SlideShare a Scribd company logo
1 of 8
Download to read offline
International Journal of Informatics and Communication Technology (IJ-ICT)
Vol.9, No.1, April 2020, pp. 1~8
ISSN: 2252-8776, DOI: 10.11591/ijict.v9i1.pp1-8 ๏ฒ 1
Journal homepage: http://ijict.iaescore.com
Enhanced wormhole optimizer algorithm for solving optimal
reactive power problem
Kanagasabai Lenin
Department of EEE, Prasad V. Potluri Siddhartha Institute of Technology, India
Article Info ABSTRACT
Article history:
Received Nov 11, 2019
Revised Nov 13, 2019
Accepted Dec 27, 2019
In this paper Enhanced Wormhole Optimizer (EWO) algorithm is used to
solve optimal reactive power problem. Proposed algorithm based on the
Wormholes which exploits the exploration space. Between different
universes objects are exchanged through white or black hole tunnels.
Regardless of the inflation rate, through wormholes objects in all universes
which possess high probability will shift to the most excellent universe. In
the projected Enhanced Wormhole Optimizer (EWO) algorithm in order to
avoid the solution to be get trapped into the local optimal solution Levy flight
has been applied. Projected Enhanced Wormhole Optimizer (EWO)
algorithm has been tested in standard IEEE 14, 30, 57,118,300 bus test
systems and simulation results show that the EWO algorithm reduced the real
power loss efficiently.
Keywords:
Enhanced wormhole optimizer
Optimal reactive power
Transmission loss
This is an open access article under the CC BY-SA license.
Corresponding Author:
Kanagasabai Lenin,
Department of EEE,
Prasad V. Potluri Siddhartha, Institute of Technology,
Kanuru, Vijayawada, Andhra Pradesh -520007, India.
Email: gklenin@gmail.com
1. INTRODUCTION
For secure and economic operations of power system optimal reactive power problem plays vital
role. Several types of techniques [1-6] have been utilized to solve the problem previously. Conversely many
difficulties are found while solving problem due to inequality constraints. Evolutionary techniques [7-15] are
applied to solve the reactive power problem. This paper proposes Enhanced Wormhole Optimizer (EWO)
algorithm for solving optimal reactive power problem. Wormhole Optimizer Algorithm is based on the
Wormholes which exploit the exploration space. Wormhole tunnel are built for local change in each universe
m through most excellent universe then probability of refinement the inflation rate is done through
wormholes. Objects are exchanged through tunnels and wormholes objects which possess high probability
will shift to the most excellent universe. In the projected Enhanced Wormhole Optimizer (EWO) algorithm in
order to avoid the solution to be get trapped into the local optimal solution Levy flight has been applied.
Projected Enhanced Wormhole Optimizer (EWO) algorithm has been tested in standard IEEE 14, 30,
57,118,300 bus test systems and simulation results show that the projected algorithm reduced the real power
loss effectively.
2. PROBLEM FORMULATION
Objective of the problem is to reduce the true power loss:
F = PL = โˆ‘ gkkโˆˆNbr (Vi
2
+ Vj
2
โˆ’ 2ViVjcosฮธij) (1)
๏ฒ ISSN: 2252-8776
Int J Inf & Commun Technol, Vol. 9, No. 1, April 2020: 1 โ€“ 8
2
Voltage deviation given as follows:
F = PL + ฯ‰v ร— Voltage Deviation (2)
Voltage Deviation = โˆ‘ |Vi โˆ’ 1|
Npq
i=1 (3)
Constraint (Equality)
PG = PD + PL (4)
Constraints (Inequality)
Pgslack
min
โ‰ค Pgslack โ‰ค Pgslack
max
(5)
Qgi
min
โ‰ค Qgi โ‰ค Qgi
max
, i โˆˆ Ng (6)
Vi
min
โ‰ค Vi โ‰ค Vi
max
, i โˆˆ N (7)
Ti
min
โ‰ค Ti โ‰ค Ti
max
, i โˆˆ NT (8)
Qc
min
โ‰ค Qc โ‰ค QC
max
, i โˆˆ NC (9)
3. Enhanced Wormhole Optimizer Algorithm
Wormhole Optimizer Algorithm is based on the Wormholes which exploit the exploration space.
Through wormholes objects which has high probability will shift to the most excellent universe and it
modeled by using roulette wheel selection methodology as follows,
๐‘ˆ = [
๐‘ฆ11 โ‹ฏ ๐‘ฆ1๐‘‘
โ‹ฎ โ‹ฑ โ‹ฎ
๐‘ฆ ๐‘›1 โ‹ฏ ๐‘ฆ ๐‘›๐‘‘
] (10)
Number of the variables is indicated by โ€œdโ€ and number of universe which is considered as
candidate solution is indicated byโ€nโ€.
๐‘ฆ๐‘–๐‘— = {
๐‘ฆ ๐‘˜๐‘— ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š1 < ๐‘๐ผ(๐‘ˆ๐‘–)
๐‘ฆ๐‘–๐‘— ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š1 < ๐‘๐ผ(๐‘ˆ๐‘–)
(11)
Through roulette wheel selection ๐‘ฆ๐‘–๐‘— โ€ฒ๐‘  โ€œjโ€th parameter of the โ€œkโ€th universe will be chosen, in the
โ€œiโ€th universe โ€œjโ€th parameter is expressed by ๐‘ฆ ๐‘˜๐‘— , ith universe inflation rate indicated by ๐‘๐ผ(๐‘ˆ๐‘–), ith
universe indicated by ๐‘ˆ๐‘– , ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š1 โˆˆ [0,1].
In between two universes wormhole tunnel [16 ,17] are built then the local change for each universe
is done by most excellent universe and the elevated probability of refinement the inflation rate through
wormholes is done by,
๐‘ฆ๐‘–๐‘— =
{
{
๐‘Œ๐‘— + ๐‘‡๐‘Ÿ. ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ร— ((๐‘ข๐‘๐‘— โˆ’ ๐‘™๐‘๐‘—) ร— ๐‘Ÿ๐‘Ž๐‘›๐‘‘4 + ๐‘™๐‘๐‘—) ๐‘Ÿ๐‘Ž๐‘›๐‘‘3 < 0.5
๐‘Œ๐‘— โˆ’ ๐‘‡๐‘Ÿ. ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ร— ((๐‘ข๐‘๐‘— โˆ’ ๐‘™๐‘๐‘—) ร— ๐‘Ÿ๐‘Ž๐‘›๐‘‘4 + ๐‘™๐‘๐‘—) ๐‘Ÿ๐‘Ž๐‘›๐‘‘3 โ‰ฅ 0.5
๐‘ฆ๐‘–๐‘— ๐‘Ÿ๐‘Ž๐‘›๐‘‘2 โ‰ฅ ๐‘ค ๐‘’ ๐‘
๐‘Ÿ๐‘Ž๐‘›๐‘‘2 < ๐‘ค ๐‘’ ๐‘ (12)
Wormhole existence probability indicated by โ€œw e pโ€, โ€œtr.โ€ Indicates the travelling and random
denoted by โ€œ randโ€.
During the optimization procedure exploitation has been enhanced as follows,
Wormhole existence probability = wminimum+current iteration (
wmaximumโˆ’wminimum
maximum iteration
) (13)
Int J Inf & Commun Technol ISSN: 2252-8776 ๏ฒ
Enhanced wormhole optimizer algorithm for solving optimal reactive โ€ฆ (Kanagasabai Lenin)
3
In order to improve the local search precisely travelling distance rate will be increased over the
iterations as follows,
๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ = 1 โˆ’
current iteration1 ๐‘โ„
maximum iteration1 ๐‘โ„ (14)
In the projected Enhanced Wormhole Optimizer (EWO) algorithm in order to avoid the solution to
be get trapped into the local optimal solution Levy flight has been applied.
Levy flight is a rank of non-Gaussian random procedure whose capricious walks are haggard from Levy
stable distribution. Allocation by L(s) ~ |s|-1-ฮฒ
where 0 < รŸ < 2 is an index. Scientifically defined as,
๐ฟ(๐‘ , ๐›พ, ๐œ‡) = {
โˆš
๐›พ
2๐œ‹
0 ๐‘–๐‘“ ๐‘  โ‰ค 0
๐‘’๐‘ฅ๐‘ [โˆ’
๐›พ
2(๐‘ โˆ’๐œ‡)
]
1
(๐‘ โˆ’๐œ‡)3 2โ„ ๐‘–๐‘“ 0 < ๐œ‡ < ๐‘  < โˆž (15)
In terms of Fourier transform Levy distribution defined as
๐น(๐‘˜) = ๐‘’๐‘ฅ๐‘[โˆ’๐›ผ|๐‘˜| ๐›ฝ
], 0 < ๐›ฝ โ‰ค 2, (16)
Fresh state is calculated as,
๐‘Œ ๐‘ก+1
= ๐‘Œ ๐‘ก
+ ๐›ผ โŠ• ๐ฟ๐‘’๐‘ฃ๐‘ฆ (๐›ฝ) (17)
๐‘Œ ๐‘ก+1
= ๐‘ฆ ๐‘ก
+ ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š (๐‘ ๐‘–๐‘ง๐‘’(๐ท)) โŠ• ๐ฟ๐‘’๐‘ฃ๐‘ฆ(๐›ฝ) (18)
In the projected Enhanced Wormhole Optimizer (EWO) algorithm while generation of new
solutions ๐‘ˆ๐‘–
๐‘ก+1
levy flight (y) will be applied,
๐‘ˆ๐‘–
๐‘ก+1
= ๐‘ˆ๐‘–
๐‘ก
+ ๐พ(๐‘™๐‘ + (๐‘ข๐‘ โˆ’ ๐‘™๐‘) โˆ— ๐‘™๐‘’๐‘ฃ๐‘ฆ(๐‘ฆ)) ร— ๐‘ˆ๐‘–
๐‘ก
(19)
Levy flight will be applied in the adaptive mode to balance the exploration and exploitation by
applying large levy weight initially and final course the weight of the levy will be decreased,
๐พ = (
๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘–๐‘ก๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘›โˆ’๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘–๐‘ก๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘›
๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘–๐‘ก๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘›
) (20)
By using Mantegna's algorithm Non-trivial scheme of engendering step size by,
๐‘  =
๐‘ข
|๐‘ฃ|
1
๐›ฝ
(21)
๐‘Œ ๐‘ก+1
= ๐‘Œ ๐‘ก
+ ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š (๐‘ ๐‘–๐‘ง๐‘’(๐ท)) โŠ• ๐ฟ๐‘’๐‘ฃ๐‘ฆ(๐›ฝ)~0.01
๐‘ข
|๐‘ฃ|1 ๐›ฝโ„ (๐‘ฆ๐‘—
๐‘ก
โˆ’ ๐‘”๐‘) (22)
๐‘ข~๐‘(0, ๐œŽ ๐‘ข
2) ๐‘ฃ~๐‘(0, ๐œŽ๐‘ฃ
2) (23)
with
๐œŽ ๐‘ข = {
ะ“(1+๐›ฝ)๐‘ ๐‘–๐‘›(๐œ‹๐›ฝ/2)
ะ“[(1+๐›ฝ)/2]๐›ฝ2(๐›ฝโˆ’1)/2}
1
๐›ฝโ„
, ๐œŽ๐‘ฃ = 1 (24)
then,
๐ฟ๐‘’๐‘ฃ๐‘ฆ(๐‘ฆ) = 0.01 ร—
๐‘ขร—๐œŽ
|๐‘ฃ|
1
๐›ฝ
(25)
Start
In put ; โ€œdโ€ & โ€œnโ€ ; Lower bound = [Lb1,Lb2,. . .,Lbd] ; Upper bound = [Ub1,Ub2,. . .,Ubd] ; Maximum
number of iterations
Output: Optimal solution
Step a: Initialization of parameters
๏ฒ ISSN: 2252-8776
Int J Inf & Commun Technol, Vol. 9, No. 1, April 2020: 1 โ€“ 8
4
Engender arbitrary universes โ€œUโ€ by ๐‘ˆ๐‘ƒ = {๐‘ˆ1, ๐‘ˆ2, . . ๐‘ˆ๐‘–, . . , ๐‘ˆ ๐‘›}
Initialize Wormhole existence probability, travelling distance rate, objective function
t = 0
Step b: categorization and reorganize; arrange the universes; universe inflation rate (UI) will be
reorganized
Step c: Iteration; while t < Maximum iteration
Compute universe inflation rate; UI (๐‘ˆ๐‘–
๐‘ก
) ; i = 1,2,. . .,n
For every universe โ€œUiโ€; modernize Wormhole existence probability, travelling distance rate by
Wormhole existence probability = wminimum+current iteration (
wmaximumโˆ’wminimum
maximum iteration
)
๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ = 1 โˆ’
current iteration1 ๐‘โ„
maximum iteration1 ๐‘โ„ ; Black hole index value = i
Modernize the value โ€œUโ€ by ๐‘ˆ๐‘–
๐‘ก+1
= ๐‘ˆ๐‘–
๐‘ก
+ ๐พ(๐‘™๐‘ + (๐‘ข๐‘ โˆ’ ๐‘™๐‘) โˆ— ๐‘™๐‘’๐‘ฃ๐‘ฆ(๐‘ฆ)) ร— ๐‘ˆ๐‘–
๐‘ก
For every object ๐‘ฆ๐‘–๐‘— ; ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š1 = random (0,1);
If ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š1 < UI(Ui) ; white hole index = roulette wheel selection (-UI);
U (black hole index ,j) = SU(white hole index ,j);
End if
๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š2= random (0,1);
If ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š2 < Wormhole existence probability
๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š3= random (0,1); ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š4 = random (0,1);
If ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š3 < 0.5
๐‘ฆ๐‘–๐‘— = ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› (๐‘—) + ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ โˆ— ((๐‘ข๐‘(๐‘—) โˆ’ ๐‘™๐‘(๐‘—)) โˆ— ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š4 + ๐‘™๐‘(๐‘—))
Or else
๐‘ฆ๐‘–๐‘— = ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› (๐‘—) โˆ’ ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ โˆ— ((๐‘ข๐‘(๐‘—) โˆ’ ๐‘™๐‘(๐‘—)) โˆ— ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š4 + ๐‘™๐‘(๐‘—))
End if
End for
t = t+1
End while
Step d: End; output the optimal solution
4. SIMULATION RESULTS
At first in standard IEEE 14 bus system [18] the validity of the proposed Enhanced Wormhole
Optimizer (EWO) algorithm has been tested, Table 1 shows the constraints of control variables Table 2
shows the limits of reactive power generators and comparison results are presented in Table 3.
Table 1. Constraints of control variables
System Variables Minimum
(PU)
Maximum
(PU)
IEEE 14
Bus
Generator
Voltage
0.95 1.1
Transformer
Tap
o.9 1.1
VAR Source 0 0.20
Table 2. Constrains of reactive power generators
System Variables Q Minimum
(PU)
Q Maximum
(PU)
IEEE 14
Bus
1 0 10
2 -40 50
3 0 40
6 -6 24
8 -6 24
Table 3. Simulation results of IEEE โˆ’14 system
Control variables Base case MPSO [19] PSO [19] EP [19] SARGA [19] EWO
๐‘‰๐บโˆ’1 1.060 1.100 1.100 NR* NR* 1.013
๐‘‰๐บโˆ’2 1.045 1.085 1.086 1.029 1.060 1.014
๐‘‰๐บโˆ’3 1.010 1.055 1.056 1.016 1.036 1.002
๐‘‰๐บโˆ’6 1.070 1.069 1.067 1.097 1.099 1.017
๐‘‰๐บโˆ’8 1.090 1.074 1.060 1.053 1.078 1.021
๐‘‡๐‘Ž๐‘ 8 0.978 1.018 1.019 1.04 0.95 0.910
๐‘‡๐‘Ž๐‘ 9 0.969 0.975 0.988 0.94 0.95 0.913
๐‘‡๐‘Ž๐‘ 10 0.932 1.024 1.008 1.03 0.96 0.927
๐‘„๐ถโˆ’9 0.19 14.64 0.185 0.18 0.06 0.120
๐‘ƒ๐บ 272.39 271.32 271.32 NR* NR* 271.78
๐‘„๐บ (Mvar) 82.44 75.79 76.79 NR* NR* 75.79
Reduction in PLoss (%) 0 9.2 9.1 1.5 2.5 25.85
Total PLoss (Mw) 13.550 12.293 12.315 13.346 13.216 10.047
NR* - Not reported.
Int J Inf & Commun Technol ISSN: 2252-8776 ๏ฒ
Enhanced wormhole optimizer algorithm for solving optimal reactive โ€ฆ (Kanagasabai Lenin)
5
Then Enhanced Wormhole Optimizer (EWO) algorithm has been tested, in IEEE 30 Bus system.
Table 4 shows the constraints of control variables, Table 5 shows the limits of reactive power generators and
comparison results are presented in Table 6.
Table 4. Constraints of control variables
System Variables
Minimum
(PU)
Maximum
(PU)
IEEE 30 Bus Generator
Voltage
0.95 1.1
Transformer
Tap
o.9 1.1
VAR Source 0 0.20
Table 5. Constrains of reactive power generators
System Variables
Q Minimum
(PU)
Q Maximum
(PU)
IEEE 30 Bus 1 0 10
2 -40 50
5 -40 40
8 -10 40
11 -6 24
13 -6 24
Table 6. Simulation results of IEEE โˆ’30 system
Control variables Base case MPSO [19] PSO [19] EP [19] SARGA [19] EWO
VG โˆ’1 1.060 1.101 1.100 NR* NR* 1.013
VG โˆ’2 1.045 1.086 1.072 1.097 1.094 1.014
VG โˆ’5 1.010 1.047 1.038 1.049 1.053 1.010
VG โˆ’8 1.010 1.057 1.048 1.033 1.059 1.021
VG โˆ’12 1.082 1.048 1.058 1.092 1.099 1.032
VG-13 1.071 1.068 1.080 1.091 1.099 1.024
Tap11 0.978 0.983 0.987 1.01 0.99 0.934
Tap12 0.969 1.023 1.015 1.03 1.03 0.930
Tap15 0.932 1.020 1.020 1.07 0.98 0.921
Tap36 0.968 0.988 1.012 0.99 0.96 0.923
QC10 0.19 0.077 0.077 0.19 0.19 0.092
QC24 0.043 0.119 0.128 0.04 0.04 0.124
๐‘ƒ๐บ (MW) 300.9 299.54 299.54 NR* NR* 297.68
๐‘„๐บ (Mvar) 133.9 130.83 130.94 NR* NR* 131.41
Reduction in PLoss (%) 0 8.4 7.4 6.6 8.3 19.37
Total PLoss (Mw) 17.55 16.07 16.25 16.38 16.09 14.149
Then the proposed Enhanced Wormhole Optimizer (EWO) algorithm has been tested, in IEEE 57
Bus system. Table 7 shows the constraints of control variables, Table 8 shows the limits of reactive power
generators and comparison results are presented in Table 9.
Table 7. Constraints of control variables
System Variables Minimum (PU) Maximum (PU)
IEEE 57 Bus Generator Voltage 0.95 1.1
Transformer Tap o.9 1.1
VAR Source 0 0.20
Table 8. Constrains of reactive power generators
System Variables Q Minimum (PU) Q Maximum (PU)
IEEE 57 Bus 1 -140 200
2 -17 50
3 -10 60
6 -8 25
8 -140 200
9 -3 9
12 -150 155
๏ฒ ISSN: 2252-8776
Int J Inf & Commun Technol, Vol. 9, No. 1, April 2020: 1 โ€“ 8
6
Then the proposed Enhanced Wormhole Optimizer algorithm has been tested, in IEEE 118 Bus
system. Table 10 shows the constraints of control variables and comparison results are presented in Table 11.
Table 9. Simulation results of IEEE โˆ’57 system
Control variables Base case MPSO [19] PSO [19] CGA [19] AGA [19] EWO
VG 1 1.040 1.093 1.083 0.968 1.027 1.023
VG 2 1.010 1.086 1.071 1.049 1.011 1.010
VG 3 0.985 1.056 1.055 1.056 1.033 1.034
VG 6 0.980 1.038 1.036 0.987 1.001 1.012
VG 8 1.005 1.066 1.059 1.022 1.051 1.030
VG 9 0.980 1.054 1.048 0.991 1.051 1.011
VG 12 1.015 1.054 1.046 1.004 1.057 1.040
๐‘‡๐‘Ž๐‘ 19 0.970 0.975 0.987 0.920 1.030 0.952
๐‘‡๐‘Ž๐‘ 20 0.978 0.982 0.983 0.920 1.020 0.937
๐‘‡๐‘Ž๐‘ 31 1.043 0.975 0.981 0.970 1.060 0.920
๐‘‡๐‘Ž๐‘ 35 1.000 1.025 1.003 NR* NR* 1.019
๐‘‡๐‘Ž๐‘ 36 1.000 1.002 0.985 NR* NR* 1.007
๐‘‡๐‘Ž๐‘ 37 1.043 1.007 1.009 0.900 0.990 1.009
๐‘‡๐‘Ž๐‘ 41 0.967 0.994 1.007 0.910 1.100 0.990
๐‘‡๐‘Ž๐‘ 46 0.975 1.013 1.018 1.100 0.980 1.010
๐‘‡๐‘Ž๐‘ 54 0.955 0.988 0.986 0.940 1.010 0.971
๐‘‡๐‘Ž๐‘ 58 0.955 0.979 0.992 0.950 1.080 0.966
๐‘‡๐‘Ž๐‘ 59 0.900 0.983 0.990 1.030 0.940 0.963
๐‘‡๐‘Ž๐‘ 65 0.930 1.015 0.997 1.090 0.950 1.001
๐‘‡๐‘Ž๐‘ 66 0.895 0.975 0.984 0.900 1.050 0.950
๐‘‡๐‘Ž๐‘ 71 0.958 1.020 0.990 0.900 0.950 1.001
๐‘‡๐‘Ž๐‘ 73 0.958 1.001 0.988 1.000 1.010 1.000
๐‘‡๐‘Ž๐‘ 76 0.980 0.979 0.980 0.960 0.940 0.968
๐‘‡๐‘Ž๐‘ 80 0.940 1.002 1.017 1.000 1.000 1.002
QC 18 0.1 0.179 0.131 0.084 0.016 0.174
QC 25 0.059 0.176 0.144 0.008 0.015 0.168
QC 53 0.063 0.141 0.162 0.053 0.038 0.140
PG (MW) 1278.6 1274.4 1274.8 1276 1275 1270.13
QG (Mvar) 321.08 272.27 276.58 309.1 304.4 272.34
Reduction in PLoss (%) 0 15.4 14.1 9.2 11.6 24.07
Total PLoss (Mw) 27.8 23.51 23.86 25.24 24.56 21.108
NR* - Not reported.
Table 10. Constraints of control variables
System Variables Minimum (PU) Maximum (PU)
IEEE 118 Bus Generator Voltage 0.95 1.1
Transformer Tap o.9 1.1
VAR Source 0 0.20
Table 11. Simulation results of IEEE โˆ’118 system
Control variables Base case MPSO [19] PSO [19] PSO [19] CLPSO [19] EWO
VG 1 0.955 1.021 1.019 1.085 1.033 1.010
VG 4 0.998 1.044 1.038 1.042 1.055 1.044
VG 6 0.990 1.044 1.044 1.080 0.975 1.022
VG 8 1.015 1.063 1.039 0.968 0.966 1.003
VG 10 1.050 1.084 1.040 1.075 0.981 1.010
VG 12 0.990 1.032 1.029 1.022 1.009 1.021
VG 15 0.970 1.024 1.020 1.078 0.978 1.030
VG 18 0.973 1.042 1.016 1.049 1.079 1.041
VG 19 0.962 1.031 1.015 1.077 1.080 1.030
VG 24 0.992 1.058 1.033 1.082 1.028 1.014
VG 25 1.050 1.064 1.059 0.956 1.030 1.035
VG 26 1.015 1.033 1.049 1.080 0.987 1.056
VG 27 0.968 1.020 1.021 1.087 1.015 0.909
VG 31 0.967 1.023 1.012 0.960 0.961 0.907
VG 32 0.963 1.023 1.018 1.100 0.985 0.913
VG 34 0.984 1.034 1.023 0.961 1.015 1.001
VG 36 0.980 1.035 1.014 1.036 1.084 1.000
VG 40 0.970 1.016 1.015 1.091 0.983 0.960
VG 42 0.985 1.019 1.015 0.970 1.051 1.001
VG 46 1.005 1.010 1.017 1.039 0.975 1.002
VG 49 1.025 1.045 1.030 1.083 0.983 1.000
Int J Inf & Commun Technol ISSN: 2252-8776 ๏ฒ
Enhanced wormhole optimizer algorithm for solving optimal reactive โ€ฆ (Kanagasabai Lenin)
7
Table 11. Simulation results of IEEE โˆ’118 system (Continued)
Control variables Base case MPSO [19] PSO [19] PSO [19] CLPSO [19] EWO
VG 54 0.955 1.029 1.020 0.976 0.963 0.920
VG 55 0.952 1.031 1.017 1.010 0.971 0.961
VG 56 0.954 1.029 1.018 0.953 1.025 0.950
VG 59 0.985 1.052 1.042 0.967 1.000 0.961
VG 61 0.995 1.042 1.029 1.093 1.077 0.973
VG 62 0.998 1.029 1.029 1.097 1.048 0.984
VG 65 1.005 1.054 1.042 1.089 0.968 1.002
VG 66 1.050 1.056 1.054 1.086 0.964 1.000
VG 69 1.035 1.072 1.058 0.966 0.957 1.051
VG 70 0.984 1.040 1.031 1.078 0.976 1.033
VG 72 0.980 1.039 1.039 0.950 1.024 1.024
VG 73 0.991 1.028 1.015 0.972 0.965 1.013
VG 74 0.958 1.032 1.029 0.971 1.073 1.012
VG 76 0.943 1.005 1.021 0.960 1.030 1.000
VG 77 1.006 1.038 1.026 1.078 1.027 1.004
VG 80 1.040 1.049 1.038 1.078 0.985 1.005
VG 85 0.985 1.024 1.024 0.956 0.983 1.012
VG 87 1.015 1.019 1.022 0.964 1.088 1.013
VG 89 1.000 1.074 1.061 0.974 0.989 1.040
VG 90 1.005 1.045 1.032 1.024 0.990 1.030
VG 91 0.980 1.052 1.033 0.961 1.028 1.002
VG 92 0.990 1.058 1.038 0.956 0.976 1.030
VG 99 1.010 1.023 1.037 0.954 1.088 1.005
VG 100 1.017 1.049 1.037 0.958 0.961 1.001
VG 103 1.010 1.045 1.031 1.016 0.961 1.010
VG 104 0.971 1.035 1.031 1.099 1.012 1.001
VG 105 0.965 1.043 1.029 0.969 1.068 1.050
VG 107 0.952 1.023 1.008 0.965 0.976 1.016
VG 110 0.973 1.032 1.028 1.087 1.041 1.015
VG 111 0.980 1.035 1.039 1.037 0.979 1.007
VG 112 0.975 1.018 1.019 1.092 0.976 1.091
VG 113 0.993 1.043 1.027 1.075 0.972 1.000
VG 116 1.005 1.011 1.031 0.959 1.033 1.006
Tap 8 0.985 0.999 0.994 1.011 1.004 0.942
Tap 32 0.960 1.017 1.013 1.090 1.060 1.004
Tap 36 0.960 0.994 0.997 1.003 1.000 0.956
Tap 51 0.935 0.998 1.000 1.000 1.000 0.930
Tap 93 0.960 1.000 0.997 1.008 0.992 1.001
Tap 95 0.985 0.995 1.020 1.032 1.007 0.972
Tap 102 0.935 1.024 1.004 0.944 1.061 1.004
Tap 107 0.935 0.989 1.008 0.906 0.930 0.942
Tap 127 0.935 1.010 1.009 0.967 0.957 1.001
QC 34 0.140 0.049 0.048 0.093 0.117 0.005
QC 44 0.100 0.026 0.026 0.093 0.098 0.020
QC 45 0.100 0.196 0.197 0.086 0.094 0.161
QC 46 0.100 0.117 0.118 0.089 0.026 0.120
QC 48 0.150 0.056 0.056 0.118 0.028 0.043
QC 74 0.120 0.120 0.120 0.046 0.005 0.110
QC 79 0.200 0.139 0.140 0.105 0. 148 0.105
QC 82 0.200 0.180 0.180 0.164 0.194 0.150
QC 83 0.100 0.166 0.166 0.096 0.069 0.122
QC 105 0.200 0.189 0.190 0.089 0.090 0.150
QC 107 0.060 0.128 0.129 0.050 0.049 0.132
QC 110 0.060 0.014 0.014 0.055 0.022 0.001
PG(MW) 4374.8 4359.3 4361.4 NR* NR* 4362.02
QG(MVAR) 795.6 604.3 653.5 * NR* NR* 610.11
Reduction in
PLOSS (%)
0 11.7 10.1 0.6 1.3 14.15
Total PLOSS (Mw) 132.8 117.19 119.34 131.99 130.96 114.005
NR* - Not reported.
Then IEEE 300 bus system [18] is used as test system to validate the performance of Enhanced
Wormhole Optimizer (EWO) algorithm. Table 12 shows the comparison of real power loss obtained after
optimization.
Table 12. Comparison of Real Power Loss
Parameter Method CSA [20] Method EGA [21] Method EEA [21] EWO
PLOSS (MW) 635.8942 646.2998 650.6027 612.1026
๏ฒ ISSN: 2252-8776
Int J Inf & Commun Technol, Vol. 9, No. 1, April 2020: 1 โ€“ 8
8
5. CONCLUSION
In this paper proposed Enhanced Wormhole Optimizer (EWO) algorithm successfully solved the
optimal reactive power problems. Between different universes objects are exchanged through white or black
hole tunnels. Regardless of the inflation rate, through wormholes objects in all universes which possess high
probability will shift to the most excellent universe. In between two universes wormhole tunnel are built then
the local change for each universe is done by most excellent universe and the elevated probability of
refinement the inflation rate through wormholes. Levy flight has been applied effectively and it leads to the
improvement of the quality of solution. Proposed Enhanced Wormhole Optimizer (EWO) algorithm has
been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show that the EWO
algorithm reduced the real power loss efficiently. Percentage of real power loss reduction has been enhanced
when compared to other standard algorithms.
REFERENCES
[1] K. Y. Lee, โ€œFuel-cost minimisation for both real and reactive-power dispatches,โ€ Proceedings Generation,
Transmission and Distribution Conference, vol. 131, no. 3, pp. 85-93, 1984.
[2] N. I. Deeb, โ€œAn efficient technique for reactive power dispatch using a revised linear programming approach,โ€
Electric Power System Research, vol. 15, no. 2, pp. 121โ€“134, 1998.
[3] M. R. Bjelogrlic, M. S. Calovic, B. S. Babic, โ€œApplication of Newtonโ€™s optimal power flow in voltage/reactive
power control,โ€ IEEE Trans Power System, vol. 5, no. 4, pp. 1447-1454, 1990.
[4] S. Granville, โ€œOptimal reactive dispatch through interior point methods,โ€ IEEE Transactions on Power System, vol.
9, no. 1, pp. 136โ€“146, 1994.
[5] N. Grudinin, โ€œReactive power optimization using successive quadratic programming method,โ€ IEEE Transactions
on Power System, vol. 13, no. 4, pp. 1219โ€“1225, 1998.
[6] Ng Shin Mei, R., Sulaiman, M.H., Mustaffa, Z., Daniyal, H., โ€œOptimal reactive power dispatch solution by loss
minimization using moth-flame optimization technique,โ€ Appl. Soft Comput., vol. 59, pp. 210โ€“222, 2017.
[7] Chen, G., Liu, L., Zhang, Z., Huang, S., โ€œOptimal reactive power dispatch by improved GSA-based algorithm with
the novel strategies to handle constraints,โ€ Appl. Soft Comput., vol. 50, pp. 58โ€“70, 2017.
[8] Roy, Provas Kumar and Susanta Dutt, โ€œEconomic load dispatch: Optimal power flow and optimal reactive power
dispatch concept,โ€ Optimal Power Flow Using Evolutionary Algorithms, IGI Global, pp. 46-64, 2019.
[9] Christian Bingane, Miguel F. Anjos, Sรฉbastien Le Digabel, โ€œTight-and-cheap conic relaxation for the optimal
reactive power dispatch problem,โ€ IEEE Transactions on Power Systems, vol. 34, no. 6, 2019.
[10] Dharmbir Prasad & Vivekananda Mukherjee, โ€œSolution of Optimal Reactive Power Dispatch by Symbiotic
Organism Search Algorithm Incorporating FACTS Devices,โ€ IETE Journal of Research, vol. 64, no. 1,
pp. 149-160, 2018.
[11] TM Aljohani, et al, โ€œSingle and multiobjective optimal reactive power dispatch based on hybrid artificial physicsโ€“
particle swarm optimization,โ€ Energies, vol. 12, no. 12, p. 2333, 2019
[12] Ram Kishan Mahate, & Himmat Singh, โ€œMulti-Objective Optimal Reactive Power Dispatch Using Differential
Evolution,โ€ International Journal of Engineering Technologies and Management Research, vol. 6, no. 2,
pp. 27โ€“38, 2019.
[13] Yalรงฤฑn, E, TaplamacฤฑoฤŸlu, M., ร‡am, E., โ€œThe Adaptive Chaotic Symbiotic Organisms Search Algorithm Proposal
for Optimal Reactive Power Dispatch Problem in Power Systems,โ€ Electrica, vol. 19, no. 1, pp. 37-47, 2019.
[14] Mouassa, S. and Bouktir, T., โ€œMulti-objective ant lion optimization algorithm to solve large-scale multi-objective
optimal reactive power dispatch problem,โ€ COMPEL - The international journal for computation and mathematics
in electrical and electronic engineering, vol. 38, no. 1, pp. 304-324, 2018.
[15] Tawfiq M. Aljohani, Ahmed F. Ebrahim, Osama Mohammed, โ€œSingle and multiobjective optimal reactive power
dispatch based on hybrid artificial physicsโ€“particle swarm optimization,โ€ Energies, vol. 12, no. 12, pp. 2333, 2019.
[16] Abdechiri M, Meybodi MR and Bahrami H., โ€œGases Brownian motion optimization: An algorithm for optimization
(GBMO),โ€ Applied Soft Computing, vol. 13, no. 5, pp. 2932โ€“2946, 2013.
[17] Mirjalili SM and Hatamlou A., โ€œMulti-verse optimizer: A nature-inspired algorithm for global optimization,โ€
Neural Computing and Applications, vol. 27, no. 2, pp. 495โ€“513, 2016.
[18] IEEE, โ€œThe IEEE-test systems,โ€ 1993. http://www.ee.washington.edu/trsearch/pstca/.
[19] Ali Nasser Hussain, Ali Abdulabbas Abdullah and Omar Muhammed Neda, โ€œModified particle swarm optimization
for solution of reactive power dispatch,โ€ Research Journal of Applied Sciences, Engineering and Technology,
vol. 15, no. 8, pp. 316-327, 2018.
[20] S. Surender Reddy, โ€œOptimal reactive power scheduling using cuckoo search algorithm,โ€ International Journal of
Electrical and Computer Engineering (IJECE), vol. 7, no. 5, pp. 2349-2356. 2017.
[21] S.S. Reddy, et al., โ€œFaster evolutionary algorithm based optimal power flow using incremental variables,โ€
Electrical Power and Energy Systems, vol. 54, pp. 198-210, 2014.

More Related Content

What's hot

PSOk-NN: A Particle Swarm Optimization Approach to Optimize k-Nearest Neighbo...
PSOk-NN: A Particle Swarm Optimization Approach to Optimize k-Nearest Neighbo...PSOk-NN: A Particle Swarm Optimization Approach to Optimize k-Nearest Neighbo...
PSOk-NN: A Particle Swarm Optimization Approach to Optimize k-Nearest Neighbo...Aboul Ella Hassanien
ย 
Neural Network - Feed Forward - Back Propagation Visualization
Neural Network - Feed Forward - Back Propagation VisualizationNeural Network - Feed Forward - Back Propagation Visualization
Neural Network - Feed Forward - Back Propagation VisualizationTraian Morar
ย 
EH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvestingEH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvestingUniversity of Glasgow
ย 
05 20261 real power loss reduction
05 20261 real power loss reduction05 20261 real power loss reduction
05 20261 real power loss reductionIAESIJEECS
ย 
Gy3312241229
Gy3312241229Gy3312241229
Gy3312241229IJERA Editor
ย 
Vibration energy harvesting under uncertainty
Vibration energy harvesting under uncertaintyVibration energy harvesting under uncertainty
Vibration energy harvesting under uncertaintyUniversity of Glasgow
ย 
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...IJRESJOURNAL
ย 
Reduction of Active Power Loss byUsing Adaptive Cat Swarm Optimization
Reduction of Active Power Loss byUsing Adaptive Cat Swarm OptimizationReduction of Active Power Loss byUsing Adaptive Cat Swarm Optimization
Reduction of Active Power Loss byUsing Adaptive Cat Swarm Optimizationijeei-iaes
ย 
Neural Network
Neural NetworkNeural Network
Neural Networksamisounda
ย 
A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUTION
A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUTIONA COMPARISON OF PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUTION
A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUTIONijsc
ย 
J1802048185
J1802048185J1802048185
J1802048185IOSR Journals
ย 
Solving Quadratic Assignment Problems (QAP) using Ant Colony System
Solving Quadratic Assignment Problems (QAP) using Ant Colony SystemSolving Quadratic Assignment Problems (QAP) using Ant Colony System
Solving Quadratic Assignment Problems (QAP) using Ant Colony SystemAjay Bidyarthy
ย 
Restricted Boltzman Machine (RBM) presentation of fundamental theory
Restricted Boltzman Machine (RBM) presentation of fundamental theoryRestricted Boltzman Machine (RBM) presentation of fundamental theory
Restricted Boltzman Machine (RBM) presentation of fundamental theorySeongwon Hwang
ย 
Review robot-collisions-survey
Review robot-collisions-surveyReview robot-collisions-survey
Review robot-collisions-surveyHancheol Choi
ย 
Vibration Isolation of a LEGOยฎ plate
Vibration Isolation of a LEGOยฎ plateVibration Isolation of a LEGOยฎ plate
Vibration Isolation of a LEGOยฎ plateOpen Adaptronik
ย 
Vibration isolation progect lego(r)
Vibration isolation progect lego(r)Vibration isolation progect lego(r)
Vibration isolation progect lego(r)Open Adaptronik
ย 
The gaussian minimum entropy conjecture
The gaussian minimum entropy conjectureThe gaussian minimum entropy conjecture
The gaussian minimum entropy conjecturewtyru1989
ย 
DriP PSO- A fast and inexpensive PSO for drifting problem spaces
DriP PSO- A fast and inexpensive PSO for drifting problem spacesDriP PSO- A fast and inexpensive PSO for drifting problem spaces
DriP PSO- A fast and inexpensive PSO for drifting problem spacesZubin Bhuyan
ย 

What's hot (20)

I04105358
I04105358I04105358
I04105358
ย 
PSOk-NN: A Particle Swarm Optimization Approach to Optimize k-Nearest Neighbo...
PSOk-NN: A Particle Swarm Optimization Approach to Optimize k-Nearest Neighbo...PSOk-NN: A Particle Swarm Optimization Approach to Optimize k-Nearest Neighbo...
PSOk-NN: A Particle Swarm Optimization Approach to Optimize k-Nearest Neighbo...
ย 
Neural Network - Feed Forward - Back Propagation Visualization
Neural Network - Feed Forward - Back Propagation VisualizationNeural Network - Feed Forward - Back Propagation Visualization
Neural Network - Feed Forward - Back Propagation Visualization
ย 
EH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvestingEH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvesting
ย 
05 20261 real power loss reduction
05 20261 real power loss reduction05 20261 real power loss reduction
05 20261 real power loss reduction
ย 
Gy3312241229
Gy3312241229Gy3312241229
Gy3312241229
ย 
Vibration energy harvesting under uncertainty
Vibration energy harvesting under uncertaintyVibration energy harvesting under uncertainty
Vibration energy harvesting under uncertainty
ย 
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
ย 
Reduction of Active Power Loss byUsing Adaptive Cat Swarm Optimization
Reduction of Active Power Loss byUsing Adaptive Cat Swarm OptimizationReduction of Active Power Loss byUsing Adaptive Cat Swarm Optimization
Reduction of Active Power Loss byUsing Adaptive Cat Swarm Optimization
ย 
Neural Network
Neural NetworkNeural Network
Neural Network
ย 
A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUTION
A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUTIONA COMPARISON OF PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUTION
A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUTION
ย 
J1802048185
J1802048185J1802048185
J1802048185
ย 
Solving Quadratic Assignment Problems (QAP) using Ant Colony System
Solving Quadratic Assignment Problems (QAP) using Ant Colony SystemSolving Quadratic Assignment Problems (QAP) using Ant Colony System
Solving Quadratic Assignment Problems (QAP) using Ant Colony System
ย 
Restricted Boltzman Machine (RBM) presentation of fundamental theory
Restricted Boltzman Machine (RBM) presentation of fundamental theoryRestricted Boltzman Machine (RBM) presentation of fundamental theory
Restricted Boltzman Machine (RBM) presentation of fundamental theory
ย 
Review robot-collisions-survey
Review robot-collisions-surveyReview robot-collisions-survey
Review robot-collisions-survey
ย 
Vibration Isolation of a LEGOยฎ plate
Vibration Isolation of a LEGOยฎ plateVibration Isolation of a LEGOยฎ plate
Vibration Isolation of a LEGOยฎ plate
ย 
call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...
ย 
Vibration isolation progect lego(r)
Vibration isolation progect lego(r)Vibration isolation progect lego(r)
Vibration isolation progect lego(r)
ย 
The gaussian minimum entropy conjecture
The gaussian minimum entropy conjectureThe gaussian minimum entropy conjecture
The gaussian minimum entropy conjecture
ย 
DriP PSO- A fast and inexpensive PSO for drifting problem spaces
DriP PSO- A fast and inexpensive PSO for drifting problem spacesDriP PSO- A fast and inexpensive PSO for drifting problem spaces
DriP PSO- A fast and inexpensive PSO for drifting problem spaces
ย 

Similar to 01 20257 ijict

IRJET- Particle Swarm Optimization based Reactive Power Optimization of U...
IRJET-  	  Particle Swarm Optimization based Reactive Power Optimization of U...IRJET-  	  Particle Swarm Optimization based Reactive Power Optimization of U...
IRJET- Particle Swarm Optimization based Reactive Power Optimization of U...IRJET Journal
ย 
5. 9375 11036-1-sm-1 20 apr 18 mar 16oct2017 ed iqbal qc
5. 9375 11036-1-sm-1 20 apr 18 mar 16oct2017 ed iqbal qc5. 9375 11036-1-sm-1 20 apr 18 mar 16oct2017 ed iqbal qc
5. 9375 11036-1-sm-1 20 apr 18 mar 16oct2017 ed iqbal qcIAESIJEECS
ย 
Locational marginal pricing framework in secured dispatch scheduling under co...
Locational marginal pricing framework in secured dispatch scheduling under co...Locational marginal pricing framework in secured dispatch scheduling under co...
Locational marginal pricing framework in secured dispatch scheduling under co...eSAT Publishing House
ย 
On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...TELKOMNIKA JOURNAL
ย 
Java gas turbine simulator numerical solversr by john a. reed
Java gas turbine simulator   numerical solversr by john a. reedJava gas turbine simulator   numerical solversr by john a. reed
Java gas turbine simulator numerical solversr by john a. reedJulio Banks
ย 
Transmission Loss Minimization Using Optimization Technique Based On Pso
Transmission Loss Minimization Using Optimization Technique Based On PsoTransmission Loss Minimization Using Optimization Technique Based On Pso
Transmission Loss Minimization Using Optimization Technique Based On PsoIOSR Journals
ย 
Simulation, bifurcation, and stability analysis of a SEPIC converter control...
 Simulation, bifurcation, and stability analysis of a SEPIC converter control... Simulation, bifurcation, and stability analysis of a SEPIC converter control...
Simulation, bifurcation, and stability analysis of a SEPIC converter control...IJECEIAES
ย 
Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...
Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...
Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...AIRCC Publishing Corporation
ย 
Improving initial generations in pso algorithm for transportation network des...
Improving initial generations in pso algorithm for transportation network des...Improving initial generations in pso algorithm for transportation network des...
Improving initial generations in pso algorithm for transportation network des...ijcsit
ย 
PG Project
PG ProjectPG Project
PG Projectmathew1122
ย 
Economic Load Dispatch Optimization of Six Interconnected Generating Units Us...
Economic Load Dispatch Optimization of Six Interconnected Generating Units Us...Economic Load Dispatch Optimization of Six Interconnected Generating Units Us...
Economic Load Dispatch Optimization of Six Interconnected Generating Units Us...IOSR Journals
ย 
Embellished Particle Swarm Optimization Algorithm for Solving Reactive Power ...
Embellished Particle Swarm Optimization Algorithm for Solving Reactive Power ...Embellished Particle Swarm Optimization Algorithm for Solving Reactive Power ...
Embellished Particle Swarm Optimization Algorithm for Solving Reactive Power ...ijeei-iaes
ย 
Using Machine Learning to Measure the Cross Section of Top Quark Pairs in the...
Using Machine Learning to Measure the Cross Section of Top Quark Pairs in the...Using Machine Learning to Measure the Cross Section of Top Quark Pairs in the...
Using Machine Learning to Measure the Cross Section of Top Quark Pairs in the...m.a.kirn
ย 
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHM
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHMTHE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHM
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHMIJCSEA Journal
ย 
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...IOSR Journals
ย 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINEScseij
ย 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linescseij
ย 

Similar to 01 20257 ijict (20)

IRJET- Particle Swarm Optimization based Reactive Power Optimization of U...
IRJET-  	  Particle Swarm Optimization based Reactive Power Optimization of U...IRJET-  	  Particle Swarm Optimization based Reactive Power Optimization of U...
IRJET- Particle Swarm Optimization based Reactive Power Optimization of U...
ย 
5. 9375 11036-1-sm-1 20 apr 18 mar 16oct2017 ed iqbal qc
5. 9375 11036-1-sm-1 20 apr 18 mar 16oct2017 ed iqbal qc5. 9375 11036-1-sm-1 20 apr 18 mar 16oct2017 ed iqbal qc
5. 9375 11036-1-sm-1 20 apr 18 mar 16oct2017 ed iqbal qc
ย 
Locational marginal pricing framework in secured dispatch scheduling under co...
Locational marginal pricing framework in secured dispatch scheduling under co...Locational marginal pricing framework in secured dispatch scheduling under co...
Locational marginal pricing framework in secured dispatch scheduling under co...
ย 
On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...
ย 
Java gas turbine simulator numerical solversr by john a. reed
Java gas turbine simulator   numerical solversr by john a. reedJava gas turbine simulator   numerical solversr by john a. reed
Java gas turbine simulator numerical solversr by john a. reed
ย 
Transmission Loss Minimization Using Optimization Technique Based On Pso
Transmission Loss Minimization Using Optimization Technique Based On PsoTransmission Loss Minimization Using Optimization Technique Based On Pso
Transmission Loss Minimization Using Optimization Technique Based On Pso
ย 
Simulation, bifurcation, and stability analysis of a SEPIC converter control...
 Simulation, bifurcation, and stability analysis of a SEPIC converter control... Simulation, bifurcation, and stability analysis of a SEPIC converter control...
Simulation, bifurcation, and stability analysis of a SEPIC converter control...
ย 
Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...
Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...
Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...
ย 
Improving initial generations in pso algorithm for transportation network des...
Improving initial generations in pso algorithm for transportation network des...Improving initial generations in pso algorithm for transportation network des...
Improving initial generations in pso algorithm for transportation network des...
ย 
PG Project
PG ProjectPG Project
PG Project
ย 
Work
WorkWork
Work
ย 
A010220109
A010220109A010220109
A010220109
ย 
Economic Load Dispatch Optimization of Six Interconnected Generating Units Us...
Economic Load Dispatch Optimization of Six Interconnected Generating Units Us...Economic Load Dispatch Optimization of Six Interconnected Generating Units Us...
Economic Load Dispatch Optimization of Six Interconnected Generating Units Us...
ย 
Embellished Particle Swarm Optimization Algorithm for Solving Reactive Power ...
Embellished Particle Swarm Optimization Algorithm for Solving Reactive Power ...Embellished Particle Swarm Optimization Algorithm for Solving Reactive Power ...
Embellished Particle Swarm Optimization Algorithm for Solving Reactive Power ...
ย 
wep153
wep153wep153
wep153
ย 
Using Machine Learning to Measure the Cross Section of Top Quark Pairs in the...
Using Machine Learning to Measure the Cross Section of Top Quark Pairs in the...Using Machine Learning to Measure the Cross Section of Top Quark Pairs in the...
Using Machine Learning to Measure the Cross Section of Top Quark Pairs in the...
ย 
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHM
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHMTHE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHM
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHM
ย 
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...
ย 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
ย 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip lines
ย 

More from IAESIJEECS

08 20314 electronic doorbell...
08 20314 electronic doorbell...08 20314 electronic doorbell...
08 20314 electronic doorbell...IAESIJEECS
ย 
07 20278 augmented reality...
07 20278 augmented reality...07 20278 augmented reality...
07 20278 augmented reality...IAESIJEECS
ย 
06 17443 an neuro fuzzy...
06 17443 an neuro fuzzy...06 17443 an neuro fuzzy...
06 17443 an neuro fuzzy...IAESIJEECS
ย 
05 20275 computational solution...
05 20275 computational solution...05 20275 computational solution...
05 20275 computational solution...IAESIJEECS
ย 
03 20237 arduino based gas-
03 20237 arduino based gas-03 20237 arduino based gas-
03 20237 arduino based gas-IAESIJEECS
ย 
02 20274 improved ichi square...
02 20274 improved ichi square...02 20274 improved ichi square...
02 20274 improved ichi square...IAESIJEECS
ย 
01 20264 diminution of real power...
01 20264 diminution of real power...01 20264 diminution of real power...
01 20264 diminution of real power...IAESIJEECS
ย 
08 20272 academic insight on application
08 20272 academic insight on application08 20272 academic insight on application
08 20272 academic insight on applicationIAESIJEECS
ย 
07 20252 cloud computing survey
07 20252 cloud computing survey07 20252 cloud computing survey
07 20252 cloud computing surveyIAESIJEECS
ย 
06 20273 37746-1-ed
06 20273 37746-1-ed06 20273 37746-1-ed
06 20273 37746-1-edIAESIJEECS
ย 
04 20259 real power loss
04 20259 real power loss04 20259 real power loss
04 20259 real power lossIAESIJEECS
ย 
03 20270 true power loss reduction
03 20270 true power loss reduction03 20270 true power loss reduction
03 20270 true power loss reductionIAESIJEECS
ย 
02 15034 neural network
02 15034 neural network02 15034 neural network
02 15034 neural networkIAESIJEECS
ย 
01 8445 speech enhancement
01 8445 speech enhancement01 8445 speech enhancement
01 8445 speech enhancementIAESIJEECS
ย 
08 17079 ijict
08 17079 ijict08 17079 ijict
08 17079 ijictIAESIJEECS
ย 
07 20269 ijict
07 20269 ijict07 20269 ijict
07 20269 ijictIAESIJEECS
ย 
06 10154 ijict
06 10154 ijict06 10154 ijict
06 10154 ijictIAESIJEECS
ย 
05 20255 ijict
05 20255 ijict05 20255 ijict
05 20255 ijictIAESIJEECS
ย 
04 18696 ijict
04 18696 ijict04 18696 ijict
04 18696 ijictIAESIJEECS
ย 
02 20241 ijict
02 20241 ijict02 20241 ijict
02 20241 ijictIAESIJEECS
ย 

More from IAESIJEECS (20)

08 20314 electronic doorbell...
08 20314 electronic doorbell...08 20314 electronic doorbell...
08 20314 electronic doorbell...
ย 
07 20278 augmented reality...
07 20278 augmented reality...07 20278 augmented reality...
07 20278 augmented reality...
ย 
06 17443 an neuro fuzzy...
06 17443 an neuro fuzzy...06 17443 an neuro fuzzy...
06 17443 an neuro fuzzy...
ย 
05 20275 computational solution...
05 20275 computational solution...05 20275 computational solution...
05 20275 computational solution...
ย 
03 20237 arduino based gas-
03 20237 arduino based gas-03 20237 arduino based gas-
03 20237 arduino based gas-
ย 
02 20274 improved ichi square...
02 20274 improved ichi square...02 20274 improved ichi square...
02 20274 improved ichi square...
ย 
01 20264 diminution of real power...
01 20264 diminution of real power...01 20264 diminution of real power...
01 20264 diminution of real power...
ย 
08 20272 academic insight on application
08 20272 academic insight on application08 20272 academic insight on application
08 20272 academic insight on application
ย 
07 20252 cloud computing survey
07 20252 cloud computing survey07 20252 cloud computing survey
07 20252 cloud computing survey
ย 
06 20273 37746-1-ed
06 20273 37746-1-ed06 20273 37746-1-ed
06 20273 37746-1-ed
ย 
04 20259 real power loss
04 20259 real power loss04 20259 real power loss
04 20259 real power loss
ย 
03 20270 true power loss reduction
03 20270 true power loss reduction03 20270 true power loss reduction
03 20270 true power loss reduction
ย 
02 15034 neural network
02 15034 neural network02 15034 neural network
02 15034 neural network
ย 
01 8445 speech enhancement
01 8445 speech enhancement01 8445 speech enhancement
01 8445 speech enhancement
ย 
08 17079 ijict
08 17079 ijict08 17079 ijict
08 17079 ijict
ย 
07 20269 ijict
07 20269 ijict07 20269 ijict
07 20269 ijict
ย 
06 10154 ijict
06 10154 ijict06 10154 ijict
06 10154 ijict
ย 
05 20255 ijict
05 20255 ijict05 20255 ijict
05 20255 ijict
ย 
04 18696 ijict
04 18696 ijict04 18696 ijict
04 18696 ijict
ย 
02 20241 ijict
02 20241 ijict02 20241 ijict
02 20241 ijict
ย 

Recently uploaded

WhatsApp 9892124323 โœ“Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 โœ“Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 โœ“Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 โœ“Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
ย 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsRoshan Dwivedi
ย 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
ย 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
ย 
Scaling API-first โ€“ The story of a global engineering organization
Scaling API-first โ€“ The story of a global engineering organizationScaling API-first โ€“ The story of a global engineering organization
Scaling API-first โ€“ The story of a global engineering organizationRadu Cotescu
ย 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
ย 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
ย 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
ย 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
ย 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
ย 
Finology Group โ€“ Insurtech Innovation Award 2024
Finology Group โ€“ Insurtech Innovation Award 2024Finology Group โ€“ Insurtech Innovation Award 2024
Finology Group โ€“ Insurtech Innovation Award 2024The Digital Insurer
ย 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
ย 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
ย 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
ย 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
ย 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
ย 
๐Ÿฌ The future of MySQL is Postgres ๐Ÿ˜
๐Ÿฌ  The future of MySQL is Postgres   ๐Ÿ˜๐Ÿฌ  The future of MySQL is Postgres   ๐Ÿ˜
๐Ÿฌ The future of MySQL is Postgres ๐Ÿ˜RTylerCroy
ย 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
ย 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
ย 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
ย 

Recently uploaded (20)

WhatsApp 9892124323 โœ“Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 โœ“Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 โœ“Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 โœ“Call Girls In Kalyan ( Mumbai ) secure service
ย 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
ย 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
ย 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
ย 
Scaling API-first โ€“ The story of a global engineering organization
Scaling API-first โ€“ The story of a global engineering organizationScaling API-first โ€“ The story of a global engineering organization
Scaling API-first โ€“ The story of a global engineering organization
ย 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
ย 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
ย 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
ย 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
ย 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
ย 
Finology Group โ€“ Insurtech Innovation Award 2024
Finology Group โ€“ Insurtech Innovation Award 2024Finology Group โ€“ Insurtech Innovation Award 2024
Finology Group โ€“ Insurtech Innovation Award 2024
ย 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
ย 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
ย 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
ย 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
ย 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
ย 
๐Ÿฌ The future of MySQL is Postgres ๐Ÿ˜
๐Ÿฌ  The future of MySQL is Postgres   ๐Ÿ˜๐Ÿฌ  The future of MySQL is Postgres   ๐Ÿ˜
๐Ÿฌ The future of MySQL is Postgres ๐Ÿ˜
ย 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
ย 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
ย 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
ย 

01 20257 ijict

  • 1. International Journal of Informatics and Communication Technology (IJ-ICT) Vol.9, No.1, April 2020, pp. 1~8 ISSN: 2252-8776, DOI: 10.11591/ijict.v9i1.pp1-8 ๏ฒ 1 Journal homepage: http://ijict.iaescore.com Enhanced wormhole optimizer algorithm for solving optimal reactive power problem Kanagasabai Lenin Department of EEE, Prasad V. Potluri Siddhartha Institute of Technology, India Article Info ABSTRACT Article history: Received Nov 11, 2019 Revised Nov 13, 2019 Accepted Dec 27, 2019 In this paper Enhanced Wormhole Optimizer (EWO) algorithm is used to solve optimal reactive power problem. Proposed algorithm based on the Wormholes which exploits the exploration space. Between different universes objects are exchanged through white or black hole tunnels. Regardless of the inflation rate, through wormholes objects in all universes which possess high probability will shift to the most excellent universe. In the projected Enhanced Wormhole Optimizer (EWO) algorithm in order to avoid the solution to be get trapped into the local optimal solution Levy flight has been applied. Projected Enhanced Wormhole Optimizer (EWO) algorithm has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show that the EWO algorithm reduced the real power loss efficiently. Keywords: Enhanced wormhole optimizer Optimal reactive power Transmission loss This is an open access article under the CC BY-SA license. Corresponding Author: Kanagasabai Lenin, Department of EEE, Prasad V. Potluri Siddhartha, Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh -520007, India. Email: gklenin@gmail.com 1. INTRODUCTION For secure and economic operations of power system optimal reactive power problem plays vital role. Several types of techniques [1-6] have been utilized to solve the problem previously. Conversely many difficulties are found while solving problem due to inequality constraints. Evolutionary techniques [7-15] are applied to solve the reactive power problem. This paper proposes Enhanced Wormhole Optimizer (EWO) algorithm for solving optimal reactive power problem. Wormhole Optimizer Algorithm is based on the Wormholes which exploit the exploration space. Wormhole tunnel are built for local change in each universe m through most excellent universe then probability of refinement the inflation rate is done through wormholes. Objects are exchanged through tunnels and wormholes objects which possess high probability will shift to the most excellent universe. In the projected Enhanced Wormhole Optimizer (EWO) algorithm in order to avoid the solution to be get trapped into the local optimal solution Levy flight has been applied. Projected Enhanced Wormhole Optimizer (EWO) algorithm has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show that the projected algorithm reduced the real power loss effectively. 2. PROBLEM FORMULATION Objective of the problem is to reduce the true power loss: F = PL = โˆ‘ gkkโˆˆNbr (Vi 2 + Vj 2 โˆ’ 2ViVjcosฮธij) (1)
  • 2. ๏ฒ ISSN: 2252-8776 Int J Inf & Commun Technol, Vol. 9, No. 1, April 2020: 1 โ€“ 8 2 Voltage deviation given as follows: F = PL + ฯ‰v ร— Voltage Deviation (2) Voltage Deviation = โˆ‘ |Vi โˆ’ 1| Npq i=1 (3) Constraint (Equality) PG = PD + PL (4) Constraints (Inequality) Pgslack min โ‰ค Pgslack โ‰ค Pgslack max (5) Qgi min โ‰ค Qgi โ‰ค Qgi max , i โˆˆ Ng (6) Vi min โ‰ค Vi โ‰ค Vi max , i โˆˆ N (7) Ti min โ‰ค Ti โ‰ค Ti max , i โˆˆ NT (8) Qc min โ‰ค Qc โ‰ค QC max , i โˆˆ NC (9) 3. Enhanced Wormhole Optimizer Algorithm Wormhole Optimizer Algorithm is based on the Wormholes which exploit the exploration space. Through wormholes objects which has high probability will shift to the most excellent universe and it modeled by using roulette wheel selection methodology as follows, ๐‘ˆ = [ ๐‘ฆ11 โ‹ฏ ๐‘ฆ1๐‘‘ โ‹ฎ โ‹ฑ โ‹ฎ ๐‘ฆ ๐‘›1 โ‹ฏ ๐‘ฆ ๐‘›๐‘‘ ] (10) Number of the variables is indicated by โ€œdโ€ and number of universe which is considered as candidate solution is indicated byโ€nโ€. ๐‘ฆ๐‘–๐‘— = { ๐‘ฆ ๐‘˜๐‘— ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š1 < ๐‘๐ผ(๐‘ˆ๐‘–) ๐‘ฆ๐‘–๐‘— ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š1 < ๐‘๐ผ(๐‘ˆ๐‘–) (11) Through roulette wheel selection ๐‘ฆ๐‘–๐‘— โ€ฒ๐‘  โ€œjโ€th parameter of the โ€œkโ€th universe will be chosen, in the โ€œiโ€th universe โ€œjโ€th parameter is expressed by ๐‘ฆ ๐‘˜๐‘— , ith universe inflation rate indicated by ๐‘๐ผ(๐‘ˆ๐‘–), ith universe indicated by ๐‘ˆ๐‘– , ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š1 โˆˆ [0,1]. In between two universes wormhole tunnel [16 ,17] are built then the local change for each universe is done by most excellent universe and the elevated probability of refinement the inflation rate through wormholes is done by, ๐‘ฆ๐‘–๐‘— = { { ๐‘Œ๐‘— + ๐‘‡๐‘Ÿ. ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ร— ((๐‘ข๐‘๐‘— โˆ’ ๐‘™๐‘๐‘—) ร— ๐‘Ÿ๐‘Ž๐‘›๐‘‘4 + ๐‘™๐‘๐‘—) ๐‘Ÿ๐‘Ž๐‘›๐‘‘3 < 0.5 ๐‘Œ๐‘— โˆ’ ๐‘‡๐‘Ÿ. ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ร— ((๐‘ข๐‘๐‘— โˆ’ ๐‘™๐‘๐‘—) ร— ๐‘Ÿ๐‘Ž๐‘›๐‘‘4 + ๐‘™๐‘๐‘—) ๐‘Ÿ๐‘Ž๐‘›๐‘‘3 โ‰ฅ 0.5 ๐‘ฆ๐‘–๐‘— ๐‘Ÿ๐‘Ž๐‘›๐‘‘2 โ‰ฅ ๐‘ค ๐‘’ ๐‘ ๐‘Ÿ๐‘Ž๐‘›๐‘‘2 < ๐‘ค ๐‘’ ๐‘ (12) Wormhole existence probability indicated by โ€œw e pโ€, โ€œtr.โ€ Indicates the travelling and random denoted by โ€œ randโ€. During the optimization procedure exploitation has been enhanced as follows, Wormhole existence probability = wminimum+current iteration ( wmaximumโˆ’wminimum maximum iteration ) (13)
  • 3. Int J Inf & Commun Technol ISSN: 2252-8776 ๏ฒ Enhanced wormhole optimizer algorithm for solving optimal reactive โ€ฆ (Kanagasabai Lenin) 3 In order to improve the local search precisely travelling distance rate will be increased over the iterations as follows, ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ = 1 โˆ’ current iteration1 ๐‘โ„ maximum iteration1 ๐‘โ„ (14) In the projected Enhanced Wormhole Optimizer (EWO) algorithm in order to avoid the solution to be get trapped into the local optimal solution Levy flight has been applied. Levy flight is a rank of non-Gaussian random procedure whose capricious walks are haggard from Levy stable distribution. Allocation by L(s) ~ |s|-1-ฮฒ where 0 < รŸ < 2 is an index. Scientifically defined as, ๐ฟ(๐‘ , ๐›พ, ๐œ‡) = { โˆš ๐›พ 2๐œ‹ 0 ๐‘–๐‘“ ๐‘  โ‰ค 0 ๐‘’๐‘ฅ๐‘ [โˆ’ ๐›พ 2(๐‘ โˆ’๐œ‡) ] 1 (๐‘ โˆ’๐œ‡)3 2โ„ ๐‘–๐‘“ 0 < ๐œ‡ < ๐‘  < โˆž (15) In terms of Fourier transform Levy distribution defined as ๐น(๐‘˜) = ๐‘’๐‘ฅ๐‘[โˆ’๐›ผ|๐‘˜| ๐›ฝ ], 0 < ๐›ฝ โ‰ค 2, (16) Fresh state is calculated as, ๐‘Œ ๐‘ก+1 = ๐‘Œ ๐‘ก + ๐›ผ โŠ• ๐ฟ๐‘’๐‘ฃ๐‘ฆ (๐›ฝ) (17) ๐‘Œ ๐‘ก+1 = ๐‘ฆ ๐‘ก + ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š (๐‘ ๐‘–๐‘ง๐‘’(๐ท)) โŠ• ๐ฟ๐‘’๐‘ฃ๐‘ฆ(๐›ฝ) (18) In the projected Enhanced Wormhole Optimizer (EWO) algorithm while generation of new solutions ๐‘ˆ๐‘– ๐‘ก+1 levy flight (y) will be applied, ๐‘ˆ๐‘– ๐‘ก+1 = ๐‘ˆ๐‘– ๐‘ก + ๐พ(๐‘™๐‘ + (๐‘ข๐‘ โˆ’ ๐‘™๐‘) โˆ— ๐‘™๐‘’๐‘ฃ๐‘ฆ(๐‘ฆ)) ร— ๐‘ˆ๐‘– ๐‘ก (19) Levy flight will be applied in the adaptive mode to balance the exploration and exploitation by applying large levy weight initially and final course the weight of the levy will be decreased, ๐พ = ( ๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘–๐‘ก๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘›โˆ’๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘–๐‘ก๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘–๐‘ก๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ) (20) By using Mantegna's algorithm Non-trivial scheme of engendering step size by, ๐‘  = ๐‘ข |๐‘ฃ| 1 ๐›ฝ (21) ๐‘Œ ๐‘ก+1 = ๐‘Œ ๐‘ก + ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š (๐‘ ๐‘–๐‘ง๐‘’(๐ท)) โŠ• ๐ฟ๐‘’๐‘ฃ๐‘ฆ(๐›ฝ)~0.01 ๐‘ข |๐‘ฃ|1 ๐›ฝโ„ (๐‘ฆ๐‘— ๐‘ก โˆ’ ๐‘”๐‘) (22) ๐‘ข~๐‘(0, ๐œŽ ๐‘ข 2) ๐‘ฃ~๐‘(0, ๐œŽ๐‘ฃ 2) (23) with ๐œŽ ๐‘ข = { ะ“(1+๐›ฝ)๐‘ ๐‘–๐‘›(๐œ‹๐›ฝ/2) ะ“[(1+๐›ฝ)/2]๐›ฝ2(๐›ฝโˆ’1)/2} 1 ๐›ฝโ„ , ๐œŽ๐‘ฃ = 1 (24) then, ๐ฟ๐‘’๐‘ฃ๐‘ฆ(๐‘ฆ) = 0.01 ร— ๐‘ขร—๐œŽ |๐‘ฃ| 1 ๐›ฝ (25) Start In put ; โ€œdโ€ & โ€œnโ€ ; Lower bound = [Lb1,Lb2,. . .,Lbd] ; Upper bound = [Ub1,Ub2,. . .,Ubd] ; Maximum number of iterations Output: Optimal solution Step a: Initialization of parameters
  • 4. ๏ฒ ISSN: 2252-8776 Int J Inf & Commun Technol, Vol. 9, No. 1, April 2020: 1 โ€“ 8 4 Engender arbitrary universes โ€œUโ€ by ๐‘ˆ๐‘ƒ = {๐‘ˆ1, ๐‘ˆ2, . . ๐‘ˆ๐‘–, . . , ๐‘ˆ ๐‘›} Initialize Wormhole existence probability, travelling distance rate, objective function t = 0 Step b: categorization and reorganize; arrange the universes; universe inflation rate (UI) will be reorganized Step c: Iteration; while t < Maximum iteration Compute universe inflation rate; UI (๐‘ˆ๐‘– ๐‘ก ) ; i = 1,2,. . .,n For every universe โ€œUiโ€; modernize Wormhole existence probability, travelling distance rate by Wormhole existence probability = wminimum+current iteration ( wmaximumโˆ’wminimum maximum iteration ) ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ = 1 โˆ’ current iteration1 ๐‘โ„ maximum iteration1 ๐‘โ„ ; Black hole index value = i Modernize the value โ€œUโ€ by ๐‘ˆ๐‘– ๐‘ก+1 = ๐‘ˆ๐‘– ๐‘ก + ๐พ(๐‘™๐‘ + (๐‘ข๐‘ โˆ’ ๐‘™๐‘) โˆ— ๐‘™๐‘’๐‘ฃ๐‘ฆ(๐‘ฆ)) ร— ๐‘ˆ๐‘– ๐‘ก For every object ๐‘ฆ๐‘–๐‘— ; ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š1 = random (0,1); If ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š1 < UI(Ui) ; white hole index = roulette wheel selection (-UI); U (black hole index ,j) = SU(white hole index ,j); End if ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š2= random (0,1); If ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š2 < Wormhole existence probability ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š3= random (0,1); ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š4 = random (0,1); If ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š3 < 0.5 ๐‘ฆ๐‘–๐‘— = ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› (๐‘—) + ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ โˆ— ((๐‘ข๐‘(๐‘—) โˆ’ ๐‘™๐‘(๐‘—)) โˆ— ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š4 + ๐‘™๐‘(๐‘—)) Or else ๐‘ฆ๐‘–๐‘— = ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› (๐‘—) โˆ’ ๐‘‡๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ โˆ— ((๐‘ข๐‘(๐‘—) โˆ’ ๐‘™๐‘(๐‘—)) โˆ— ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š4 + ๐‘™๐‘(๐‘—)) End if End for t = t+1 End while Step d: End; output the optimal solution 4. SIMULATION RESULTS At first in standard IEEE 14 bus system [18] the validity of the proposed Enhanced Wormhole Optimizer (EWO) algorithm has been tested, Table 1 shows the constraints of control variables Table 2 shows the limits of reactive power generators and comparison results are presented in Table 3. Table 1. Constraints of control variables System Variables Minimum (PU) Maximum (PU) IEEE 14 Bus Generator Voltage 0.95 1.1 Transformer Tap o.9 1.1 VAR Source 0 0.20 Table 2. Constrains of reactive power generators System Variables Q Minimum (PU) Q Maximum (PU) IEEE 14 Bus 1 0 10 2 -40 50 3 0 40 6 -6 24 8 -6 24 Table 3. Simulation results of IEEE โˆ’14 system Control variables Base case MPSO [19] PSO [19] EP [19] SARGA [19] EWO ๐‘‰๐บโˆ’1 1.060 1.100 1.100 NR* NR* 1.013 ๐‘‰๐บโˆ’2 1.045 1.085 1.086 1.029 1.060 1.014 ๐‘‰๐บโˆ’3 1.010 1.055 1.056 1.016 1.036 1.002 ๐‘‰๐บโˆ’6 1.070 1.069 1.067 1.097 1.099 1.017 ๐‘‰๐บโˆ’8 1.090 1.074 1.060 1.053 1.078 1.021 ๐‘‡๐‘Ž๐‘ 8 0.978 1.018 1.019 1.04 0.95 0.910 ๐‘‡๐‘Ž๐‘ 9 0.969 0.975 0.988 0.94 0.95 0.913 ๐‘‡๐‘Ž๐‘ 10 0.932 1.024 1.008 1.03 0.96 0.927 ๐‘„๐ถโˆ’9 0.19 14.64 0.185 0.18 0.06 0.120 ๐‘ƒ๐บ 272.39 271.32 271.32 NR* NR* 271.78 ๐‘„๐บ (Mvar) 82.44 75.79 76.79 NR* NR* 75.79 Reduction in PLoss (%) 0 9.2 9.1 1.5 2.5 25.85 Total PLoss (Mw) 13.550 12.293 12.315 13.346 13.216 10.047 NR* - Not reported.
  • 5. Int J Inf & Commun Technol ISSN: 2252-8776 ๏ฒ Enhanced wormhole optimizer algorithm for solving optimal reactive โ€ฆ (Kanagasabai Lenin) 5 Then Enhanced Wormhole Optimizer (EWO) algorithm has been tested, in IEEE 30 Bus system. Table 4 shows the constraints of control variables, Table 5 shows the limits of reactive power generators and comparison results are presented in Table 6. Table 4. Constraints of control variables System Variables Minimum (PU) Maximum (PU) IEEE 30 Bus Generator Voltage 0.95 1.1 Transformer Tap o.9 1.1 VAR Source 0 0.20 Table 5. Constrains of reactive power generators System Variables Q Minimum (PU) Q Maximum (PU) IEEE 30 Bus 1 0 10 2 -40 50 5 -40 40 8 -10 40 11 -6 24 13 -6 24 Table 6. Simulation results of IEEE โˆ’30 system Control variables Base case MPSO [19] PSO [19] EP [19] SARGA [19] EWO VG โˆ’1 1.060 1.101 1.100 NR* NR* 1.013 VG โˆ’2 1.045 1.086 1.072 1.097 1.094 1.014 VG โˆ’5 1.010 1.047 1.038 1.049 1.053 1.010 VG โˆ’8 1.010 1.057 1.048 1.033 1.059 1.021 VG โˆ’12 1.082 1.048 1.058 1.092 1.099 1.032 VG-13 1.071 1.068 1.080 1.091 1.099 1.024 Tap11 0.978 0.983 0.987 1.01 0.99 0.934 Tap12 0.969 1.023 1.015 1.03 1.03 0.930 Tap15 0.932 1.020 1.020 1.07 0.98 0.921 Tap36 0.968 0.988 1.012 0.99 0.96 0.923 QC10 0.19 0.077 0.077 0.19 0.19 0.092 QC24 0.043 0.119 0.128 0.04 0.04 0.124 ๐‘ƒ๐บ (MW) 300.9 299.54 299.54 NR* NR* 297.68 ๐‘„๐บ (Mvar) 133.9 130.83 130.94 NR* NR* 131.41 Reduction in PLoss (%) 0 8.4 7.4 6.6 8.3 19.37 Total PLoss (Mw) 17.55 16.07 16.25 16.38 16.09 14.149 Then the proposed Enhanced Wormhole Optimizer (EWO) algorithm has been tested, in IEEE 57 Bus system. Table 7 shows the constraints of control variables, Table 8 shows the limits of reactive power generators and comparison results are presented in Table 9. Table 7. Constraints of control variables System Variables Minimum (PU) Maximum (PU) IEEE 57 Bus Generator Voltage 0.95 1.1 Transformer Tap o.9 1.1 VAR Source 0 0.20 Table 8. Constrains of reactive power generators System Variables Q Minimum (PU) Q Maximum (PU) IEEE 57 Bus 1 -140 200 2 -17 50 3 -10 60 6 -8 25 8 -140 200 9 -3 9 12 -150 155
  • 6. ๏ฒ ISSN: 2252-8776 Int J Inf & Commun Technol, Vol. 9, No. 1, April 2020: 1 โ€“ 8 6 Then the proposed Enhanced Wormhole Optimizer algorithm has been tested, in IEEE 118 Bus system. Table 10 shows the constraints of control variables and comparison results are presented in Table 11. Table 9. Simulation results of IEEE โˆ’57 system Control variables Base case MPSO [19] PSO [19] CGA [19] AGA [19] EWO VG 1 1.040 1.093 1.083 0.968 1.027 1.023 VG 2 1.010 1.086 1.071 1.049 1.011 1.010 VG 3 0.985 1.056 1.055 1.056 1.033 1.034 VG 6 0.980 1.038 1.036 0.987 1.001 1.012 VG 8 1.005 1.066 1.059 1.022 1.051 1.030 VG 9 0.980 1.054 1.048 0.991 1.051 1.011 VG 12 1.015 1.054 1.046 1.004 1.057 1.040 ๐‘‡๐‘Ž๐‘ 19 0.970 0.975 0.987 0.920 1.030 0.952 ๐‘‡๐‘Ž๐‘ 20 0.978 0.982 0.983 0.920 1.020 0.937 ๐‘‡๐‘Ž๐‘ 31 1.043 0.975 0.981 0.970 1.060 0.920 ๐‘‡๐‘Ž๐‘ 35 1.000 1.025 1.003 NR* NR* 1.019 ๐‘‡๐‘Ž๐‘ 36 1.000 1.002 0.985 NR* NR* 1.007 ๐‘‡๐‘Ž๐‘ 37 1.043 1.007 1.009 0.900 0.990 1.009 ๐‘‡๐‘Ž๐‘ 41 0.967 0.994 1.007 0.910 1.100 0.990 ๐‘‡๐‘Ž๐‘ 46 0.975 1.013 1.018 1.100 0.980 1.010 ๐‘‡๐‘Ž๐‘ 54 0.955 0.988 0.986 0.940 1.010 0.971 ๐‘‡๐‘Ž๐‘ 58 0.955 0.979 0.992 0.950 1.080 0.966 ๐‘‡๐‘Ž๐‘ 59 0.900 0.983 0.990 1.030 0.940 0.963 ๐‘‡๐‘Ž๐‘ 65 0.930 1.015 0.997 1.090 0.950 1.001 ๐‘‡๐‘Ž๐‘ 66 0.895 0.975 0.984 0.900 1.050 0.950 ๐‘‡๐‘Ž๐‘ 71 0.958 1.020 0.990 0.900 0.950 1.001 ๐‘‡๐‘Ž๐‘ 73 0.958 1.001 0.988 1.000 1.010 1.000 ๐‘‡๐‘Ž๐‘ 76 0.980 0.979 0.980 0.960 0.940 0.968 ๐‘‡๐‘Ž๐‘ 80 0.940 1.002 1.017 1.000 1.000 1.002 QC 18 0.1 0.179 0.131 0.084 0.016 0.174 QC 25 0.059 0.176 0.144 0.008 0.015 0.168 QC 53 0.063 0.141 0.162 0.053 0.038 0.140 PG (MW) 1278.6 1274.4 1274.8 1276 1275 1270.13 QG (Mvar) 321.08 272.27 276.58 309.1 304.4 272.34 Reduction in PLoss (%) 0 15.4 14.1 9.2 11.6 24.07 Total PLoss (Mw) 27.8 23.51 23.86 25.24 24.56 21.108 NR* - Not reported. Table 10. Constraints of control variables System Variables Minimum (PU) Maximum (PU) IEEE 118 Bus Generator Voltage 0.95 1.1 Transformer Tap o.9 1.1 VAR Source 0 0.20 Table 11. Simulation results of IEEE โˆ’118 system Control variables Base case MPSO [19] PSO [19] PSO [19] CLPSO [19] EWO VG 1 0.955 1.021 1.019 1.085 1.033 1.010 VG 4 0.998 1.044 1.038 1.042 1.055 1.044 VG 6 0.990 1.044 1.044 1.080 0.975 1.022 VG 8 1.015 1.063 1.039 0.968 0.966 1.003 VG 10 1.050 1.084 1.040 1.075 0.981 1.010 VG 12 0.990 1.032 1.029 1.022 1.009 1.021 VG 15 0.970 1.024 1.020 1.078 0.978 1.030 VG 18 0.973 1.042 1.016 1.049 1.079 1.041 VG 19 0.962 1.031 1.015 1.077 1.080 1.030 VG 24 0.992 1.058 1.033 1.082 1.028 1.014 VG 25 1.050 1.064 1.059 0.956 1.030 1.035 VG 26 1.015 1.033 1.049 1.080 0.987 1.056 VG 27 0.968 1.020 1.021 1.087 1.015 0.909 VG 31 0.967 1.023 1.012 0.960 0.961 0.907 VG 32 0.963 1.023 1.018 1.100 0.985 0.913 VG 34 0.984 1.034 1.023 0.961 1.015 1.001 VG 36 0.980 1.035 1.014 1.036 1.084 1.000 VG 40 0.970 1.016 1.015 1.091 0.983 0.960 VG 42 0.985 1.019 1.015 0.970 1.051 1.001 VG 46 1.005 1.010 1.017 1.039 0.975 1.002 VG 49 1.025 1.045 1.030 1.083 0.983 1.000
  • 7. Int J Inf & Commun Technol ISSN: 2252-8776 ๏ฒ Enhanced wormhole optimizer algorithm for solving optimal reactive โ€ฆ (Kanagasabai Lenin) 7 Table 11. Simulation results of IEEE โˆ’118 system (Continued) Control variables Base case MPSO [19] PSO [19] PSO [19] CLPSO [19] EWO VG 54 0.955 1.029 1.020 0.976 0.963 0.920 VG 55 0.952 1.031 1.017 1.010 0.971 0.961 VG 56 0.954 1.029 1.018 0.953 1.025 0.950 VG 59 0.985 1.052 1.042 0.967 1.000 0.961 VG 61 0.995 1.042 1.029 1.093 1.077 0.973 VG 62 0.998 1.029 1.029 1.097 1.048 0.984 VG 65 1.005 1.054 1.042 1.089 0.968 1.002 VG 66 1.050 1.056 1.054 1.086 0.964 1.000 VG 69 1.035 1.072 1.058 0.966 0.957 1.051 VG 70 0.984 1.040 1.031 1.078 0.976 1.033 VG 72 0.980 1.039 1.039 0.950 1.024 1.024 VG 73 0.991 1.028 1.015 0.972 0.965 1.013 VG 74 0.958 1.032 1.029 0.971 1.073 1.012 VG 76 0.943 1.005 1.021 0.960 1.030 1.000 VG 77 1.006 1.038 1.026 1.078 1.027 1.004 VG 80 1.040 1.049 1.038 1.078 0.985 1.005 VG 85 0.985 1.024 1.024 0.956 0.983 1.012 VG 87 1.015 1.019 1.022 0.964 1.088 1.013 VG 89 1.000 1.074 1.061 0.974 0.989 1.040 VG 90 1.005 1.045 1.032 1.024 0.990 1.030 VG 91 0.980 1.052 1.033 0.961 1.028 1.002 VG 92 0.990 1.058 1.038 0.956 0.976 1.030 VG 99 1.010 1.023 1.037 0.954 1.088 1.005 VG 100 1.017 1.049 1.037 0.958 0.961 1.001 VG 103 1.010 1.045 1.031 1.016 0.961 1.010 VG 104 0.971 1.035 1.031 1.099 1.012 1.001 VG 105 0.965 1.043 1.029 0.969 1.068 1.050 VG 107 0.952 1.023 1.008 0.965 0.976 1.016 VG 110 0.973 1.032 1.028 1.087 1.041 1.015 VG 111 0.980 1.035 1.039 1.037 0.979 1.007 VG 112 0.975 1.018 1.019 1.092 0.976 1.091 VG 113 0.993 1.043 1.027 1.075 0.972 1.000 VG 116 1.005 1.011 1.031 0.959 1.033 1.006 Tap 8 0.985 0.999 0.994 1.011 1.004 0.942 Tap 32 0.960 1.017 1.013 1.090 1.060 1.004 Tap 36 0.960 0.994 0.997 1.003 1.000 0.956 Tap 51 0.935 0.998 1.000 1.000 1.000 0.930 Tap 93 0.960 1.000 0.997 1.008 0.992 1.001 Tap 95 0.985 0.995 1.020 1.032 1.007 0.972 Tap 102 0.935 1.024 1.004 0.944 1.061 1.004 Tap 107 0.935 0.989 1.008 0.906 0.930 0.942 Tap 127 0.935 1.010 1.009 0.967 0.957 1.001 QC 34 0.140 0.049 0.048 0.093 0.117 0.005 QC 44 0.100 0.026 0.026 0.093 0.098 0.020 QC 45 0.100 0.196 0.197 0.086 0.094 0.161 QC 46 0.100 0.117 0.118 0.089 0.026 0.120 QC 48 0.150 0.056 0.056 0.118 0.028 0.043 QC 74 0.120 0.120 0.120 0.046 0.005 0.110 QC 79 0.200 0.139 0.140 0.105 0. 148 0.105 QC 82 0.200 0.180 0.180 0.164 0.194 0.150 QC 83 0.100 0.166 0.166 0.096 0.069 0.122 QC 105 0.200 0.189 0.190 0.089 0.090 0.150 QC 107 0.060 0.128 0.129 0.050 0.049 0.132 QC 110 0.060 0.014 0.014 0.055 0.022 0.001 PG(MW) 4374.8 4359.3 4361.4 NR* NR* 4362.02 QG(MVAR) 795.6 604.3 653.5 * NR* NR* 610.11 Reduction in PLOSS (%) 0 11.7 10.1 0.6 1.3 14.15 Total PLOSS (Mw) 132.8 117.19 119.34 131.99 130.96 114.005 NR* - Not reported. Then IEEE 300 bus system [18] is used as test system to validate the performance of Enhanced Wormhole Optimizer (EWO) algorithm. Table 12 shows the comparison of real power loss obtained after optimization. Table 12. Comparison of Real Power Loss Parameter Method CSA [20] Method EGA [21] Method EEA [21] EWO PLOSS (MW) 635.8942 646.2998 650.6027 612.1026
  • 8. ๏ฒ ISSN: 2252-8776 Int J Inf & Commun Technol, Vol. 9, No. 1, April 2020: 1 โ€“ 8 8 5. CONCLUSION In this paper proposed Enhanced Wormhole Optimizer (EWO) algorithm successfully solved the optimal reactive power problems. Between different universes objects are exchanged through white or black hole tunnels. Regardless of the inflation rate, through wormholes objects in all universes which possess high probability will shift to the most excellent universe. In between two universes wormhole tunnel are built then the local change for each universe is done by most excellent universe and the elevated probability of refinement the inflation rate through wormholes. Levy flight has been applied effectively and it leads to the improvement of the quality of solution. Proposed Enhanced Wormhole Optimizer (EWO) algorithm has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show that the EWO algorithm reduced the real power loss efficiently. Percentage of real power loss reduction has been enhanced when compared to other standard algorithms. REFERENCES [1] K. Y. Lee, โ€œFuel-cost minimisation for both real and reactive-power dispatches,โ€ Proceedings Generation, Transmission and Distribution Conference, vol. 131, no. 3, pp. 85-93, 1984. [2] N. I. Deeb, โ€œAn efficient technique for reactive power dispatch using a revised linear programming approach,โ€ Electric Power System Research, vol. 15, no. 2, pp. 121โ€“134, 1998. [3] M. R. Bjelogrlic, M. S. Calovic, B. S. Babic, โ€œApplication of Newtonโ€™s optimal power flow in voltage/reactive power control,โ€ IEEE Trans Power System, vol. 5, no. 4, pp. 1447-1454, 1990. [4] S. Granville, โ€œOptimal reactive dispatch through interior point methods,โ€ IEEE Transactions on Power System, vol. 9, no. 1, pp. 136โ€“146, 1994. [5] N. Grudinin, โ€œReactive power optimization using successive quadratic programming method,โ€ IEEE Transactions on Power System, vol. 13, no. 4, pp. 1219โ€“1225, 1998. [6] Ng Shin Mei, R., Sulaiman, M.H., Mustaffa, Z., Daniyal, H., โ€œOptimal reactive power dispatch solution by loss minimization using moth-flame optimization technique,โ€ Appl. Soft Comput., vol. 59, pp. 210โ€“222, 2017. [7] Chen, G., Liu, L., Zhang, Z., Huang, S., โ€œOptimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints,โ€ Appl. Soft Comput., vol. 50, pp. 58โ€“70, 2017. [8] Roy, Provas Kumar and Susanta Dutt, โ€œEconomic load dispatch: Optimal power flow and optimal reactive power dispatch concept,โ€ Optimal Power Flow Using Evolutionary Algorithms, IGI Global, pp. 46-64, 2019. [9] Christian Bingane, Miguel F. Anjos, Sรฉbastien Le Digabel, โ€œTight-and-cheap conic relaxation for the optimal reactive power dispatch problem,โ€ IEEE Transactions on Power Systems, vol. 34, no. 6, 2019. [10] Dharmbir Prasad & Vivekananda Mukherjee, โ€œSolution of Optimal Reactive Power Dispatch by Symbiotic Organism Search Algorithm Incorporating FACTS Devices,โ€ IETE Journal of Research, vol. 64, no. 1, pp. 149-160, 2018. [11] TM Aljohani, et al, โ€œSingle and multiobjective optimal reactive power dispatch based on hybrid artificial physicsโ€“ particle swarm optimization,โ€ Energies, vol. 12, no. 12, p. 2333, 2019 [12] Ram Kishan Mahate, & Himmat Singh, โ€œMulti-Objective Optimal Reactive Power Dispatch Using Differential Evolution,โ€ International Journal of Engineering Technologies and Management Research, vol. 6, no. 2, pp. 27โ€“38, 2019. [13] Yalรงฤฑn, E, TaplamacฤฑoฤŸlu, M., ร‡am, E., โ€œThe Adaptive Chaotic Symbiotic Organisms Search Algorithm Proposal for Optimal Reactive Power Dispatch Problem in Power Systems,โ€ Electrica, vol. 19, no. 1, pp. 37-47, 2019. [14] Mouassa, S. and Bouktir, T., โ€œMulti-objective ant lion optimization algorithm to solve large-scale multi-objective optimal reactive power dispatch problem,โ€ COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38, no. 1, pp. 304-324, 2018. [15] Tawfiq M. Aljohani, Ahmed F. Ebrahim, Osama Mohammed, โ€œSingle and multiobjective optimal reactive power dispatch based on hybrid artificial physicsโ€“particle swarm optimization,โ€ Energies, vol. 12, no. 12, pp. 2333, 2019. [16] Abdechiri M, Meybodi MR and Bahrami H., โ€œGases Brownian motion optimization: An algorithm for optimization (GBMO),โ€ Applied Soft Computing, vol. 13, no. 5, pp. 2932โ€“2946, 2013. [17] Mirjalili SM and Hatamlou A., โ€œMulti-verse optimizer: A nature-inspired algorithm for global optimization,โ€ Neural Computing and Applications, vol. 27, no. 2, pp. 495โ€“513, 2016. [18] IEEE, โ€œThe IEEE-test systems,โ€ 1993. http://www.ee.washington.edu/trsearch/pstca/. [19] Ali Nasser Hussain, Ali Abdulabbas Abdullah and Omar Muhammed Neda, โ€œModified particle swarm optimization for solution of reactive power dispatch,โ€ Research Journal of Applied Sciences, Engineering and Technology, vol. 15, no. 8, pp. 316-327, 2018. [20] S. Surender Reddy, โ€œOptimal reactive power scheduling using cuckoo search algorithm,โ€ International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 5, pp. 2349-2356. 2017. [21] S.S. Reddy, et al., โ€œFaster evolutionary algorithm based optimal power flow using incremental variables,โ€ Electrical Power and Energy Systems, vol. 54, pp. 198-210, 2014.