SlideShare a Scribd company logo
1 of 12
Download to read offline
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)
e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 2 Ver. III (Mar- Apr. 2016), PP 81-92
www.iosrjournals.org
DOI: 10.9790/1684-1302038192 www.iosrjournals.org 81 | Page
Flow Patterns and Thermal Behaviour in a Large Refrigerated
Store
Amr Kaood*, Essam E. Khalil** andGamal M. El-Hariry
Faculty of Engineering, Cairo University, Egypt
Abstract: Refrigeration for the cold storage of perishable foods has been utilized for more than a century. The
need for refrigerated storage grows with hot weather. The frozen food industry expanded many times in freezer
storage in a few decades after World War II. Cold storage facilities are also significant energy consumers that
call for attention to thermal behavior as it greatly influences the cost. Proper design to improve thermal
behavior of a refrigerated space requires the knowledge of air distribution and thermal conditions within the
space. The frozen food quality is sensitive to both storage temperature and fluctuation in temperature. The
present work made use of a computational fluid dynamics technique to adequately predict the cold storage
airflow pattern variations within the cold room under variousevaporator’sarrangements of sizes, numbers and
positions. Design parameters included local temperatures and velocity distributions inside a large cold store
using standard k-e model with mesh element 5,400,000 tetrahedral cells.
Different optional designs utilizing different number of evaporators were investigated as well as the locations of
these evaporators according to load estimation of the cold store.
Key Words: Cold store, Products, Air flow distribution, Pallets, Numerical simulation, CFD
I. Introduction
Cold stores play a main rule in our life, its increase due to population growth and global warming.
Maintenance of even temperature throughout the cold store is essential in order to preserve the quality, safety
and shelf life of perishable food within the refrigerated enclosure, the temperature level and its homogeneity are
directly governed by airflow patterns. The design of the air-distribution system should allow these airflows to
compensate heat fluxes exchanged through the insulated walls or generated by the products. This process is
essential in order to decrease temperature differences throughout the refrigerated room. The temperature field,
which is closely related to the airflow field in storage rooms, affects the quality of stacked agricultural products.
There are many factors affecting the cold store performance such as refrigeration system, frosting
characteristics, air supply mode, airflow field distribution, heat insulation performance. Among these factors, air
distribution is an important factor, which saves initial investigation and operating consumption [1]. The most
important factor that affects quality loss is the temperature related to respiration and microbial activity;
therefore, rapid and uniform cooling is required to avoid the quality loss. Proper methods of cooling may ensure
the temperature uniformity of products stacked in a cold store. The cooling rate and quality of food in the cold
store are highly dependent on the temperature field and velocity field, which are closely related to flow field.
The flow field in the cold store is related with its volume, structure, air temperature, air supply method,
refrigerator quantity, its location in the cold store [2].
II. Literature Review
2.1 Airflow pattern and temperature distribution in a typicalRefrigerated truck configuration loaded
with pallets
Moureh and Flick, [3][4] in his research activity aiming to improve and to optimize air-distribution
systems in refrigerated vehicles in order to decrease the temperature differences throughout palletized cargos.
This condition is essential in order to preserve the quality, safety and shelf life of perishable products. The
present study reports on the numerical and experimental characterization of airflow within a semi-trailer
enclosure loaded with pallets. The experiments were carried out on a reduced scale (1:3.3) model of a
refrigerated-vehicle trailer. The performance of ventilation and temperature homogeneity were characterized
with and without supply air duct systems. Both configurations are extensively used in refrigerated transport. The
numerical modeling of airflow was performed using the Computational Fluid Dynamics (CFD) code Fluent and
a second moment closure, the Reynolds stress model (RSM). The results obtained using the RSM model showed
good agreement with the experimental data. Numerical and experimental results clearly show the importance of
air ducts in decreasing temperature differences throughout the cargo.
Flow Patterns And Thermal Behaviour In A Large Refrigerated Store
DOI: 10.9790/1684-1302038192 www.iosrjournals.org 82 | Page
Figure 1: Top-view of cargo
Figure 2: Side-view of cargo
2.2 Numerical simulation of temperature and velocity in a refrigerated warehouse
Ho, Rosario and Rahman, [5] this research presents air velocity and temperature distribution in a
refrigerated warehouse. The refrigerated space under study has a set of ceiling-type cooling units installed in
front of the arrays of stacks of palletized product packages as shown in figure .3. Numerical solutions of the
steady- state airflow and heat transfer were done using a complete 3-D model and an equivalent two-
dimensional model. The results obtained from both models were found to be in good agreement with each other.
A parametric analysis was performed using the equivalent model with various values of blowing air velocity and
locations of the cooling units. It was found that a better cooling effectiveness and uniformity of temperature in
the refrigerated space could be achieved by using higher blowing air velocity and/or locating the cooling units
lower and closer toward the arrays of product packages.
2.3 Computational Fluid Dynamics Simulation about Comparison of Different Forms of Return Air in a
Small Cold Store
Yi, Jing, Jin-feng, , Chen, and Yi, [6] analyzed two forms of return air in the cold store as in figure 4
using the Finite Volume Methods and the SIMPLE Revised. As a result, Combined with the non-equilibrium
wall function, it is found that taking the way of return air on both sides of the fan is more reasonable and the
cooling consumption of the empty cold store can be saved before the products enter the cold store. Furthermore,
the numerical simulation results can provide reference for choosing fans in the small cold store.
2.4 Improvement of Loaded Cold StorePerformance
Tanaka and Konishi, [7] investigated the cooling performance of a partially loaded cold store in
cooling process using transient three-dimensional computational fluid dynamics model. The model accounted
for turbulence by means of the standard k-e model with standard wall profiles. The model validated successfully
in cooling experiments with a mean error of 0.36 m/s and 1.4o
C for the air velocity in a refrigerated room and
the temperature of the product, respectively. Based on the model, we studied the effect of different loading
patterns of corrugated fiberboard containers filled with products in a cold store on cooling effectiveness. As a
result, flat loading with air gapswas the optimal configuration to achieve high uniformity of temperature and
rapid cooling.
The findings of this study can help to elucidate and improve the cooling performance of refrigerated
rooms for storing agricultural products.
2.5 Optimizing the Air Distribution of Large Space Cold Store Based on Numerical Methods.
Haixia, Jun& Kunfeng, [8] in his research employs numerical methods to simulate 3-D numerical flow
field of large-scale low-temperature cold store.
Figure 3: Two- and three-dimensional models of a refrigerated warehouse.
Flow Patterns And Thermal Behaviour In A Large Refrigerated Store
DOI: 10.9790/1684-1302038192 www.iosrjournals.org 83 | Page
Figure 4: Different forms of return air styles at different arrangement of fan
With help of analysis on different cooler layouts as shown in the figure 6, the research shows that
Staggered layout for coolers shall be adopted, under which the air flow has low velocity and even
distribution in most of the space. The research method of numerical simulation is simple and convenient
in comparison with experimental method which could provide conductive advice to optimization of the
design of large space low-temperature cold storage.
Figure 5: Sixloadingpatternsofcorrugated containersstacked in a cold store
III. Present Work
The present work is part of a research activity aiming to improve and to optimize air-distribution
systems in refrigerated rooms in order to decrease the temperature differences throughout palletized cold stores.
We study in the present work effect of changing of evaporator’s numbers and positions on temperature and
velocity distribution inside a large cold store using standard k-e model. The unstructured mesh was chosen in
this work, it has been widely used in the simulation of the cold store [9] [10] [11] [12] [13] with mesh element
4,500,000 tetrahedral. Studying of different numbers of evaporators 2, 3 and set on (8) different positions is
carried out inside a large cold store according to load estimation of the cold store according to ASHRAE
[14][15].
IV. Mathematical Model
Large constructional cold room was chosen as a case study. Its exterior dimensions are 15 m (L) x 7.5
m (W) x 6 m (H). The thickness of the wall of cold room is 152 mm, which is made of polyurethane insolation.
The large coldstore contains 108 standard product’s pallets [14] its dimensions are 1200 mm (L) x
1000 (W). Layout of the present model of the cold store is shown in figure 7 and figure 8. Evaporators were
arranged inside the cold stores as shown from figure 9 to figure 12.
Flow Patterns And Thermal Behaviour In A Large Refrigerated Store
DOI: 10.9790/1684-1302038192 www.iosrjournals.org 84 | Page
Figure 6: (a) Face to face blowing layout, (b) Back to back blowing layout, (c) Staggered layout and
(d) Parallel blowing layout
Figure 7: Layout of side-view of cold sore
Figure 8: Layout of top-view of cold store
V. CFD Simulation
The cold store model was built in Design Modeller then a meshing was done in mesher and the steady
airflow computation was finished in ANSYS Fluent 14.5. Since the unstructured mesh was more suitable to the
complicated model than structured mesh, so the unstructured mesh was selected in this study [11]. In the
numerical investigation, double precision was employed to increase the accuracy. The convergence criterion is
achieved by solving the energy equation to residuals of 10-7
using segregated solver algorithm. The continuity
equation was solved to a residual below of 10-3
. The momentum and k-ε turbulence equations were solved to
residuals below of 10-3
. Further details of the modeling can be found in reference [16].
Flow Patterns And Thermal Behaviour In A Large Refrigerated Store
DOI: 10.9790/1684-1302038192 www.iosrjournals.org 85 | Page
VI. Results And Discussion
The following figures presents the solutions of temperature for the whole pallets of products,
Streamlines around pallets and Iso-Clips of temperature more than 252 k are indicated to show near zeroflow
regimes.
6.1 Overview of (2- Evaporators) cases
As shown in the previous contours it is a comparison for the four cases of two Evaporators .This
investigation show that the two – evaporators design is poor for good velocity and temperature distribution and
it will be large dead zones with low velocity and high temperature at the outside and far pallets as in case 2-1
and case 2-2. However, the staggered arrangement of the cooling units give acceptable velocity distribution and
has good uniformity index for temperature and standard deviation So that numerically case 2-4 is better than the
other three cases as shown in Figure 18 which has good temperature and velocity distribution with less dead
zones.
Figure 9: Layout of evaporators inside the cold store Case 2-1 and Case 2-2
Figure 10: Layout of evaporators inside the cold store Case 2-3 and Case 2-4
Flow Patterns And Thermal Behaviour In A Large Refrigerated Store
DOI: 10.9790/1684-1302038192 www.iosrjournals.org 86 | Page
Figure 11: Layout of evaporators inside the cold store Case 3-1 and Case 3-2
Figure 12: Layout of evaporators inside the cold store Case 3-3 and Case 3-4
Flow Patterns And Thermal Behaviour In A Large Refrigerated Store
DOI: 10.9790/1684-1302038192 www.iosrjournals.org 87 | Page
Case 2-1
a) b)
Figure 13: (a) Contours of temperature of Pallets in case 2-1 ,
(b) Contours of temperature of Pallets (Bottom – view) in case 2-1
Case 2-1
a)b)
Figure 14: (a) Temperature Contours on pallets and streamlines case 2-1,
(b) Iso-Clip for temperature of pallets more than 252 K for case 2-1
Case 2-2
Flow Patterns And Thermal Behaviour In A Large Refrigerated Store
DOI: 10.9790/1684-1302038192 www.iosrjournals.org 88 | Page
a) b)
Figure 15: (a) Temperature Contours on pallets case 2-2, (b) Contours of velocity vectors at plane of
height (Z = 5.36 m) case 2-2
Case 2-2
a) b)
Figure 16 (a) Temperature Contours on pallets and streamlines case2-2,
(b)Iso-Clip for temperature of pallets more than 252 K for case 2-2
Case 2-3
Flow Patterns And Thermal Behaviour In A Large Refrigerated Store
DOI: 10.9790/1684-1302038192 www.iosrjournals.org 89 | Page
a) b)
Figure 17: (a) Temperature Contours on pallets case 2-3, (b) Contours of temperatures on pallets and
streamlines case 2-3
Case 2-4
a) b)
Figure 18: (a) Temperature Contours on pallets case 2-4,
(b) Contours of temperatures on pallets and streamlines case 2-4
Case 3-1
Flow Patterns And Thermal Behaviour In A Large Refrigerated Store
DOI: 10.9790/1684-1302038192 www.iosrjournals.org 90 | Page
a) b)
Figure 19: (a) Temperature Contours on pallets case 3-1 ,
(b) Contours of temperatures on pallets and streamlines case 3-1
Case 3-2
a) b)
Figure 20: (a) Temperature Contours on pallets case 3-2, (b) Contours of temperatures on pallets and
streamlines case 3-2
Case 3-3
Flow Patterns And Thermal Behaviour In A Large Refrigerated Store
DOI: 10.9790/1684-1302038192 www.iosrjournals.org 91 | Page
a) b)
Figure 21: (a) Temperature Contours on pallets case 3-3,
(b) Contours of temperatures on pallets and streamlines case 3-3
Case 3-4
a) b)
Figure 22: (a) Temperature Contours on pallets case 3-4 ,
(b) Contours of temperatures on pallets and streamlines case 3-4
Figure 23: Iso-Clip for temperature of pallets more than 252 K for case 3-4
6.2 Overview of three Evaporatorscases
As shown in the previous contours it is a comparison for the four cases of 3 Evaporators .This
investigation show that the three–evaporators design give better velocity and temperature distribution than two
Flow Patterns And Thermal Behaviour In A Large Refrigerated Store
DOI: 10.9790/1684-1302038192 www.iosrjournals.org 92 | Page
evaporators and it will be less dead zones with low velocity and high temperature at the outside and far rows of
pallets as in case 3-1 and case 3-2. However, the staggered arrangement of the cooling units give good velocity
distribution and has good uniformity index for temperature and standard deviation So that numerically case 3-4
is better than the other three cases as shown in Iso-Clip Figure 23 which indicatedbetter temperature and
velocity distributions in the room without dead zones.
VII. Conclusions
In this work, a simulation model of large cold store was constructed. To improve the accuracy of the
calculation, the unstructured mesh was used. Equations of (Energy, continuity, momentum and k-e) were solved.
As well as Under Relaxation techniques were applied to accurately predict the performance of the airflow
patterns in the cold store. It was found that CFD is a powerful tool that can simulate air pattern inside large cold
store. Temperatureand velocity gradients were affected by flow field due to the numbers and locations of the
cooling units (Evaporators). It was found that using of staggered design gives better flow patterns (velocity and
Temperature distributions) and minimizesthe dead zones. It was found that using of large number of evaporators
would give better flow field (velocity and Temperature distributions) and would minimize dead zones. It is not
recommended to use two evaporators for that large cold store because it will be create large dead zones with
high temperature and low air stream velocities.
References
[1]. [Gong, J., Pu, L., & Zhang, H. (2010). Numerical Study of Cold Store in Cold Storage Supply Chain and Logistics. 2010
International Conference on E-Product E-Service and E-Entertainment, 1–3.
[2]. Hao, X. H., & Ju, Y. L. (2011). Simulation and analysis on the flow field of the low temperature mini-type cold store. Heat and
Mass Transfer, 47(7), 771–775.
[3]. Moureh, J., Menia, N., & Flick, D. (2002). Numerical and experimental study of airflow in a typical refrigerated truck configuration
loaded with pallets. Computers and Electronics in Agriculture, 34(1-3), 25–42.
[4]. Moureh, J., & Flick, D. (2004). Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded
with pallets. International Journal of Refrigeration, 27(5), 464–474.
[5]. Ho, S. H., Rosario, L., & Rahman, M. M. (2010). Numerical simulation of temperature and velocity in a refrigerated warehouse.
International Journal of Refrigeration, 33(5), 1015–1025.
[6]. Yi, T., Jing, X. I. E., Jin-feng, W., Chen, M., & Yi, Z. (2012). Computational Fluid Dynamics Simulation about Comparison of
Different Forms of Return Air in a Small Cold Store, 517, 1133–1138.
[7]. Tanaka, F., & Konishi, Y. (2012). The use of CFD to improve the performance of a partially loaded cold store. Journal of Food …,
35(6), 874–880.
[8]. Haixia, W., Jun, W., & Kunfeng, S. (2013). Optimizing the Air Distribution of Large Space Cold Store Based on Numerical
Methods. Journal of Applied Sciences.
[9]. Xie J, Qu X H, Xu S Q, et al. Numerical simulation and verification of airflow in cold store[J]. Transactions of the Chinese Society
of Agricultural Engineering, 2005, 21 (2): 11~16.
[10]. Xie J, Tang Y, Wang J F, et al. Computational Fluid Dynamics simulation of influence of different arrangements of fans to the cold
store[J]. Science and Technology of Food Industry (in Chinese), 2011, 32 (11): 349~351.
[11]. Foster A M, Swain M J, Barrett R, et al. Experimental verification of analytical and CFD predictions of infiltration through cold
store entrances[J].International Journal of Refrigeration,2003, 26 (8): 918~925.
[12]. Foster A M, Swain M J, Barrett R, et al. Three-dimensional effects of an air curtain used to restrict cold room infiltration [J].
Applied Mathematical Modelling, 2007, 31 (6): 1109~1123.
[13]. Xie J, Wu T. Numerical simulation on temperature field in the doorway of a minitype cold store [J]. Journal of Shanchai Fisheries
University, 2006, 15 (3): 333~339.
[14]. Trott, A. R., & Welch, T. C. (2000). Refrigeration and air conditioning. Butterworth-Heinemann.‫‏‬.
[15]. ASHRAE Handbook: Refrigeration, Chapter 13: Refrigeration Load, American Society for Heating, Refrigerating and Air-
Conditioning Engineers, Atlanta, USA, 2014.
[16]. Khalil,E.E.,Air Distribution in Buildings, Taylor and Francis, CRC Press, USA,Nov.2013.

More Related Content

What's hot

J047077085
J047077085J047077085
J047077085inventy
 
Experimental study of heat transfer
Experimental study of heat transferExperimental study of heat transfer
Experimental study of heat transferprj_publication
 
NUMERICAL ANALYSIS OF THERMAL PERFORMANCE OF LOUVER FIN
NUMERICAL ANALYSIS OF THERMAL PERFORMANCE OF LOUVER FINNUMERICAL ANALYSIS OF THERMAL PERFORMANCE OF LOUVER FIN
NUMERICAL ANALYSIS OF THERMAL PERFORMANCE OF LOUVER FINijiert bestjournal
 
HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...
HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...
HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...BIBHUTI BHUSAN SAMANTARAY
 
15. experimental investigation of heat transfer characteristics of
15. experimental investigation of heat transfer characteristics of15. experimental investigation of heat transfer characteristics of
15. experimental investigation of heat transfer characteristics ofNEERAJKUMAR1898
 
Effect of controlling parameters on heat transfer during spray impingement co...
Effect of controlling parameters on heat transfer during spray impingement co...Effect of controlling parameters on heat transfer during spray impingement co...
Effect of controlling parameters on heat transfer during spray impingement co...BIBHUTI BHUSAN SAMANTARAY
 
Experimental analysis of partial and fully charged thermal stratified hot wat...
Experimental analysis of partial and fully charged thermal stratified hot wat...Experimental analysis of partial and fully charged thermal stratified hot wat...
Experimental analysis of partial and fully charged thermal stratified hot wat...IAEME Publication
 
Masters_Thesis_Final_Draft_Rev00FINAL
Masters_Thesis_Final_Draft_Rev00FINALMasters_Thesis_Final_Draft_Rev00FINAL
Masters_Thesis_Final_Draft_Rev00FINALJamie Fogarty
 
EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TEMPERATURE DISTRIBUTION FOR MEAT...
EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TEMPERATURE DISTRIBUTION FOR MEAT...EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TEMPERATURE DISTRIBUTION FOR MEAT...
EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TEMPERATURE DISTRIBUTION FOR MEAT...IAEME Publication
 
Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...
Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...
Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...IJERA Editor
 
Heat transfer augmentation in different geometries of dimpled surface under n...
Heat transfer augmentation in different geometries of dimpled surface under n...Heat transfer augmentation in different geometries of dimpled surface under n...
Heat transfer augmentation in different geometries of dimpled surface under n...eSAT Publishing House
 
Heat transfer augmentation in different geometries of dimpled surface under n...
Heat transfer augmentation in different geometries of dimpled surface under n...Heat transfer augmentation in different geometries of dimpled surface under n...
Heat transfer augmentation in different geometries of dimpled surface under n...eSAT Journals
 

What's hot (17)

J047077085
J047077085J047077085
J047077085
 
F352426
F352426F352426
F352426
 
Experimental study of heat transfer
Experimental study of heat transferExperimental study of heat transfer
Experimental study of heat transfer
 
NUMERICAL ANALYSIS OF THERMAL PERFORMANCE OF LOUVER FIN
NUMERICAL ANALYSIS OF THERMAL PERFORMANCE OF LOUVER FINNUMERICAL ANALYSIS OF THERMAL PERFORMANCE OF LOUVER FIN
NUMERICAL ANALYSIS OF THERMAL PERFORMANCE OF LOUVER FIN
 
HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...
HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...
HEAT TRANSFER AUGMENTATION IN STEEL QUENCHING BY SPRAY IMPINGEMENT COOLING ME...
 
15. experimental investigation of heat transfer characteristics of
15. experimental investigation of heat transfer characteristics of15. experimental investigation of heat transfer characteristics of
15. experimental investigation of heat transfer characteristics of
 
Effect of controlling parameters on heat transfer during spray impingement co...
Effect of controlling parameters on heat transfer during spray impingement co...Effect of controlling parameters on heat transfer during spray impingement co...
Effect of controlling parameters on heat transfer during spray impingement co...
 
Experimental analysis of partial and fully charged thermal stratified hot wat...
Experimental analysis of partial and fully charged thermal stratified hot wat...Experimental analysis of partial and fully charged thermal stratified hot wat...
Experimental analysis of partial and fully charged thermal stratified hot wat...
 
Masters_Thesis_Final_Draft_Rev00FINAL
Masters_Thesis_Final_Draft_Rev00FINALMasters_Thesis_Final_Draft_Rev00FINAL
Masters_Thesis_Final_Draft_Rev00FINAL
 
EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TEMPERATURE DISTRIBUTION FOR MEAT...
EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TEMPERATURE DISTRIBUTION FOR MEAT...EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TEMPERATURE DISTRIBUTION FOR MEAT...
EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TEMPERATURE DISTRIBUTION FOR MEAT...
 
Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...
Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...
Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...
 
As4101256260
As4101256260As4101256260
As4101256260
 
I0412075080
I0412075080I0412075080
I0412075080
 
Heat transfer augmentation in different geometries of dimpled surface under n...
Heat transfer augmentation in different geometries of dimpled surface under n...Heat transfer augmentation in different geometries of dimpled surface under n...
Heat transfer augmentation in different geometries of dimpled surface under n...
 
Heat transfer augmentation in different geometries of dimpled surface under n...
Heat transfer augmentation in different geometries of dimpled surface under n...Heat transfer augmentation in different geometries of dimpled surface under n...
Heat transfer augmentation in different geometries of dimpled surface under n...
 
D0532328
D0532328D0532328
D0532328
 
E351923
E351923E351923
E351923
 

Viewers also liked

Model-based Approach of Controller Design for a FOPTD System and its Real Tim...
Model-based Approach of Controller Design for a FOPTD System and its Real Tim...Model-based Approach of Controller Design for a FOPTD System and its Real Tim...
Model-based Approach of Controller Design for a FOPTD System and its Real Tim...IOSR Journals
 
Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...
Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...
Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...IOSR Journals
 
Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...
Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...
Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...IOSR Journals
 
PageRank algorithm and its variations: A Survey report
PageRank algorithm and its variations: A Survey reportPageRank algorithm and its variations: A Survey report
PageRank algorithm and its variations: A Survey reportIOSR Journals
 
Electronic Load Controller for Self Exited Induction Generator Using Fuzzy Lo...
Electronic Load Controller for Self Exited Induction Generator Using Fuzzy Lo...Electronic Load Controller for Self Exited Induction Generator Using Fuzzy Lo...
Electronic Load Controller for Self Exited Induction Generator Using Fuzzy Lo...IOSR Journals
 
Application of Data Mining Technique in Invasion Recognition
Application of Data Mining Technique in Invasion RecognitionApplication of Data Mining Technique in Invasion Recognition
Application of Data Mining Technique in Invasion RecognitionIOSR Journals
 
New and Unconventional Techniques in Pictorial Steganography and Steganalysis
New and Unconventional Techniques in Pictorial Steganography and SteganalysisNew and Unconventional Techniques in Pictorial Steganography and Steganalysis
New and Unconventional Techniques in Pictorial Steganography and SteganalysisIOSR Journals
 
Simulation of Route Optimization with load balancing Using AntNet System
Simulation of Route Optimization with load balancing Using AntNet SystemSimulation of Route Optimization with load balancing Using AntNet System
Simulation of Route Optimization with load balancing Using AntNet SystemIOSR Journals
 
Effect of Industrial Bleach Wash and Softening on the Physical, Mechanical an...
Effect of Industrial Bleach Wash and Softening on the Physical, Mechanical an...Effect of Industrial Bleach Wash and Softening on the Physical, Mechanical an...
Effect of Industrial Bleach Wash and Softening on the Physical, Mechanical an...IOSR Journals
 
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...IOSR Journals
 

Viewers also liked (20)

H01064759
H01064759H01064759
H01064759
 
B017110713
B017110713B017110713
B017110713
 
Model-based Approach of Controller Design for a FOPTD System and its Real Tim...
Model-based Approach of Controller Design for a FOPTD System and its Real Tim...Model-based Approach of Controller Design for a FOPTD System and its Real Tim...
Model-based Approach of Controller Design for a FOPTD System and its Real Tim...
 
Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...
Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...
Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...
 
Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...
Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...
Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...
 
K0536569
K0536569K0536569
K0536569
 
B0340818
B0340818B0340818
B0340818
 
PageRank algorithm and its variations: A Survey report
PageRank algorithm and its variations: A Survey reportPageRank algorithm and its variations: A Survey report
PageRank algorithm and its variations: A Survey report
 
I012657382
I012657382I012657382
I012657382
 
Electronic Load Controller for Self Exited Induction Generator Using Fuzzy Lo...
Electronic Load Controller for Self Exited Induction Generator Using Fuzzy Lo...Electronic Load Controller for Self Exited Induction Generator Using Fuzzy Lo...
Electronic Load Controller for Self Exited Induction Generator Using Fuzzy Lo...
 
Application of Data Mining Technique in Invasion Recognition
Application of Data Mining Technique in Invasion RecognitionApplication of Data Mining Technique in Invasion Recognition
Application of Data Mining Technique in Invasion Recognition
 
New and Unconventional Techniques in Pictorial Steganography and Steganalysis
New and Unconventional Techniques in Pictorial Steganography and SteganalysisNew and Unconventional Techniques in Pictorial Steganography and Steganalysis
New and Unconventional Techniques in Pictorial Steganography and Steganalysis
 
Simulation of Route Optimization with load balancing Using AntNet System
Simulation of Route Optimization with load balancing Using AntNet SystemSimulation of Route Optimization with load balancing Using AntNet System
Simulation of Route Optimization with load balancing Using AntNet System
 
Effect of Industrial Bleach Wash and Softening on the Physical, Mechanical an...
Effect of Industrial Bleach Wash and Softening on the Physical, Mechanical an...Effect of Industrial Bleach Wash and Softening on the Physical, Mechanical an...
Effect of Industrial Bleach Wash and Softening on the Physical, Mechanical an...
 
F013153140
F013153140F013153140
F013153140
 
E017512630
E017512630E017512630
E017512630
 
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
The Phase Theory towards the Unification of the Forces of Nature the Heart Be...
 
I017635355
I017635355I017635355
I017635355
 
A0550108
A0550108A0550108
A0550108
 
F1803013034
F1803013034F1803013034
F1803013034
 

Similar to Thermal Behavior and Airflow Patterns in a Large Refrigerated Storage Facility

AN ANALYSIS OF COLD STORE BY CFD SIMULATION
AN ANALYSIS OF COLD STORE BY CFD SIMULATIONAN ANALYSIS OF COLD STORE BY CFD SIMULATION
AN ANALYSIS OF COLD STORE BY CFD SIMULATIONijiert bestjournal
 
Optimization of Air Preheater for compactness of shell by evaluating performa...
Optimization of Air Preheater for compactness of shell by evaluating performa...Optimization of Air Preheater for compactness of shell by evaluating performa...
Optimization of Air Preheater for compactness of shell by evaluating performa...Nemish Kanwar
 
Coefficient of Performance Enhancement of Refrigeration Cycles
Coefficient of Performance Enhancement of Refrigeration CyclesCoefficient of Performance Enhancement of Refrigeration Cycles
Coefficient of Performance Enhancement of Refrigeration CyclesIJERA Editor
 
Experimental analysis of partial and fully charged thermal stratified hot wat...
Experimental analysis of partial and fully charged thermal stratified hot wat...Experimental analysis of partial and fully charged thermal stratified hot wat...
Experimental analysis of partial and fully charged thermal stratified hot wat...IAEME Publication
 
CFD Simulation of Cooling Pipes Distance in The Growing Medium for Hydroponic...
CFD Simulation of Cooling Pipes Distance in The Growing Medium for Hydroponic...CFD Simulation of Cooling Pipes Distance in The Growing Medium for Hydroponic...
CFD Simulation of Cooling Pipes Distance in The Growing Medium for Hydroponic...IJERDJOURNAL
 
ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011
ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011
ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011Nirav Soni
 
DIMINUTION OF TEMPERATURE FLUCTUATION INSIDE THE CABIN OF A HOUSEHOLD REFRIGE...
DIMINUTION OF TEMPERATURE FLUCTUATION INSIDE THE CABIN OF A HOUSEHOLD REFRIGE...DIMINUTION OF TEMPERATURE FLUCTUATION INSIDE THE CABIN OF A HOUSEHOLD REFRIGE...
DIMINUTION OF TEMPERATURE FLUCTUATION INSIDE THE CABIN OF A HOUSEHOLD REFRIGE...ijmech
 
Performance Improvement of a Domestic Refrigerator Using Phase change Materia...
Performance Improvement of a Domestic Refrigerator Using Phase change Materia...Performance Improvement of a Domestic Refrigerator Using Phase change Materia...
Performance Improvement of a Domestic Refrigerator Using Phase change Materia...IOSR Journals
 
Analysis of forced draft cooling tower performance using ansys fluent software
Analysis of forced draft cooling tower performance using ansys fluent softwareAnalysis of forced draft cooling tower performance using ansys fluent software
Analysis of forced draft cooling tower performance using ansys fluent softwareeSAT Journals
 
Influence of Cooling Channel Position and Form on Polymer Solidification and ...
Influence of Cooling Channel Position and Form on Polymer Solidification and ...Influence of Cooling Channel Position and Form on Polymer Solidification and ...
Influence of Cooling Channel Position and Form on Polymer Solidification and ...Karthikn Subramanian
 
ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...
ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...
ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...ijiert bestjournal
 
CFD Simulation of Air Conditioning System of the Classroom
CFD Simulation of Air Conditioning System of the ClassroomCFD Simulation of Air Conditioning System of the Classroom
CFD Simulation of Air Conditioning System of the Classroomijtsrd
 
Heat Transfer Analysis of a Biomimetic Plate Heat Exchanger with Bird Feather...
Heat Transfer Analysis of a Biomimetic Plate Heat Exchanger with Bird Feather...Heat Transfer Analysis of a Biomimetic Plate Heat Exchanger with Bird Feather...
Heat Transfer Analysis of a Biomimetic Plate Heat Exchanger with Bird Feather...IRJET Journal
 
Numerical Investigation of Air Cooled Condensers using Different Refrigerants
Numerical Investigation of Air Cooled Condensers using Different RefrigerantsNumerical Investigation of Air Cooled Condensers using Different Refrigerants
Numerical Investigation of Air Cooled Condensers using Different Refrigerantsijtsrd
 
“Optimization of Heat Gain by Air Exchange through the Window of Cold Storage...
“Optimization of Heat Gain by Air Exchange through the Window of Cold Storage...“Optimization of Heat Gain by Air Exchange through the Window of Cold Storage...
“Optimization of Heat Gain by Air Exchange through the Window of Cold Storage...IJERA Editor
 

Similar to Thermal Behavior and Airflow Patterns in a Large Refrigerated Storage Facility (20)

AN ANALYSIS OF COLD STORE BY CFD SIMULATION
AN ANALYSIS OF COLD STORE BY CFD SIMULATIONAN ANALYSIS OF COLD STORE BY CFD SIMULATION
AN ANALYSIS OF COLD STORE BY CFD SIMULATION
 
Optimization of Air Preheater for compactness of shell by evaluating performa...
Optimization of Air Preheater for compactness of shell by evaluating performa...Optimization of Air Preheater for compactness of shell by evaluating performa...
Optimization of Air Preheater for compactness of shell by evaluating performa...
 
Coefficient of Performance Enhancement of Refrigeration Cycles
Coefficient of Performance Enhancement of Refrigeration CyclesCoefficient of Performance Enhancement of Refrigeration Cycles
Coefficient of Performance Enhancement of Refrigeration Cycles
 
Experimental analysis of partial and fully charged thermal stratified hot wat...
Experimental analysis of partial and fully charged thermal stratified hot wat...Experimental analysis of partial and fully charged thermal stratified hot wat...
Experimental analysis of partial and fully charged thermal stratified hot wat...
 
CFD Simulation of Cooling Pipes Distance in The Growing Medium for Hydroponic...
CFD Simulation of Cooling Pipes Distance in The Growing Medium for Hydroponic...CFD Simulation of Cooling Pipes Distance in The Growing Medium for Hydroponic...
CFD Simulation of Cooling Pipes Distance in The Growing Medium for Hydroponic...
 
ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011
ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011
ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011
 
F3105462.pdf
F3105462.pdfF3105462.pdf
F3105462.pdf
 
DIMINUTION OF TEMPERATURE FLUCTUATION INSIDE THE CABIN OF A HOUSEHOLD REFRIGE...
DIMINUTION OF TEMPERATURE FLUCTUATION INSIDE THE CABIN OF A HOUSEHOLD REFRIGE...DIMINUTION OF TEMPERATURE FLUCTUATION INSIDE THE CABIN OF A HOUSEHOLD REFRIGE...
DIMINUTION OF TEMPERATURE FLUCTUATION INSIDE THE CABIN OF A HOUSEHOLD REFRIGE...
 
Performance Improvement of a Domestic Refrigerator Using Phase change Materia...
Performance Improvement of a Domestic Refrigerator Using Phase change Materia...Performance Improvement of a Domestic Refrigerator Using Phase change Materia...
Performance Improvement of a Domestic Refrigerator Using Phase change Materia...
 
Analysis of forced draft cooling tower performance using ansys fluent software
Analysis of forced draft cooling tower performance using ansys fluent softwareAnalysis of forced draft cooling tower performance using ansys fluent software
Analysis of forced draft cooling tower performance using ansys fluent software
 
Numerical Investigation of a Single Phase Air Flow inside Porous Media of a C...
Numerical Investigation of a Single Phase Air Flow inside Porous Media of a C...Numerical Investigation of a Single Phase Air Flow inside Porous Media of a C...
Numerical Investigation of a Single Phase Air Flow inside Porous Media of a C...
 
Influence of Cooling Channel Position and Form on Polymer Solidification and ...
Influence of Cooling Channel Position and Form on Polymer Solidification and ...Influence of Cooling Channel Position and Form on Polymer Solidification and ...
Influence of Cooling Channel Position and Form on Polymer Solidification and ...
 
ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...
ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...
ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...
 
CFD Simulation of Air Conditioning System of the Classroom
CFD Simulation of Air Conditioning System of the ClassroomCFD Simulation of Air Conditioning System of the Classroom
CFD Simulation of Air Conditioning System of the Classroom
 
Heat Transfer Analysis of a Biomimetic Plate Heat Exchanger with Bird Feather...
Heat Transfer Analysis of a Biomimetic Plate Heat Exchanger with Bird Feather...Heat Transfer Analysis of a Biomimetic Plate Heat Exchanger with Bird Feather...
Heat Transfer Analysis of a Biomimetic Plate Heat Exchanger with Bird Feather...
 
Numerical Investigation of Air Cooled Condensers using Different Refrigerants
Numerical Investigation of Air Cooled Condensers using Different RefrigerantsNumerical Investigation of Air Cooled Condensers using Different Refrigerants
Numerical Investigation of Air Cooled Condensers using Different Refrigerants
 
“Optimization of Heat Gain by Air Exchange through the Window of Cold Storage...
“Optimization of Heat Gain by Air Exchange through the Window of Cold Storage...“Optimization of Heat Gain by Air Exchange through the Window of Cold Storage...
“Optimization of Heat Gain by Air Exchange through the Window of Cold Storage...
 
D046041925
D046041925D046041925
D046041925
 
report project.docx
report project.docxreport project.docx
report project.docx
 
Ijmet 06 09_008
Ijmet 06 09_008Ijmet 06 09_008
Ijmet 06 09_008
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Neo4j
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsPrecisely
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 

Recently uploaded (20)

Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power Systems
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 

Thermal Behavior and Airflow Patterns in a Large Refrigerated Storage Facility

  • 1. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 2 Ver. III (Mar- Apr. 2016), PP 81-92 www.iosrjournals.org DOI: 10.9790/1684-1302038192 www.iosrjournals.org 81 | Page Flow Patterns and Thermal Behaviour in a Large Refrigerated Store Amr Kaood*, Essam E. Khalil** andGamal M. El-Hariry Faculty of Engineering, Cairo University, Egypt Abstract: Refrigeration for the cold storage of perishable foods has been utilized for more than a century. The need for refrigerated storage grows with hot weather. The frozen food industry expanded many times in freezer storage in a few decades after World War II. Cold storage facilities are also significant energy consumers that call for attention to thermal behavior as it greatly influences the cost. Proper design to improve thermal behavior of a refrigerated space requires the knowledge of air distribution and thermal conditions within the space. The frozen food quality is sensitive to both storage temperature and fluctuation in temperature. The present work made use of a computational fluid dynamics technique to adequately predict the cold storage airflow pattern variations within the cold room under variousevaporator’sarrangements of sizes, numbers and positions. Design parameters included local temperatures and velocity distributions inside a large cold store using standard k-e model with mesh element 5,400,000 tetrahedral cells. Different optional designs utilizing different number of evaporators were investigated as well as the locations of these evaporators according to load estimation of the cold store. Key Words: Cold store, Products, Air flow distribution, Pallets, Numerical simulation, CFD I. Introduction Cold stores play a main rule in our life, its increase due to population growth and global warming. Maintenance of even temperature throughout the cold store is essential in order to preserve the quality, safety and shelf life of perishable food within the refrigerated enclosure, the temperature level and its homogeneity are directly governed by airflow patterns. The design of the air-distribution system should allow these airflows to compensate heat fluxes exchanged through the insulated walls or generated by the products. This process is essential in order to decrease temperature differences throughout the refrigerated room. The temperature field, which is closely related to the airflow field in storage rooms, affects the quality of stacked agricultural products. There are many factors affecting the cold store performance such as refrigeration system, frosting characteristics, air supply mode, airflow field distribution, heat insulation performance. Among these factors, air distribution is an important factor, which saves initial investigation and operating consumption [1]. The most important factor that affects quality loss is the temperature related to respiration and microbial activity; therefore, rapid and uniform cooling is required to avoid the quality loss. Proper methods of cooling may ensure the temperature uniformity of products stacked in a cold store. The cooling rate and quality of food in the cold store are highly dependent on the temperature field and velocity field, which are closely related to flow field. The flow field in the cold store is related with its volume, structure, air temperature, air supply method, refrigerator quantity, its location in the cold store [2]. II. Literature Review 2.1 Airflow pattern and temperature distribution in a typicalRefrigerated truck configuration loaded with pallets Moureh and Flick, [3][4] in his research activity aiming to improve and to optimize air-distribution systems in refrigerated vehicles in order to decrease the temperature differences throughout palletized cargos. This condition is essential in order to preserve the quality, safety and shelf life of perishable products. The present study reports on the numerical and experimental characterization of airflow within a semi-trailer enclosure loaded with pallets. The experiments were carried out on a reduced scale (1:3.3) model of a refrigerated-vehicle trailer. The performance of ventilation and temperature homogeneity were characterized with and without supply air duct systems. Both configurations are extensively used in refrigerated transport. The numerical modeling of airflow was performed using the Computational Fluid Dynamics (CFD) code Fluent and a second moment closure, the Reynolds stress model (RSM). The results obtained using the RSM model showed good agreement with the experimental data. Numerical and experimental results clearly show the importance of air ducts in decreasing temperature differences throughout the cargo.
  • 2. Flow Patterns And Thermal Behaviour In A Large Refrigerated Store DOI: 10.9790/1684-1302038192 www.iosrjournals.org 82 | Page Figure 1: Top-view of cargo Figure 2: Side-view of cargo 2.2 Numerical simulation of temperature and velocity in a refrigerated warehouse Ho, Rosario and Rahman, [5] this research presents air velocity and temperature distribution in a refrigerated warehouse. The refrigerated space under study has a set of ceiling-type cooling units installed in front of the arrays of stacks of palletized product packages as shown in figure .3. Numerical solutions of the steady- state airflow and heat transfer were done using a complete 3-D model and an equivalent two- dimensional model. The results obtained from both models were found to be in good agreement with each other. A parametric analysis was performed using the equivalent model with various values of blowing air velocity and locations of the cooling units. It was found that a better cooling effectiveness and uniformity of temperature in the refrigerated space could be achieved by using higher blowing air velocity and/or locating the cooling units lower and closer toward the arrays of product packages. 2.3 Computational Fluid Dynamics Simulation about Comparison of Different Forms of Return Air in a Small Cold Store Yi, Jing, Jin-feng, , Chen, and Yi, [6] analyzed two forms of return air in the cold store as in figure 4 using the Finite Volume Methods and the SIMPLE Revised. As a result, Combined with the non-equilibrium wall function, it is found that taking the way of return air on both sides of the fan is more reasonable and the cooling consumption of the empty cold store can be saved before the products enter the cold store. Furthermore, the numerical simulation results can provide reference for choosing fans in the small cold store. 2.4 Improvement of Loaded Cold StorePerformance Tanaka and Konishi, [7] investigated the cooling performance of a partially loaded cold store in cooling process using transient three-dimensional computational fluid dynamics model. The model accounted for turbulence by means of the standard k-e model with standard wall profiles. The model validated successfully in cooling experiments with a mean error of 0.36 m/s and 1.4o C for the air velocity in a refrigerated room and the temperature of the product, respectively. Based on the model, we studied the effect of different loading patterns of corrugated fiberboard containers filled with products in a cold store on cooling effectiveness. As a result, flat loading with air gapswas the optimal configuration to achieve high uniformity of temperature and rapid cooling. The findings of this study can help to elucidate and improve the cooling performance of refrigerated rooms for storing agricultural products. 2.5 Optimizing the Air Distribution of Large Space Cold Store Based on Numerical Methods. Haixia, Jun& Kunfeng, [8] in his research employs numerical methods to simulate 3-D numerical flow field of large-scale low-temperature cold store. Figure 3: Two- and three-dimensional models of a refrigerated warehouse.
  • 3. Flow Patterns And Thermal Behaviour In A Large Refrigerated Store DOI: 10.9790/1684-1302038192 www.iosrjournals.org 83 | Page Figure 4: Different forms of return air styles at different arrangement of fan With help of analysis on different cooler layouts as shown in the figure 6, the research shows that Staggered layout for coolers shall be adopted, under which the air flow has low velocity and even distribution in most of the space. The research method of numerical simulation is simple and convenient in comparison with experimental method which could provide conductive advice to optimization of the design of large space low-temperature cold storage. Figure 5: Sixloadingpatternsofcorrugated containersstacked in a cold store III. Present Work The present work is part of a research activity aiming to improve and to optimize air-distribution systems in refrigerated rooms in order to decrease the temperature differences throughout palletized cold stores. We study in the present work effect of changing of evaporator’s numbers and positions on temperature and velocity distribution inside a large cold store using standard k-e model. The unstructured mesh was chosen in this work, it has been widely used in the simulation of the cold store [9] [10] [11] [12] [13] with mesh element 4,500,000 tetrahedral. Studying of different numbers of evaporators 2, 3 and set on (8) different positions is carried out inside a large cold store according to load estimation of the cold store according to ASHRAE [14][15]. IV. Mathematical Model Large constructional cold room was chosen as a case study. Its exterior dimensions are 15 m (L) x 7.5 m (W) x 6 m (H). The thickness of the wall of cold room is 152 mm, which is made of polyurethane insolation. The large coldstore contains 108 standard product’s pallets [14] its dimensions are 1200 mm (L) x 1000 (W). Layout of the present model of the cold store is shown in figure 7 and figure 8. Evaporators were arranged inside the cold stores as shown from figure 9 to figure 12.
  • 4. Flow Patterns And Thermal Behaviour In A Large Refrigerated Store DOI: 10.9790/1684-1302038192 www.iosrjournals.org 84 | Page Figure 6: (a) Face to face blowing layout, (b) Back to back blowing layout, (c) Staggered layout and (d) Parallel blowing layout Figure 7: Layout of side-view of cold sore Figure 8: Layout of top-view of cold store V. CFD Simulation The cold store model was built in Design Modeller then a meshing was done in mesher and the steady airflow computation was finished in ANSYS Fluent 14.5. Since the unstructured mesh was more suitable to the complicated model than structured mesh, so the unstructured mesh was selected in this study [11]. In the numerical investigation, double precision was employed to increase the accuracy. The convergence criterion is achieved by solving the energy equation to residuals of 10-7 using segregated solver algorithm. The continuity equation was solved to a residual below of 10-3 . The momentum and k-ε turbulence equations were solved to residuals below of 10-3 . Further details of the modeling can be found in reference [16].
  • 5. Flow Patterns And Thermal Behaviour In A Large Refrigerated Store DOI: 10.9790/1684-1302038192 www.iosrjournals.org 85 | Page VI. Results And Discussion The following figures presents the solutions of temperature for the whole pallets of products, Streamlines around pallets and Iso-Clips of temperature more than 252 k are indicated to show near zeroflow regimes. 6.1 Overview of (2- Evaporators) cases As shown in the previous contours it is a comparison for the four cases of two Evaporators .This investigation show that the two – evaporators design is poor for good velocity and temperature distribution and it will be large dead zones with low velocity and high temperature at the outside and far pallets as in case 2-1 and case 2-2. However, the staggered arrangement of the cooling units give acceptable velocity distribution and has good uniformity index for temperature and standard deviation So that numerically case 2-4 is better than the other three cases as shown in Figure 18 which has good temperature and velocity distribution with less dead zones. Figure 9: Layout of evaporators inside the cold store Case 2-1 and Case 2-2 Figure 10: Layout of evaporators inside the cold store Case 2-3 and Case 2-4
  • 6. Flow Patterns And Thermal Behaviour In A Large Refrigerated Store DOI: 10.9790/1684-1302038192 www.iosrjournals.org 86 | Page Figure 11: Layout of evaporators inside the cold store Case 3-1 and Case 3-2 Figure 12: Layout of evaporators inside the cold store Case 3-3 and Case 3-4
  • 7. Flow Patterns And Thermal Behaviour In A Large Refrigerated Store DOI: 10.9790/1684-1302038192 www.iosrjournals.org 87 | Page Case 2-1 a) b) Figure 13: (a) Contours of temperature of Pallets in case 2-1 , (b) Contours of temperature of Pallets (Bottom – view) in case 2-1 Case 2-1 a)b) Figure 14: (a) Temperature Contours on pallets and streamlines case 2-1, (b) Iso-Clip for temperature of pallets more than 252 K for case 2-1 Case 2-2
  • 8. Flow Patterns And Thermal Behaviour In A Large Refrigerated Store DOI: 10.9790/1684-1302038192 www.iosrjournals.org 88 | Page a) b) Figure 15: (a) Temperature Contours on pallets case 2-2, (b) Contours of velocity vectors at plane of height (Z = 5.36 m) case 2-2 Case 2-2 a) b) Figure 16 (a) Temperature Contours on pallets and streamlines case2-2, (b)Iso-Clip for temperature of pallets more than 252 K for case 2-2 Case 2-3
  • 9. Flow Patterns And Thermal Behaviour In A Large Refrigerated Store DOI: 10.9790/1684-1302038192 www.iosrjournals.org 89 | Page a) b) Figure 17: (a) Temperature Contours on pallets case 2-3, (b) Contours of temperatures on pallets and streamlines case 2-3 Case 2-4 a) b) Figure 18: (a) Temperature Contours on pallets case 2-4, (b) Contours of temperatures on pallets and streamlines case 2-4 Case 3-1
  • 10. Flow Patterns And Thermal Behaviour In A Large Refrigerated Store DOI: 10.9790/1684-1302038192 www.iosrjournals.org 90 | Page a) b) Figure 19: (a) Temperature Contours on pallets case 3-1 , (b) Contours of temperatures on pallets and streamlines case 3-1 Case 3-2 a) b) Figure 20: (a) Temperature Contours on pallets case 3-2, (b) Contours of temperatures on pallets and streamlines case 3-2 Case 3-3
  • 11. Flow Patterns And Thermal Behaviour In A Large Refrigerated Store DOI: 10.9790/1684-1302038192 www.iosrjournals.org 91 | Page a) b) Figure 21: (a) Temperature Contours on pallets case 3-3, (b) Contours of temperatures on pallets and streamlines case 3-3 Case 3-4 a) b) Figure 22: (a) Temperature Contours on pallets case 3-4 , (b) Contours of temperatures on pallets and streamlines case 3-4 Figure 23: Iso-Clip for temperature of pallets more than 252 K for case 3-4 6.2 Overview of three Evaporatorscases As shown in the previous contours it is a comparison for the four cases of 3 Evaporators .This investigation show that the three–evaporators design give better velocity and temperature distribution than two
  • 12. Flow Patterns And Thermal Behaviour In A Large Refrigerated Store DOI: 10.9790/1684-1302038192 www.iosrjournals.org 92 | Page evaporators and it will be less dead zones with low velocity and high temperature at the outside and far rows of pallets as in case 3-1 and case 3-2. However, the staggered arrangement of the cooling units give good velocity distribution and has good uniformity index for temperature and standard deviation So that numerically case 3-4 is better than the other three cases as shown in Iso-Clip Figure 23 which indicatedbetter temperature and velocity distributions in the room without dead zones. VII. Conclusions In this work, a simulation model of large cold store was constructed. To improve the accuracy of the calculation, the unstructured mesh was used. Equations of (Energy, continuity, momentum and k-e) were solved. As well as Under Relaxation techniques were applied to accurately predict the performance of the airflow patterns in the cold store. It was found that CFD is a powerful tool that can simulate air pattern inside large cold store. Temperatureand velocity gradients were affected by flow field due to the numbers and locations of the cooling units (Evaporators). It was found that using of staggered design gives better flow patterns (velocity and Temperature distributions) and minimizesthe dead zones. It was found that using of large number of evaporators would give better flow field (velocity and Temperature distributions) and would minimize dead zones. It is not recommended to use two evaporators for that large cold store because it will be create large dead zones with high temperature and low air stream velocities. References [1]. [Gong, J., Pu, L., & Zhang, H. (2010). Numerical Study of Cold Store in Cold Storage Supply Chain and Logistics. 2010 International Conference on E-Product E-Service and E-Entertainment, 1–3. [2]. Hao, X. H., & Ju, Y. L. (2011). Simulation and analysis on the flow field of the low temperature mini-type cold store. Heat and Mass Transfer, 47(7), 771–775. [3]. Moureh, J., Menia, N., & Flick, D. (2002). Numerical and experimental study of airflow in a typical refrigerated truck configuration loaded with pallets. Computers and Electronics in Agriculture, 34(1-3), 25–42. [4]. Moureh, J., & Flick, D. (2004). Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets. International Journal of Refrigeration, 27(5), 464–474. [5]. Ho, S. H., Rosario, L., & Rahman, M. M. (2010). Numerical simulation of temperature and velocity in a refrigerated warehouse. International Journal of Refrigeration, 33(5), 1015–1025. [6]. Yi, T., Jing, X. I. E., Jin-feng, W., Chen, M., & Yi, Z. (2012). Computational Fluid Dynamics Simulation about Comparison of Different Forms of Return Air in a Small Cold Store, 517, 1133–1138. [7]. Tanaka, F., & Konishi, Y. (2012). The use of CFD to improve the performance of a partially loaded cold store. Journal of Food …, 35(6), 874–880. [8]. Haixia, W., Jun, W., & Kunfeng, S. (2013). Optimizing the Air Distribution of Large Space Cold Store Based on Numerical Methods. Journal of Applied Sciences. [9]. Xie J, Qu X H, Xu S Q, et al. Numerical simulation and verification of airflow in cold store[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21 (2): 11~16. [10]. Xie J, Tang Y, Wang J F, et al. Computational Fluid Dynamics simulation of influence of different arrangements of fans to the cold store[J]. Science and Technology of Food Industry (in Chinese), 2011, 32 (11): 349~351. [11]. Foster A M, Swain M J, Barrett R, et al. Experimental verification of analytical and CFD predictions of infiltration through cold store entrances[J].International Journal of Refrigeration,2003, 26 (8): 918~925. [12]. Foster A M, Swain M J, Barrett R, et al. Three-dimensional effects of an air curtain used to restrict cold room infiltration [J]. Applied Mathematical Modelling, 2007, 31 (6): 1109~1123. [13]. Xie J, Wu T. Numerical simulation on temperature field in the doorway of a minitype cold store [J]. Journal of Shanchai Fisheries University, 2006, 15 (3): 333~339. [14]. Trott, A. R., & Welch, T. C. (2000). Refrigeration and air conditioning. Butterworth-Heinemann.‫‏‬. [15]. ASHRAE Handbook: Refrigeration, Chapter 13: Refrigeration Load, American Society for Heating, Refrigerating and Air- Conditioning Engineers, Atlanta, USA, 2014. [16]. Khalil,E.E.,Air Distribution in Buildings, Taylor and Francis, CRC Press, USA,Nov.2013.