SlideShare a Scribd company logo
1 of 32
Download to read offline
IMDEA Energy
              4.4.2011




        Liquid Fuels
            from
Water, CO2, and Solar Energy
                          Aldo Steinfeld
Sunlight + H2O + CO2 = Fuels


                                    Syngas
                                    (H2 , CO)
H2O, CO2




                       Liquid Fuels
                       • Diesel
                       • Jet Fuel
                       • Methanol
20 MW-electric/ 100 MW-thermal
11 MW-electric / 55 MW-thermal
(Sevilla, Spain)
H2O  H2 + ½ O2
           300

           250      H°

           200
                  G°
[kJ/mol]




           150

           100
                  TS°
           50                                                   Equilibrium Mole Fraction
                                                                          p = 1 bar
            0                                            1
                                                                                             H2O
                                                        0.9                                  H
           -50
                 1000     2000    3000      4000   5000 0.8                                  O
                                                                                             H2
                                                        0.7
                          Temperature [K]                                                    OH
                                                        0.6                                  O2
                                                        0.5
                                                        0.4
                                                        0.3
                                                        0.2
                                                        0.1
                                                         0
                                                         2000   2500        3000      3500         4000
                                                                       Temperature [K]
Solar Thermochemical Splitting of H2O and CO2



                           Concentrated
                           Solar Energy




          MOox     1st step: Solar Reduction                      O2
                    MOox  MOred  O2                MOred



                                          2nd step: Oxidation
                                                                  H2/CO
H2O/CO2                         MOred  H 2O  MOox  H 2
                                MOred  CO2  MOox  CO
                                                                     To
                 recycle
                                     MOox                       Liquid Fuels
Solar Thermochemical Splitting of H2O and CO2



                           Concentrated
                           Solar Energy




          MOox     1st step: Solar Reduction                      O2
                     ZnO  Zn  0.5O2                Zn



                                          2nd step: Oxidation
                                                                  H2/CO
H2O/CO2                            Zn  H 2O  ZnO  H 2
                                   Zn  CO2  ZnO  CO
                                                                     To
                 recycle
                                     MOox                       Liquid Fuels
Qsolar               T = 2000K
Concentrated
   Solar
 Radiation
I = 1 kW/m2         Qrerad

  C = 5000                     ZnO         Zn + ½ O2
                              @ 298 K       @ 2000 K



                                                          WF.C.     35% no h.r.
                                                                 
                                                          Qsolar     58% with h.r.
           WF.C.
                   Qquench             Quench
   QF.C.

                                ½ O2        Zn
           Ideal        H2O
           Fuel
            Cell
                                     Hydrolyser
                   Qhyd

                                  H2       ZnO
Solar Thermochemical Splitting of H2O and CO2



                           Concentrated
                           Solar Energy




          MOox     1st step: Solar Reduction                      O2
                     ZnO  Zn  0.5O2                Zn



                                          2nd step: Oxidation
                                                                  H2/CO
H2O/CO2                            Zn  H 2O  ZnO  H 2
                                   Zn  CO2  ZnO  CO
                                                                     To
                 recycle
                                     MOox                       Liquid Fuels
ZnO/Zn Cycle
                                       water/gas
                              rotary   inlets/outlets
           ZnO feeder
                              joint
cavity-receiver
                                                         ZnO
                                                         Zn+½ O2
     quartz
     window




Concentrated
   Solar
 Radiation




• Chem. Eng. J. 150, 502-508, 2009.
• Materials 3, 4922-4938, 2010.
ZnO/Zn Cycle
                                       water/gas
                              rotary   inlets/outlets
           ZnO feeder
                              joint
cavity-receiver
                                                                                     ZnO
                                                                                     Zn+½ O2
     quartz
     window




                                                                          2400                                               100
Concentrated                                                              2200                                               90



                                                    ZnO-Temperature [K]
   Solar
                                                                          2000                                               80
 Radiation
                                                                          1800                                               70




                                                                                                                                  Shutter [%]
                                                                          1600                                               60
           • Treactor = 2000 K
                                                                          1400                                               50
           • Qsolar = 10 kW
                                                                          1200                                               40
           • Cpeak = 5880 suns                                            1000                                               30

           • mZnO = 11 g/min                                               800
                                                                                                  Temperature
                                                                                                  Temperatu [K]
                                                                                                                             20

           • Zn yield = 50 – 95 %                                          600                    Shutter
                                                                                                  Shutte [%]                 10
                                                                                                                              0
                                                                                 0   100   200   300   400     500   600   700
• Chem. Eng. J. 150, 502-508, 2009.                                                              Time [sec]
• Materials 3, 4922-4938, 2010.
Solar Reactor Technology
                                                    10 kW                            100 kW
• Heat transfer + kinetic model validated
                                       E
      T                       A
  cp      keff T   k0 e RT  H r T 
      t  
                                                         9 feed cycles; 131g each
                    heat                chemistry
                  transfer




                                                                                ZnO dissociated (g)
                                                              # feed-cycles    Measured Calculated
                                                               3               68.5 ± 5.2    63.9
                                                               5               59.5 ± 6.8    54.0
                                                               7              148.4 ± 28.8  223.3
• AIChE J. 55, 1497-1504, 2009.                                9              224.2 ± 49.5  197.1
• Chem. Eng. J. 150, 502-508, 2009.
• Int. J. Heat Mass Transfer 52, 2444-2452, 2009.
Solar Reactor Technology
         100 kW




                 Solar radiative input       100 kW   10 kW
                 Cavity diameter                580     160   mm
                 Cavity length                  750     230   mm
                 Outlet diameter                110      15   mm
                 Al2O3-tile thickness            10       7   mm
                 Outer shell diameter          1080     200   mm
                 Aperture diameter              190      60   mm
                 Window diameter                485     160   mm
                 Solar concentration ratio     3500    3500   suns
                  
Solar Thermochemical Splitting of H2O and CO2



                           Concentrated
                           Solar Energy




          MOox     1st step: Solar Reduction                      O2
                     ZnO  Zn  0.5O2                Zn



                                          2nd step: Oxidation
                                                                  H2/CO
H2O/CO2                            Zn  H 2O  ZnO  H 2
                                   Zn  CO2  ZnO  CO
                                                                     To
                 recycle
                                     MOox                       Liquid Fuels
2nd step: Syngas Production

                                                                                       Aerosol reactor concept
Experimental                                                                                nanoparticle
                                                                              mixing                         in-situ hydrolysis
Set-up                                                           H2O(g)                      formation      H2O    H2               H2
                                                                                                                          ZnO
                              gas analysis
           filter                                                 Zn(g)                                            Zn
                                                                                                                                   ZnO


                                   steam
                                  generator                                                           Quench rate: up to 106 K/s
reaction                                                        1200                       H2O/Ar
zone                                                                                      injection
                                                                              Zn


                                              Temperature [K]
H2O + Zn                         Ar H2O                                   crucible
ZnO + H2                                                        1000

T = 573-1263K
                                                                                                                        Tsat
                                                                800


evaporation
zone                                                            600
                                                                            evaporation                    reaction zone
Zn  Zn(g)
                                                                400
T = 1263 K                                                             0          20            40         60            80        100

                                                                                  Distance along reactor axis [cm]
                    Balance         Ar
                                                                                                  • Chem. Eng. Sc. 64, 1095-1101, 2009.
                                                                                                  • Chem. Eng. Sc. 65, 1855-1864, 2010.
2nd step: Syngas Production

                                                                               Aerosol reactor concept
Experimental                                                                         nanoparticle
                                                                      mixing                             in-situ hydrolysis
Set-up                                                       H2O(g)                   formation          H2O    H2                H2
                                                                                                                     ZnO
                              gas analysis
           filter                                            Zn(g)                                             Zn
                                                                                                                              ZnO


                                   steam                      9
                                  generator                                                                          TR = 973 K
reaction                                                      8                       Zn evaporation
zone
                                                              7
H2O + Zn                         Ar H2O                      6
ZnO + H2

                                              10-4 mol/min
                                                                                      H2 production
T = 573-1263K                                                 5

                                                              4

                                                              3
evaporation
zone                                                          2
                                                                                            = Zn-conversion = 90%
                                                              1
Zn  Zn(g)
                                                              0
T = 1263 K
                                                                  0    10       20        30        40         50     60      70
                                                                                     Reaction time (min)
                    Balance         Ar
                                                                                          • Chem. Eng. Sc. 64, 1095-1101, 2009.
                                                                                          • Chem. Eng. Sc. 65, 1855-1864, 2010.
2nd step: Syngas Production

                                                                 Aerosol reactor concept
Experimental                                                        nanoparticle
                                                        mixing                      in-situ hydrolysis
Set-up                                         H2O(g)                formation     H2O     H2              H2
                                                                                                ZnO
                              gas analysis
           filter                               Zn(g)                                     Zn
                                                                                                          ZnO


                                   steam                                                 TR = 823 K
                                  generator
reaction
zone

H2O + Zn                         Ar H2O
ZnO + H2
T = 573-1263K




evaporation
zone

Zn  Zn(g)

T = 1263 K


                    Balance         Ar
                                                                         • Chem. Eng. Sc. 64, 1095-1101, 2009.
                                                                         • Chem. Eng. Sc. 65, 1855-1864, 2010.
Solar Thermochemical Splitting of H2O and CO2



                           Concentrated
                           Solar Energy




          MOox     1st step: Solar Reduction                      O2
                    MOox  MOred  O2                MOred



                                          2nd step: Oxidation
                                                                  H2/CO
H2O/CO2                         MOred  H 2O  MOox  H 2
                                MOred  CO2  MOox  CO
                                                                     To
                 recycle
                                     MOox                       Liquid Fuels
DLR, Germany                                                               SNL, USA            Concentrated solar flux
   ZnFe2O4                                                                   CoFe2O4

                                        N2 + O2                                         Window

                           H2
                                                                                        O2                                    O2
                                                                    N2

                                                             H2O


   Niigata U., Japan                                                          CO2 (or steam)                                CO2 (or steam)
        NiFe2O4
                                               Gas exhaust                                     CO and CO2 (or H2 and H2O)
                                                               U. of Colorado, USA
                                                Cyclone               NiFe2O4                                        CNRS, France
                                                                                                                      ZnO, SnO2



                                         Draft tube
Internal circulating
fluidized bed
(NiFe2O4/m-ZrO2 )                         Conical-
                                          shaped cap




                       Nitrogen / Steam flow
Solar Thermochemical Splitting of H2O and CO2



                           Concentrated
                           Solar Energy




          MOox     1st step: Solar Reduction                      O2
                                          
                  CeO2  CeO2  O2                 MOred
                                          2




                                          2nd step: Oxidation
                                                                  H2/CO
H2O/CO2                        CeO2   H 2O  CeO2   H 2
                               CeO2   CO2  CeO2   CO

                                                                     To
                 recycle
                                     MOox                       Liquid Fuels
Solar Reactor Technology




                           Science 330, 1797-1801, 2010.
Solar Experimental Set-up




                            Science 330, 1797-1801, 2010.
Solar Experimental Results



              CO2-splitting                                             H2O-splitting




solar-to-fuel 
                              heating value of fuel produced              0.8%
                                                                           
                                                                                     for CO2 -splitting
                   solar energy input  + energy for inert gas recycling  0.7%   for H2O-splitting




                                                                              Science 330, 1797-1801, 2010.
Solar Experimental Results

Simultaneous splitting of CO2 & H2O
                                               • H2O/CO2 = 7 → H2/CO = 1.91
                                               • Fuel/O2 = 2
Solar Experimental Results

                                                 Simultaneous splitting of CO2 & H2O




                         0.6         2.65 ml H 2 g -1     2.45 ml H 2 g -1      2.43 ml H 2 g -1       2.29 ml H 2 g -1       2.00 ml H 2 g -1    2.17 ml H 2 g -1      2.10 ml H 2 g -1     2.19 ml H 2 g -1        1.76 ml H 2 g -1    1.92 ml H 2 g -1
  Rate [mL min‐1 g‐1]




                                     1.22 ml CO g -1      1.06 ml CO g -1       1.03 ml CO g -1        0.99 ml CO g -1        2.00 ml CO g -1     0.90 ml CO g -1       0.91 ml CO g -1      0.83 ml CO g -1         0.76 ml CO g -1     0.74 ml CO g -1
                         0.5         H2/CO ratio: 2.17    H2/CO ratio: 2.31     H2/CO ratio: 2.36      H2/CO ratio: 2.32      H2/CO ratio: 2.01   H2/CO ratio: 2.43     H2/CO ratio: 2.28    H2/CO ratio: 2.63       H2/CO ratio: 2.31   H2/CO ratio: 2.59

                         0.4

                         0.3
                                   2.14 ml O 2           1.73 ml O 2          1.69 ml O 2           1.46 ml O 2            1.56 ml O 2        1.48 ml O 2             1.34 ml O 2       1.28 ml O 2              1.23 ml O 2         1.23 ml O 2
                         0.2       g-1 CeO 2             g-1 CeO 2            g-1 CeO 2             g-1 CeO 2              g-1 CeO 2          g-1 CeO 2               g-1 CeO 2         g-1 CeO 2                g-1 CeO 2           g-1 CeO 2

                         0.1

                          0
                               0                   50                  100                  150                    200                     250                   300                        350                   400                    450
Temperature [K]




                        1900
                        1700
                        1500
                        1300
                        1100
                        900
                        700
                               0                   50                  100                  150                    200                     250                   300                        350                    400                   450
                                                                                                                                  Time [min]
RPC



I

                     s
    • average pore diameter = 2.54 mm
    • total porosity = 92%
    • specific surface = 11 mm-1


          Reticulate Porous Ceramic
30 mm




         35
              mm
                             4 3 mm
                                              • ASME Journal of Heat Transfer 132, 023305 1-9, 2010.
Radiative properties of RPC

              dI                                                               s 4
                                     I                   Ib               I  d i
              ds                                                               4  0 
I                                  
                                                           
                                                                              i
                                                                                   
        Change of                attenuation               augmentation            augmentation
         radiation                    by                         by                     by
         intensity           absorption+scattering       internal emission      incoming scattering
    s
                                  MC ray tracing

        I s
                 exp  -  s 
         I0
          0.22 cm-1




                                                • ASME Journal of Heat Transfer 132, 023305 1-9, 2010.
Fluid transport properties across RPC


                                                              •   Navier-Stokes by DNS
                                                              •   0.2<Re<200
                                                              •   0.1<Pr<10




               
   p            uD  F  uD
                             2

               K
    pd 2
           c0  c1 Re
     uD
                                        K  1.353 10-7 m 2
                                        F  444.02 m 1

• Int. J. Heat and Fluid Flow 29, 315–326, 2008
Heat transfer transport across RPC


                                                                 •   Navier-Stokes by DNS
                                                                 •   0.2<Re<200
                                                                 •   0.1<Pr<10




          z z

                 q ''dAsf
  hsf      z
           Tlm  Asf
                                Nu  1.56  0.6 Re0.56 Pr 0.47



• J. Heat Transfer 130, 032602, 2008.
• J. Heat Transfer, 132, 023305 1-9, 2010
CO2 Capture from Air

  calcination/carbonation CaO + CO2                                                                                 CaCO3
                                                                                                                                                                            nCO2 ,released
      CO2-depleted air / CO2                                                                                                                                                                                99%
                                                                                                                                                                            nCO2 ,captured

                                                12000                                                                                                                                                        900
              T=390 °C / 850°C
                                                                                                                                                                                                             850°C




                                                                                                                                                              Calcination
                                                                          Calcination



                                                                                                      Calcination




                                                                                                                                  Calcination




                                                                                                                                                                                             Calcination
                                                                                                                                                                                                             800




                                                                                                                                                                                                                   Temperature [°C]
                                                10000
                                                                                                                                                                                                             700

                                                            Carbonation



                                                                                        Carbonation




                                                                                                                    Carbonation




                                                                                                                                                Carbonation




                                                                                                                                                                               Carbonation
                                                8000                                                                                                                                                         600
                                    CO2 [ppm]




                                                                                                                                                                                                             500
       atmospheric air                          6000
                                                                                                                                                                                                             400
                                                                                                                                                                                                             390°C
                                                4000                                                                                                                                                         300

                                                                                                                                                                                                             200
                                                2000
                                                                                                                                                                                                             100
                       input 390 ppm
                                                   0
                                                        0                  1000                       2000                     3000    4000                                   5000                         6000
                                                                                                                              Time [sec]
Chem. Eng. J. 146, 244–248, 2009.
• Diamine-functionalized silica gel
• CO2 adsorption from air at 25 °C and 1 bar
• Pure CO2 desorption at 74-90 °C and 10-150 mbar
Solar Energy          Concentrated
                                     Solar Energy



              adsorption             reduction
atmospheric
                              CO2                                catalytic
    air                                             syngas
                                                                conversion
              desorption              oxidation
                               H2O
              CO2-depleted                                       liquid fuels
                   air                                       for transportation



                                            H2O
                                      CO2
Jan Wurzbacher                Tina Daum
Chris Gebald          Christian Wieckert
Roman Bader                   Ivo Alxneit
Giw Zanganeh               Daniel Mayer
Clemens Suter                  Alwin Frei
Men Wirz                Yvonne Bauerle
Anastasia Stamatiou     Christian Hutter
Emilie Zermatten          Peter Schaller
Jonathan Scheffe              Tony Meier
Philipp Furler           Marc Chambon
Gilles Maag            Daniel Wuillemin
Michael Kruesi
Illias Hischier
Willy Villasmil
Philipp Haueter
Matt Roesle
Tom Cooper
Peter Loutzenhiser
Dominic Herrmann
Enrico Guglielmini
Nic Piatkowski

More Related Content

What's hot (7)

Soda ashtech
Soda ashtechSoda ashtech
Soda ashtech
 
Chem 12 data booklet
Chem 12 data bookletChem 12 data booklet
Chem 12 data booklet
 
Chem iv unit_2_st_[compatibility_mode]
Chem iv unit_2_st_[compatibility_mode]Chem iv unit_2_st_[compatibility_mode]
Chem iv unit_2_st_[compatibility_mode]
 
Materials for the Optimization of Solar Energy Harvesting.
Materials for the Optimization of Solar Energy Harvesting.Materials for the Optimization of Solar Energy Harvesting.
Materials for the Optimization of Solar Energy Harvesting.
 
MASc Research work
MASc Research workMASc Research work
MASc Research work
 
Development of electrodes (1)
Development of electrodes (1)Development of electrodes (1)
Development of electrodes (1)
 
Algae for biofuels production
Algae for biofuels production Algae for biofuels production
Algae for biofuels production
 

Viewers also liked

Biofuels as an alternative to traditional energy sources_James Clark
Biofuels as an alternative to traditional energy sources_James ClarkBiofuels as an alternative to traditional energy sources_James Clark
Biofuels as an alternative to traditional energy sources_James ClarkIMDEA Energia
 
Producción de hidrógeno a partir de energías renovables_A.Monzón
Producción de hidrógeno a partir de energías renovables_A.MonzónProducción de hidrógeno a partir de energías renovables_A.Monzón
Producción de hidrógeno a partir de energías renovables_A.MonzónIMDEA Energia
 
Bases documental documentales_científicos_8min
Bases documental documentales_científicos_8minBases documental documentales_científicos_8min
Bases documental documentales_científicos_8minIMDEA Energia
 
J herrero diasolar_print
J herrero diasolar_printJ herrero diasolar_print
J herrero diasolar_printIMDEA Energia
 
J gonzalez diasolar_print
J gonzalez diasolar_printJ gonzalez diasolar_print
J gonzalez diasolar_printIMDEA Energia
 
J ajona diasolar print
J ajona diasolar printJ ajona diasolar print
J ajona diasolar printIMDEA Energia
 
M romero diasolar_print
M romero diasolar_printM romero diasolar_print
M romero diasolar_printIMDEA Energia
 
Aerogels: becoming economically feasible
Aerogels: becoming economically feasibleAerogels: becoming economically feasible
Aerogels: becoming economically feasibleJeffrey Funk
 

Viewers also liked (8)

Biofuels as an alternative to traditional energy sources_James Clark
Biofuels as an alternative to traditional energy sources_James ClarkBiofuels as an alternative to traditional energy sources_James Clark
Biofuels as an alternative to traditional energy sources_James Clark
 
Producción de hidrógeno a partir de energías renovables_A.Monzón
Producción de hidrógeno a partir de energías renovables_A.MonzónProducción de hidrógeno a partir de energías renovables_A.Monzón
Producción de hidrógeno a partir de energías renovables_A.Monzón
 
Bases documental documentales_científicos_8min
Bases documental documentales_científicos_8minBases documental documentales_científicos_8min
Bases documental documentales_científicos_8min
 
J herrero diasolar_print
J herrero diasolar_printJ herrero diasolar_print
J herrero diasolar_print
 
J gonzalez diasolar_print
J gonzalez diasolar_printJ gonzalez diasolar_print
J gonzalez diasolar_print
 
J ajona diasolar print
J ajona diasolar printJ ajona diasolar print
J ajona diasolar print
 
M romero diasolar_print
M romero diasolar_printM romero diasolar_print
M romero diasolar_print
 
Aerogels: becoming economically feasible
Aerogels: becoming economically feasibleAerogels: becoming economically feasible
Aerogels: becoming economically feasible
 

Similar to Conferencia de Aldo Steinfeld "Liquid Fuels from Water, CO2, and Solar Energy"

Solar Fuels Technology
Solar Fuels TechnologySolar Fuels Technology
Solar Fuels TechnologySasa Marinic
 
Chemistry formula list 1 (Examville.com)
Chemistry formula list 1 (Examville.com)Chemistry formula list 1 (Examville.com)
Chemistry formula list 1 (Examville.com)JSlinkyNY
 
First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...
First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...
First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...Ghanshyam Pilania
 
006 moist or humid air
006 moist or humid air006 moist or humid air
006 moist or humid airphysics101
 
Are we there yet
Are we there yetAre we there yet
Are we there yetmasesane
 
Fischer_Tropsch_Catalysts.pdf
Fischer_Tropsch_Catalysts.pdfFischer_Tropsch_Catalysts.pdf
Fischer_Tropsch_Catalysts.pdfpeyman40
 
Oxidation reduction reactions By MUHAMMAD FAHAD ANSARI 12 IEEM 14
Oxidation reduction reactions By MUHAMMAD FAHAD ANSARI 12 IEEM 14Oxidation reduction reactions By MUHAMMAD FAHAD ANSARI 12 IEEM 14
Oxidation reduction reactions By MUHAMMAD FAHAD ANSARI 12 IEEM 14fahadansari131
 
Inorganic chemistry revision package solutions
Inorganic chemistry revision package solutionsInorganic chemistry revision package solutions
Inorganic chemistry revision package solutionsPham Quang
 
Oxidation reduction reactions BY Muhammad Fahad Ansari 12IEEM14
Oxidation reduction reactions BY Muhammad Fahad Ansari 12IEEM14Oxidation reduction reactions BY Muhammad Fahad Ansari 12IEEM14
Oxidation reduction reactions BY Muhammad Fahad Ansari 12IEEM14fahadansari131
 
sufficient method of hydrogen production by water gas shift reactions
sufficient method of hydrogen production by water gas shift reactions sufficient method of hydrogen production by water gas shift reactions
sufficient method of hydrogen production by water gas shift reactions MUKULsethi5
 
Lean NOx Trap_Ratel
Lean NOx Trap_RatelLean NOx Trap_Ratel
Lean NOx Trap_RatelFred Ratel
 
Group 2 Elements - Trends and Properties
Group 2 Elements - Trends and PropertiesGroup 2 Elements - Trends and Properties
Group 2 Elements - Trends and PropertiesRahul Jose
 
Oral presentation
Oral presentationOral presentation
Oral presentationAnh-Mai
 

Similar to Conferencia de Aldo Steinfeld "Liquid Fuels from Water, CO2, and Solar Energy" (20)

Solar Fuels Technology
Solar Fuels TechnologySolar Fuels Technology
Solar Fuels Technology
 
1 redox
1 redox1 redox
1 redox
 
Chemistry formula list 1 (Examville.com)
Chemistry formula list 1 (Examville.com)Chemistry formula list 1 (Examville.com)
Chemistry formula list 1 (Examville.com)
 
First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...
First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...
First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...
 
Diox001 art pho
Diox001 art phoDiox001 art pho
Diox001 art pho
 
006 moist or humid air
006 moist or humid air006 moist or humid air
006 moist or humid air
 
Are we there yet
Are we there yetAre we there yet
Are we there yet
 
Fischer_Tropsch_Catalysts.pdf
Fischer_Tropsch_Catalysts.pdfFischer_Tropsch_Catalysts.pdf
Fischer_Tropsch_Catalysts.pdf
 
Oxidation reduction reactions By MUHAMMAD FAHAD ANSARI 12 IEEM 14
Oxidation reduction reactions By MUHAMMAD FAHAD ANSARI 12 IEEM 14Oxidation reduction reactions By MUHAMMAD FAHAD ANSARI 12 IEEM 14
Oxidation reduction reactions By MUHAMMAD FAHAD ANSARI 12 IEEM 14
 
Electrolysis
Electrolysis Electrolysis
Electrolysis
 
Inorganic chemistry revision package solutions
Inorganic chemistry revision package solutionsInorganic chemistry revision package solutions
Inorganic chemistry revision package solutions
 
Oxidation reduction reactions BY Muhammad Fahad Ansari 12IEEM14
Oxidation reduction reactions BY Muhammad Fahad Ansari 12IEEM14Oxidation reduction reactions BY Muhammad Fahad Ansari 12IEEM14
Oxidation reduction reactions BY Muhammad Fahad Ansari 12IEEM14
 
Hydrogen gas
Hydrogen gasHydrogen gas
Hydrogen gas
 
1 redox (1)
1 redox (1)1 redox (1)
1 redox (1)
 
S-Block FINAL Part-2 (2).pdf
S-Block FINAL Part-2 (2).pdfS-Block FINAL Part-2 (2).pdf
S-Block FINAL Part-2 (2).pdf
 
sufficient method of hydrogen production by water gas shift reactions
sufficient method of hydrogen production by water gas shift reactions sufficient method of hydrogen production by water gas shift reactions
sufficient method of hydrogen production by water gas shift reactions
 
Lean NOx Trap_Ratel
Lean NOx Trap_RatelLean NOx Trap_Ratel
Lean NOx Trap_Ratel
 
1 shell
1 shell1 shell
1 shell
 
Group 2 Elements - Trends and Properties
Group 2 Elements - Trends and PropertiesGroup 2 Elements - Trends and Properties
Group 2 Elements - Trends and Properties
 
Oral presentation
Oral presentationOral presentation
Oral presentation
 

More from IMDEA Energia

New catalysis advances for a sustainable energetic development_Jens R. Nielsen
New catalysis advances for a sustainable energetic development_Jens R. NielsenNew catalysis advances for a sustainable energetic development_Jens R. Nielsen
New catalysis advances for a sustainable energetic development_Jens R. NielsenIMDEA Energia
 
Aplicaciones energéticas del hidrógeno_A.González García-Conde
Aplicaciones energéticas del hidrógeno_A.González García-CondeAplicaciones energéticas del hidrógeno_A.González García-Conde
Aplicaciones energéticas del hidrógeno_A.González García-CondeIMDEA Energia
 
La tecnología del hidrógeno en el futuro energético español_Manuel Montes
La tecnología del hidrógeno en el futuro energético español_Manuel MontesLa tecnología del hidrógeno en el futuro energético español_Manuel Montes
La tecnología del hidrógeno en el futuro energético español_Manuel MontesIMDEA Energia
 
Biomasa a partir de catálisis enzimáticas_Mercedes Ballesteros
Biomasa a partir de catálisis enzimáticas_Mercedes BallesterosBiomasa a partir de catálisis enzimáticas_Mercedes Ballesteros
Biomasa a partir de catálisis enzimáticas_Mercedes BallesterosIMDEA Energia
 
Catalysis for energy: New challenges for a sustainable energetic development
Catalysis for energy: New challenges for a sustainable energetic developmentCatalysis for energy: New challenges for a sustainable energetic development
Catalysis for energy: New challenges for a sustainable energetic developmentIMDEA Energia
 
Smart grids More efficient and reliable grids
Smart grids More efficient and reliable gridsSmart grids More efficient and reliable grids
Smart grids More efficient and reliable gridsIMDEA Energia
 
Redes flexibles:el reto de la Universidad
Redes flexibles:el reto de la UniversidadRedes flexibles:el reto de la Universidad
Redes flexibles:el reto de la UniversidadIMDEA Energia
 
Identifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UK
Identifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UKIdentifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UK
Identifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UKIMDEA Energia
 
Redes inteligentes Visión del Operador del Sistema
Redes inteligentes Visión del Operador del SistemaRedes inteligentes Visión del Operador del Sistema
Redes inteligentes Visión del Operador del SistemaIMDEA Energia
 
Smart Energy Management Algorithms
Smart Energy Management AlgorithmsSmart Energy Management Algorithms
Smart Energy Management AlgorithmsIMDEA Energia
 
“Head of real time and back office systems in operation”
“Head of real time and back office systems in operation”“Head of real time and back office systems in operation”
“Head of real time and back office systems in operation”IMDEA Energia
 
Microrredes: estado de desarrollo y aplicaciones para Smartgrids
Microrredes:estado de desarrollo y aplicaciones para SmartgridsMicrorredes:estado de desarrollo y aplicaciones para Smartgrids
Microrredes: estado de desarrollo y aplicaciones para SmartgridsIMDEA Energia
 
Tecnologías de la información y las Comunicaciones en el sector energético: N...
Tecnologías de la información y las Comunicaciones en el sector energético: N...Tecnologías de la información y las Comunicaciones en el sector energético: N...
Tecnologías de la información y las Comunicaciones en el sector energético: N...IMDEA Energia
 
El vehículo eléctrico desde el punto de vista energético
El vehículo eléctrico desde el punto de vista energéticoEl vehículo eléctrico desde el punto de vista energético
El vehículo eléctrico desde el punto de vista energéticoIMDEA Energia
 
1st International Conference on Materials for Energy
1st International Conference on Materials for Energy1st International Conference on Materials for Energy
1st International Conference on Materials for EnergyIMDEA Energia
 
Pierre elbaz. la generación con plantas solares modulares de receptor central
Pierre elbaz. la generación con plantas solares modulares de receptor centralPierre elbaz. la generación con plantas solares modulares de receptor central
Pierre elbaz. la generación con plantas solares modulares de receptor centralIMDEA Energia
 
Tessera brendan o’brien. sistema disco-stirling
Tessera brendan o’brien. sistema disco-stirlingTessera brendan o’brien. sistema disco-stirling
Tessera brendan o’brien. sistema disco-stirlingIMDEA Energia
 
Juan i.burgaleta. beam-down solar towers - torres solares tipo beam-down
Juan i.burgaleta. beam-down solar towers - torres solares tipo beam-downJuan i.burgaleta. beam-down solar towers - torres solares tipo beam-down
Juan i.burgaleta. beam-down solar towers - torres solares tipo beam-downIMDEA Energia
 
Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas
Manuel Romero_Pequeños Sist. para Centrales Solares TermoeléctricasManuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas
Manuel Romero_Pequeños Sist. para Centrales Solares TermoeléctricasIMDEA Energia
 

More from IMDEA Energia (20)

Aldo steinfeld
Aldo steinfeld Aldo steinfeld
Aldo steinfeld
 
New catalysis advances for a sustainable energetic development_Jens R. Nielsen
New catalysis advances for a sustainable energetic development_Jens R. NielsenNew catalysis advances for a sustainable energetic development_Jens R. Nielsen
New catalysis advances for a sustainable energetic development_Jens R. Nielsen
 
Aplicaciones energéticas del hidrógeno_A.González García-Conde
Aplicaciones energéticas del hidrógeno_A.González García-CondeAplicaciones energéticas del hidrógeno_A.González García-Conde
Aplicaciones energéticas del hidrógeno_A.González García-Conde
 
La tecnología del hidrógeno en el futuro energético español_Manuel Montes
La tecnología del hidrógeno en el futuro energético español_Manuel MontesLa tecnología del hidrógeno en el futuro energético español_Manuel Montes
La tecnología del hidrógeno en el futuro energético español_Manuel Montes
 
Biomasa a partir de catálisis enzimáticas_Mercedes Ballesteros
Biomasa a partir de catálisis enzimáticas_Mercedes BallesterosBiomasa a partir de catálisis enzimáticas_Mercedes Ballesteros
Biomasa a partir de catálisis enzimáticas_Mercedes Ballesteros
 
Catalysis for energy: New challenges for a sustainable energetic development
Catalysis for energy: New challenges for a sustainable energetic developmentCatalysis for energy: New challenges for a sustainable energetic development
Catalysis for energy: New challenges for a sustainable energetic development
 
Smart grids More efficient and reliable grids
Smart grids More efficient and reliable gridsSmart grids More efficient and reliable grids
Smart grids More efficient and reliable grids
 
Redes flexibles:el reto de la Universidad
Redes flexibles:el reto de la UniversidadRedes flexibles:el reto de la Universidad
Redes flexibles:el reto de la Universidad
 
Identifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UK
Identifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UKIdentifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UK
Identifying SmartGrid Opportunities to Aid a Low-Carbon Future in the UK
 
Redes inteligentes Visión del Operador del Sistema
Redes inteligentes Visión del Operador del SistemaRedes inteligentes Visión del Operador del Sistema
Redes inteligentes Visión del Operador del Sistema
 
Smart Energy Management Algorithms
Smart Energy Management AlgorithmsSmart Energy Management Algorithms
Smart Energy Management Algorithms
 
“Head of real time and back office systems in operation”
“Head of real time and back office systems in operation”“Head of real time and back office systems in operation”
“Head of real time and back office systems in operation”
 
Microrredes: estado de desarrollo y aplicaciones para Smartgrids
Microrredes:estado de desarrollo y aplicaciones para SmartgridsMicrorredes:estado de desarrollo y aplicaciones para Smartgrids
Microrredes: estado de desarrollo y aplicaciones para Smartgrids
 
Tecnologías de la información y las Comunicaciones en el sector energético: N...
Tecnologías de la información y las Comunicaciones en el sector energético: N...Tecnologías de la información y las Comunicaciones en el sector energético: N...
Tecnologías de la información y las Comunicaciones en el sector energético: N...
 
El vehículo eléctrico desde el punto de vista energético
El vehículo eléctrico desde el punto de vista energéticoEl vehículo eléctrico desde el punto de vista energético
El vehículo eléctrico desde el punto de vista energético
 
1st International Conference on Materials for Energy
1st International Conference on Materials for Energy1st International Conference on Materials for Energy
1st International Conference on Materials for Energy
 
Pierre elbaz. la generación con plantas solares modulares de receptor central
Pierre elbaz. la generación con plantas solares modulares de receptor centralPierre elbaz. la generación con plantas solares modulares de receptor central
Pierre elbaz. la generación con plantas solares modulares de receptor central
 
Tessera brendan o’brien. sistema disco-stirling
Tessera brendan o’brien. sistema disco-stirlingTessera brendan o’brien. sistema disco-stirling
Tessera brendan o’brien. sistema disco-stirling
 
Juan i.burgaleta. beam-down solar towers - torres solares tipo beam-down
Juan i.burgaleta. beam-down solar towers - torres solares tipo beam-downJuan i.burgaleta. beam-down solar towers - torres solares tipo beam-down
Juan i.burgaleta. beam-down solar towers - torres solares tipo beam-down
 
Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas
Manuel Romero_Pequeños Sist. para Centrales Solares TermoeléctricasManuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas
Manuel Romero_Pequeños Sist. para Centrales Solares Termoeléctricas
 

Conferencia de Aldo Steinfeld "Liquid Fuels from Water, CO2, and Solar Energy"

  • 1. IMDEA Energy 4.4.2011 Liquid Fuels from Water, CO2, and Solar Energy Aldo Steinfeld
  • 2. Sunlight + H2O + CO2 = Fuels Syngas (H2 , CO) H2O, CO2 Liquid Fuels • Diesel • Jet Fuel • Methanol
  • 3. 20 MW-electric/ 100 MW-thermal 11 MW-electric / 55 MW-thermal (Sevilla, Spain)
  • 4. H2O  H2 + ½ O2 300 250 H° 200 G° [kJ/mol] 150 100 TS° 50 Equilibrium Mole Fraction p = 1 bar 0 1 H2O 0.9 H -50 1000 2000 3000 4000 5000 0.8 O H2 0.7 Temperature [K] OH 0.6 O2 0.5 0.4 0.3 0.2 0.1 0 2000 2500 3000 3500 4000 Temperature [K]
  • 5. Solar Thermochemical Splitting of H2O and CO2 Concentrated Solar Energy MOox 1st step: Solar Reduction O2 MOox  MOred  O2 MOred 2nd step: Oxidation H2/CO H2O/CO2 MOred  H 2O  MOox  H 2 MOred  CO2  MOox  CO To recycle MOox Liquid Fuels
  • 6. Solar Thermochemical Splitting of H2O and CO2 Concentrated Solar Energy MOox 1st step: Solar Reduction O2 ZnO  Zn  0.5O2 Zn 2nd step: Oxidation H2/CO H2O/CO2 Zn  H 2O  ZnO  H 2 Zn  CO2  ZnO  CO To recycle MOox Liquid Fuels
  • 7. Qsolar T = 2000K Concentrated Solar Radiation I = 1 kW/m2 Qrerad C = 5000 ZnO Zn + ½ O2 @ 298 K @ 2000 K WF.C. 35% no h.r.   Qsolar  58% with h.r. WF.C. Qquench Quench QF.C. ½ O2 Zn Ideal H2O Fuel Cell Hydrolyser Qhyd H2 ZnO
  • 8. Solar Thermochemical Splitting of H2O and CO2 Concentrated Solar Energy MOox 1st step: Solar Reduction O2 ZnO  Zn  0.5O2 Zn 2nd step: Oxidation H2/CO H2O/CO2 Zn  H 2O  ZnO  H 2 Zn  CO2  ZnO  CO To recycle MOox Liquid Fuels
  • 9. ZnO/Zn Cycle water/gas rotary inlets/outlets ZnO feeder joint cavity-receiver ZnO Zn+½ O2 quartz window Concentrated Solar Radiation • Chem. Eng. J. 150, 502-508, 2009. • Materials 3, 4922-4938, 2010.
  • 10. ZnO/Zn Cycle water/gas rotary inlets/outlets ZnO feeder joint cavity-receiver ZnO Zn+½ O2 quartz window 2400 100 Concentrated 2200 90 ZnO-Temperature [K] Solar 2000 80 Radiation 1800 70 Shutter [%] 1600 60 • Treactor = 2000 K 1400 50 • Qsolar = 10 kW 1200 40 • Cpeak = 5880 suns 1000 30 • mZnO = 11 g/min 800 Temperature Temperatu [K] 20 • Zn yield = 50 – 95 % 600 Shutter Shutte [%] 10 0 0 100 200 300 400 500 600 700 • Chem. Eng. J. 150, 502-508, 2009. Time [sec] • Materials 3, 4922-4938, 2010.
  • 11. Solar Reactor Technology 10 kW 100 kW • Heat transfer + kinetic model validated E T  A cp   keff T   k0 e RT  H r T  t        9 feed cycles; 131g each heat chemistry transfer ZnO dissociated (g) # feed-cycles Measured Calculated 3 68.5 ± 5.2 63.9 5 59.5 ± 6.8 54.0 7 148.4 ± 28.8 223.3 • AIChE J. 55, 1497-1504, 2009. 9 224.2 ± 49.5 197.1 • Chem. Eng. J. 150, 502-508, 2009. • Int. J. Heat Mass Transfer 52, 2444-2452, 2009.
  • 12. Solar Reactor Technology 100 kW Solar radiative input 100 kW 10 kW Cavity diameter 580 160 mm Cavity length 750 230 mm Outlet diameter 110 15 mm Al2O3-tile thickness 10 7 mm Outer shell diameter 1080 200 mm Aperture diameter 190 60 mm Window diameter 485 160 mm Solar concentration ratio 3500 3500 suns  
  • 13. Solar Thermochemical Splitting of H2O and CO2 Concentrated Solar Energy MOox 1st step: Solar Reduction O2 ZnO  Zn  0.5O2 Zn 2nd step: Oxidation H2/CO H2O/CO2 Zn  H 2O  ZnO  H 2 Zn  CO2  ZnO  CO To recycle MOox Liquid Fuels
  • 14. 2nd step: Syngas Production Aerosol reactor concept Experimental nanoparticle mixing in-situ hydrolysis Set-up H2O(g) formation H2O H2 H2 ZnO gas analysis filter Zn(g) Zn ZnO steam generator Quench rate: up to 106 K/s reaction 1200 H2O/Ar zone injection Zn Temperature [K] H2O + Zn  Ar H2O crucible ZnO + H2 1000 T = 573-1263K Tsat 800 evaporation zone 600 evaporation reaction zone Zn  Zn(g) 400 T = 1263 K 0 20 40 60 80 100 Distance along reactor axis [cm] Balance Ar • Chem. Eng. Sc. 64, 1095-1101, 2009. • Chem. Eng. Sc. 65, 1855-1864, 2010.
  • 15. 2nd step: Syngas Production Aerosol reactor concept Experimental nanoparticle mixing in-situ hydrolysis Set-up H2O(g) formation H2O H2 H2 ZnO gas analysis filter Zn(g) Zn ZnO steam 9 generator TR = 973 K reaction 8 Zn evaporation zone 7 H2O + Zn  Ar H2O 6 ZnO + H2 10-4 mol/min H2 production T = 573-1263K 5 4 3 evaporation zone 2 = Zn-conversion = 90% 1 Zn  Zn(g) 0 T = 1263 K 0 10 20 30 40 50 60 70 Reaction time (min) Balance Ar • Chem. Eng. Sc. 64, 1095-1101, 2009. • Chem. Eng. Sc. 65, 1855-1864, 2010.
  • 16. 2nd step: Syngas Production Aerosol reactor concept Experimental nanoparticle mixing in-situ hydrolysis Set-up H2O(g) formation H2O H2 H2 ZnO gas analysis filter Zn(g) Zn ZnO steam TR = 823 K generator reaction zone H2O + Zn  Ar H2O ZnO + H2 T = 573-1263K evaporation zone Zn  Zn(g) T = 1263 K Balance Ar • Chem. Eng. Sc. 64, 1095-1101, 2009. • Chem. Eng. Sc. 65, 1855-1864, 2010.
  • 17. Solar Thermochemical Splitting of H2O and CO2 Concentrated Solar Energy MOox 1st step: Solar Reduction O2 MOox  MOred  O2 MOred 2nd step: Oxidation H2/CO H2O/CO2 MOred  H 2O  MOox  H 2 MOred  CO2  MOox  CO To recycle MOox Liquid Fuels
  • 18. DLR, Germany SNL, USA Concentrated solar flux ZnFe2O4 CoFe2O4 N2 + O2 Window H2 O2 O2 N2 H2O Niigata U., Japan CO2 (or steam) CO2 (or steam) NiFe2O4 Gas exhaust CO and CO2 (or H2 and H2O) U. of Colorado, USA Cyclone NiFe2O4 CNRS, France ZnO, SnO2 Draft tube Internal circulating fluidized bed (NiFe2O4/m-ZrO2 ) Conical- shaped cap Nitrogen / Steam flow
  • 19. Solar Thermochemical Splitting of H2O and CO2 Concentrated Solar Energy MOox 1st step: Solar Reduction O2  CeO2  CeO2  O2 MOred 2 2nd step: Oxidation H2/CO H2O/CO2 CeO2   H 2O  CeO2   H 2 CeO2   CO2  CeO2   CO To recycle MOox Liquid Fuels
  • 20. Solar Reactor Technology Science 330, 1797-1801, 2010.
  • 21. Solar Experimental Set-up Science 330, 1797-1801, 2010.
  • 22. Solar Experimental Results CO2-splitting H2O-splitting solar-to-fuel  heating value of fuel produced 0.8%  for CO2 -splitting solar energy input  + energy for inert gas recycling  0.7% for H2O-splitting Science 330, 1797-1801, 2010.
  • 23. Solar Experimental Results Simultaneous splitting of CO2 & H2O • H2O/CO2 = 7 → H2/CO = 1.91 • Fuel/O2 = 2
  • 24. Solar Experimental Results Simultaneous splitting of CO2 & H2O 0.6 2.65 ml H 2 g -1 2.45 ml H 2 g -1 2.43 ml H 2 g -1 2.29 ml H 2 g -1 2.00 ml H 2 g -1 2.17 ml H 2 g -1 2.10 ml H 2 g -1 2.19 ml H 2 g -1 1.76 ml H 2 g -1 1.92 ml H 2 g -1 Rate [mL min‐1 g‐1] 1.22 ml CO g -1 1.06 ml CO g -1 1.03 ml CO g -1 0.99 ml CO g -1 2.00 ml CO g -1 0.90 ml CO g -1 0.91 ml CO g -1 0.83 ml CO g -1 0.76 ml CO g -1 0.74 ml CO g -1 0.5 H2/CO ratio: 2.17 H2/CO ratio: 2.31 H2/CO ratio: 2.36 H2/CO ratio: 2.32 H2/CO ratio: 2.01 H2/CO ratio: 2.43 H2/CO ratio: 2.28 H2/CO ratio: 2.63 H2/CO ratio: 2.31 H2/CO ratio: 2.59 0.4 0.3 2.14 ml O 2 1.73 ml O 2 1.69 ml O 2 1.46 ml O 2 1.56 ml O 2 1.48 ml O 2 1.34 ml O 2 1.28 ml O 2 1.23 ml O 2 1.23 ml O 2 0.2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 g-1 CeO 2 0.1 0 0 50 100 150 200 250 300 350 400 450 Temperature [K] 1900 1700 1500 1300 1100 900 700 0 50 100 150 200 250 300 350 400 450 Time [min]
  • 25. RPC I s • average pore diameter = 2.54 mm • total porosity = 92% • specific surface = 11 mm-1 Reticulate Porous Ceramic 30 mm 35 mm 4 3 mm • ASME Journal of Heat Transfer 132, 023305 1-9, 2010.
  • 26. Radiative properties of RPC dI   s 4     I      Ib   I  d i ds 4  0  I          i  Change of attenuation augmentation augmentation radiation by by by intensity absorption+scattering internal emission incoming scattering s MC ray tracing I s  exp  -  s  I0   0.22 cm-1 • ASME Journal of Heat Transfer 132, 023305 1-9, 2010.
  • 27. Fluid transport properties across RPC • Navier-Stokes by DNS • 0.2<Re<200 • 0.1<Pr<10  p   uD  F  uD 2 K pd 2  c0  c1 Re  uD K  1.353 10-7 m 2 F  444.02 m 1 • Int. J. Heat and Fluid Flow 29, 315–326, 2008
  • 28. Heat transfer transport across RPC • Navier-Stokes by DNS • 0.2<Re<200 • 0.1<Pr<10 z z  q ''dAsf hsf  z Tlm  Asf Nu  1.56  0.6 Re0.56 Pr 0.47 • J. Heat Transfer 130, 032602, 2008. • J. Heat Transfer, 132, 023305 1-9, 2010
  • 29. CO2 Capture from Air calcination/carbonation CaO + CO2 CaCO3 nCO2 ,released CO2-depleted air / CO2  99% nCO2 ,captured 12000 900 T=390 °C / 850°C 850°C Calcination Calcination Calcination Calcination Calcination 800 Temperature [°C] 10000 700 Carbonation Carbonation Carbonation Carbonation Carbonation 8000 600 CO2 [ppm] 500 atmospheric air 6000 400 390°C 4000 300 200 2000 100 input 390 ppm 0 0 1000 2000 3000 4000 5000 6000 Time [sec] Chem. Eng. J. 146, 244–248, 2009.
  • 30. • Diamine-functionalized silica gel • CO2 adsorption from air at 25 °C and 1 bar • Pure CO2 desorption at 74-90 °C and 10-150 mbar
  • 31. Solar Energy Concentrated Solar Energy adsorption reduction atmospheric CO2 catalytic air syngas conversion desorption oxidation H2O CO2-depleted liquid fuels air for transportation H2O CO2
  • 32. Jan Wurzbacher Tina Daum Chris Gebald Christian Wieckert Roman Bader Ivo Alxneit Giw Zanganeh Daniel Mayer Clemens Suter Alwin Frei Men Wirz Yvonne Bauerle Anastasia Stamatiou Christian Hutter Emilie Zermatten Peter Schaller Jonathan Scheffe Tony Meier Philipp Furler Marc Chambon Gilles Maag Daniel Wuillemin Michael Kruesi Illias Hischier Willy Villasmil Philipp Haueter Matt Roesle Tom Cooper Peter Loutzenhiser Dominic Herrmann Enrico Guglielmini Nic Piatkowski