Slide 1Manuel RomeroInstituto IMDEA EnergíaAvda. Ramón de la Sagra 328935 MóstolesEnergía Solar Térmica de Alta Temperatura
Slide 2• ensure the development, together with the SET Plan stakeholders, of an Integrated Roadmap aroundthe priorities id...
Slide 3The EU is committed to reducing greenhouse gas emissions to 80-95% below 1990 levels by 2050 in the context of nece...
Slide 4
Slide 5The publicconsultation wasopen between 20December 2012and 15 March2013.
Slide 6
Slide 7Objetivo sostenible en el crecimiento de la demandaenergética primaria mundialAñoFuente: German Advisory Council on...
Slide 8RADIACIÓN SOLARCENTRALES ELÉCTRICAS TERMOSOLARESESPEJOSRECEPTORALMA-CENAMIENTOFOCO FRIOFOCOCALIENTETURBINA
Slide 9Maricopa Solar SES, USAArchimede Priolo Italia, ENEALFC en Liddell Power plant de Areva, AustraliaPS10 torre solar ...
Slide 10Majadas, España, 50 MW, Acciona EnergíaGemasolar, España, 19 MW, Torresol EnergyPrimeras plantas desplegadas enel ...
Slide 11
Slide 12
Slide 13
Slide 14
Slide 15
Slide 16
Slide 17
Slide 18
Slide 19Cilindro-parabólicos y centrales de torre operando atemperaturas modestas, por debajo de 400 ºC .Consecuencias de ...
Slide 20
Slide 21
Slide 22• Steam heating• Brayton cycle• Air heating• Air heating• Dish Stirling• Air heating• Rankine cycle• Steam heating...
Slide 23Receivers: More compact, durable and efficient(Efficiency > 85%)molten saltreceiver(SENER)0 1000 2000 3000CurrentN...
Slide 24Superheating steam with dual receiverseSolar Double CavityB&W receiver
Slide 25Volumetric air-cooled receiverHeat transfer area: 255 m2/m3Efficiency at 750°: 78%Porosity: 50%Target:• Improve vo...
Slide 26
Slide 27Some recent data on production in SpainSource REEImportant milestonesin July 2012: Max. contribution 4,1%(July th...
Slide 28AveragedensityAverageheatconduc-tivityAverageheatcapacityVolumespecificheatcapacityMediacostsper kgMediacostsper k...
Slide 2901000020000300004000050000600007000080000900001 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21Generatio...
Slide 30System marginal price andcorresponding CSP generation onJanuary 22–24 (low RE case)
Slide 31Thermal energy storageChallenge: < 20-30 €/kWhth
Slide 32Innovative Latent Thermal Energy Storage Systemfor Concentrating Solar Power PlantsHeat TransferFluidHTFEncapsulat...
Slide 33Ca(OH)2 + ΔH ↔ CaO + H2O (800K)Thermochemical EnergyStorage for ConcentratedSolar Power Plants3Mn2O3 → 2Mn3O4 + ½ ...
Slide 34
Slide 35El heliostato de SenerCheaper concentratorsLarge areaheliostatsNew reflectors
Slide 36The Solar Energy Development CenterSmall heliostats
Slide 37Modularity, urban integration
Slide 38• Corto a medio plazo  Producción de electricidadObjetivos de la concentración solarObjetivoúltimoes laproducción...
Slide 3939Disociación de agua con óxidos metálicos
Slide 40CONCLUSIONESLas CET introducen la energía solar en mercados dealto valor añadido mediante procesos a altatemperat...
Upcoming SlideShare
Loading in …5
×

M romero diasolar_print

514 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
514
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

M romero diasolar_print

  1. 1. Slide 1Manuel RomeroInstituto IMDEA EnergíaAvda. Ramón de la Sagra 328935 MóstolesEnergía Solar Térmica de Alta Temperatura
  2. 2. Slide 2• ensure the development, together with the SET Plan stakeholders, of an Integrated Roadmap aroundthe priorities identified in the EU Energy technology and innovation strategy by the end of 2013.• define, together with the Member States, an Action Plan of joint and individual investments insupport of the Integrated Roadmap by mid 2014.• invite, together with the Member States in the context of the Steering Group, the European IndustrialInitiatives and associated European Technology Platforms to adjust their mandate, structure andparticipation to update their Technology Roadmaps and to contribute to the Integrated Roadmap.• establish a coordination structure, under the Steering Group of the SET Plan, to promote investmentsin research and innovation on energy efficiency
  3. 3. Slide 3The EU is committed to reducing greenhouse gas emissions to 80-95% below 1990 levels by 2050 in the context of necessaryReductions by developed countries as a group. The Commissionanalysed the implications of this in its "Roadmap for moving to acompetitive low-carbon economy in 2050“.
  4. 4. Slide 4
  5. 5. Slide 5The publicconsultation wasopen between 20December 2012and 15 March2013.
  6. 6. Slide 6
  7. 7. Slide 7Objetivo sostenible en el crecimiento de la demandaenergética primaria mundialAñoFuente: German Advisory Council on GlobalChange, 2003, www.wbgu.deGeotérmicaOtras renovablesSolar térmica (calor y frio)Electricidad solar (fotovoltaicay solar termoeléctrica)EólicaBiomasa (avanzada)Biomasa (tradicional)HidroeléctricaNuclearGasCarbónPetróleo
  8. 8. Slide 8RADIACIÓN SOLARCENTRALES ELÉCTRICAS TERMOSOLARESESPEJOSRECEPTORALMA-CENAMIENTOFOCO FRIOFOCOCALIENTETURBINA
  9. 9. Slide 9Maricopa Solar SES, USAArchimede Priolo Italia, ENEALFC en Liddell Power plant de Areva, AustraliaPS10 torre solar de Abengoa, EspañaCentrales Eléctricas Termosolares:Foco puntual (3D) Foco lineal (2D)
  10. 10. Slide 10Majadas, España, 50 MW, Acciona EnergíaGemasolar, España, 19 MW, Torresol EnergyPrimeras plantas desplegadas enel mundo >2GWLa electricidad termosolar en el mundo
  11. 11. Slide 11
  12. 12. Slide 12
  13. 13. Slide 13
  14. 14. Slide 14
  15. 15. Slide 15
  16. 16. Slide 16
  17. 17. Slide 17
  18. 18. Slide 18
  19. 19. Slide 19Cilindro-parabólicos y centrales de torre operando atemperaturas modestas, por debajo de 400 ºC .Consecuencias de estos diseños conservadores:Uso de sistemas con eficiencias menores del 20%nominal en conversión de solar a electricidad.Fuertes limitaciones en el uso eficiente de sistemasalmacenamiento de energía.Alto consumo de agua y de terreno por la ineficienciade la integración con el bloque de potencia.Ausencia de esquemas racionales de integración consistemas de generación distribuida.No se alcanzan temperaturas necesarias para laproducción de combustibles solares e hidrógeno.Limitaciones de la primerageneración de CETImplantación mercado deplantas avanzadasElectricidad TermosolarReflectores solares de muy bajocosteAutomatismo y operación remotaGestionabilidad (almacenamientotérmico/híbrido)/CombustiblessolaresEficiencia (alta temperatura y altasirradiancias/nuevos fluidostérmicos y receptores solares)ModularidadImpacto ambiental (agua, terreno)Integración en ciclos avanzados yprocesos de conversión directa
  20. 20. Slide 20
  21. 21. Slide 21
  22. 22. Slide 22• Steam heating• Brayton cycle• Air heating• Air heating• Dish Stirling• Air heating• Rankine cycle• Steam heatingOilreceiversWater/SteamreceiversSolarized StirlingenginesCeramic receiversLow P, TTemperature (thermal fluid)PresentconceptsAdvancedconcepts• Solar fuels and chemistry• Brayton cycle• Air heatingCeramic receiversHigh P, TSodiumReceiversMolten saltsreceivers• Brayton cycle• Air Pre-heating500 ºC 1000 ºC 1500 ºC• Rankine cycle• Steam heatingCurrentSource:IMDEAEnergíaSolid particlesreceiversVolumetric airreceivers (metallic)… to Market Implementationof Advanced TechnologiesSolar Thermal ElectricityEfficiency (high-temperature /high-flux/new HTF/solar receivers)Integration in advanced cycles anddirect conversion systems
  23. 23. Slide 23Receivers: More compact, durable and efficient(Efficiency > 85%)molten saltreceiver(SENER)0 1000 2000 3000CurrentNextgenerationPeak flux on aperture (kW/m2)VolumetricMolten saltWater-steamDirect IndirectParticles Tubular VolumetricFluid - Water Liquid metals Molten Salts AirAverage flux (MW/m2)Peak flux (MW/m2)(0.9)(2.5)0.1-0.30.4-0.60.4-0.51.4-2.50.4-0.50.7-0.80.5-0.60.8-1.0Fluid outlet temperature (ºC) (2,000) 490-525 540 540-565 (700-1,000)
  24. 24. Slide 24Superheating steam with dual receiverseSolar Double CavityB&W receiver
  25. 25. Slide 25Volumetric air-cooled receiverHeat transfer area: 255 m2/m3Efficiency at 750°: 78%Porosity: 50%Target:• Improve volumetricity• Increase solar flux
  26. 26. Slide 26
  27. 27. Slide 27Some recent data on production in SpainSource REEImportant milestonesin July 2012: Max. contribution 4,1%(July the 11th at 17:00)Max daily contribution 3,2%(July the 15th)Monthly production 2,3%(524 GWh in July)Solar Thermal Electricity production in Spain. July 2012MWh
  28. 28. Slide 28AveragedensityAverageheatconduc-tivityAverageheatcapacityVolumespecificheatcapacityMediacostsper kgMediacostsper kWhtCold HotStorage Medium ºC ºC kg/m3W/mK kJ/kgK kWht/m3$/kg $/kWhtSolid mediaSand-rock-oil 200 300 1 700 1 1.30 60 0.15 14Reinforced concrete 200 400 2 200 1.5 0.85 100 0.05 1NaCl (solid) 200 500 2 160 7 0.85 150 0.15 1.5Cast iron 200 400 7 200 37 0.56 160 1.00 32Cast steel 200 700 7 800 40 0.60 450 5.00 60Silica fire bricks 200 700 1 820 1.5 1.00 150 1.00 7Magnesia fire bricks 200 1 200 3 000 5 1.15 600 2.00 6Liquid mediaMineral oil 200 300 770 0.12 2.6 55 0.30 4.2Synthetic oil 250 350 900 0.11 2.3 57 3.00 43Silicone oil 300 400 900 0.10 2.1 52 5.00 80Nitrite salts 250 450 1 825 0.57 1.5 152 1.00 12Nitrate salts 265 565 1 870 0.52 1.6 250 0.70 5.2Carbonate salts 450 850 2 100 2 1.8 430 2.40 11Liquid sodium 270 530 850 71 1.3 80 2.00 21Phase change mediaNaNO3 308 2.257 0.5 200 125 0.20 3.6KNO3 333 2.11 0.5 267 156 0.30 4.1KOH 380 2.044 0.5 150 85 1.00 24Salt-ceramics500-850 2.6 5 420 300 2.00 17(Na2CO3-BaCO3/MgO)NaCl 802 2.16 5 520 280 0.15 1.2Na2CO3 854 2.533 2 276 194 0.20 2.6K2CO3 897 2.29 2 236 150 0.60 9.1Temperature
  29. 29. Slide 2901000020000300004000050000600007000080000900001 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21Generation(MW)CSP5 Wind15 PV10 PVCSPWindHydroPHS/CAESGasOtherBiomassCoalNuclearGeothermalCurtailment Due to Minimum Generation Constraints29National Renewable Energy Laboratory Innovation for Our Energy FutureExtensive coal and nuclear cycling unlikelyto occur in current system• Marginal curtailment rate of PV moving from10% to 15% of generation was 5%• At SunShot goals (~6 cents/kWh) thisincreases effective PV cost by about 0.3cents/kWh due to underused capacity01000020000300004000050000600007000080000900001 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21Generation(MW)CSP5 Wind15 PV10 PVCSPWindHydroPHS/CAESGasOtherBiomassCoalNuclearGeothermal10% PV 5 % CSP15% PV No CSP• PV curtailment would be reduced if gridflexibility were increased• CSP/TES provides an option to replace“baseload” capacity with more flexiblegeneration
  30. 30. Slide 30System marginal price andcorresponding CSP generation onJanuary 22–24 (low RE case)
  31. 31. Slide 31Thermal energy storageChallenge: < 20-30 €/kWhth
  32. 32. Slide 32Innovative Latent Thermal Energy Storage Systemfor Concentrating Solar Power PlantsHeat TransferFluidHTFEncapsulatedPCMStorageContainer EncapsulatedPCMTubes forfluid flowHTFStorageContainerFluidHTFDifferent concepts that will be modeled and testedTest setup - SchematicPCM (Solidified) PCM (Melting)PCM Melting point (0C) Latent Heat (kJ/kg)NaNO3 308 172NaOH 318 316KNO3 + 4.5%KCl 320 150KNO3 333 266Poly ether ether ketone 340 130KNO3 + 4.7%KBr + 7.3%KCl 342 140KOH 360 167NaCl(26.8)/NaOH 370 37042.5%NaCl + 20.5% KCl + MgCl2 390 410
  33. 33. Slide 33Ca(OH)2 + ΔH ↔ CaO + H2O (800K)Thermochemical EnergyStorage for ConcentratedSolar Power Plants3Mn2O3 → 2Mn3O4 + ½ O2 (1180 K),
  34. 34. Slide 34
  35. 35. Slide 35El heliostato de SenerCheaper concentratorsLarge areaheliostatsNew reflectors
  36. 36. Slide 36The Solar Energy Development CenterSmall heliostats
  37. 37. Slide 37Modularity, urban integration
  38. 38. Slide 38• Corto a medio plazo  Producción de electricidadObjetivos de la concentración solarObjetivoúltimoes laproduccióndecombustiblessolares• Medio a largo plazo  Química Solar
  39. 39. Slide 3939Disociación de agua con óxidos metálicos
  40. 40. Slide 40CONCLUSIONESLas CET introducen la energía solar en mercados dealto valor añadido mediante procesos a altatemperatura, proporcionando alta capacidad ygestionabilidad.Las CET permiten trabajar en modo híbrido o conalmacenamiento térmico para producción masiva deelectricidad.El mercado por el momento concentrado en Españay EEUU.Falta I+D para reducir costes un 60%, mejorargestionabilidad y aumentar eficiencias.La producción de combustibles solares es uno de loselementos estratégicos para las próximas décadas.Energía Solar Alta Temperatura:

×