - - - - - - Distributive Law ⇔ [ p ∨ ( ( q ∧ q ) ∧ r ) ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r ) - - - - - - - - - - - - - Associative Law ⇔ [ p ∨ ( q ∧ r ) ] ∨ ( ¬ p ∧ ¬ q ) ∨ ( ¬ p ∧ ¬ r ) - - - - - - - - - - - - - Idempotent Law ⇔ [ p ∨ ( q ∧ r ) ] ∨ ¬ ( p ∨ q ) ∨ ¬ ( p ∨ r ) - - - - - - - - - - - - - DeMorgan’s Law ⇔ [ p ∨ ( q ∧ r ) ] ∨ ¬ [ ( p ∨ q ) ∧ ( p ∨ r ) ] - - - - - - - - - - - - - DeMorgan’s Law ⇔ [ p ∨ ( q ∧ r ) ] ∨ ¬ [ ( p ∨ ( q ∧ r ) ] - - - - - - - - - - - - - Distributive Law Let u = p ∨ ( q ∧ r ) ⇔ [ p ∨ ( q ∧ r ) ] ∨ ¬ [ ( p ∨ ( q ∧ r ) ] ⇔ u ∨ ¬ u ⇔ T - - - - - - - - Inverse Law Lakshmi R, Asst. Professor, Dept. Of ISE
  • 17. Application to switching networks • We can relate switches and their states with propositions and their truth values. • Value 0 ----> when switch is open • Value 1 ----> when switch is closed • Laws of logic – simplify the complex switching networks. Lakshmi R, Asst. Professor, Dept. Of ISE
  • 18. Application to switching networks 1. Simplify the switching network. Lakshmi R, Asst. Professor, Dept. Of ISE Solution: We write the given network as: [p ∧ (¬ r ∨ q ∨ ¬ q )] ∨ [(r ∨ t V ¬ r) ∧ ¬ q ] r t ¬ r ¬ r q ¬q p T1 T2 ¬q
  • 19. Lakshmi R, Asst. Professor, Dept. Of ISE [p ∧ (¬ r ∨ q ∨ ¬ q )] ∨ [(r ∨ t V ¬ r) ∧ ¬ q ] ⇔ [p ∧ (¬ r ∨ T)] ∨ [(t V T) ∧ ¬ q ] --- Inverse Law ⇔ [p ∧ (T)] ∨ [(T) ∧ ¬ q ] --- Domination Law ⇔ [p ∨ ¬ q ] --- Identity Law p ¬q T1 T2 The simplified network is
  • 20. Application to switching networks 2. Simplify the switching network. Lakshmi R, Asst. Professor, Dept. Of ISE p q r p t ¬q p ¬ t r T1 T2 Solution: We write the given network as: (p ∨ q ∨ r) ∧ (p ∨ t ∨ ¬ q ) ∧ (p ∨ ¬ t V r)
  • 21. Lakshmi R, Asst. Professor, Dept. Of ISE (p ∨ q ∨ r) ∧ (p ∨ t ∨ ¬ q ) ∧ (p ∨ ¬ t V r) ⇔ [p ∨ ((q ∨ r) ∧( t ∨ ¬ q) )] ∧ (p ∨ ¬ t V r) Distributive Law ⇔ p ∨ [((q ∨ r) ∧( t ∨ ¬ q)) ∧ (¬ t V r) ]Distributive Law ⇔ p ∨ [((q ∨ r) ∧ (¬ t V r)) ∧ ( t ∨ ¬ q)]Associative law ⇔ p ∨ [((r ∨ q) ∧ (r V ¬ t)) ∧ ( t ∨ ¬ q)]Commutative law ⇔ p ∨ [r ∨ ( q ∧ ¬ t)] ∧ ( t ∨ ¬ q)] Distributive Law
  • 22. Lakshmi R, Asst. Professor, Dept. Of ISE ⇔ p ∨ [r ∨ ( q ∧ ¬ t)] ∧ ( t ∨ ¬ q)] ⇔ p ∨ [( t ∨ ¬ q) ∧ [r ∨ ( q ∧ ¬ t)]] Commutative Law ⇔ p ∨ [[( t ∨ ¬ q) ∧ r] ∨ [( t ∨ ¬ q) ∧ ( q ∧ ¬ t)]] -Distributive Law ⇔ p ∨ [[( t ∨ ¬ q) ∧ r] ∨ [( t ∨ ¬ q) ∧ (¬ t ∧ q)]] -Commutative law ⇔ p ∨ [[( t ∨ ¬ q) ∧ r] ∨ [( t ∨ ¬ q) ∧ ¬ (t ∨ ¬ q)]] -DeMorgan’s Law ⇔ p ∨ [[( t ∨ ¬ q) ∧ r] ∨ [( t ∨ ¬ q) ∧ ¬ (t ∨ ¬ q)]] ⇔ p ∨ [( t ∨ ¬ q) ∧ r] ∨ F] -Inverse Law ⇔ p ∨ [( t ∨ ¬ q) ∧ r] -Identity Law p t ¬q rT1 T2
  • 23. Lakshmi R, Asst. Professor, Dept. Of ISE p q r p t ¬q p ¬ t r T1 T2 Simplified circuit is p t ¬q rT1 T2 Given circuit is
  • 24. Exercise Prove the following logical equivalences without using truth tables. i. [(¬ p ∨ ¬ q) → (p ∧ q ∧ r) ] ⇔ p ∧ q ii. [(p ∨ q) ∧ (p ∨ ¬ q)] ∨ q ⇔ p ∨q iii. p → (q → r) ⇔ (p ∧ q) → r iv. ¬ [{(p ∨ q) ∧ r} → ¬q] ⇔ ¬ (¬ {(p ∨ q) ∧r} ∨ ¬q) ⇔ q ∧ r
  • 25. Exercise ¬ p p q r r T1 T2 ¬q r Simplify the following switching networks ¬ p ¬q r p r q rT1 T2 2 1
  • 26. Converse, Inverse, and Contrapositive Consider a conditional p → q. then, i. q →p is called the converse of p → q ii. ¬p → ¬q is called the inverse of p → q iii. ¬q → ¬p is called the contrapositive of p → q Lakshmi R, Asst. Professor, Dept. Of ISE p q ¬ p ¬ q p → q q → p ¬ p → ¬ q ¬ q → ¬ p 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 p → q q → p ¬ p → ¬ q ¬ q → ¬ p 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 p → q ⇔ ¬q→¬p q → p ⇔ ¬p→ ¬q Conditional ⇔ Contrapositive Converse ⇔ Inverse
  • 27. Converse, Inverse, and Contrapositive cont., State converse, inverse, and contrapositive of the following implication. “If a triangle is not isosceles, then it is not equilateral” Solution: The given implication p → q is If a triangle is not isosceles, then it is not equilateral Let p: Triangle is not isosceles q: Triangle is not equilateral Converse: q →p : If a triangle is not equilateral, then it is not isosceles Inverse: ¬p → ¬q : If a triangle is isosceles, then it is equilateral. Contrapositive: ¬q → ¬p: If a triangle is equilateral, then it is isosceles. Lakshmi R, Asst. Professor, Dept. Of ISE