自身の構造や形態を利用し活動するロボット
大阪大学 石黒研究室 博士後期課程1年 浦井健次
[1] Reis, M. and Iida, F., "An energy-efficient hopping robot based on free vibration of a curved beam." Mechatronics, IEEE/ASME Transactions on 19.1, pp.300-311, 2014.
[2] Yu, X. and Iida, F., "Minimalistic models of an energy-efficient vertical-hopping robot." Industrial Electronics, IEEE Transactions on 61.2, pp. 1053-1062, 2014.
[3] Paul, C., Dravid, R. and Iida, F., "Control of lateral bounding for a pendulum driven hopping robot." Proc. of 5th International Conference on Climbing and Waffling Robots (CLAWAR 2002). 2002.
[4] Iida, F., Dravid, R. and Paul, C., "Design and control of a pendulum driven hopping robot." Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on. Vol. 3. IEEE, 2002.
[5] Iida, F. and Pfeifer, R., "Sensing through body dynamics." Robotics and Autonomous Systems 54.8, pp. 631-640, 2006.
[6] Iida, F. and Pfeifer, R., "Self-stabilization and behavioral diversity of embodied adaptive locomotion." Embodied artificial intelligence. Springer Berlin Heidelberg, pp.119-129, 2004.
[7] Reis, M. et al., "Morphological computation of multi-gaited robot locomotion based on free vibration." Artificial life 19.1, pp. 97-114, 2013.
[8] Collins, S. H., Wisse, M. and Ruina, A., “A three-dimensional passive-dynamic walking robot with two legs and knees.” The International Journal of Robotics Research 20.7, pp.607-615, 2001.
[9] Collins, S H.. et al. "Efficient bipedal robots based on passive-dynamic walkers." Science 307.5712, pp. 1082-1085, 2005.
[10] 池俣吉人他. "受動歩行の脚運動に対する円弧足の力学的効果." 日本ロボット学会誌 27.6, pp. 661-668, 2009.
[11] Rolf, P., Lungarella, M. and Iida, F., "The challenges ahead for bio-inspired'soft'robotics." Communications of the ACM 55.11, pp.76-87, 2012.
[12] Van Breugel, F., Regan, W. and Lipson, H., "From insects to machines: a passively stable, untethered flapping-hovering micro air vehicle." IEEE Robotics and Automation Magazine 15, 4, pp.68–74, 2008.
[13] Cory, R. “Supermaneuverable Perching.” Ph.D. Thesis. MIT, Cambridge, MA, 2010.
[14] Polygerinos, P. et al., "Towards a soft pneumatic glove for hand rehabilitation." Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013.
[15] Galloway, K. C. et al., "Mechanically programmable bend radius for fiber-reinforced soft actuators." Advanced Robotics (ICAR), 2013 16th International Conference on. IEEE, 2013.
[16] Mosadegh, B. et al. "Pneumatic networks for soft robotics that actuate rapidly." Advanced Functional Materials 24.15, pp. 2163-2170, 2014.
[17] Brown, E. et al. "Universal robotic gripper based on the jamming of granular material." Proceedings of the National Academy of Sciences 107.44, pp. 18809-18814, 2010.
[18] Kim, J., Alspach, A. and Yamane, K.,“3D Printed Soft Skin for Human-Robot Interaction.”, IEEE/RAS Int. Conf. on Humanoid Robots (HUMANOIDS), 2015.
[19] Epps, B. P. et al., "Swimming performance of a biomimetic compliant fish-like robot." Experiments in fluids 47.6, pp. 927-939, 2009.
[20] Cloitre, A. et al., "Propulsive performance of an underwater soft biomimetic batoid robot." The Twenty-fourth International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2014.
[21] Margheri, L., Laschi, C. and Mazzolai, B., "Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements." Bioinspiration & biomimetics 7.2, 025004, 2012.
[22] Mizuuchi, I. et al., “Development of musculoskeletal humanoid kotaro.”Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on. IEEE, 2006.
[23] Mizuuchi, I. et al., “An advanced musculoskeletal humanoid kojiro.”Humanoid Robots, 2007 7th IEEE-RAS International Conference on. IEEE, 2007.
[24] Urata, J. et al., "Thermal control of electrical motors for high-power humanoid robots." Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE, 2008.
[25] Nakanishi, Y. et al., "Achievement of complex contact motion with environments by musculoskeletal humanoid using humanlike shock absorption strategy." Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012.
[26]水内郁夫. "人体構造に示唆を得た筋骨格型ヒューマノイドの構成と設計." 日本ロボット学会誌 28.6, pp. 689-694, 2010.
[27] Holland, O. and Knight, R., "The anthropomimetic principle." Proceedings of the AISB06 symposium on biologically inspired robotics. 2006.
[28] Pfeifer, R., Iida, F. and Lungarella, M., “Cognition from the bottom up: on biological inspiration, body morphology, and soft materials.” Trends in cognitive sciences 18.8, pp. 404-413, 2014.
[29] Kauffman, S. A., "The origins of order: Self organization and selection in evolution." Oxford university press, 1993.
知能ロボティクス勉強会@大阪大学豊中キャンパス
参考・引用文献
ソフトウェアが支配的なロボット制御
高度な計算
高速なセンシング
負担大
高速な制御
ハードウェアが制御の負担を軽減するロボット
負担減
構造が制御に寄与することで,制御の負担を軽減する
[1] Reis, M. and Iida, F., "An energy-efficient hopping robot based on free vibration of a curved beam." Mechatronics, IEEE/ASME Transactions on 19.1, pp.300-311, 2014. [2] Yu, X. and Iida, F., "Minimalistic models of an energy-
efficient vertical-hopping robot." Industrial Electronics, IEEE Transactions on 61.2, pp. 1053-1062, 2014. [3] Paul, C., Dravid, R. and Iida, F., "Control of lateral bounding for a pendulum driven hopping robot." Proc. of 5th
International Conference on Climbing and Waffling Robots (CLAWAR 2002). 2002. [4] Iida, F., Dravid, R. and Paul, C., "Design and control of a pendulum driven hopping robot." Intelligent Robots and Systems, 2002. IEEE/RSJ
International Conference on. Vol. 3. IEEE, 2002. [5] Iida, F. and Pfeifer, R., "Sensing through body dynamics." Robotics and Autonomous Systems 54.8, pp. 631-640, 2006. [6] Iida, F. and Pfeifer, R., "Self-stabilization and
behavioral diversity of embodied adaptive locomotion." Embodied artificial intelligence. Springer Berlin Heidelberg, pp.119-129, 2004. [7] Reis, M. et al., "Morphological computation of multi-gaited robot locomotion based on free
vibration." Artificial life 19.1, pp. 97-114, 2013.
Morphological Computation(Reis & Iida, 2014; Paul et al., 2002 他)
② 四脚ロボット:適当な周期信号を出力する制御器+適当な形態を持つ物理システム
① 形態を活用した頭脳を持たないロボット:物理的ダイナミクスの利用
[8] Collins, S. H., Wisse, M. and Ruina, A., "A three-dimensional passive-dynamic walking robot with two legs and knees." The International
Journal of Robotics Research 20.7, pp.607-615, 2001. [9] Collins, S H.. et al. "Efficient bipedal robots based on passive-dynamic walkers."
Science 307.5712, pp. 1082-1085, 2005. [10] 池俣吉人他. "受動歩行の脚運動に対する円弧足の力学的効果." 日本ロボット学会誌 27.6, pp. 661-668, 2009.
受動歩行ロボット (Collins et al., 2001; 池俣他, 2009)
重力や摩擦力,腕や足が触れることによって発生する力など,ロボットのダイナミクスが巧妙に
活用されることによって歩行が可能となる.
歩行に必要だとされる制御⇒適切な形態と材料
【番外】形態を活用した脚ロボット
① 歩行ギネス記録(受動+能動)
https://www.youtube.com/watch?v=aUePTuDhQVY
Puppet Legs Test for The Thing movie.
映画 遊星からの物体X ファーストコンタクト(字幕版)
https://www.youtube.com/watch?v=p4PZ1ypGNhk
54.21時間をかけて,134.03キロメートルを歩行
② 単純な制御+形態模倣
生体模倣ロボット(Breugel et al., 2008; Cory, 2010 他)
② BionicTripod with FinGripper(FESTO):受動的な変形を利用したアーム
① 鳥・昆虫模倣ロボット:受動的な羽根の振舞い
[11] Rolf, P., Lungarella, M. and Iida, F., "The challenges ahead for bio-inspired'soft'robotics." Communications of the ACM 55.11, pp.76-87, 2012. [12] Van Breugel, F.,
Regan, W. and Lipson, H., "From insects to machines: a passively stable, untethered flapping-hovering micro air vehicle." IEEE Robotics and Automation Magazine 15, 4,
pp.68–74, 2008. [13] Cory, R. “Supermaneuverable Perching.” Ph.D. Thesis. MIT, Cambridge, MA, 2010.
Biological inspiration
≠ 自然そのままコピー
動物の行動の基礎となる
原理を理解しロボットの開
発に応用すること
[14] Polygerinos, P. et al., "Towards a soft pneumatic glove for hand rehabilitation." Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE,
2013. [15] Galloway, K. C. et al., "Mechanically programmable bend radius for fiber-reinforced soft actuators." Advanced Robotics (ICAR), 2013 16th International Conference
on. IEEE, 2013. [16] Mosadegh, B. et al. "Pneumatic networks for soft robotics that actuate rapidly." Advanced Functional Materials 24.15, pp. 2163-2170, 2014. [17] Brown,
E. et al. "Universal robotic gripper based on the jamming of granular material." Proceedings of the National Academy of Sciences 107.44, pp. 18809-18814, 2010. [18] Kim, J.,
Alspach, A. and Yamane, K.,“3D Printed Soft Skin for Human-Robot Interaction.”, IEEE/RAS Int. Conf. on Humanoid Robots (HUMANOIDS), 2015.
ソフトロボット(Polygerinos et al., 2013; Galloway et al., 2013 他)
② 柔軟素材のハンドをモータで制御 ③ 手先が把持物体に応じて柔軟に変形
① 材料の特性を利用したソフトロボット.運動は構造によって計算されている.
[19] Epps, B. P. et al., "Swimming performance of a biomimetic compliant fish-like robot." Experiments in fluids 47.6, pp. 927-939, 2009. [20] Cloitre, A. et al., "Propulsive
performance of an underwater soft biomimetic batoid robot." The Twenty-fourth International Ocean and Polar Engineering Conference. International Society of Offshore
and Polar Engineers, 2014. [21] Margheri, L., Laschi, C. and Mazzolai, B., "Soft robotic arm inspired by the octopus: I. From biological functions to artificial
requirements." Bioinspiration & biomimetics 7.2, 025004, 2012.
生体模倣ソフトロボット(Epps et al., 2009; Cloitre et al., 2014 他)
② 2つのモータでエイの運動を再現 ③たこ足ロボットアーム
① 材料の固有振動数を利用した運動動作をデザイン
軟質ゴム・シリコン
ワイヤー(三つ編み構造)
[22] Mizuuchi, I. et al., "Development of musculoskeletal humanoid kotaro."Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on. IEEE, 2006. [23] Mizuuchi, I. et al., "An advanced
musculoskeletal humanoid kojiro."Humanoid Robots, 2007 7th IEEE-RAS International Conference on. IEEE, 2007. [24] Urata, J. et al., "Thermal control of electrical motors for high-power humanoid robots." Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE, 2008. [25] Nakanishi, Y. et al., "Achievement of complex contact motion with environments by musculoskeletal humanoid using humanlike shock
absorption strategy." Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012. [26]水内郁夫. "人体構造に示唆を得た筋骨格型ヒューマノイドの構成と設計." 日本ロボット学会誌 28.6, pp. 689-694, 2010.
[27] Holland, O. and Knight, R., "The anthropomimetic principle." Proceedings of the AISB06 symposium on biologically inspired robotics. 2006.
複雑な構造を持つ生体模倣ロボット
(Mizuuchi et al., 2006; Mizuuchi et al., 2007; Holland & Rob, 2006 他)
② CRONOS・ROBOY
① 腱志郎・腱臓・小次郎
小次郎:100以上のアクチュエータと,データ数としては500以上のセンサとの入出力
形態が制御に寄与
形態が環境に応答
負担減
ハードウェアが制御の負担を軽減するロボット
形態・材料が支配的 ソフトウェア制御が支配的
[28] Pfeifer, R., Iida, F. and Lungarella, M., "Cognition from the bottom up: on biological inspiration, body morphology, and soft materials." Trends in
cognitive sciences 18.8, pp. 404-413, 2014. [29] Kauffman, S. A., "The origins of order: Self organization and selection in evolution." Oxford university
press, 1993.
歩行 走行
跳躍
アトラクタ状態は,ロボット
と環境の相互作用により
創発される
まとめ:ハードウェアが制御の負担を軽減するロボット

Morphological computation 概要(形態を活用するロボット)

  • 1.
    自身の構造や形態を利用し活動するロボット 大阪大学 石黒研究室 博士後期課程1年浦井健次 [1] Reis, M. and Iida, F., "An energy-efficient hopping robot based on free vibration of a curved beam." Mechatronics, IEEE/ASME Transactions on 19.1, pp.300-311, 2014. [2] Yu, X. and Iida, F., "Minimalistic models of an energy-efficient vertical-hopping robot." Industrial Electronics, IEEE Transactions on 61.2, pp. 1053-1062, 2014. [3] Paul, C., Dravid, R. and Iida, F., "Control of lateral bounding for a pendulum driven hopping robot." Proc. of 5th International Conference on Climbing and Waffling Robots (CLAWAR 2002). 2002. [4] Iida, F., Dravid, R. and Paul, C., "Design and control of a pendulum driven hopping robot." Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on. Vol. 3. IEEE, 2002. [5] Iida, F. and Pfeifer, R., "Sensing through body dynamics." Robotics and Autonomous Systems 54.8, pp. 631-640, 2006. [6] Iida, F. and Pfeifer, R., "Self-stabilization and behavioral diversity of embodied adaptive locomotion." Embodied artificial intelligence. Springer Berlin Heidelberg, pp.119-129, 2004. [7] Reis, M. et al., "Morphological computation of multi-gaited robot locomotion based on free vibration." Artificial life 19.1, pp. 97-114, 2013. [8] Collins, S. H., Wisse, M. and Ruina, A., “A three-dimensional passive-dynamic walking robot with two legs and knees.” The International Journal of Robotics Research 20.7, pp.607-615, 2001. [9] Collins, S H.. et al. "Efficient bipedal robots based on passive-dynamic walkers." Science 307.5712, pp. 1082-1085, 2005. [10] 池俣吉人他. "受動歩行の脚運動に対する円弧足の力学的効果." 日本ロボット学会誌 27.6, pp. 661-668, 2009. [11] Rolf, P., Lungarella, M. and Iida, F., "The challenges ahead for bio-inspired'soft'robotics." Communications of the ACM 55.11, pp.76-87, 2012. [12] Van Breugel, F., Regan, W. and Lipson, H., "From insects to machines: a passively stable, untethered flapping-hovering micro air vehicle." IEEE Robotics and Automation Magazine 15, 4, pp.68–74, 2008. [13] Cory, R. “Supermaneuverable Perching.” Ph.D. Thesis. MIT, Cambridge, MA, 2010. [14] Polygerinos, P. et al., "Towards a soft pneumatic glove for hand rehabilitation." Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013. [15] Galloway, K. C. et al., "Mechanically programmable bend radius for fiber-reinforced soft actuators." Advanced Robotics (ICAR), 2013 16th International Conference on. IEEE, 2013. [16] Mosadegh, B. et al. "Pneumatic networks for soft robotics that actuate rapidly." Advanced Functional Materials 24.15, pp. 2163-2170, 2014. [17] Brown, E. et al. "Universal robotic gripper based on the jamming of granular material." Proceedings of the National Academy of Sciences 107.44, pp. 18809-18814, 2010. [18] Kim, J., Alspach, A. and Yamane, K.,“3D Printed Soft Skin for Human-Robot Interaction.”, IEEE/RAS Int. Conf. on Humanoid Robots (HUMANOIDS), 2015. [19] Epps, B. P. et al., "Swimming performance of a biomimetic compliant fish-like robot." Experiments in fluids 47.6, pp. 927-939, 2009. [20] Cloitre, A. et al., "Propulsive performance of an underwater soft biomimetic batoid robot." The Twenty-fourth International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2014. [21] Margheri, L., Laschi, C. and Mazzolai, B., "Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements." Bioinspiration & biomimetics 7.2, 025004, 2012. [22] Mizuuchi, I. et al., “Development of musculoskeletal humanoid kotaro.”Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on. IEEE, 2006. [23] Mizuuchi, I. et al., “An advanced musculoskeletal humanoid kojiro.”Humanoid Robots, 2007 7th IEEE-RAS International Conference on. IEEE, 2007. [24] Urata, J. et al., "Thermal control of electrical motors for high-power humanoid robots." Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE, 2008. [25] Nakanishi, Y. et al., "Achievement of complex contact motion with environments by musculoskeletal humanoid using humanlike shock absorption strategy." Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012. [26]水内郁夫. "人体構造に示唆を得た筋骨格型ヒューマノイドの構成と設計." 日本ロボット学会誌 28.6, pp. 689-694, 2010. [27] Holland, O. and Knight, R., "The anthropomimetic principle." Proceedings of the AISB06 symposium on biologically inspired robotics. 2006. [28] Pfeifer, R., Iida, F. and Lungarella, M., “Cognition from the bottom up: on biological inspiration, body morphology, and soft materials.” Trends in cognitive sciences 18.8, pp. 404-413, 2014. [29] Kauffman, S. A., "The origins of order: Self organization and selection in evolution." Oxford university press, 1993. 知能ロボティクス勉強会@大阪大学豊中キャンパス 参考・引用文献
  • 2.
  • 3.
  • 4.
    [1] Reis, M.and Iida, F., "An energy-efficient hopping robot based on free vibration of a curved beam." Mechatronics, IEEE/ASME Transactions on 19.1, pp.300-311, 2014. [2] Yu, X. and Iida, F., "Minimalistic models of an energy- efficient vertical-hopping robot." Industrial Electronics, IEEE Transactions on 61.2, pp. 1053-1062, 2014. [3] Paul, C., Dravid, R. and Iida, F., "Control of lateral bounding for a pendulum driven hopping robot." Proc. of 5th International Conference on Climbing and Waffling Robots (CLAWAR 2002). 2002. [4] Iida, F., Dravid, R. and Paul, C., "Design and control of a pendulum driven hopping robot." Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on. Vol. 3. IEEE, 2002. [5] Iida, F. and Pfeifer, R., "Sensing through body dynamics." Robotics and Autonomous Systems 54.8, pp. 631-640, 2006. [6] Iida, F. and Pfeifer, R., "Self-stabilization and behavioral diversity of embodied adaptive locomotion." Embodied artificial intelligence. Springer Berlin Heidelberg, pp.119-129, 2004. [7] Reis, M. et al., "Morphological computation of multi-gaited robot locomotion based on free vibration." Artificial life 19.1, pp. 97-114, 2013. Morphological Computation(Reis & Iida, 2014; Paul et al., 2002 他) ② 四脚ロボット:適当な周期信号を出力する制御器+適当な形態を持つ物理システム ① 形態を活用した頭脳を持たないロボット:物理的ダイナミクスの利用
  • 5.
    [8] Collins, S.H., Wisse, M. and Ruina, A., "A three-dimensional passive-dynamic walking robot with two legs and knees." The International Journal of Robotics Research 20.7, pp.607-615, 2001. [9] Collins, S H.. et al. "Efficient bipedal robots based on passive-dynamic walkers." Science 307.5712, pp. 1082-1085, 2005. [10] 池俣吉人他. "受動歩行の脚運動に対する円弧足の力学的効果." 日本ロボット学会誌 27.6, pp. 661-668, 2009. 受動歩行ロボット (Collins et al., 2001; 池俣他, 2009) 重力や摩擦力,腕や足が触れることによって発生する力など,ロボットのダイナミクスが巧妙に 活用されることによって歩行が可能となる. 歩行に必要だとされる制御⇒適切な形態と材料
  • 6.
    【番外】形態を活用した脚ロボット ① 歩行ギネス記録(受動+能動) https://www.youtube.com/watch?v=aUePTuDhQVY Puppet LegsTest for The Thing movie. 映画 遊星からの物体X ファーストコンタクト(字幕版) https://www.youtube.com/watch?v=p4PZ1ypGNhk 54.21時間をかけて,134.03キロメートルを歩行 ② 単純な制御+形態模倣
  • 7.
    生体模倣ロボット(Breugel et al.,2008; Cory, 2010 他) ② BionicTripod with FinGripper(FESTO):受動的な変形を利用したアーム ① 鳥・昆虫模倣ロボット:受動的な羽根の振舞い [11] Rolf, P., Lungarella, M. and Iida, F., "The challenges ahead for bio-inspired'soft'robotics." Communications of the ACM 55.11, pp.76-87, 2012. [12] Van Breugel, F., Regan, W. and Lipson, H., "From insects to machines: a passively stable, untethered flapping-hovering micro air vehicle." IEEE Robotics and Automation Magazine 15, 4, pp.68–74, 2008. [13] Cory, R. “Supermaneuverable Perching.” Ph.D. Thesis. MIT, Cambridge, MA, 2010. Biological inspiration ≠ 自然そのままコピー 動物の行動の基礎となる 原理を理解しロボットの開 発に応用すること
  • 8.
    [14] Polygerinos, P.et al., "Towards a soft pneumatic glove for hand rehabilitation." Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013. [15] Galloway, K. C. et al., "Mechanically programmable bend radius for fiber-reinforced soft actuators." Advanced Robotics (ICAR), 2013 16th International Conference on. IEEE, 2013. [16] Mosadegh, B. et al. "Pneumatic networks for soft robotics that actuate rapidly." Advanced Functional Materials 24.15, pp. 2163-2170, 2014. [17] Brown, E. et al. "Universal robotic gripper based on the jamming of granular material." Proceedings of the National Academy of Sciences 107.44, pp. 18809-18814, 2010. [18] Kim, J., Alspach, A. and Yamane, K.,“3D Printed Soft Skin for Human-Robot Interaction.”, IEEE/RAS Int. Conf. on Humanoid Robots (HUMANOIDS), 2015. ソフトロボット(Polygerinos et al., 2013; Galloway et al., 2013 他) ② 柔軟素材のハンドをモータで制御 ③ 手先が把持物体に応じて柔軟に変形 ① 材料の特性を利用したソフトロボット.運動は構造によって計算されている.
  • 9.
    [19] Epps, B.P. et al., "Swimming performance of a biomimetic compliant fish-like robot." Experiments in fluids 47.6, pp. 927-939, 2009. [20] Cloitre, A. et al., "Propulsive performance of an underwater soft biomimetic batoid robot." The Twenty-fourth International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2014. [21] Margheri, L., Laschi, C. and Mazzolai, B., "Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements." Bioinspiration & biomimetics 7.2, 025004, 2012. 生体模倣ソフトロボット(Epps et al., 2009; Cloitre et al., 2014 他) ② 2つのモータでエイの運動を再現 ③たこ足ロボットアーム ① 材料の固有振動数を利用した運動動作をデザイン 軟質ゴム・シリコン ワイヤー(三つ編み構造)
  • 10.
    [22] Mizuuchi, I.et al., "Development of musculoskeletal humanoid kotaro."Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on. IEEE, 2006. [23] Mizuuchi, I. et al., "An advanced musculoskeletal humanoid kojiro."Humanoid Robots, 2007 7th IEEE-RAS International Conference on. IEEE, 2007. [24] Urata, J. et al., "Thermal control of electrical motors for high-power humanoid robots." Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE, 2008. [25] Nakanishi, Y. et al., "Achievement of complex contact motion with environments by musculoskeletal humanoid using humanlike shock absorption strategy." Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012. [26]水内郁夫. "人体構造に示唆を得た筋骨格型ヒューマノイドの構成と設計." 日本ロボット学会誌 28.6, pp. 689-694, 2010. [27] Holland, O. and Knight, R., "The anthropomimetic principle." Proceedings of the AISB06 symposium on biologically inspired robotics. 2006. 複雑な構造を持つ生体模倣ロボット (Mizuuchi et al., 2006; Mizuuchi et al., 2007; Holland & Rob, 2006 他) ② CRONOS・ROBOY ① 腱志郎・腱臓・小次郎 小次郎:100以上のアクチュエータと,データ数としては500以上のセンサとの入出力
  • 11.
  • 12.
    形態・材料が支配的 ソフトウェア制御が支配的 [28] Pfeifer,R., Iida, F. and Lungarella, M., "Cognition from the bottom up: on biological inspiration, body morphology, and soft materials." Trends in cognitive sciences 18.8, pp. 404-413, 2014. [29] Kauffman, S. A., "The origins of order: Self organization and selection in evolution." Oxford university press, 1993. 歩行 走行 跳躍 アトラクタ状態は,ロボット と環境の相互作用により 創発される まとめ:ハードウェアが制御の負担を軽減するロボット