Biomasa a partir de catálisis enzimáticas_Mercedes Ballesteros

2,052 views

Published on

Autora: Mercedes Ballesteros

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
2,052
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
51
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Good morning. My name is Mercedes Ballesteros and I am responsible for Biomass Unit at CIEMAT. I am going to try to give you a fairly brief overview of research and development activities of the biomass Unit. But, first at all let me say some general comments about biomass as an energy resource in the European Union.
  • Para evitar la<desactivación se puede utilizar otro alcohol como butanol, hacer una separación continua del glicerol por diálisis, o extracción del metanol. Tb se puede añadir el metanol poco a poco de manera que se mantenga siempre un bajo nivel.
    Tanto extracelulares como intracelulares se utilizan inmovilizadas, lo que elimina las operaciones corriente debajo de separación y reciclado. Mejoran los rendimientos en comparación con las enzimas libres. Las extracelulares requieren complejos procesos de purificación.
    matriz sólida porosa constituida generalmente por prepolímeros fotoentrucruzables o polímeros del tipo poliacrilamida,
    colágeno, alginato, carraginato o resinas de poliuretano. El proceso de inmovilización se lleva a cabo mediante la suspensión de la enzima en una solución del monómero. Seguidamente se inicia la polimerización por un cambio de temperatura o mediante la adición de un reactivo químico.
    Tb membranas semipermeables.
  • Biomasa a partir de catálisis enzimáticas_Mercedes Ballesteros

    1. 1. 1 BIOFUELS FROM ENZYMATICBIOFUELS FROM ENZYMATIC CATALYSTCATALYST CATALYSIS FOR ENERGY: NEW CHALLENGES FOR A SUSTAINABLECATALYSIS FOR ENERGY: NEW CHALLENGES FOR A SUSTAINABLE ENERGETIC DEVELOPMENTENERGETIC DEVELOPMENT M. Ballesteros Head of Biofuels Unit CIEMAT Santander, 19th august 2010
    2. 2. 2 They can be used pure or blending with fossil fuels Bioethanol: sugars, starch, cellulose Biodiesel: vegetable oils or animal fats Biogas: Biomass Biometanol: Biomass Biodimetylether: Biomass BioETBE and BioMTBE Synthetic biofuels Biohydrogen: a partir de biomasa Pure Plant Oil BIOFUELS
    3. 3. 3 BIODIESEL - From vegetable oils - To be used in diesel engines . BIOETHANOL and its derivative (ETBE) - From sugar-rich feedsotcks - To be used in Otto engines MAIN BIOFUELS
    4. 4. 4 American Standard for Testing and Materials (ASTM): a fuel comprised of mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal fats, designated B100, and meeting the requirements of ASTM D 6751 to be use for transport or heating BIODIESEL DEFINITION European Directive 2003/30/CE Biodiesel is a methyl-ester produced from vegetable or animal oil, of diesel quality to be used as biofuel in internal combustion engines
    5. 5. 5 • Vegetable oils • Used vegetable oils • Animal fats • Microalgae FEEDSTOCKS FOR BIODIESEL PRODUCTION
    6. 6. 6 *BIODIESEL: mono-alkyl esters from fatty acids Shorter molecules, linear chain, less carbono content Lower viscosity and characteristics similar to fossil diesel *PURE PLANT OILS (PPO): Large and branches molecules, high carbon content High viscosity PPO VERSUS BIODIESEL
    7. 7. 7 OIL/FAT TRANSESTERIFICATION MIXING SEPARATION PURIFICATION BIODIESEL RAW BIODIESEL CATALYST ALCOHOL RAW GLYCERINE FATTY ACIDS ALCOHOL (50%) GLYCERINE PURIFICATION BIODIESEL PRODUCTION
    8. 8. 8 catalyst TG + 3 ROH G + 3 FAAE Catalyst: Alkaline, acid, enzymatic TG: triglyceride, ROH: alcohol, G: glycerine FAAE: fatty acid alkyl esters. TRANSESTERIFICATION
    9. 9. 9 • It can transform free fatty acids and use ethanol •High purity product • Easier downstream process • High enzyme cost • Inactivation during the process (methanol y glycerol) Mucor miehei Rhizopus oryzae Candida antarctica Pseudomonas cepacia Lipasa extracelular Lipasa intracelular Immobilization BIODIESEL FROM ENZYMATIC CATALYSIS (Lipases)
    10. 10. 10  Transesterification proccess depends on: • Temperature • Reaction time • Molar ratio alcohol:vegetable oil, • Alcohol type • Catalyst concentratio • Mixing intensity • Free fatty acids • Moisture  Lipases • Solvent type (alcohol low solubility and effect of glycerol on enzyme) • pH • Microorganisms • Free or immobilized OPERATIONAL VARIABLES
    11. 11. 11 R e c e p c ió n d e l m a t e r ia l C A Ñ A D E A Z Ú C A R R E M O L A C H A H id r ó lis is e n z im á t ic a T r it u r a c ió n R e c e p c ió n d e l m a t e r ia l C E R E A L H id r ó lis is e n z im á t ic a H id r ó lis is á c id a T r it u r a c ió n R e c e p c ió n d e l m a t e r ia l L I G N O C E L U L O S A Fermentación Destilación ETANOL ETHANOL PRODUCTION PROCESSES
    12. 12. 12 STARCH CARBOHYDRATES COMPOSITION
    13. 13. 13 ETHANOL PRODUCTION PROCESS FROM GRAIN
    14. 14. 14 STARCH HYDROLYSIS
    15. 15. 15 Source: Medium Term Oil Market Report, OECD/IEA, Paris (2009) BIOFUELS: An expanding industry
    16. 16. 16 Directive 2009/28: 20% TOTAL ENERGY MUST BE RENEWABLE 10% OF TRNSPORT ENERGY THE EUROPEAN OBJECTIVETHE EUROPEAN OBJECTIVE No areas with high biodiversity No areas with high carbon stocks Primary forests and wooded land Protected natural areas Highly biodiversity land (grassland and non- grassland) Cont. forested areas (trees higher 5m) Peatland / wetlands Minimum GHG savings 35% by 2009/2013 50% by 2017 60% after 2017 Only direct land use change consideredOnly if it affects carbon stocks Reference date: January 2008
    17. 17. 17 First generation Second generation
    18. 18. 18 Advantages  Better energy balance  Reductions in: • Greenhouse gas emissions • Land use requirements  No competition with food, fiber and water Barriers  High cost of production  Logistics and supply  Industry & consumer acceptance  Perceived risky investments THE EUROPEAN OBJECTIVETHE EUROPEAN OBJECTIVE 10% replacement by 2020
    19. 19. 19 CONVERSION PATHWAYSCONVERSION PATHWAYS
    20. 20. 20 STATUS OF BIOFUELS TECHNOLOGIESSTATUS OF BIOFUELS TECHNOLOGIES Source: DG-TREN
    21. 21. 21O-acetil - galactoglucomanano THE REAL HEADACHE FOR DEVELOPING BIOFUELSTHE REAL HEADACHE FOR DEVELOPING BIOFUELS The contrast between what we have (carbohydrates) and what we want (oxygen-deficient fuels) O-acethyl- 4- O- methylglucuronoxylan arabin- 4- O- methylglucuronoxylan glucomanan Carbohydrates are large polymer chains containing C5 and C5 sugars and a similar number of oxygen atoms Optimal fuel molecules for automobile engines must be small (5-15 carbons) and contain little oxygen The challenge is finding a way of breaking down carbohydrates to form small molecules, while simultaneously removing the oxygen and minimizing the loss of energy value of original biomass
    22. 22. 22 COMPOSITION OF LIGNOCELLULOSIC BIOMASSCOMPOSITION OF LIGNOCELLULOSIC BIOMASS Source: DOE Genomics: GTL, 2008
    23. 23. 23 COMPOSITION OF LIGNOCELLULOSIC BIOMASSCOMPOSITION OF LIGNOCELLULOSIC BIOMASS Feedstock Cellulose (%) Hemicellulose (%) Lignin (%) Extractives (%) Ash (%) Corn stover 36.4 22.6 Xylose 18 Arabinose 3 Galactose 1 Mannose 0.6 16.6 7.3 9.7 Wheat straw 38.2 24.7 Xylose 21.1 Arabinose 2.5 Galactose 0.7 Mannose 0.3 23.4 13 10.3 Hardwood 43.3 31.8 Xylose 27.8 Mannose 1.4 24.4 ---- 0.5 Softwood 40.4 31.4 Xylose 8.9 Mannose 22.2 28.0 --- 0.5
    24. 24. 24 ETHANOL PRODUCTION BY ENZYMATIC HYDROLYSIS Lignocellulosic biomass Pretreatment Product recovery ETHANOL Enzymatic hydrolysis Cellulase complex Fermentation Fermenting microorganism Xylose Fermentation Heat and electricity production
    25. 25. 25 BIOMASS PRETREATMENTBIOMASS PRETREATMENT Pretreatment Cellulose Hemicellulose Lignin CHARACTERISTICS: • Versatile • Avoid expensive biomass . comminuting • Use low cost chemicals • Have low energy and capital cost . . requirements • High hexose and pentose sugars . . yield • Low inhibitors production • Facilitate the recovery of lignin
    26. 26. 26 Biological, Physical, Chemical, Combination Pretreatment Advantages Disadvantages Dilute acid Hemicelluloses solubilization Enhances cellulose accessibility High capital costs Sugar degradation Neutralization Concentrated acid Lower temperature Reduction of degradation compounds Expensive Requires acid recovery Steam explosion Well known Partial hemicellulose solubilization Low pentose recovery Requires washing to remove inhibitors AFEX Rupture of lignin-hemicellulose bonds Low degraded products High capital costs due to need to recycle the ammonia BIOMASS PRETREATMENT CLASIFICATIONBIOMASS PRETREATMENT CLASIFICATION
    27. 27. 27 Treatment of biomass with steam at high temperature (180-220ºC), followed by explosive decompression. STEAM EXPLOSION PRETREATMENTSTEAM EXPLOSION PRETREATMENT Extractives (%) Cellulose (%) Hemicellulose (%) Lignin (%) Ash (%) Straw 12 37 26 17 8 Pretreated WIS --- 60 6 31 3
    28. 28. 28 ENZYMATIC HYDROLYSISENZYMATIC HYDROLYSIS Enzymatic Hydrolysis RATE LIMITING FACTORS SUBSTRATE STRUCTURE  Crystallinity of cellulose  Low substrate surface area  Lignin blocking reactive sites ENZYMES  End-product inhibition  Enzyme inactivation  Non-specific binding
    29. 29. 29 • Endoglucanases • Cellobiohydrolase s • β- glucosidases Bacterial cellulosomeCellulases secreted by fungi CELLULASE COMPLEXCELLULASE COMPLEX
    30. 30. 30 Fuente: Novozymes, 2005 Enzimas accesorias: - xylanasas - pectinasas - beta-glucosidasa - extensinas
    31. 31. 31 AMORPHOGENESISAMORPHOGENESIS
    32. 32. 32
    33. 33. 33 TECHNOLOGY CHALLENGES FOR BIOCHEMICAL ROUTETECHNOLOGY CHALLENGES FOR BIOCHEMICAL ROUTE NEW AND/OR IMPROVED ENZYMESNEW AND/OR IMPROVED ENZYMES • To reduce the costs of enzyme production by improving cellulase production and enzymatic cocktail efficiency • To find the way for reducing enzyme loading without loss of performance • To develop enzymes with improved thermo-stability and less susceptibility to sugars inhibition
    34. 34. 34 TECHNOLOGY CHALLENGES FOR BIOCHEMICAL ROUTETECHNOLOGY CHALLENGES FOR BIOCHEMICAL ROUTE NEW AND/OR IMPROVED ENZYMESNEW AND/OR IMPROVED ENZYMES • To reduce the costs of enzyme production by improving cellulase production and enzymatic cocktail efficiency • To find the way for reducing enzyme loading without loss of performance • To develop enzymes with improved thermo-stability and less susceptibility to sugars inhibition TO MAXIMIZE THE CONVERSION OF CELLULOSE TO SUGAR
    35. 35. 35 Saccharomyces cerevisiae EthanolGlucose Mannose Galactose Xylose Arabinose ETHANOL PRODUCTIONETHANOL PRODUCTION  THEORETICAL YIELD • 0. 51 g ethanol / g sugar  1 ton wheat straw • 400 kg hexoses → 200 kg etanol • 200 kg pentoses → 100 kg etanol
    36. 36. 36 Acid hydrolysis Enzyme production 1950 1970 Enzyme production Enzyme production Enzyme production Enzymatic hydrolysis Glucose to ethanol Hemicellulosic sugars to ethanoll Glucose to ethanol No hemicelulose utilization Enzymatic hydrolysis Glucose to ethanol Enzymatic hydrolysis Glucose to ethanol Hemicellulosic sugars to ethanol No hemicellulose utilization Enzymatic hydrolysis Glucose to ethanol Today No hemicellulose utilization 1980 Tomorrow ADVANCES IN RESEARCH
    37. 37. 37 • More efficient pretreatment technologies • Increase the efficiency of enzymatic hydrolysis • Low enzyme and inoculum concentration • Fermentation of pentoses on real substrates • Reduce energy demand in the production process • Low concentration of product (ethanol) IMPROVEMENTS IN THE PRESENT TECHNOLOLOGY
    38. 38. 38 OPERATOR LOCATION ETHANOL CAPACITY SCALE STATUS Abengoa Bioenergy Salamanca, Spain 4000 t/yr Demo Operational, start-up 2009 BioGasol Bornholm, Denmark 4000 t/yr Demo Planned DTU, BioGasol Copenhagen, Denmark 10 t/yr Pilot Operational, start-up 2006 SEKAB Örnsköldsvik, Sweden 100 t/yr 4500 t/yr 50,000 t/yr 120,000 t/yr Pilot Demo Demo Comm. Operational, start-up 2004 Planned, start-up 2011 Planned, start-up 2014 Planned, start-up 2016 Inbicon, DONG Energy Fredericia, Denmark Fredericia, Denmark Kalundborg, Denmark 110 t/yr 1100 t/yr 4,500 t/yr Pilot Pilot Demo Operational, start-up 2003 Operational, start-up 2004 Inauguration 2009 Procethol 2G, Futurol Pomacle, France 140 t/yr 2840 t/yr Pilot Demo Under construction, start up 2010 Planned Süd-Chemie Münich, Germany 2 t/yr Pilot Operational, start-up 2009 Second generation bioethanol, pilot, demonstration and projected commercial plants in Europe.
    39. 39. 39 OPERATOR LOCATION ETHANOL CAPACITY SCALE STATUS Abengoa Bioenergy Salamanca, Spain 4000 t/yr Demo Operational, start-up 2009 BioGasol Bornholm, Denmark 4000 t/yr Demo Planned DTU, BioGasol Copenhagen, Denmark 10 t/yr Pilot Operational, start-up 2006 SEKAB Örnsköldsvik, Sweden 100 t/yr 4500 t/yr 50,000 t/yr 120,000 t/yr Pilot Demo Demo Comm. Operational, start-up 2004 Planned, start-up 2011 Planned, start-up 2014 Planned, start-up 2016 Inbicon, DONG Energy Fredericia, Denmark Fredericia, Denmark Kalundborg, Denmark 110 t/yr 1100 t/yr 4,500 t/yr Pilot Pilot Demo Operational, start-up 2003 Operational, start-up 2004 Inauguration 2009 Procethol 2G, Futurol Pomacle, France 140 t/yr 2840 t/yr Pilot Demo Under construction, start up 2010 Planned Süd-Chemie Münich, Germany 2 t/yr Pilot Operational, start-up 2009 Second generation bioethanol, pilot, demonstration and projected commercial plants in Europe.
    40. 40. 40 OPERATOR LOCATION ETHANOL CAPACITY SCALE STATUS Abengoa Bioenergy Salamanca, Spain 4000 t/yr Demo Operational, start-up 2009 BioGasol Bornholm, Denmark 4000 t/yr Demo Planned DTU, BioGasol Copenhagen, Denmark 10 t/yr Pilot Operational, start-up 2006 SEKAB Örnsköldsvik, Sweden 100 t/yr 4500 t/yr 50,000 t/yr 120,000 t/yr Pilot Demo Demo Comm. Operational, start-up 2004 Planned, start-up 2011 Planned, start-up 2014 Planned, start-up 2016 Inbicon, DONG Energy Fredericia, Denmark Fredericia, Denmark Kalundborg, Denmark 110 t/yr 1100 t/yr 4,500 t/yr Pilot Pilot Demo Operational, start-up 2003 Operational, start-up 2004 Inauguration 2009 Procethol 2G, Futurol Pomacle, France 140 t/yr 2840 t/yr Pilot Demo Under construction, start up 2010 Planned Süd-Chemie Münich, Germany 2 t/yr Pilot Operational, start-up 2009 Second generation bioethanol, pilot, demonstration and projected commercial plants in Europe.
    41. 41. 41 REDUCCIÓN DEL COSTE DEL ETANOL CELULÓSICO Source: NREL
    42. 42. 42 • Ethanol from lignocellulose is close to commercialization • Technological advances to reduce the costs of ethanol production of the bioetanol are still needed. • Basic and applied research, technological development and demonstration projects must carried in a coordinated way CONCLUDING REMARKS
    43. 43. 43 ¡¡¡Thank you for your attention¡¡¡ m.ballesteros@ciemat.es

    ×