SlideShare a Scribd company logo
1 of 8
Download to read offline
International Journal of Modern Research in Engineering & Management (IJMREM)
||Volume|| 1||Issue|| 10 ||Pages|| 55-62 || November 2018|| ISSN: 2581-4540
www.ijmrem.com IJMREM Page 55
Thermodynamic Analysis of Cooling Tower with Air to Air Heat
Exchanger for Reducing Evaporative Losses
1,
Ans Ahmed Memon, 2,
Muhammad waqas Chandio, 3,
Saadat Ali khokhar
1,
Student M.E. (Energy Systems Engg.) PGS, Mehran UET Jamshoro;
2,
Lab.Supervisor, Mechanical Engg. Mehran UET, Jamshoro
3,
Student M.E. (Energy Systems Engg.), Mehran UET, Jamshoro
---------------------------------------------------ABSTRACT-------------------------------------------------------
In this paper a thermodynamic analysis of cooling tower with air-to-air heat exchanger is presented. During
manual operation of conventional cooling tower, a good quantity of water is evaporated which requires equivalent
amount of makeup water for their condensers. So, in this regard, the thermodynamic model of a cooling with an
air to air heat exchanger is developed using engineering equation solver (EES) software and then simulated in
different climatic conditions of two major cities of Pakistan namely Karachi and Jamshoro through the period of
June & December 2017. The results show a significant variation in water vapor recovery with respect to
atmospheric conditions mainly humidity and ambient air temperature. Results reveal that the when a cooling
tower coupled with air to air heat exchanger maximum amount of water vapors are recovered at Karachi and
ranges up to 67% and 62% in Jamshoro during the month of December.
KEYWORDS: Thermodynamic analysis, Makeup water consumption, wet cooling tower, water vapor
recovery, effect of climate on wet cooling tower
--------------------------------------------------------------------------------------------------------------------------------------
Date of Submission: Date, 14 November 2018 Date of Accepted: 21 November 2018
--------------------------------------------------------------------------------------------------------------------------------------
I. INTRODUCTION
The world’s energy use is growing rapidly and increasing concern to the depletion of existing natural resources.
The conservation of energy resources becomes a key issue in the world. Out of these resources, energy resources
are consumed in power generation, industrial applications, commercial and residential buildings comfort
conditioning. In current scenario, Pakistan is also facing water crisis along with energy crisis, most of thermal
power generating systems, industrial hubs utilize plenty of water for its applications but as a water crisis concern,
we have to focus how to minimize water losses in these sectors in order to subside these crises. Most power
generating systems, refrigeration and industrial processes generates heat that must be removed and dissipated [1].
So, water is generally used as heat transfer medium to remove heat from condenser or industrial heat exchangers
to sink(atmosphere) [2]. This is due to the fact that water has high specific heat than any other medium and gives
higher heat transfer coefficient, an-other reason is that water is dense liquid and it enables in easiness in handling
from one place to other. Cooling tower is a device that cools the warm water coming from systems i.e. engines,
condensers etc. and recycle the water back into systems for economy and used as coolant once again [3]. It makes
use of evaporation whereby some amount of water is evaporated by air stream moving in opposite direction to the
water, and then subsequently discharged to atmosphere. The main source of energy loss in a cooling tower is the
energy loss in terms of its water evaporation loss, pumping loss, leakage loss, inefficient equipment design,
improper control on equipment’s. The water loss through evaporation can be compensated by addition of makeup
water continuously into the water circuit. As a result of which remaining amount of water is cooled down
significantly as shown Fig:1.1
Fig.1 Schematic diagram of conventional induced draft wet cooling water [4]
Thermodynamic Analysis of Cooling Tower…
www.ijmrem.com IJMREM Page 56
According to nature of cooling, cooling towers are used in two configurations, i.e. wet and dry cooling towers.
Mostly wet cooling towers are preferred in industrial application and power plants due to higher specific cooling
capacity [5]. Wet cooling tower consumes the maximum amount of water in a power plant, it utilizes large amount
of water in cooling down and creates loss in evaporation and waste greater amounts of water, so in order to proper
functioning some amount of makeup water is added to compensate these losses. So, it is too important in industrial
and power plants to minimize water losses in wet cooling tower. Following are the possible ways through which
water losses in a cooling tower can be reduces.
1) By changing the wet cooling tower to dry or hybrid cooling tower.
2) Reducing in blowdown losses with increasing cycles of concentration
3) Utilizing an air-to-air heat exchanger.
Modification in the design of steam turbine, condenser and related components is required for converting wet
cooling tower to dry or hybrid cooling tower, which decreases the efficiency of the power plant. Reducing
blowdown along with operating at higher (COC) cycles of concentration can increase the risk of scaling, fouling
and corrosion except when some sort of treatment is applied. So evaporative lose could be minimized by utilizing
an air to air heat exchanger. The work in [6] used a laboratory scale wet cooling tower with an air to air heat
exchanger in order to study how much water consumption can be reduced. The air-air heat exchanger condenses
the water vapor back into sump by inletting ambient air throughout the heat exchanger by an auxiliary fan. This
laboratory model saves the evaporative water loss about 35%, depending on surrounding air conditions. According
to [8] increases overall water efficiency of cooling tower by controlling blowdown and vapor losses. Ozone
treatment reduces the use of chemicals, in this way reducing blowdown losses. A vapor recovery system that
consists fiber filter of round shape, at the top of the cooling tower, absorbs the water vapor coming out of cooling
tower and then condenses it. The results show that about 10% of the evaporated water can be recovered with this
method. It is evident from the literature review presented above that evaporative water loss is crucial among all
water losses in cooling tower. Most of the researchers have tried to reduce this evaporative loss with the
applications of different techniques applied on cooling tower, some of them have utilized fiber filter to soak the
evaporated water loss, increase in cycles of concentration (COC), using air to air heat exchangers to minimize
evaporative loss and decrease in makeup water addition. So, in this regard the core purpose of this work is to
minimize evaporative water loss by an air to air heat exchanger coupled at top of cooling tower.
II. DESCRIPTION OF NEW DESIGN OF COOLING TOWER
The wet cooling tower is basically a heat exchanging device that cools the warm water coming from engines,
condensers of power plants and dissipate this heat to environment by combination of sensible and latent heat into
the ambient air. In wet type of cooling towers, hot water is carried at top of tower where it showered with the help
of nozzles and stems the water on film media to ensures the proper maxing of water and ambient air in the tower.
This outside ambient air is introduced in the tower with the help of louvers in the form of horizontal slats on both
sides of cooling tower. These slats are inclined downwards to make sure water remains inside of tower. As the
mixing between water and ambient air increases the heat transfer from water to air also increases which results in
more decrease in water temperature. Now this cool water is sumped at basin, where some amount of water is
removed in order to maintain required level of dissolved solids and impurities known as blowdown. Some amount
of fresh makeup water is added in cooling tower basin to compensate water losses evaporative, blowdown and
drift. When the cooling tower is equipped with a fan at its top location this is known as induced draft wet cooling
tower, in this tower air flows throughout the tower with low to medium velocity via this fan. This fan also
dissipates the air water vapor mixture to surrounding and guide into the proposed air to air heat exchanger. This
fan has adjustable pitch blades for minimum consumption of electric power, its power consumption also depends
on climatic conditions and cooling load. The humid warm air leaving the cooling tower from top lid passes
throughout an air-to-air heat exchanger, where its temperature is lowered by an ambient air crossing through the
heat exchanger simultaneously. So as a result of this, condensation of humid air which results in decrement of
actual evaporative loss. This condensate water will decrease in makeup water addition subsequently. The design
of new wet cooling tower equipped with an air-to-air heat exchanger is developed by using engineering equation
solver software (EES).
Thermodynamic Analysis of Cooling Tower…
www.ijmrem.com IJMREM Page 57
Fig.2 Schematic diagram of proposed induced draft wet cooling water
III. THERMODYNAMIC MODELLING DESCRIPTION
The thermodynamic modelling of an induced draft wet cooling tower has been carried out by taking into
consideration of fundamental equations of thermodynamics. Mass and energy expressions for cross flow wet
cooling tower and other related equations are provided and furnished here as under. The main operating
parameters considered for energy analysis of cooling tower are, inlet air temperature, pressure, relative humidity.
In the similar fashion, the temperature of water is considered as the inlet of cooling tower. The energy balance
and water balance equations are used to analyze thermal performance of cooling tower.
A. Assumptions:
➢ The process is assumed to be steady.
➢ The mass flow rate of dry air remains constant during entire process.
➢ Dry air and water vapors is ideal gases.
➢ The kinetic and potential energy changes are negligible.
➢ The radiant heat transfer is assumed to be negligible.
➢ The mass flow rate of water is considered as constant.
➢ Heat transfer through the tower wall to the environment is negligible.
➢ Water loss by drift is negligible.
B. Applying Mass and Energy Balances on Cooling Tower
∑𝑚̇ 𝑖𝑛 = ∑𝑚̇ 𝑜𝑢𝑡 (1)
∑𝑚̇ 𝑖𝑛 and ∑𝑚̇ 𝑜𝑢𝑡 represents total mass flow rate of air and water at inlet and outlet of cooling tower.
Mass balance of dry air for cooling tower:
𝑚̇ 𝑎,[1]= 𝑚̇ 𝑎,[2]= 𝑚̇ 𝑎𝑖𝑟 (2)
Mass balance for water and vapor content in air stream:
𝑚̇ 3 + 𝑚̇ 𝑎1 𝜔1 = 𝑚̇ 4 + 𝑚̇ 𝑎2 𝜔2 (3)
Water evaporation rate:
When air and water come in contact, some amount of water evaporates. The rate of evaporation can be
calculated as below
𝑚̇ 𝑒𝑣𝑎𝑝 = 𝑚̇ 𝑎1(𝜔2 − 𝜔1) (4)
Energy balance on cooling tower:
The energy balance equation for fluid flow inside of cooling tower revelers that “energy transferred from hot
water (inlet circulating water) is gained by atmospheric air supplied to tower (outlet air) of cooling tower.
∑ 𝑚̇ ℎ = ∑ 𝑚̇ ℎ𝑜𝑢𝑡𝑖𝑛 (5)
𝑚̇ 𝑎1ℎ1 + 𝑚̇ 3ℎ3 = 𝑚̇ 𝑎2ℎ2 + 𝑚̇ 4ℎ4 (6)
Solving for 𝑚̇ 𝑎 gives
Thermodynamic Analysis of Cooling Tower…
www.ijmrem.com IJMREM Page 58
𝑚̇ 𝑎 =
𝑚̇ 3(ℎ3−ℎ4)
(ℎ2−ℎ1)−(𝜔2−𝜔1)ℎ4
(7)
Range of cooling tower: The temperature difference between water inlet and outlet of the cooling tower is
known as range of a cooling tower.
𝑅 = ( Tw,1 – T w,2) (8)
Approach of cooling tower:
Approach = (T w,2 –Twet bulb) (9)
Effectiveness:
The effectiveness of a cooling tower is defined as the ration of range to ideal range i.e.,
∈=
(ℎ2−h1)
(hmax _2−ℎ1)
(10)
Alternatively, the effectiveness is the ratio of range to sum of range and approach.
∈=
𝑅
𝑅+𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ
(11)
C. Applying Mass and Energy Balances on Heat Exchanger
∑𝑚̇ 𝑖𝑛 = ∑𝑚̇ 𝑜𝑢𝑡 (4.12)
∑𝑚̇ 𝑖𝑛 and ∑𝑚̇ 𝑜𝑢𝑡 represents total mass flow rate of air and water at inlet and outlet of heat exchanger.
Mass balance of dry air for heat exchanger:
𝑚̇ 𝑎,[7]= 𝑚̇ 𝑎,[8]= 𝑚̇ 𝑎𝑖𝑟 (4.13)
Mass balance for water and vapor content in air stream for heat exchanger:
𝑚̇ 9 𝜔9 + 𝑚̇ 𝑎7 𝜔7 = 𝑚̇ 10 𝜔10 + 𝑚̇ 𝑎8 𝜔8+𝑚̇ [11]𝑐𝑜𝑛𝑑: (4.14)
Energy balance on heat exchanger:
The energy balance equation for heat exchanger revelers that “energy transferred from warm saturated vapors is
gained by flowing atmospheric air throughout heat exchanger and remaining exhausted through heat exchanger.
∑ 𝑚̇ ℎ = ∑ 𝑚̇ ℎ𝑜𝑢𝑡𝑖𝑛
𝑚̇ 𝑎9ℎ9 + 𝑚̇ 7ℎ7 = 𝑚̇ 𝑎10ℎ10 + 𝑚̇ 8ℎ8 + 𝑚̇ [11]𝑐𝑜𝑛𝑑:ℎ𝑓𝑔 (4.15)
Actual heat transfer rate in air to heat exchanger:
𝑄̇ 𝑎𝑐𝑡𝑢𝑎𝑙 = 𝜀 𝑄̇ 𝑚𝑎𝑥 (4.16)
The condensing water (𝑚̇ [11]𝑐𝑜𝑛𝑑:) from the heat exchanger:
𝑚̇ [11]𝑐𝑜𝑛𝑑: =̇ 𝑚̇ 𝑎9 (𝜔9 − 𝜔10) (4.17)
In order to compare the makeup water used in cooling tower including air to air heat exchanger with the
condensing water to measure the recovery(saving) of the evaporative water loss.
𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
𝑚̇ 𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒
𝑚̇ 𝑚𝑎𝑘𝑒𝑢𝑝
∗ 100 (4.18)
The thermodynamic model was developed by using EES software and then simulated for various operating
parameters to ensure its validity.
D. Validation: The simulated results of the model are compared with previously published work for the model
validation. For proposed cooling tower (with heat exchanger), the values of simulated evaporated water recovery
at different state point of input data taken from experimental work are matched with available values in the
published work [6] and illustrated in figure.3
E.
Fig. 3 Results validation with Deziani.M[6]
Thermodynamic Analysis of Cooling Tower…
www.ijmrem.com IJMREM Page 59
Table 1: Operating parameters for model validation [6]
Dry bulb temperature of inlet ambient air
State:1 29.4 ̇0
C
State:2 25.7 ̇0
C
Mass flow rate of water
Hot water inlet temperature
Cold water outlet temperature
Cooling tower range
Wet bulb temperature of inlet ambient air
15.4 ̇0
C
12.2 ̇0
C
28500 m3
/hr.
38.2 ̇0
C
27.8 ̇0
C
10.4 ̇0
C
Table. 1 represents the operating parameters for cooling tower at two state points of climate data taken from
Deziani.M[6] paper for model validation purpose. And fig. 3 shows experimental vs simulated amount of water
vapors recovery at each sate point with its percent error.
IV.RESULTS AND DISCUSSION
In this study thermodynamic model of cooling tower with an air-to-air heat exchanger is developed using
engineering equation solver (EES) software and simulated to determine amount of water vapor recovery in
different climatic conditions of two main cities of Pakistan namely Karachi and Jamshoro through June-
December-2017. The analysis includes effect of humidity and ambient air temperature on amount of water vapor
expressed in terms of percent recovery. The weather data of above-mentioned cities of Pakistan at different
seasons were recorded from official site of meteorological conditions [9-10]. The main parameters on account of
data collection are temperature, pressure and humidity.
A. Effect of humidity on Water Vapor Recovery in Karachi: Fig. 4 demonstrate the impact of humidity on
amount of water vapor recovery of cooling tower with an air-to-air heat exchanger for a fixed ambient air
temperature and pressure when operated in climate of Karachi in June and December 2017. The behavior of graph
clearly indicates that as humidity increases the amount of water vapor recovery increases. While the recovery
response in December is higher than that of in June, in December amount of water vapor recovery starts from
50% and reaches up to 67% while in case of June it starts from 15% and reaches up to 60%. This is due to the fact
that when more humid air crossing cooling tower out of heat exchanger it gives out more its water vapor via
condensation than that of less humid air. In winter atmospheric air becomes dry, so it has higher capacity to hold
water vapors than compared to that of winter (June). As air leaving cooling tower in winter carry enough amount
of water vapor due to evaporation inside of cooling tower and when crossing heat exchanger, it easily condensed
out more amount of water vapor inters of recovery in winter than that of June.
Fig. 4 Effect of Relative humidity on Recovery in Karachi June-Dec-2017
Thermodynamic Analysis of Cooling Tower…
www.ijmrem.com IJMREM Page 60
B. Effect of temperature on Water Vapor Recovery in Karachi : Fig. 5 illustrate the impact of ambient air
temperature on amount of water vapor recovery of cooling tower with an air-to-air heat exchanger for a fixed
relative humidity and atmospheric pressure when operated in climate of Karachi in June-December-2017. The
response of graph clearly indicated that as ambient air temperature increases the amount of water vapor recovery
decreases. This is due to the fact that, a cooling tower transfer heat to the environment by evaporation of water
which will transfer heat to surrounding. As ambient air temperature increases its wet bulb temperature also
increases which ultimately decreases the temperature difference of hot water with surrounding and decreases the
heat transfer and amount of evaporation. Due to this lower amount of evaporation less amount of water vapor can
be condensed out through heat exchanger. That’s why recovery response in Karachi June is in higher decreasing
order than that in December. In December it starts decreasing from 62% and reaches up to 26%. While in June it
starts decreasing at 65% and ends at 5%.
Fig. 5 Effect of temperature on Recovery in Karachi June-Dec-2017
C. Effect of humidity on Water Vapor Recovery in Jamshoro : Fig. 6 illustrate the effect of humidity on
amount of water vapor recovery of cooling tower with an air-to-air heat exchanger for a fixed ambient air
temperature and pressure when operated in climate of Jamshoro in June-December 2017. The behavior of graph
clearly indicates that as humidity increases the amount of water vapor recovery also increases. While the recovery
response in December is in higher order than that of in June, in December amount of water vapor recovery starts
from 45% and reaches up to 66% while in case of June it starts from 17% and reaches up to 62%. This is due to
the fact that when more humid air crossing cooling tower out of heat exchanger it gives out more its water vapor
via condensation than that of less humid air. The above figures are little bit lower than that of Karachi due to more
humidity caused by Arabian sea. In winter atmospheric air becomes dry, so it has higher capacity to hold water
vapors than compared to that of winter (June). As air leaving cooling tower in winter carry enough amount of
water vapor due to evaporation inside of cooling tower and when crossing heat exchanger, it easily condensed out
more amount of water vapor inters of recovery in winter than that of summer (June)
Thermodynamic Analysis of Cooling Tower…
www.ijmrem.com IJMREM Page 61
Fig. 6 Effect of Relative humidity on Recovery in Jamshoro June-Dec-2017
C. Effect of temperature on Water Vapor Recovery in Jamshoro : Fig. 7 illustrate the impact of ambient air
temperature on amount of water vapor recovery of cooling tower with an air-to-air heat exchanger for a fixed
relative humidity and atmospheric pressure when operated in climate of Jamshoro in June-December-2017. The
behavior of graph clearly indicated that as ambient air temperature increases the amount of water vapor recovery
starts decreasing. This is due to the fact that, a cooling tower transfer heat to the environment by evaporation of
water which will transfer heat to surrounding. As ambient air temperature increases its wet bulb temperature also
increases which ultimately decreases the temperature difference of hot water with surrounding and decreases the
heat transfer and amount of evaporation. Due to this lower amount of evaporation less amount of water vapor can
be condensed out through heat exchanger. That’s why recovery response in Jamshoro June is in higher decreasing
order than that in December. In December it starts decreasing from 63% and reaches up to 38%. While in June it
starts decreasing at 52% and ends at 10%. We achieve this higher amount of recovery in December due to lower
wet bulb temperature in December than that in June.
Fig. 7 Effect of temperature on Recovery in Jamshoro June-Dec-2017
Thermodynamic Analysis of Cooling Tower…
www.ijmrem.com IJMREM Page 62
V. CONCLUSION
The thermodynamic analysis of the induced draft wet cooling tower with air to air heat exchanger is peroformed
using Engineering Equation Solver (EES) to investigate the evaporative losses in different climatic conditions of
two main cities of pakistan namely karachi, jamshoro through June and December 2017. The simulated results
shows that:
• The ambient temperature and humidity plays an effective role in recovering of evaporative loss, with the
decrease in wet bulb temperature amount of water vapor recovery increases.
• As relative humidity increases it ilso increases water vapor recovery.
• The maximum amount of water vapors are recovered at Karachi and ranges up to 67% and 62% in
Jamshoro during the month of December.
• With the attachment of air to air heat exchanger to cooling tower it almost diminishes the drift losses.
VI. ACKNOWLEDGEMNTS
Authors are thankful to Mehran University of Engineering & Technology Jamshoro for providing necessary
resources for carrying this research work.
Nomenclature
Greek letters
T Temperature (o
C) ε Effectiveness (-)
w humidity Ratio (-) 𝑣 Vapor
M Makeup water (kg/s)
𝑚̇ Mass flow rate (kg/s) Abbreviations
P Pressure (kPa) COC Cycle of Concentration
𝑄̇ Heat (kW) WCT Wet cooling tower
𝑅 Universal Gas constant
𝑚̇ 𝑒𝑣𝑎𝑝 Evaporation loss (kg/s)
Subscripts
WB Wet bulb temperature
R Relative humidity
max maximum
REFERENCES
[1] Dehaghani, S. T., &Ahmadikia, H. (2017). Retrofit of a wet cooling tower in order to reduce water and fan
power consumption using a wet/dry approach [Abstract]. Applied Thermal Engineering,125, 1002-1014.doi:
10.1016/j.applthermaleng.2017.07.069
[2] ASHRAE handbook (American Society of Heating, Refrigerating and Air-Conditioning Engineers)
(2008) Ashrae Handbook: HVAC Systems and Equipment, I-P Edition edn.: American Society of Heating,
Refrigerating & Air-Conditioning Engineers, Incorporated,2008.
[3] Will Lintner, Brian Boyd (2011) 'Cooling Towers: Understanding Key Components of Cooling Towers and
How to Improve Water Efficiency', U.S Department of Energy (Energy Efficiency & Renewable Energy), pp.
[Online]. Available at: https://energy.gov/sites/prod/files/2013/10/f3/waterfs_coolingtowers.pdf
[4] https://journal.uptimeinstitute.com/wp-content/uploads/2016/06/fig1.jpg (Accessed: 10th December 2017).
[5] Rezaei, E., Shafiei, S., &Abdollahnezhad, A. (2010). Reducing water consumption of an industrial plant
cooling unit using hybrid cooling tower. Energy Conversion and Management,51(2), 311-319. doi:
10.1016/j.enconman.2009.09.027
[6] Deziani, M., Rahmani, k., Roudaki, S. M., &Kordloo, M. (2017). Feasibility study for reduce water
evaporative loss in a power plant cooling tower by using air to air heat exchanger with auxiliary Fan.
Desalination, 406, 119-124. Doi: 10.1016/j.desal.2015.12.007
[7] U.S Patent “US4249391 A” for Cooling Tower vapor recovery Unit.
[8] Melany Hunt (2008) Increasing Cooling Tower Water Efficiency Chang Sub Kim , Available
at: https://www.sustainability.caltech.edu/documents/33 chang_sub_final_paper.pdf (Accessed: 15th
december 2017).
[9] https://www.timeanddate.com/weather/pakistan/karachi/historic?month=12&year=2017 (Accessed: Date: 5-
September-2018: Time: 11:44 AM)
[10] https://www.timeanddate.com/weather/pakistan/jamshoro/historic?month=12&year=2017 (Accessed: Date:
5-September-2018: Time: 12:02 pM)

More Related Content

What's hot

Thermal plant instrumentation and control
Thermal plant instrumentation and controlThermal plant instrumentation and control
Thermal plant instrumentation and controlShilpa Shukla
 
Thermal energy storage system
Thermal energy storage systemThermal energy storage system
Thermal energy storage systemAbhinav Bhaskar
 
Ash Handling System of a Thermal Power Plant
Ash Handling System of a Thermal Power PlantAsh Handling System of a Thermal Power Plant
Ash Handling System of a Thermal Power PlantAmay Jain
 
Central receiver power system
Central receiver power systemCentral receiver power system
Central receiver power systemSudhanshu Anand
 
Thermal power plant Khedr, Hisar, Haryana
Thermal power plant Khedr, Hisar, HaryanaThermal power plant Khedr, Hisar, Haryana
Thermal power plant Khedr, Hisar, HaryanaEesha Gupta
 
Design Calculations for Solar Water Heating System
Design Calculations for Solar Water Heating SystemDesign Calculations for Solar Water Heating System
Design Calculations for Solar Water Heating Systemsangeetkhule
 
Evacuated Tube Solar Water Heater
Evacuated Tube Solar Water Heater Evacuated Tube Solar Water Heater
Evacuated Tube Solar Water Heater ChandraPrakash299
 
Improve plant heat rate with feedwater heater control
Improve plant heat rate with feedwater heater controlImprove plant heat rate with feedwater heater control
Improve plant heat rate with feedwater heater controlHossam Zein
 
Basic Scheme Open Cycle Gas Turbine Plant
Basic Scheme Open Cycle Gas Turbine Plant Basic Scheme Open Cycle Gas Turbine Plant
Basic Scheme Open Cycle Gas Turbine Plant Aman Gupta
 
Exergy notes
Exergy notesExergy notes
Exergy notesSafeer Mt
 
Energy adudit methodology for boiler
Energy adudit methodology for boilerEnergy adudit methodology for boiler
Energy adudit methodology for boilerKongkiert Tankayura
 
Low temparature solar thermal technology
Low temparature solar thermal technologyLow temparature solar thermal technology
Low temparature solar thermal technologyA.S.M. Abdul Hye
 
STEAM TURBINE LUBE OIL SYSTEM PROTECTION USING SCADA AND PLC
 STEAM TURBINE LUBE OIL SYSTEM PROTECTION USING SCADA AND PLC STEAM TURBINE LUBE OIL SYSTEM PROTECTION USING SCADA AND PLC
STEAM TURBINE LUBE OIL SYSTEM PROTECTION USING SCADA AND PLCNabil chenchouni
 

What's hot (20)

Thermal plant instrumentation and control
Thermal plant instrumentation and controlThermal plant instrumentation and control
Thermal plant instrumentation and control
 
Thermal energy storage system
Thermal energy storage systemThermal energy storage system
Thermal energy storage system
 
Ash Handling System of a Thermal Power Plant
Ash Handling System of a Thermal Power PlantAsh Handling System of a Thermal Power Plant
Ash Handling System of a Thermal Power Plant
 
Central receiver power system
Central receiver power systemCentral receiver power system
Central receiver power system
 
Thermal power plant
Thermal power plantThermal power plant
Thermal power plant
 
A project report1
A project report1A project report1
A project report1
 
Thermal power plant Khedr, Hisar, Haryana
Thermal power plant Khedr, Hisar, HaryanaThermal power plant Khedr, Hisar, Haryana
Thermal power plant Khedr, Hisar, Haryana
 
NTPC ASH HANDELING
NTPC ASH HANDELING NTPC ASH HANDELING
NTPC ASH HANDELING
 
OCH752 energy technology unit 3
OCH752 energy technology unit 3OCH752 energy technology unit 3
OCH752 energy technology unit 3
 
Design Calculations for Solar Water Heating System
Design Calculations for Solar Water Heating SystemDesign Calculations for Solar Water Heating System
Design Calculations for Solar Water Heating System
 
Evacuated Tube Solar Water Heater
Evacuated Tube Solar Water Heater Evacuated Tube Solar Water Heater
Evacuated Tube Solar Water Heater
 
Improve plant heat rate with feedwater heater control
Improve plant heat rate with feedwater heater controlImprove plant heat rate with feedwater heater control
Improve plant heat rate with feedwater heater control
 
Solar water heating system
Solar water heating systemSolar water heating system
Solar water heating system
 
Basic Scheme Open Cycle Gas Turbine Plant
Basic Scheme Open Cycle Gas Turbine Plant Basic Scheme Open Cycle Gas Turbine Plant
Basic Scheme Open Cycle Gas Turbine Plant
 
Diesel Power Plant
Diesel Power PlantDiesel Power Plant
Diesel Power Plant
 
Air cooled condensers
Air cooled condensersAir cooled condensers
Air cooled condensers
 
Exergy notes
Exergy notesExergy notes
Exergy notes
 
Energy adudit methodology for boiler
Energy adudit methodology for boilerEnergy adudit methodology for boiler
Energy adudit methodology for boiler
 
Low temparature solar thermal technology
Low temparature solar thermal technologyLow temparature solar thermal technology
Low temparature solar thermal technology
 
STEAM TURBINE LUBE OIL SYSTEM PROTECTION USING SCADA AND PLC
 STEAM TURBINE LUBE OIL SYSTEM PROTECTION USING SCADA AND PLC STEAM TURBINE LUBE OIL SYSTEM PROTECTION USING SCADA AND PLC
STEAM TURBINE LUBE OIL SYSTEM PROTECTION USING SCADA AND PLC
 

Similar to Thermodynamic Analysis of Cooling Tower with Air to Air Heat Exchanger

A Review on Design and Development of Three in One Air Cooling System
A Review on Design and Development of Three in One Air Cooling SystemA Review on Design and Development of Three in One Air Cooling System
A Review on Design and Development of Three in One Air Cooling SystemIRJET Journal
 
INDUSTRIAL WASTE HEAT USED IN TYPICAL THERMAL POWER PLANT
  INDUSTRIAL WASTE HEAT USED IN TYPICAL THERMAL POWER PLANT  INDUSTRIAL WASTE HEAT USED IN TYPICAL THERMAL POWER PLANT
INDUSTRIAL WASTE HEAT USED IN TYPICAL THERMAL POWER PLANTIAEME Publication
 
Project Paper Cooling Water Tower-G03178 Idzuari Azli
Project Paper Cooling Water Tower-G03178 Idzuari AzliProject Paper Cooling Water Tower-G03178 Idzuari Azli
Project Paper Cooling Water Tower-G03178 Idzuari AzliIdzuari Azli Bin Kamilan
 
Optimal design of a hyperboloidal cooling tower
Optimal design of a hyperboloidal cooling towerOptimal design of a hyperboloidal cooling tower
Optimal design of a hyperboloidal cooling towerSourav Lahiri
 
Bn32839844
Bn32839844Bn32839844
Bn32839844IJMER
 
Cs31411414
Cs31411414Cs31411414
Cs31411414IJMER
 
Development and Performance of Solar based Air Washer
Development and Performance of Solar based Air WasherDevelopment and Performance of Solar based Air Washer
Development and Performance of Solar based Air WasherIRJET Journal
 
Water Cooling Towers
Water Cooling TowersWater Cooling Towers
Water Cooling Towersno suhaila
 
Combined Air Refrigeration, Air Conditioning and Water Dispenser Systems
Combined Air Refrigeration, Air Conditioning and Water Dispenser SystemsCombined Air Refrigeration, Air Conditioning and Water Dispenser Systems
Combined Air Refrigeration, Air Conditioning and Water Dispenser SystemsIRJET Journal
 
Performance evaluation of an incorporation of a compact liquid desiccant syst...
Performance evaluation of an incorporation of a compact liquid desiccant syst...Performance evaluation of an incorporation of a compact liquid desiccant syst...
Performance evaluation of an incorporation of a compact liquid desiccant syst...eSAT Journals
 
Hybrid_Cooling_System
Hybrid_Cooling_SystemHybrid_Cooling_System
Hybrid_Cooling_SystemDavid Yang
 
IRJET- Thermal Investigation of Solid Desiccant Wheel based Dehumidificat...
IRJET-  	  Thermal Investigation of Solid Desiccant Wheel based Dehumidificat...IRJET-  	  Thermal Investigation of Solid Desiccant Wheel based Dehumidificat...
IRJET- Thermal Investigation of Solid Desiccant Wheel based Dehumidificat...IRJET Journal
 

Similar to Thermodynamic Analysis of Cooling Tower with Air to Air Heat Exchanger (20)

Cooling towers tech article v1r04
Cooling towers tech article v1r04Cooling towers tech article v1r04
Cooling towers tech article v1r04
 
B013141316
B013141316B013141316
B013141316
 
A Review on Design and Development of Three in One Air Cooling System
A Review on Design and Development of Three in One Air Cooling SystemA Review on Design and Development of Three in One Air Cooling System
A Review on Design and Development of Three in One Air Cooling System
 
INDUSTRIAL WASTE HEAT USED IN TYPICAL THERMAL POWER PLANT
  INDUSTRIAL WASTE HEAT USED IN TYPICAL THERMAL POWER PLANT  INDUSTRIAL WASTE HEAT USED IN TYPICAL THERMAL POWER PLANT
INDUSTRIAL WASTE HEAT USED IN TYPICAL THERMAL POWER PLANT
 
Project Paper Cooling Water Tower-G03178 Idzuari Azli
Project Paper Cooling Water Tower-G03178 Idzuari AzliProject Paper Cooling Water Tower-G03178 Idzuari Azli
Project Paper Cooling Water Tower-G03178 Idzuari Azli
 
Optimal design of a hyperboloidal cooling tower
Optimal design of a hyperboloidal cooling towerOptimal design of a hyperboloidal cooling tower
Optimal design of a hyperboloidal cooling tower
 
Ijmet 06 10_021
Ijmet 06 10_021Ijmet 06 10_021
Ijmet 06 10_021
 
Bn32839844
Bn32839844Bn32839844
Bn32839844
 
THRIOAC_new
THRIOAC_newTHRIOAC_new
THRIOAC_new
 
Cs31411414
Cs31411414Cs31411414
Cs31411414
 
Development and Performance of Solar based Air Washer
Development and Performance of Solar based Air WasherDevelopment and Performance of Solar based Air Washer
Development and Performance of Solar based Air Washer
 
Water Cooling Towers
Water Cooling TowersWater Cooling Towers
Water Cooling Towers
 
IJET-V2I6P2
IJET-V2I6P2IJET-V2I6P2
IJET-V2I6P2
 
Combined Air Refrigeration, Air Conditioning and Water Dispenser Systems
Combined Air Refrigeration, Air Conditioning and Water Dispenser SystemsCombined Air Refrigeration, Air Conditioning and Water Dispenser Systems
Combined Air Refrigeration, Air Conditioning and Water Dispenser Systems
 
final project.docx
final project.docxfinal project.docx
final project.docx
 
AC end.pdf
AC end.pdfAC end.pdf
AC end.pdf
 
Performance evaluation of an incorporation of a compact liquid desiccant syst...
Performance evaluation of an incorporation of a compact liquid desiccant syst...Performance evaluation of an incorporation of a compact liquid desiccant syst...
Performance evaluation of an incorporation of a compact liquid desiccant syst...
 
D046041925
D046041925D046041925
D046041925
 
Hybrid_Cooling_System
Hybrid_Cooling_SystemHybrid_Cooling_System
Hybrid_Cooling_System
 
IRJET- Thermal Investigation of Solid Desiccant Wheel based Dehumidificat...
IRJET-  	  Thermal Investigation of Solid Desiccant Wheel based Dehumidificat...IRJET-  	  Thermal Investigation of Solid Desiccant Wheel based Dehumidificat...
IRJET- Thermal Investigation of Solid Desiccant Wheel based Dehumidificat...
 

More from IJMREMJournal

Anti-Smog Radar Application for Vehicles
Anti-Smog Radar Application for VehiclesAnti-Smog Radar Application for Vehicles
Anti-Smog Radar Application for VehiclesIJMREMJournal
 
IoT based Environmental Monitoring and Control System
IoT based Environmental Monitoring and Control SystemIoT based Environmental Monitoring and Control System
IoT based Environmental Monitoring and Control SystemIJMREMJournal
 
Analysis and Implementation of Solid-State Relays in Industrial application F...
Analysis and Implementation of Solid-State Relays in Industrial application F...Analysis and Implementation of Solid-State Relays in Industrial application F...
Analysis and Implementation of Solid-State Relays in Industrial application F...IJMREMJournal
 
MIM (Mobile Instant Messaging) Classification using Term Frequency-Inverse Do...
MIM (Mobile Instant Messaging) Classification using Term Frequency-Inverse Do...MIM (Mobile Instant Messaging) Classification using Term Frequency-Inverse Do...
MIM (Mobile Instant Messaging) Classification using Term Frequency-Inverse Do...IJMREMJournal
 
Is Lean Management applicable to the hospital and for which results?
Is Lean Management applicable to the hospital and for which results?Is Lean Management applicable to the hospital and for which results?
Is Lean Management applicable to the hospital and for which results?IJMREMJournal
 
Fabrication and Performance Analysis of Solar Tracking System by Using By-Pas...
Fabrication and Performance Analysis of Solar Tracking System by Using By-Pas...Fabrication and Performance Analysis of Solar Tracking System by Using By-Pas...
Fabrication and Performance Analysis of Solar Tracking System by Using By-Pas...IJMREMJournal
 
Reactivity Feedback Effect on the Reactor Behaviour during SBLOCA in a 4-loop...
Reactivity Feedback Effect on the Reactor Behaviour during SBLOCA in a 4-loop...Reactivity Feedback Effect on the Reactor Behaviour during SBLOCA in a 4-loop...
Reactivity Feedback Effect on the Reactor Behaviour during SBLOCA in a 4-loop...IJMREMJournal
 
Lyapunov-type inequalities for a fractional q, -difference equation involvin...
Lyapunov-type inequalities for a fractional q, -difference equation involvin...Lyapunov-type inequalities for a fractional q, -difference equation involvin...
Lyapunov-type inequalities for a fractional q, -difference equation involvin...IJMREMJournal
 
The Policies of Government Intervention as Third-Party for Conflict in Bike-S...
The Policies of Government Intervention as Third-Party for Conflict in Bike-S...The Policies of Government Intervention as Third-Party for Conflict in Bike-S...
The Policies of Government Intervention as Third-Party for Conflict in Bike-S...IJMREMJournal
 
Epidemiological study for Trichomonas Vaginalis for Discrete time model and C...
Epidemiological study for Trichomonas Vaginalis for Discrete time model and C...Epidemiological study for Trichomonas Vaginalis for Discrete time model and C...
Epidemiological study for Trichomonas Vaginalis for Discrete time model and C...IJMREMJournal
 
Energy Conservation through Smart Building and Smart Lighting System
Energy Conservation through Smart Building and Smart Lighting SystemEnergy Conservation through Smart Building and Smart Lighting System
Energy Conservation through Smart Building and Smart Lighting SystemIJMREMJournal
 
The Effect of Workplace Relationship toward Job Satisfaction of Divine Word C...
The Effect of Workplace Relationship toward Job Satisfaction of Divine Word C...The Effect of Workplace Relationship toward Job Satisfaction of Divine Word C...
The Effect of Workplace Relationship toward Job Satisfaction of Divine Word C...IJMREMJournal
 
Semi-automatic Picture Book Generation based on Story Model and Agent-based S...
Semi-automatic Picture Book Generation based on Story Model and Agent-based S...Semi-automatic Picture Book Generation based on Story Model and Agent-based S...
Semi-automatic Picture Book Generation based on Story Model and Agent-based S...IJMREMJournal
 
Efficiency Evaluation of Thailand Gross Domestic Product Using DEA
Efficiency Evaluation of Thailand Gross Domestic Product Using DEAEfficiency Evaluation of Thailand Gross Domestic Product Using DEA
Efficiency Evaluation of Thailand Gross Domestic Product Using DEAIJMREMJournal
 
Predicting Trade Conflict Outcomes using a Third-Party Intervention Model
Predicting Trade Conflict Outcomes using a Third-Party Intervention ModelPredicting Trade Conflict Outcomes using a Third-Party Intervention Model
Predicting Trade Conflict Outcomes using a Third-Party Intervention ModelIJMREMJournal
 
Proposed Framework for Effective Management of End-User Stakeholders’ in Publ...
Proposed Framework for Effective Management of End-User Stakeholders’ in Publ...Proposed Framework for Effective Management of End-User Stakeholders’ in Publ...
Proposed Framework for Effective Management of End-User Stakeholders’ in Publ...IJMREMJournal
 
Fresh and Hardened Properties of Ground Granulated Blast Furnace Slag Made Co...
Fresh and Hardened Properties of Ground Granulated Blast Furnace Slag Made Co...Fresh and Hardened Properties of Ground Granulated Blast Furnace Slag Made Co...
Fresh and Hardened Properties of Ground Granulated Blast Furnace Slag Made Co...IJMREMJournal
 
Design and Evaluation of Open Graded Hot Mix Asphalt Using Cement as A Grout...
 Design and Evaluation of Open Graded Hot Mix Asphalt Using Cement as A Grout... Design and Evaluation of Open Graded Hot Mix Asphalt Using Cement as A Grout...
Design and Evaluation of Open Graded Hot Mix Asphalt Using Cement as A Grout...IJMREMJournal
 
Design of Cold Recycled Emulsified Asphalt Mixtures Using Portland Cement as ...
Design of Cold Recycled Emulsified Asphalt Mixtures Using Portland Cement as ...Design of Cold Recycled Emulsified Asphalt Mixtures Using Portland Cement as ...
Design of Cold Recycled Emulsified Asphalt Mixtures Using Portland Cement as ...IJMREMJournal
 
Modeling and Development of Pneumatic Accumulating System
Modeling and Development of Pneumatic Accumulating SystemModeling and Development of Pneumatic Accumulating System
Modeling and Development of Pneumatic Accumulating SystemIJMREMJournal
 

More from IJMREMJournal (20)

Anti-Smog Radar Application for Vehicles
Anti-Smog Radar Application for VehiclesAnti-Smog Radar Application for Vehicles
Anti-Smog Radar Application for Vehicles
 
IoT based Environmental Monitoring and Control System
IoT based Environmental Monitoring and Control SystemIoT based Environmental Monitoring and Control System
IoT based Environmental Monitoring and Control System
 
Analysis and Implementation of Solid-State Relays in Industrial application F...
Analysis and Implementation of Solid-State Relays in Industrial application F...Analysis and Implementation of Solid-State Relays in Industrial application F...
Analysis and Implementation of Solid-State Relays in Industrial application F...
 
MIM (Mobile Instant Messaging) Classification using Term Frequency-Inverse Do...
MIM (Mobile Instant Messaging) Classification using Term Frequency-Inverse Do...MIM (Mobile Instant Messaging) Classification using Term Frequency-Inverse Do...
MIM (Mobile Instant Messaging) Classification using Term Frequency-Inverse Do...
 
Is Lean Management applicable to the hospital and for which results?
Is Lean Management applicable to the hospital and for which results?Is Lean Management applicable to the hospital and for which results?
Is Lean Management applicable to the hospital and for which results?
 
Fabrication and Performance Analysis of Solar Tracking System by Using By-Pas...
Fabrication and Performance Analysis of Solar Tracking System by Using By-Pas...Fabrication and Performance Analysis of Solar Tracking System by Using By-Pas...
Fabrication and Performance Analysis of Solar Tracking System by Using By-Pas...
 
Reactivity Feedback Effect on the Reactor Behaviour during SBLOCA in a 4-loop...
Reactivity Feedback Effect on the Reactor Behaviour during SBLOCA in a 4-loop...Reactivity Feedback Effect on the Reactor Behaviour during SBLOCA in a 4-loop...
Reactivity Feedback Effect on the Reactor Behaviour during SBLOCA in a 4-loop...
 
Lyapunov-type inequalities for a fractional q, -difference equation involvin...
Lyapunov-type inequalities for a fractional q, -difference equation involvin...Lyapunov-type inequalities for a fractional q, -difference equation involvin...
Lyapunov-type inequalities for a fractional q, -difference equation involvin...
 
The Policies of Government Intervention as Third-Party for Conflict in Bike-S...
The Policies of Government Intervention as Third-Party for Conflict in Bike-S...The Policies of Government Intervention as Third-Party for Conflict in Bike-S...
The Policies of Government Intervention as Third-Party for Conflict in Bike-S...
 
Epidemiological study for Trichomonas Vaginalis for Discrete time model and C...
Epidemiological study for Trichomonas Vaginalis for Discrete time model and C...Epidemiological study for Trichomonas Vaginalis for Discrete time model and C...
Epidemiological study for Trichomonas Vaginalis for Discrete time model and C...
 
Energy Conservation through Smart Building and Smart Lighting System
Energy Conservation through Smart Building and Smart Lighting SystemEnergy Conservation through Smart Building and Smart Lighting System
Energy Conservation through Smart Building and Smart Lighting System
 
The Effect of Workplace Relationship toward Job Satisfaction of Divine Word C...
The Effect of Workplace Relationship toward Job Satisfaction of Divine Word C...The Effect of Workplace Relationship toward Job Satisfaction of Divine Word C...
The Effect of Workplace Relationship toward Job Satisfaction of Divine Word C...
 
Semi-automatic Picture Book Generation based on Story Model and Agent-based S...
Semi-automatic Picture Book Generation based on Story Model and Agent-based S...Semi-automatic Picture Book Generation based on Story Model and Agent-based S...
Semi-automatic Picture Book Generation based on Story Model and Agent-based S...
 
Efficiency Evaluation of Thailand Gross Domestic Product Using DEA
Efficiency Evaluation of Thailand Gross Domestic Product Using DEAEfficiency Evaluation of Thailand Gross Domestic Product Using DEA
Efficiency Evaluation of Thailand Gross Domestic Product Using DEA
 
Predicting Trade Conflict Outcomes using a Third-Party Intervention Model
Predicting Trade Conflict Outcomes using a Third-Party Intervention ModelPredicting Trade Conflict Outcomes using a Third-Party Intervention Model
Predicting Trade Conflict Outcomes using a Third-Party Intervention Model
 
Proposed Framework for Effective Management of End-User Stakeholders’ in Publ...
Proposed Framework for Effective Management of End-User Stakeholders’ in Publ...Proposed Framework for Effective Management of End-User Stakeholders’ in Publ...
Proposed Framework for Effective Management of End-User Stakeholders’ in Publ...
 
Fresh and Hardened Properties of Ground Granulated Blast Furnace Slag Made Co...
Fresh and Hardened Properties of Ground Granulated Blast Furnace Slag Made Co...Fresh and Hardened Properties of Ground Granulated Blast Furnace Slag Made Co...
Fresh and Hardened Properties of Ground Granulated Blast Furnace Slag Made Co...
 
Design and Evaluation of Open Graded Hot Mix Asphalt Using Cement as A Grout...
 Design and Evaluation of Open Graded Hot Mix Asphalt Using Cement as A Grout... Design and Evaluation of Open Graded Hot Mix Asphalt Using Cement as A Grout...
Design and Evaluation of Open Graded Hot Mix Asphalt Using Cement as A Grout...
 
Design of Cold Recycled Emulsified Asphalt Mixtures Using Portland Cement as ...
Design of Cold Recycled Emulsified Asphalt Mixtures Using Portland Cement as ...Design of Cold Recycled Emulsified Asphalt Mixtures Using Portland Cement as ...
Design of Cold Recycled Emulsified Asphalt Mixtures Using Portland Cement as ...
 
Modeling and Development of Pneumatic Accumulating System
Modeling and Development of Pneumatic Accumulating SystemModeling and Development of Pneumatic Accumulating System
Modeling and Development of Pneumatic Accumulating System
 

Recently uploaded

Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 

Recently uploaded (20)

Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 

Thermodynamic Analysis of Cooling Tower with Air to Air Heat Exchanger

  • 1. International Journal of Modern Research in Engineering & Management (IJMREM) ||Volume|| 1||Issue|| 10 ||Pages|| 55-62 || November 2018|| ISSN: 2581-4540 www.ijmrem.com IJMREM Page 55 Thermodynamic Analysis of Cooling Tower with Air to Air Heat Exchanger for Reducing Evaporative Losses 1, Ans Ahmed Memon, 2, Muhammad waqas Chandio, 3, Saadat Ali khokhar 1, Student M.E. (Energy Systems Engg.) PGS, Mehran UET Jamshoro; 2, Lab.Supervisor, Mechanical Engg. Mehran UET, Jamshoro 3, Student M.E. (Energy Systems Engg.), Mehran UET, Jamshoro ---------------------------------------------------ABSTRACT------------------------------------------------------- In this paper a thermodynamic analysis of cooling tower with air-to-air heat exchanger is presented. During manual operation of conventional cooling tower, a good quantity of water is evaporated which requires equivalent amount of makeup water for their condensers. So, in this regard, the thermodynamic model of a cooling with an air to air heat exchanger is developed using engineering equation solver (EES) software and then simulated in different climatic conditions of two major cities of Pakistan namely Karachi and Jamshoro through the period of June & December 2017. The results show a significant variation in water vapor recovery with respect to atmospheric conditions mainly humidity and ambient air temperature. Results reveal that the when a cooling tower coupled with air to air heat exchanger maximum amount of water vapors are recovered at Karachi and ranges up to 67% and 62% in Jamshoro during the month of December. KEYWORDS: Thermodynamic analysis, Makeup water consumption, wet cooling tower, water vapor recovery, effect of climate on wet cooling tower -------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: Date, 14 November 2018 Date of Accepted: 21 November 2018 -------------------------------------------------------------------------------------------------------------------------------------- I. INTRODUCTION The world’s energy use is growing rapidly and increasing concern to the depletion of existing natural resources. The conservation of energy resources becomes a key issue in the world. Out of these resources, energy resources are consumed in power generation, industrial applications, commercial and residential buildings comfort conditioning. In current scenario, Pakistan is also facing water crisis along with energy crisis, most of thermal power generating systems, industrial hubs utilize plenty of water for its applications but as a water crisis concern, we have to focus how to minimize water losses in these sectors in order to subside these crises. Most power generating systems, refrigeration and industrial processes generates heat that must be removed and dissipated [1]. So, water is generally used as heat transfer medium to remove heat from condenser or industrial heat exchangers to sink(atmosphere) [2]. This is due to the fact that water has high specific heat than any other medium and gives higher heat transfer coefficient, an-other reason is that water is dense liquid and it enables in easiness in handling from one place to other. Cooling tower is a device that cools the warm water coming from systems i.e. engines, condensers etc. and recycle the water back into systems for economy and used as coolant once again [3]. It makes use of evaporation whereby some amount of water is evaporated by air stream moving in opposite direction to the water, and then subsequently discharged to atmosphere. The main source of energy loss in a cooling tower is the energy loss in terms of its water evaporation loss, pumping loss, leakage loss, inefficient equipment design, improper control on equipment’s. The water loss through evaporation can be compensated by addition of makeup water continuously into the water circuit. As a result of which remaining amount of water is cooled down significantly as shown Fig:1.1 Fig.1 Schematic diagram of conventional induced draft wet cooling water [4]
  • 2. Thermodynamic Analysis of Cooling Tower… www.ijmrem.com IJMREM Page 56 According to nature of cooling, cooling towers are used in two configurations, i.e. wet and dry cooling towers. Mostly wet cooling towers are preferred in industrial application and power plants due to higher specific cooling capacity [5]. Wet cooling tower consumes the maximum amount of water in a power plant, it utilizes large amount of water in cooling down and creates loss in evaporation and waste greater amounts of water, so in order to proper functioning some amount of makeup water is added to compensate these losses. So, it is too important in industrial and power plants to minimize water losses in wet cooling tower. Following are the possible ways through which water losses in a cooling tower can be reduces. 1) By changing the wet cooling tower to dry or hybrid cooling tower. 2) Reducing in blowdown losses with increasing cycles of concentration 3) Utilizing an air-to-air heat exchanger. Modification in the design of steam turbine, condenser and related components is required for converting wet cooling tower to dry or hybrid cooling tower, which decreases the efficiency of the power plant. Reducing blowdown along with operating at higher (COC) cycles of concentration can increase the risk of scaling, fouling and corrosion except when some sort of treatment is applied. So evaporative lose could be minimized by utilizing an air to air heat exchanger. The work in [6] used a laboratory scale wet cooling tower with an air to air heat exchanger in order to study how much water consumption can be reduced. The air-air heat exchanger condenses the water vapor back into sump by inletting ambient air throughout the heat exchanger by an auxiliary fan. This laboratory model saves the evaporative water loss about 35%, depending on surrounding air conditions. According to [8] increases overall water efficiency of cooling tower by controlling blowdown and vapor losses. Ozone treatment reduces the use of chemicals, in this way reducing blowdown losses. A vapor recovery system that consists fiber filter of round shape, at the top of the cooling tower, absorbs the water vapor coming out of cooling tower and then condenses it. The results show that about 10% of the evaporated water can be recovered with this method. It is evident from the literature review presented above that evaporative water loss is crucial among all water losses in cooling tower. Most of the researchers have tried to reduce this evaporative loss with the applications of different techniques applied on cooling tower, some of them have utilized fiber filter to soak the evaporated water loss, increase in cycles of concentration (COC), using air to air heat exchangers to minimize evaporative loss and decrease in makeup water addition. So, in this regard the core purpose of this work is to minimize evaporative water loss by an air to air heat exchanger coupled at top of cooling tower. II. DESCRIPTION OF NEW DESIGN OF COOLING TOWER The wet cooling tower is basically a heat exchanging device that cools the warm water coming from engines, condensers of power plants and dissipate this heat to environment by combination of sensible and latent heat into the ambient air. In wet type of cooling towers, hot water is carried at top of tower where it showered with the help of nozzles and stems the water on film media to ensures the proper maxing of water and ambient air in the tower. This outside ambient air is introduced in the tower with the help of louvers in the form of horizontal slats on both sides of cooling tower. These slats are inclined downwards to make sure water remains inside of tower. As the mixing between water and ambient air increases the heat transfer from water to air also increases which results in more decrease in water temperature. Now this cool water is sumped at basin, where some amount of water is removed in order to maintain required level of dissolved solids and impurities known as blowdown. Some amount of fresh makeup water is added in cooling tower basin to compensate water losses evaporative, blowdown and drift. When the cooling tower is equipped with a fan at its top location this is known as induced draft wet cooling tower, in this tower air flows throughout the tower with low to medium velocity via this fan. This fan also dissipates the air water vapor mixture to surrounding and guide into the proposed air to air heat exchanger. This fan has adjustable pitch blades for minimum consumption of electric power, its power consumption also depends on climatic conditions and cooling load. The humid warm air leaving the cooling tower from top lid passes throughout an air-to-air heat exchanger, where its temperature is lowered by an ambient air crossing through the heat exchanger simultaneously. So as a result of this, condensation of humid air which results in decrement of actual evaporative loss. This condensate water will decrease in makeup water addition subsequently. The design of new wet cooling tower equipped with an air-to-air heat exchanger is developed by using engineering equation solver software (EES).
  • 3. Thermodynamic Analysis of Cooling Tower… www.ijmrem.com IJMREM Page 57 Fig.2 Schematic diagram of proposed induced draft wet cooling water III. THERMODYNAMIC MODELLING DESCRIPTION The thermodynamic modelling of an induced draft wet cooling tower has been carried out by taking into consideration of fundamental equations of thermodynamics. Mass and energy expressions for cross flow wet cooling tower and other related equations are provided and furnished here as under. The main operating parameters considered for energy analysis of cooling tower are, inlet air temperature, pressure, relative humidity. In the similar fashion, the temperature of water is considered as the inlet of cooling tower. The energy balance and water balance equations are used to analyze thermal performance of cooling tower. A. Assumptions: ➢ The process is assumed to be steady. ➢ The mass flow rate of dry air remains constant during entire process. ➢ Dry air and water vapors is ideal gases. ➢ The kinetic and potential energy changes are negligible. ➢ The radiant heat transfer is assumed to be negligible. ➢ The mass flow rate of water is considered as constant. ➢ Heat transfer through the tower wall to the environment is negligible. ➢ Water loss by drift is negligible. B. Applying Mass and Energy Balances on Cooling Tower ∑𝑚̇ 𝑖𝑛 = ∑𝑚̇ 𝑜𝑢𝑡 (1) ∑𝑚̇ 𝑖𝑛 and ∑𝑚̇ 𝑜𝑢𝑡 represents total mass flow rate of air and water at inlet and outlet of cooling tower. Mass balance of dry air for cooling tower: 𝑚̇ 𝑎,[1]= 𝑚̇ 𝑎,[2]= 𝑚̇ 𝑎𝑖𝑟 (2) Mass balance for water and vapor content in air stream: 𝑚̇ 3 + 𝑚̇ 𝑎1 𝜔1 = 𝑚̇ 4 + 𝑚̇ 𝑎2 𝜔2 (3) Water evaporation rate: When air and water come in contact, some amount of water evaporates. The rate of evaporation can be calculated as below 𝑚̇ 𝑒𝑣𝑎𝑝 = 𝑚̇ 𝑎1(𝜔2 − 𝜔1) (4) Energy balance on cooling tower: The energy balance equation for fluid flow inside of cooling tower revelers that “energy transferred from hot water (inlet circulating water) is gained by atmospheric air supplied to tower (outlet air) of cooling tower. ∑ 𝑚̇ ℎ = ∑ 𝑚̇ ℎ𝑜𝑢𝑡𝑖𝑛 (5) 𝑚̇ 𝑎1ℎ1 + 𝑚̇ 3ℎ3 = 𝑚̇ 𝑎2ℎ2 + 𝑚̇ 4ℎ4 (6) Solving for 𝑚̇ 𝑎 gives
  • 4. Thermodynamic Analysis of Cooling Tower… www.ijmrem.com IJMREM Page 58 𝑚̇ 𝑎 = 𝑚̇ 3(ℎ3−ℎ4) (ℎ2−ℎ1)−(𝜔2−𝜔1)ℎ4 (7) Range of cooling tower: The temperature difference between water inlet and outlet of the cooling tower is known as range of a cooling tower. 𝑅 = ( Tw,1 – T w,2) (8) Approach of cooling tower: Approach = (T w,2 –Twet bulb) (9) Effectiveness: The effectiveness of a cooling tower is defined as the ration of range to ideal range i.e., ∈= (ℎ2−h1) (hmax _2−ℎ1) (10) Alternatively, the effectiveness is the ratio of range to sum of range and approach. ∈= 𝑅 𝑅+𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ (11) C. Applying Mass and Energy Balances on Heat Exchanger ∑𝑚̇ 𝑖𝑛 = ∑𝑚̇ 𝑜𝑢𝑡 (4.12) ∑𝑚̇ 𝑖𝑛 and ∑𝑚̇ 𝑜𝑢𝑡 represents total mass flow rate of air and water at inlet and outlet of heat exchanger. Mass balance of dry air for heat exchanger: 𝑚̇ 𝑎,[7]= 𝑚̇ 𝑎,[8]= 𝑚̇ 𝑎𝑖𝑟 (4.13) Mass balance for water and vapor content in air stream for heat exchanger: 𝑚̇ 9 𝜔9 + 𝑚̇ 𝑎7 𝜔7 = 𝑚̇ 10 𝜔10 + 𝑚̇ 𝑎8 𝜔8+𝑚̇ [11]𝑐𝑜𝑛𝑑: (4.14) Energy balance on heat exchanger: The energy balance equation for heat exchanger revelers that “energy transferred from warm saturated vapors is gained by flowing atmospheric air throughout heat exchanger and remaining exhausted through heat exchanger. ∑ 𝑚̇ ℎ = ∑ 𝑚̇ ℎ𝑜𝑢𝑡𝑖𝑛 𝑚̇ 𝑎9ℎ9 + 𝑚̇ 7ℎ7 = 𝑚̇ 𝑎10ℎ10 + 𝑚̇ 8ℎ8 + 𝑚̇ [11]𝑐𝑜𝑛𝑑:ℎ𝑓𝑔 (4.15) Actual heat transfer rate in air to heat exchanger: 𝑄̇ 𝑎𝑐𝑡𝑢𝑎𝑙 = 𝜀 𝑄̇ 𝑚𝑎𝑥 (4.16) The condensing water (𝑚̇ [11]𝑐𝑜𝑛𝑑:) from the heat exchanger: 𝑚̇ [11]𝑐𝑜𝑛𝑑: =̇ 𝑚̇ 𝑎9 (𝜔9 − 𝜔10) (4.17) In order to compare the makeup water used in cooling tower including air to air heat exchanger with the condensing water to measure the recovery(saving) of the evaporative water loss. 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = 𝑚̇ 𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒 𝑚̇ 𝑚𝑎𝑘𝑒𝑢𝑝 ∗ 100 (4.18) The thermodynamic model was developed by using EES software and then simulated for various operating parameters to ensure its validity. D. Validation: The simulated results of the model are compared with previously published work for the model validation. For proposed cooling tower (with heat exchanger), the values of simulated evaporated water recovery at different state point of input data taken from experimental work are matched with available values in the published work [6] and illustrated in figure.3 E. Fig. 3 Results validation with Deziani.M[6]
  • 5. Thermodynamic Analysis of Cooling Tower… www.ijmrem.com IJMREM Page 59 Table 1: Operating parameters for model validation [6] Dry bulb temperature of inlet ambient air State:1 29.4 ̇0 C State:2 25.7 ̇0 C Mass flow rate of water Hot water inlet temperature Cold water outlet temperature Cooling tower range Wet bulb temperature of inlet ambient air 15.4 ̇0 C 12.2 ̇0 C 28500 m3 /hr. 38.2 ̇0 C 27.8 ̇0 C 10.4 ̇0 C Table. 1 represents the operating parameters for cooling tower at two state points of climate data taken from Deziani.M[6] paper for model validation purpose. And fig. 3 shows experimental vs simulated amount of water vapors recovery at each sate point with its percent error. IV.RESULTS AND DISCUSSION In this study thermodynamic model of cooling tower with an air-to-air heat exchanger is developed using engineering equation solver (EES) software and simulated to determine amount of water vapor recovery in different climatic conditions of two main cities of Pakistan namely Karachi and Jamshoro through June- December-2017. The analysis includes effect of humidity and ambient air temperature on amount of water vapor expressed in terms of percent recovery. The weather data of above-mentioned cities of Pakistan at different seasons were recorded from official site of meteorological conditions [9-10]. The main parameters on account of data collection are temperature, pressure and humidity. A. Effect of humidity on Water Vapor Recovery in Karachi: Fig. 4 demonstrate the impact of humidity on amount of water vapor recovery of cooling tower with an air-to-air heat exchanger for a fixed ambient air temperature and pressure when operated in climate of Karachi in June and December 2017. The behavior of graph clearly indicates that as humidity increases the amount of water vapor recovery increases. While the recovery response in December is higher than that of in June, in December amount of water vapor recovery starts from 50% and reaches up to 67% while in case of June it starts from 15% and reaches up to 60%. This is due to the fact that when more humid air crossing cooling tower out of heat exchanger it gives out more its water vapor via condensation than that of less humid air. In winter atmospheric air becomes dry, so it has higher capacity to hold water vapors than compared to that of winter (June). As air leaving cooling tower in winter carry enough amount of water vapor due to evaporation inside of cooling tower and when crossing heat exchanger, it easily condensed out more amount of water vapor inters of recovery in winter than that of June. Fig. 4 Effect of Relative humidity on Recovery in Karachi June-Dec-2017
  • 6. Thermodynamic Analysis of Cooling Tower… www.ijmrem.com IJMREM Page 60 B. Effect of temperature on Water Vapor Recovery in Karachi : Fig. 5 illustrate the impact of ambient air temperature on amount of water vapor recovery of cooling tower with an air-to-air heat exchanger for a fixed relative humidity and atmospheric pressure when operated in climate of Karachi in June-December-2017. The response of graph clearly indicated that as ambient air temperature increases the amount of water vapor recovery decreases. This is due to the fact that, a cooling tower transfer heat to the environment by evaporation of water which will transfer heat to surrounding. As ambient air temperature increases its wet bulb temperature also increases which ultimately decreases the temperature difference of hot water with surrounding and decreases the heat transfer and amount of evaporation. Due to this lower amount of evaporation less amount of water vapor can be condensed out through heat exchanger. That’s why recovery response in Karachi June is in higher decreasing order than that in December. In December it starts decreasing from 62% and reaches up to 26%. While in June it starts decreasing at 65% and ends at 5%. Fig. 5 Effect of temperature on Recovery in Karachi June-Dec-2017 C. Effect of humidity on Water Vapor Recovery in Jamshoro : Fig. 6 illustrate the effect of humidity on amount of water vapor recovery of cooling tower with an air-to-air heat exchanger for a fixed ambient air temperature and pressure when operated in climate of Jamshoro in June-December 2017. The behavior of graph clearly indicates that as humidity increases the amount of water vapor recovery also increases. While the recovery response in December is in higher order than that of in June, in December amount of water vapor recovery starts from 45% and reaches up to 66% while in case of June it starts from 17% and reaches up to 62%. This is due to the fact that when more humid air crossing cooling tower out of heat exchanger it gives out more its water vapor via condensation than that of less humid air. The above figures are little bit lower than that of Karachi due to more humidity caused by Arabian sea. In winter atmospheric air becomes dry, so it has higher capacity to hold water vapors than compared to that of winter (June). As air leaving cooling tower in winter carry enough amount of water vapor due to evaporation inside of cooling tower and when crossing heat exchanger, it easily condensed out more amount of water vapor inters of recovery in winter than that of summer (June)
  • 7. Thermodynamic Analysis of Cooling Tower… www.ijmrem.com IJMREM Page 61 Fig. 6 Effect of Relative humidity on Recovery in Jamshoro June-Dec-2017 C. Effect of temperature on Water Vapor Recovery in Jamshoro : Fig. 7 illustrate the impact of ambient air temperature on amount of water vapor recovery of cooling tower with an air-to-air heat exchanger for a fixed relative humidity and atmospheric pressure when operated in climate of Jamshoro in June-December-2017. The behavior of graph clearly indicated that as ambient air temperature increases the amount of water vapor recovery starts decreasing. This is due to the fact that, a cooling tower transfer heat to the environment by evaporation of water which will transfer heat to surrounding. As ambient air temperature increases its wet bulb temperature also increases which ultimately decreases the temperature difference of hot water with surrounding and decreases the heat transfer and amount of evaporation. Due to this lower amount of evaporation less amount of water vapor can be condensed out through heat exchanger. That’s why recovery response in Jamshoro June is in higher decreasing order than that in December. In December it starts decreasing from 63% and reaches up to 38%. While in June it starts decreasing at 52% and ends at 10%. We achieve this higher amount of recovery in December due to lower wet bulb temperature in December than that in June. Fig. 7 Effect of temperature on Recovery in Jamshoro June-Dec-2017
  • 8. Thermodynamic Analysis of Cooling Tower… www.ijmrem.com IJMREM Page 62 V. CONCLUSION The thermodynamic analysis of the induced draft wet cooling tower with air to air heat exchanger is peroformed using Engineering Equation Solver (EES) to investigate the evaporative losses in different climatic conditions of two main cities of pakistan namely karachi, jamshoro through June and December 2017. The simulated results shows that: • The ambient temperature and humidity plays an effective role in recovering of evaporative loss, with the decrease in wet bulb temperature amount of water vapor recovery increases. • As relative humidity increases it ilso increases water vapor recovery. • The maximum amount of water vapors are recovered at Karachi and ranges up to 67% and 62% in Jamshoro during the month of December. • With the attachment of air to air heat exchanger to cooling tower it almost diminishes the drift losses. VI. ACKNOWLEDGEMNTS Authors are thankful to Mehran University of Engineering & Technology Jamshoro for providing necessary resources for carrying this research work. Nomenclature Greek letters T Temperature (o C) ε Effectiveness (-) w humidity Ratio (-) 𝑣 Vapor M Makeup water (kg/s) 𝑚̇ Mass flow rate (kg/s) Abbreviations P Pressure (kPa) COC Cycle of Concentration 𝑄̇ Heat (kW) WCT Wet cooling tower 𝑅 Universal Gas constant 𝑚̇ 𝑒𝑣𝑎𝑝 Evaporation loss (kg/s) Subscripts WB Wet bulb temperature R Relative humidity max maximum REFERENCES [1] Dehaghani, S. T., &Ahmadikia, H. (2017). Retrofit of a wet cooling tower in order to reduce water and fan power consumption using a wet/dry approach [Abstract]. Applied Thermal Engineering,125, 1002-1014.doi: 10.1016/j.applthermaleng.2017.07.069 [2] ASHRAE handbook (American Society of Heating, Refrigerating and Air-Conditioning Engineers) (2008) Ashrae Handbook: HVAC Systems and Equipment, I-P Edition edn.: American Society of Heating, Refrigerating & Air-Conditioning Engineers, Incorporated,2008. [3] Will Lintner, Brian Boyd (2011) 'Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency', U.S Department of Energy (Energy Efficiency & Renewable Energy), pp. [Online]. Available at: https://energy.gov/sites/prod/files/2013/10/f3/waterfs_coolingtowers.pdf [4] https://journal.uptimeinstitute.com/wp-content/uploads/2016/06/fig1.jpg (Accessed: 10th December 2017). [5] Rezaei, E., Shafiei, S., &Abdollahnezhad, A. (2010). Reducing water consumption of an industrial plant cooling unit using hybrid cooling tower. Energy Conversion and Management,51(2), 311-319. doi: 10.1016/j.enconman.2009.09.027 [6] Deziani, M., Rahmani, k., Roudaki, S. M., &Kordloo, M. (2017). Feasibility study for reduce water evaporative loss in a power plant cooling tower by using air to air heat exchanger with auxiliary Fan. Desalination, 406, 119-124. Doi: 10.1016/j.desal.2015.12.007 [7] U.S Patent “US4249391 A” for Cooling Tower vapor recovery Unit. [8] Melany Hunt (2008) Increasing Cooling Tower Water Efficiency Chang Sub Kim , Available at: https://www.sustainability.caltech.edu/documents/33 chang_sub_final_paper.pdf (Accessed: 15th december 2017). [9] https://www.timeanddate.com/weather/pakistan/karachi/historic?month=12&year=2017 (Accessed: Date: 5- September-2018: Time: 11:44 AM) [10] https://www.timeanddate.com/weather/pakistan/jamshoro/historic?month=12&year=2017 (Accessed: Date: 5-September-2018: Time: 12:02 pM)