Catalysis Advances for
Sustainmable Energy
Jens Rostrup-Nielsen
Haldor Topsøe A/S
CATALYSIS WILL PLAY
KEY ROLE
Energy sources
Natural
gas
Coal
Oil
Syngas
Synfuel
Methanol
DME
Hydrogen
EthanolBiomass
Automotive FC
Solar
Wind
hydro
Ele...
Energy sources
Natural
gas
Coal
Oil
Syngas
Synfuel
Methanol
DME
Hydrogen
EthanolBiomass
Automotive FC
Solar
Wind
hydro
Ele...
Energy sources
Natural
gas
Coal
Oil
Syngas
Synfuel
Methanol
DME
Hydrogen
EthanolBiomass
Automotive FC
Solar
Wind
hydro
Ele...
Oil reserves and price level
The challenge is investment and
environment
Kilde: IEA, 2005
Flared gas:
5% of production
2 mio bpd synfuels
ca. 50 Sasol GTL plants
New role for coal?
Biomass conversion
Biomass conversion
• Fermentation: 1. generation, 2. generation
to ethanol
• Catalytic conversion of sugars to fuels
• Tra...
HDS - Hydrodesulphurisation
+ 2 H 2 + H 2 S
S
Hydrodesulphurisation
Gasification
CO
H2
CO2
Biomass
Natural gas
Coal
Hydrogen
Methanol
DME
Gasoline
Diesel
Syngas
The synfuel cycle
G a s if ic a t io n
S t e a m r e f o r m in g
A T R
Coal
CnHm
Syngas H2
F - T
T IG A S
M T G D M E M e...
SOFC - high flexibility
Kerosene
Diesel
Syngas
Methanol
Ethanol
Biogas (landfil) gas
Bio (digestive) gas
Hydrogen
SOFC
Nat...
Electrons or hydrogen or ?
El
grid
Electric
cars
FC
cars
ICE
cars
Wind
Bio
Natural gas
H2
Chemical recuperation of
nuclear energy
HTR
Eva Adam
ADAM / EVA Energy Transportation System.
Kernforschungsanlage Jülich ...
Concentrated solar power
Imaging the sun
Imaging the Moon
Routes for
solar hydrogen
Concentrated
solar energy
Solar
thermolysis
Solar
thermochemical
cycles
Solar
reforming
Solar
cr...
TOOLS FOR CATALYSIS
It is the know-how which counts
Mittasch
Input from Surface Science
Noble Art of Characterisation
There is a risk that we learn more and more
about less
In Situ Methods
Today it is possible to study the catalyst
structure during operation
Formation of Whisker CarbonFormation of Whisker Carbon
In Situ HRTEMIn Situ HRTEM
(CH4/H2 = 1:1, P = 5 mbar, T = 720°C)(CH...
Particle migration and coalescence
H2, 600°C
Ni/MgAl2O4
Ostwald ripening
H2, 700°C– Atom migration
– Vapour
migration
Ni/MgAl2O4
Nucleation of whisker carbon
Cs-corrected HRTEM of Au/TiO2
CM300 (300keV),
Cs = 1.4mm
Titan (300kV),
Cs ≈ 0.0mm
2nm 2nm
Confidential
Uncorrected image ...
What is a site ?
Gas-induced shape changes in Cu
nanocrystals on ZnO
H2 H2O/H2= 1:3 CO/H2=1:6
P=1.5 mbar, T= 220 ºC
(111)
(110)
P.L. Hansen...
Michel Boudart
“A catalyst is a complex
and resilient self-
assembly in space and
time…. to treat an
active site or a cata...
 In situ EXAFS, Mössbauer and FTIR
measurements:
MoS2-like; ~10-20 Å at 400°C; Co substituted at
S
Mo
Co
Co9S8
MoS2-like
...
Bright brim
Region with high
eletron density
(metallic character)
Topsøe researchers with Besenbacher’s group (2001)
Impor...
Whisker Growth
Nickel Catalyst
Snapshots of the Whisker
Mechanism and Step
Abild-Pedersen et al 2006
• INPUT FROM THEORY
DFT-calculations for CH4 Activation
CH3,H
CH2,2H
CH,3H
H,4H
Graphene,4H
C,5H,OH
C,6H,O
CO,6H
6H
CO
3H2
H2OCH4 Ni(111)
Ni(2...
Optimal Catalyst
Ammonia Synthesis
1000
100
10
1
0.1
0.01
0.001
0.0001
0.00001
0.000001
-150 -100 -50 0 50 100
Relative ni...
THE ELECTRONIC FACTOR
activation energy for CH4 activation
(Abild Pedersen et al)
1.6
1.4
1.2
1.0
0.8
-1.9 -1.8 -1.7 -1.6 ...
Scaling model
ΔE(CH4) = ΔE(C) + ξγ
Abild-Pedersen
SCALING MODEL
adsorption energies of CHx and of C
(Abild Pedersen et al)
-1
-2
-3
-4
-5
-6
-7
-7 -6 -5 -4 -3 -2
∆EC
(eV)
∆...
STEAM REFORMING OF CH4 ON Ni
reaction scheme from DFT calculations
(Jones et al)
2
1
0
CH
4(g)+
H
2O(g)
Freeenergy/eV
673
...
Activity for steam reforming (log10. TOF)
as function of C and O adsorption energies.
500o
C, 1 bar abs.
Jones et al
Conclusions
Bench-scaleBench-scale PilotPilot
In-situIn-situ
Noble Art of Modelling
The model is no better than the accuracy of
the main constants involved
Multiple Approach
• Development
– Catalyst
– Process
– Catalyst production methods
• Research to understand (and market)
•...
Catalyst R&D
Basic research
Fundamental studies
Catalyst characterization
Catalyst formulation
Process development
Scale-u...
A future for a hydrogen
economy ?
New catalysis advances for a sustainable energetic development_Jens R. Nielsen
New catalysis advances for a sustainable energetic development_Jens R. Nielsen
Upcoming SlideShare
Loading in …5
×

New catalysis advances for a sustainable energetic development_Jens R. Nielsen

857 views

Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

New catalysis advances for a sustainable energetic development_Jens R. Nielsen

  1. 1. Catalysis Advances for Sustainmable Energy Jens Rostrup-Nielsen Haldor Topsøe A/S
  2. 2. CATALYSIS WILL PLAY KEY ROLE
  3. 3. Energy sources Natural gas Coal Oil Syngas Synfuel Methanol DME Hydrogen EthanolBiomass Automotive FC Solar Wind hydro Electric power via thermal Electric power via FC Heating Electric applications Energy carriers Energy conversion Nuclear Gasoline diesel Automotive ICE Electric power
  4. 4. Energy sources Natural gas Coal Oil Syngas Synfuel Methanol DME Hydrogen EthanolBiomass Automotive FC Solar Wind hydro Electric power via thermal Electric power via FC Heating Electric applications Energy carriers Energy conversion Nuclear Gasoline diesel Automotive ICE Electric power
  5. 5. Energy sources Natural gas Coal Oil Syngas Synfuel Methanol DME Hydrogen EthanolBiomass Automotive FC Solar Wind hydro Electric power via FC Heating Electric applications Energy carriers Energy conversion Nuclear Gasoline diesel Electric power Electric power via thermal Automotive ICE
  6. 6. Oil reserves and price level The challenge is investment and environment Kilde: IEA, 2005
  7. 7. Flared gas: 5% of production 2 mio bpd synfuels ca. 50 Sasol GTL plants
  8. 8. New role for coal?
  9. 9. Biomass conversion
  10. 10. Biomass conversion • Fermentation: 1. generation, 2. generation to ethanol • Catalytic conversion of sugars to fuels • Transesterfication of oil to biodiesel + glycerol • Hydrogenation of oil to synfuel, green diesel • Pyrolysis or steam conversion to ”oil” • Hydrotreating of ”oil” to synfuel, green
  11. 11. HDS - Hydrodesulphurisation + 2 H 2 + H 2 S S Hydrodesulphurisation
  12. 12. Gasification CO H2 CO2 Biomass Natural gas Coal Hydrogen Methanol DME Gasoline Diesel Syngas
  13. 13. The synfuel cycle G a s if ic a t io n S t e a m r e f o r m in g A T R Coal CnHm Syngas H2 F - T T IG A S M T G D M E M e O H M e t h a n a t io n CH4
  14. 14. SOFC - high flexibility Kerosene Diesel Syngas Methanol Ethanol Biogas (landfil) gas Bio (digestive) gas Hydrogen SOFC Nat. gas Oil Coal Biomass Solar Wind Agricul. Power ηel = 40-50%
  15. 15. Electrons or hydrogen or ? El grid Electric cars FC cars ICE cars Wind Bio Natural gas H2
  16. 16. Chemical recuperation of nuclear energy HTR Eva Adam ADAM / EVA Energy Transportation System. Kernforschungsanlage Jülich 1970-85
  17. 17. Concentrated solar power Imaging the sun Imaging the Moon
  18. 18. Routes for solar hydrogen Concentrated solar energy Solar thermolysis Solar thermochemical cycles Solar reforming Solar cracking Solar gasification H2OH2O H2O Fossil fuels (NG, oil, coal) CO2/C sequestration Solar hydrogen Adopted from Steinfeld/Solar Energy 78 (2005) 605
  19. 19. TOOLS FOR CATALYSIS It is the know-how which counts
  20. 20. Mittasch
  21. 21. Input from Surface Science
  22. 22. Noble Art of Characterisation There is a risk that we learn more and more about less
  23. 23. In Situ Methods Today it is possible to study the catalyst structure during operation
  24. 24. Formation of Whisker CarbonFormation of Whisker Carbon In Situ HRTEMIn Situ HRTEM (CH4/H2 = 1:1, P = 5 mbar, T = 720°C)(CH4/H2 = 1:1, P = 5 mbar, T = 720°C)
  25. 25. Particle migration and coalescence H2, 600°C Ni/MgAl2O4
  26. 26. Ostwald ripening H2, 700°C– Atom migration – Vapour migration Ni/MgAl2O4
  27. 27. Nucleation of whisker carbon
  28. 28. Cs-corrected HRTEM of Au/TiO2 CM300 (300keV), Cs = 1.4mm Titan (300kV), Cs ≈ 0.0mm 2nm 2nm Confidential Uncorrected image Cs-corrected image
  29. 29. What is a site ?
  30. 30. Gas-induced shape changes in Cu nanocrystals on ZnO H2 H2O/H2= 1:3 CO/H2=1:6 P=1.5 mbar, T= 220 ºC (111) (110) P.L. Hansen et al. Science 295, 2053 (2002)
  31. 31. Michel Boudart “A catalyst is a complex and resilient self- assembly in space and time…. to treat an active site or a catalyst as a dead object in time with a fixed structure in space is a wrong model of the catalytic cycle”.
  32. 32.  In situ EXAFS, Mössbauer and FTIR measurements: MoS2-like; ~10-20 Å at 400°C; Co substituted at S Mo Co Co9S8 MoS2-like nanoparticles ”Co-Mo-S” Co:Al2O3 Al2O3 (alumina) support Topsøe, et al. (1981) Co-Mo-S model Based on in situ characterisation studies
  33. 33. Bright brim Region with high eletron density (metallic character) Topsøe researchers with Besenbacher’s group (2001) Important discovery: MoS2 has metallic brim states!!
  34. 34. Whisker Growth Nickel Catalyst
  35. 35. Snapshots of the Whisker
  36. 36. Mechanism and Step Abild-Pedersen et al 2006
  37. 37. • INPUT FROM THEORY
  38. 38. DFT-calculations for CH4 Activation CH3,H CH2,2H CH,3H H,4H Graphene,4H C,5H,OH C,6H,O CO,6H 6H CO 3H2 H2OCH4 Ni(111) Ni(211) 300 200 100 0 -100 -200 Bindingenergy(kJ/mol) (JRN et al 2002)
  39. 39. Optimal Catalyst Ammonia Synthesis 1000 100 10 1 0.1 0.01 0.001 0.0001 0.00001 0.000001 -150 -100 -50 0 50 100 Relative nitrogen binding energy/kJ/mol TOF/s-1 Mo Fe Co Ni Os Ru 450°C 100 bar 3:1 H2/N2 10% N H 3 1% N H 3 0.1% N H 3 0.01% N H 3
  40. 40. THE ELECTRONIC FACTOR activation energy for CH4 activation (Abild Pedersen et al) 1.6 1.4 1.2 1.0 0.8 -1.9 -1.8 -1.7 -1.6 -1.5 d band center (eV) Ea(eV) Ni/Au(111) 2C/Ni(211) S/Ni(211) C/Ni(211) Ni(111) Ni(211) Nistrain(111)
  41. 41. Scaling model ΔE(CH4) = ΔE(C) + ξγ Abild-Pedersen
  42. 42. SCALING MODEL adsorption energies of CHx and of C (Abild Pedersen et al) -1 -2 -3 -4 -5 -6 -7 -7 -6 -5 -4 -3 -2 ∆EC (eV) ∆ECH x(eV) Fit: y=0.76x-1.2 Fit: y=0.75x-1.04 Fit: y=0.49x-1.24 Fit: y=0.25x+0.11 Fit: y=0.26x+0.14 Fit: y=0.47x-1.46 Ag Ag Au Au Cu Cu Au Au Ag Ag Ag Ag Au Au Cu Cu Ni Ni Ni Ni Ni Pt Pt Pt Pt Pd Pd Pd Pd Ru Ru Ru RuRh Rh Rh Rh Ir Ir Ir Ir Ir Ir Ru Pt Pt Rh Ni Pd Co Ru Cu Rh Ir Pd CHX
  43. 43. STEAM REFORMING OF CH4 ON Ni reaction scheme from DFT calculations (Jones et al) 2 1 0 CH 4(g)+ H 2O(g) Freeenergy/eV 673 773 973 1173 CH 3*+ H 2O(g)+ 0.5H 2(g) CH 2*+ H 2O(g)+ H 2(g) CH*+ H 2O(g)+ 1.5H 2(g) C*+ H 2O(g)+ 2H 2(g) C*+ OH*+ 2.5H 2(g)C*+ O*+ 3H 2(g) 3H 2(g)+ CO*3H 2(g)+ CO(g)
  44. 44. Activity for steam reforming (log10. TOF) as function of C and O adsorption energies. 500o C, 1 bar abs. Jones et al
  45. 45. Conclusions
  46. 46. Bench-scaleBench-scale PilotPilot In-situIn-situ
  47. 47. Noble Art of Modelling The model is no better than the accuracy of the main constants involved
  48. 48. Multiple Approach • Development – Catalyst – Process – Catalyst production methods • Research to understand (and market) • Explorative research (2nd S-curve)
  49. 49. Catalyst R&D Basic research Fundamental studies Catalyst characterization Catalyst formulation Process development Scale-up Pilot operation Computer modeling Industry
  50. 50. A future for a hydrogen economy ?

×