SlideShare a Scribd company logo
1 of 39
Logical Instructions
–These are the instructions used for basic
logic operations such as AND, OR, NOT and
XOR.
–These are also used for carrying out bit by
bit operations such as shift (SHR,SHL) or
rotate (ROL,ROR,RCR,RCL).
– One more Instruction under this category is
TEST instruction.
AND (Logical AND)
Syntax :-- AND destination, source
• This instruction is used to bit by bit AND the
contents of source to the destination.
•The result is stored in the destination.
•The source operand can be a immediate, a
register or a memory location.
•The destination can be a register or a memory
location, but not an immediate data.
•Both operands cannot be immediate data or
memory location.
•Flags affected : OF = 0 ,CF = 0 , AF is undefined.
• And other flags (SF, ZF, PF) are affected based on
the AND operation.
• Operation Performed :--
• Destination  Destination AND source
• Examples :--
1. AND BH,CL ;AND byte in CL with Byte in BH,
result in BH.
2. AND BX,00FFH ;AND word in BX with immediate
data 00ffH
3. AND [5000H], DX ;AND word in DX with a
word in memory with offset
5000 in DS.
AND (Logical AND) contd..
Numeric Example
If AX = 3F0F,
After Instruction,
AND AX,9078H ; AX  AX AND 0008H
;AX  3F0F AND 0008
3F0F  0011 1111 0000 1111
AND
9078  1001 0000 0111 1000
-------------------------------------
= 0001 0000 0000 1000
1008H in AX register
OR (Logical OR)
Syntax :-- OR destination, source
• This instruction is used to bit by bit OR the
contents of source to the destination.
•The result is stored in the destination.
•The source operand can be a immediate, a
register or a memory location.
•The destination can be a register or a memory
location, but not an immediate data.
•Both operands cannot be immediate data or
memory location.
•Flags affected : OF = 0 ,CF = 0 , AF is undefined.
• And other flags (SF, ZF, PF) are affected based on
the OR operation.
• Operation Performed :--
• Destination  Destination OR source
• Examples :--
1. OR BH,CL ;OR byte in CL with Byte in BH,
result in BH.
2. OR BX,00FFH ;OR word in BX with immediate
data 00ffH
3. OR [5000H], DX ; OR word in DX with a
word in memory with offset
5000 in DS.
OR (Logical OR) contd..
Numeric Example
If AX = 3F0F,
After Instruction,
OR AX,9078H ; AX  AX OR 9078H
;AX  3F0F OR 9078
3F0F  0011 1111 0000 1111
OR
9078  1001 0000 0111 1000
-------------------------------------
= 1011 1111 0111 1111
BF7FH in AX register
XOR (Logical XOR)
Syntax :-- XOR destination, source
• This instruction is used to bit by bit XOR the
contents of source to the destination.
•The result is stored in the destination.
•The source operand can be a immediate, a
register or a memory location.
•The destination can be a register or a memory
location, but not an immediate data.
•Both operands cannot be immediate data or
memory location.
•Flags affected : OF = 0 ,CF = 0 , AF is undefined.
• And other flags (SF, ZF, PF) are affected based on
the XOR operation.
• Operation Performed :--
• Destination  Destination XOR source
• Examples :--
1. XOR BH,CL ;XOR byte in CL with Byte in BH,
result in BH.
2. XOR BX,00FFH ;XOR word in BX with immediate
data 00ffH
3. XOR [5000H], DX ; XOR word in DX with a
word in memory with offset
5000 in DS.
XOR (Logical XOR) contd..
Numeric Example
If AX = 3F0F,
After Instruction,
XOR AX,9078H ; AX  AX XOR 0008H
;AX  3F0F XOR 0008
3F0F  0011 1111 0000 1111
XOR
9078  1001 0000 0111 1000
-------------------------------------
= 1010 1111 0111 0111
AF77H in AX register
NOT (Logical Invert )
Syntax :-- NOT destination
• This instruction complements (inverts) each
bit of the byte or word stored in the
destination.
•The result is stored in the destination.
•The destination can be a register or a memory
location.
•No Flags affected
• Operation Performed :--
• Destination  NOT Destination
• Examples :--
1. NOT BH ;Complement byte in BH, result in BH.
2. NOT BX ; Complement word in BX, result in BX.
3. NOT BYTE PTR [5000H] ; Complement byte
in memory with offset 5000 in DS.
NOT (Logical Invert ) contd..
Numeric Example
If AX = 3F0F,
After Instruction,
NOT AX ; AX  NOT AX
;AX  NOT 3F0F
3F0F  0011 1111 0000 1111
Complement
-------------------------------------
= 1100 0000 1111 0000
C0F0H in AX register
TEST (Logical compare )
Syntax :-- TEST destination, source
• This instruction is used to bit by bit AND the
contents of source to the destination.
•The result is not stored in the destination.
•The source operand can be a immediate, a
register or a memory location.
•The destination can be a register or a memory
location, but not an immediate data.
•Both operands cannot be immediate data or
memory location.
•Flags affected : OF = 0 ,CF = 0 , SF, ZF, PF.
•TEST instruction is used to set flags before a
conditional jump instruction
• Operation Performed :--
– Flags  set result of Destination AND source
• Examples :--
1. TEST BH,CL ;AND byte in CL with Byte in BH,
no result but flags are affected.
2. TEST BX,00FFH ;AND word in BX with immediate
data 00ffH, no result but flags are
affected.
3. TEST DX, [5000H];AND word in DX with a word in
memory with offset 5000 in DS,
no result but flags are affected.
TEST (Logical Compare) contd..
SHL / SAL (Shift Logical/Arithmetic Left)
Syntax :-- SHL/SAL destination, count
• SHL & SAL are the opcodes for the same
operation
•This instruction shifts the destination bit by bit to
the left and insert zeroes in the newly introduced
least significant bits.
•The shift operation is through carry.
•The count can be either 1 or specified by CL
register.
•The destination can be a byte or a word in
register or a memory location, but not an
immediate data.
•Flags affected : OF ,CF, SF, ZF, PF.
•These instructions can be used to multiply an
unsigned number by power of 2.
CF BX
0
0
1
CF BX
• Operation Performed :--
–CF  MSB ------------------ LSB  0
• Example :--
– If CF = 0, BX = E6D3H
– After SAL BX, 1 ; Shift the contents of BX
register by one towards left
SHL / SAL (Shift Logical/Arithmetic Left)Cntd..
1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1
1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0
BX = CDA6
• Example :--
• Use of SHL instruction for Multiplication:-
– If CF = 0, BH = 04H
– MOV CL, 03 ; Load CL register for
the count
– SHL BH, CL ; Shift the contents
of BX register by one
towards left
– BH = 20H (32D) [ 04 * 23 = 32 D]
– Note :-- SHL can be used to multiply a number
with powers of 2.
SHL / SAL (Shift Logical/Arithmetic Left)Cntd..
0 0 0 1 0 0 0 0
CF BH
0
0
0
0
0
0
0
SHL / SAL (Shift Logical/Arithmetic Left)Cntd..
BH = 20H with CF = 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
SAR (Shift Arithmetic Right )
Syntax :-- SAR destination, count
• This instruction shifts the destination bit by bit to
the right and MSB position is kept in the old MSB
position
•The shift operation is through carry, LSB is shifted
to CF.
•The count can be either 1 or specified by CL
register.
•The destination can be a byte or a word in
register or a memory location, but not an
immediate data.
•Flags affected : OF ,CF, SF, ZF, PF.
•This instruction can be used to divide an unsigned
number by power of 2.
BX CF
0
1
BX CF
1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1
• Operation Performed :--
– MSB ----------------- LSB  CF
• Example :--
– If CF = 0, BX = E6D3H
– After SAR BX, 1 ; Shift the contents of BX
register by one towards right
SAR (Shift Arithmetic Right)Cntd..
1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1
BX = F369H
• Example :--
• Use of SAR instruction for Division:-
– If CF = 0, BH = 14H
– MOV CL, 02 ; Load CL register for the
count
– SAR BH, CL ; Shift the contents
of BX register by one
towards right
– BH = 05H (20D) [ 20 / 22 = 05D]
– Note :-- SAR can be used to divide a number with
powers of 2 and get the quotient.
SAR (Shift Arithmetic Right )Cntd..
0 0 0 0 0 1 0 1
BH CF
0
0
0
SAR (Shift Arithmetic Right)Cntd..
BH = 05H with CF = 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
SHR (Shift Logical Right)
Syntax :-- SHR destination, count
•This instruction shifts the destination bit by
bit to the right and insert zeroes in the newly
introduced most significant bits.
•The shift operation is through carry.
•The count can be either 1 or specified by CL
register.
•The destination can be a byte or a word in
register or a memory location, but not an
immediate data.
•Flags affected : OF ,CF, SF, ZF, PF.
BX CF
0
0
1
BX CF
0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1
• Operation Performed :--
–0  MSB ------------------ LSB  CF
• Example :--
– If CF = 0, BX = E6D3H
– After SHR BX, 1 ; Shift the contents of BX
register by one towards right
SHR (Shift Logical Right)Cntd..
1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1
BX = 7369H
ROR (Rotate Right without Carry)
Syntax :-- ROR destination, count
•This instruction rotates the destination bit by
bit to the right excluding the carry
•The bit moved out of LSB is rotated around
into the MSB and also copied to CF.
•The count can be either 1 or specified by CL
register.
•The destination can be a byte or a word in
register or a memory location, but not an
immediate data.
•Flags affected : OF ,CF
BX CF
0
1
BX CF
1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1
• Operation Performed :--
– MSB LSB  CF
• Example :--
– If CF = 0, BX = E6D3H
– After ROR BX, 1 ; Rotate the contents of BX
register by one towards right
ROR (Rotate Right without Carry)Cntd..
1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1
BX = F369H
• Example :--
– If CF = 0, BH = 54H
– MOV CL, 02 ; Load CL register for the count
ROR BH, CL ; Rotate the contents of BH register by twice
towards right
ROR (Rotate Right without Carry)Cntd..
0 0 0 1 0 1 0 1
BH CF
0
0
0
0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0
BH = 15H with CF = 0
• Uses of ROR instruction:--
• This instruction can be used to swap the
nibbles in a byte or to swap the bytes in a
word.
– MOV CL,04H
ROR AL, CL
• It can also be used to rotate the bit into CF
which can be checked later for a conditional
jump. (JC or JNC)
ROL (Rotate Left without Carry)
Syntax :-- ROL destination, count
•This instruction rotates the destination bit by
bit to the left excluding the carry
•The bit moved out of MSB is rotated around
into the LSB and also copied to CF.
•The count can be either 1 or specified by CL
register.
•The destination can be a byte or a word in
register or a memory location, but not an
immediate data.
•Flags affected : OF ,CF
CF BX
0
1
CF BX
1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1
• Operation Performed :--
– CF MSB LSB
• Example :--
– If CF = 0, BX = E6D3H
– After ROL BX, 1 ; Rotate the contents of BX
register by one towards left
ROL (Rotate Left without Carry)Cntd..
1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1
BX = CDA7H
• Example :--
– If CF = 0, BH = 54H
– MOV CL, 02 ; Load CL register for the count
ROL BH, CL ; Rotate the contents of BH register by twice
towards Left
ROL (Rotate Left without Carry)Cntd..
0 1 0 1 0 0 0 1
CF BH
0
0
1
0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 0
BH = 51H with CF = 1
• Uses of ROL instruction:--
• This instruction can be used to swap the
nibbles in a byte or to swap the bytes in a
word.
– MOV CL,04H
ROL AL, CL
• It can also be used to rotate the bit into CF
which can be checked later for a conditional
jump. (JC or JNC)
RCR (Rotate Right with Carry)
Syntax :-- ROR destination, count
•This instruction rotates the destination bit by
bit to the right including the carry
•The bit moved out of LSB is rotated into CF
and the bit in CF is rotated into the MSB.
•The count can be either 1 or specified by CL
register.
•The destination can be a byte or a word in
register or a memory location, but not an
immediate data.
•Flags affected : OF ,CF
BX CF
0
1
BX CF
0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1
• Operation Performed :--
– MSB LSB  CF
• Example :--
– If CF = 0, BX = E6D3H
– After RCR BX, 1 ; Rotate the contents of BX
register by one towards right through
carry
RCR (Rotate Right with Carry)Cntd..
1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1
BX = 7369H
• Example :--
– If CF = 0, BH = 54H
– MOV CL, 02 ; Load CL register for the count
RCR BH, CL ; Rotate the contents of BH register by twice
towards right through carry
RCR (Rotate Right with Carry)Cntd..
0 0 0 1 0 1 0 1
BH CF
0
0
0
0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0
BH = 15H with CF = 0
RCL (Rotate Left with Carry)
Syntax :-- RCL destination, count
•This instruction rotates the destination bit by
bit to the left including the carry
•The bit moved out of MSB is rotated into CF
and the bit in CF is rotated into the LSB.
•The count can be either 1 or specified by CL
register.
•The destination can be a byte or a word in
register or a memory location, but not an
immediate data.
•Flags affected : OF ,CF
CF BX
0
1
CF BX
1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0
• Operation Performed :--
– CF MSB LSB
• Example :--
– If CF = 0, BX = E6D3H
– After RCL BX, 1 ; Rotate the contents of BX
register by one towards left through
carry
RCL (Rotate Left with Carry)Cntd..
1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1
BX = CDA6H
• Example :--
– If CF = 0, BH = 54H
– MOV CL, 02 ; Load CL register for the count
RCL BH, CL ; Rotate the contents of BH register by twice
towards Left through carry
RCL (Rotate Left with Carry)Cntd..
0 1 0 1 0 0 0 0
CF BH
0
0
1
0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 0
BH = 50H with CF = 1

More Related Content

What's hot

Logical Instructions used in 8086 microprocessor
Logical Instructions used in 8086 microprocessorLogical Instructions used in 8086 microprocessor
Logical Instructions used in 8086 microprocessorRabin BK
 
Logical instructions (and, or, xor, not, test)
Logical instructions (and, or, xor, not, test)Logical instructions (and, or, xor, not, test)
Logical instructions (and, or, xor, not, test)Irfan Anjum
 
Instruction set of 8086
Instruction set of 8086Instruction set of 8086
Instruction set of 8086aviban
 
Instruction set of 8086
Instruction set of 8086Instruction set of 8086
Instruction set of 8086Vijay Kumar
 
Instruction Set of 8086 Microprocessor
Instruction Set of 8086 MicroprocessorInstruction Set of 8086 Microprocessor
Instruction Set of 8086 MicroprocessorAshita Agrawal
 
Notes arithmetic instructions
Notes arithmetic instructionsNotes arithmetic instructions
Notes arithmetic instructionsHarshitParkar6677
 
8086 instruction set
8086 instruction set8086 instruction set
8086 instruction setjemimajerome
 
8086 microprocessor instruction set by Er. Swapnil Kaware
8086 microprocessor instruction set by Er. Swapnil Kaware8086 microprocessor instruction set by Er. Swapnil Kaware
8086 microprocessor instruction set by Er. Swapnil KawareProf. Swapnil V. Kaware
 
8086-instruction-set-ppt
 8086-instruction-set-ppt 8086-instruction-set-ppt
8086-instruction-set-pptjemimajerome
 
Instruction set of 8086
Instruction set of 8086Instruction set of 8086
Instruction set of 8086Akhila Rahul
 
Instruction sets of 8086
Instruction sets of 8086Instruction sets of 8086
Instruction sets of 8086Mahalakshmiv11
 
Instruction set of 8085 Microprocessor By Er. Swapnil Kaware
Instruction set of 8085 Microprocessor By Er. Swapnil KawareInstruction set of 8085 Microprocessor By Er. Swapnil Kaware
Instruction set of 8085 Microprocessor By Er. Swapnil KawareProf. Swapnil V. Kaware
 
Instructionset8085
Instructionset8085Instructionset8085
Instructionset8085Fawad Pathan
 
Microprocessor 8086 instructions
Microprocessor 8086 instructionsMicroprocessor 8086 instructions
Microprocessor 8086 instructionsRavi Anand
 
Assembly Language Lecture 4
Assembly Language Lecture 4Assembly Language Lecture 4
Assembly Language Lecture 4Motaz Saad
 

What's hot (20)

Logical Instructions used in 8086 microprocessor
Logical Instructions used in 8086 microprocessorLogical Instructions used in 8086 microprocessor
Logical Instructions used in 8086 microprocessor
 
Logical instructions (and, or, xor, not, test)
Logical instructions (and, or, xor, not, test)Logical instructions (and, or, xor, not, test)
Logical instructions (and, or, xor, not, test)
 
Instruction set of 8086
Instruction set of 8086Instruction set of 8086
Instruction set of 8086
 
Instruction set of 8086
Instruction set of 8086Instruction set of 8086
Instruction set of 8086
 
Instruction Set of 8086 Microprocessor
Instruction Set of 8086 MicroprocessorInstruction Set of 8086 Microprocessor
Instruction Set of 8086 Microprocessor
 
Notes arithmetic instructions
Notes arithmetic instructionsNotes arithmetic instructions
Notes arithmetic instructions
 
8086 instruction set
8086 instruction set8086 instruction set
8086 instruction set
 
8086 Instruction set
8086 Instruction set8086 Instruction set
8086 Instruction set
 
8086 microprocessor instruction set by Er. Swapnil Kaware
8086 microprocessor instruction set by Er. Swapnil Kaware8086 microprocessor instruction set by Er. Swapnil Kaware
8086 microprocessor instruction set by Er. Swapnil Kaware
 
8086-instruction-set-ppt
 8086-instruction-set-ppt 8086-instruction-set-ppt
8086-instruction-set-ppt
 
Instruction set of 8086
Instruction set of 8086Instruction set of 8086
Instruction set of 8086
 
8086 instruction set
8086 instruction set8086 instruction set
8086 instruction set
 
Instruction sets of 8086
Instruction sets of 8086Instruction sets of 8086
Instruction sets of 8086
 
Instruction set of 8085 Microprocessor By Er. Swapnil Kaware
Instruction set of 8085 Microprocessor By Er. Swapnil KawareInstruction set of 8085 Microprocessor By Er. Swapnil Kaware
Instruction set of 8085 Microprocessor By Er. Swapnil Kaware
 
Arithmetic instrctions
Arithmetic instrctionsArithmetic instrctions
Arithmetic instrctions
 
Unit iii mca 1st year
Unit iii mca 1st yearUnit iii mca 1st year
Unit iii mca 1st year
 
Instruction set of 8086 Microprocessor
Instruction set of 8086 Microprocessor Instruction set of 8086 Microprocessor
Instruction set of 8086 Microprocessor
 
Instructionset8085
Instructionset8085Instructionset8085
Instructionset8085
 
Microprocessor 8086 instructions
Microprocessor 8086 instructionsMicroprocessor 8086 instructions
Microprocessor 8086 instructions
 
Assembly Language Lecture 4
Assembly Language Lecture 4Assembly Language Lecture 4
Assembly Language Lecture 4
 

Similar to 8086inst logical

Microprocessor.pptx
Microprocessor.pptxMicroprocessor.pptx
Microprocessor.pptxNishatNishu5
 
8086 instructions
8086 instructions8086 instructions
8086 instructionsRavi Anand
 
Logical, Shift, and Rotate Instruction
Logical, Shift, and Rotate InstructionLogical, Shift, and Rotate Instruction
Logical, Shift, and Rotate InstructionBadrul Alam
 
Assembly Language Programming By Ytha Yu, Charles Marut Chap 7 (Logic, Shift,...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 7 (Logic, Shift,...Assembly Language Programming By Ytha Yu, Charles Marut Chap 7 (Logic, Shift,...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 7 (Logic, Shift,...Bilal Amjad
 
Addressing mode of 80286 microprocessor
Addressing mode of 80286 microprocessorAddressing mode of 80286 microprocessor
Addressing mode of 80286 microprocessorpal bhumit
 
Microprocessor
MicroprocessorMicroprocessor
Microprocessoradnanqayum
 
instruction-set-of-8086-mr-binu-joy3.ppt
instruction-set-of-8086-mr-binu-joy3.pptinstruction-set-of-8086-mr-binu-joy3.ppt
instruction-set-of-8086-mr-binu-joy3.pptssuser2b759d
 
Logic, shift and rotate instruction
Logic, shift and rotate instructionLogic, shift and rotate instruction
Logic, shift and rotate instructionkashif Shafqat
 
Types of instructions
Types of instructionsTypes of instructions
Types of instructionsihsanjamil
 
Logic, shift and rotate instruction
Logic, shift and rotate instructionLogic, shift and rotate instruction
Logic, shift and rotate instructionkashif Shafqat
 
15CS44 MP & MC Module 2
15CS44 MP & MC Module  215CS44 MP & MC Module  2
15CS44 MP & MC Module 2RLJIT
 
Mastering Assembly Language: Programming with 8086
Mastering Assembly Language: Programming with 8086Mastering Assembly Language: Programming with 8086
Mastering Assembly Language: Programming with 8086sravanithonta79
 
8085 instruction set (detailed)
8085 instruction set (detailed)8085 instruction set (detailed)
8085 instruction set (detailed)Ravi Anand
 

Similar to 8086inst logical (20)

Chapter3 8086inst logical 2
Chapter3 8086inst logical 2Chapter3 8086inst logical 2
Chapter3 8086inst logical 2
 
Microprocessor.pptx
Microprocessor.pptxMicroprocessor.pptx
Microprocessor.pptx
 
8086 instructions
8086 instructions8086 instructions
8086 instructions
 
Logical, Shift, and Rotate Instruction
Logical, Shift, and Rotate InstructionLogical, Shift, and Rotate Instruction
Logical, Shift, and Rotate Instruction
 
Assembly Language Programming By Ytha Yu, Charles Marut Chap 7 (Logic, Shift,...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 7 (Logic, Shift,...Assembly Language Programming By Ytha Yu, Charles Marut Chap 7 (Logic, Shift,...
Assembly Language Programming By Ytha Yu, Charles Marut Chap 7 (Logic, Shift,...
 
[ASM]Lab7
[ASM]Lab7[ASM]Lab7
[ASM]Lab7
 
Chap3 8086 artithmetic
Chap3 8086 artithmeticChap3 8086 artithmetic
Chap3 8086 artithmetic
 
8086 ins2 math
8086 ins2 math8086 ins2 math
8086 ins2 math
 
Chapter 3 8086 ins2 math
Chapter 3 8086 ins2 mathChapter 3 8086 ins2 math
Chapter 3 8086 ins2 math
 
Addressing mode of 80286 microprocessor
Addressing mode of 80286 microprocessorAddressing mode of 80286 microprocessor
Addressing mode of 80286 microprocessor
 
Microprocessor
MicroprocessorMicroprocessor
Microprocessor
 
instruction-set-of-8086-mr-binu-joy3.ppt
instruction-set-of-8086-mr-binu-joy3.pptinstruction-set-of-8086-mr-binu-joy3.ppt
instruction-set-of-8086-mr-binu-joy3.ppt
 
Instruction set
Instruction setInstruction set
Instruction set
 
Logic, shift and rotate instruction
Logic, shift and rotate instructionLogic, shift and rotate instruction
Logic, shift and rotate instruction
 
Types of instructions
Types of instructionsTypes of instructions
Types of instructions
 
Logic, shift and rotate instruction
Logic, shift and rotate instructionLogic, shift and rotate instruction
Logic, shift and rotate instruction
 
Addressing modes
Addressing modesAddressing modes
Addressing modes
 
15CS44 MP & MC Module 2
15CS44 MP & MC Module  215CS44 MP & MC Module  2
15CS44 MP & MC Module 2
 
Mastering Assembly Language: Programming with 8086
Mastering Assembly Language: Programming with 8086Mastering Assembly Language: Programming with 8086
Mastering Assembly Language: Programming with 8086
 
8085 instruction set (detailed)
8085 instruction set (detailed)8085 instruction set (detailed)
8085 instruction set (detailed)
 

More from HarshitParkar6677 (20)

Wi fi hacking
Wi fi hackingWi fi hacking
Wi fi hacking
 
D dos attack
D dos attackD dos attack
D dos attack
 
Notes chapter 6
Notes chapter  6Notes chapter  6
Notes chapter 6
 
Interface notes
Interface notesInterface notes
Interface notes
 
Chapter6 2
Chapter6 2Chapter6 2
Chapter6 2
 
Chapter6
Chapter6Chapter6
Chapter6
 
8086 cpu 1
8086 cpu 18086 cpu 1
8086 cpu 1
 
Chapter 6 notes
Chapter 6 notesChapter 6 notes
Chapter 6 notes
 
Chapter 5 notes
Chapter 5 notesChapter 5 notes
Chapter 5 notes
 
Chap6 procedures & macros
Chap6 procedures & macrosChap6 procedures & macros
Chap6 procedures & macros
 
Chapter 5 notes new
Chapter 5 notes newChapter 5 notes new
Chapter 5 notes new
 
Notes aaa aa
Notes aaa aaNotes aaa aa
Notes aaa aa
 
Notes 8086 instruction format
Notes 8086 instruction formatNotes 8086 instruction format
Notes 8086 instruction format
 
Misc
MiscMisc
Misc
 
Chapter3 program flow control instructions
Chapter3 program flow control instructionsChapter3 program flow control instructions
Chapter3 program flow control instructions
 
Chapter3 8086inst stringsl
Chapter3 8086inst stringslChapter3 8086inst stringsl
Chapter3 8086inst stringsl
 
Chap3 program flow control instructions
Chap3 program flow control instructionsChap3 program flow control instructions
Chap3 program flow control instructions
 
Chap3 8086 data transfer
Chap3 8086 data transferChap3 8086 data transfer
Chap3 8086 data transfer
 
Chap 8086 string
Chap 8086 stringChap 8086 string
Chap 8086 string
 
Addressing modes of 8086
Addressing modes of 8086Addressing modes of 8086
Addressing modes of 8086
 

Recently uploaded

Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 

Recently uploaded (20)

Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 

8086inst logical

  • 1. Logical Instructions –These are the instructions used for basic logic operations such as AND, OR, NOT and XOR. –These are also used for carrying out bit by bit operations such as shift (SHR,SHL) or rotate (ROL,ROR,RCR,RCL). – One more Instruction under this category is TEST instruction.
  • 2. AND (Logical AND) Syntax :-- AND destination, source • This instruction is used to bit by bit AND the contents of source to the destination. •The result is stored in the destination. •The source operand can be a immediate, a register or a memory location. •The destination can be a register or a memory location, but not an immediate data. •Both operands cannot be immediate data or memory location. •Flags affected : OF = 0 ,CF = 0 , AF is undefined. • And other flags (SF, ZF, PF) are affected based on the AND operation.
  • 3. • Operation Performed :-- • Destination  Destination AND source • Examples :-- 1. AND BH,CL ;AND byte in CL with Byte in BH, result in BH. 2. AND BX,00FFH ;AND word in BX with immediate data 00ffH 3. AND [5000H], DX ;AND word in DX with a word in memory with offset 5000 in DS. AND (Logical AND) contd..
  • 4. Numeric Example If AX = 3F0F, After Instruction, AND AX,9078H ; AX  AX AND 0008H ;AX  3F0F AND 0008 3F0F  0011 1111 0000 1111 AND 9078  1001 0000 0111 1000 ------------------------------------- = 0001 0000 0000 1000 1008H in AX register
  • 5. OR (Logical OR) Syntax :-- OR destination, source • This instruction is used to bit by bit OR the contents of source to the destination. •The result is stored in the destination. •The source operand can be a immediate, a register or a memory location. •The destination can be a register or a memory location, but not an immediate data. •Both operands cannot be immediate data or memory location. •Flags affected : OF = 0 ,CF = 0 , AF is undefined. • And other flags (SF, ZF, PF) are affected based on the OR operation.
  • 6. • Operation Performed :-- • Destination  Destination OR source • Examples :-- 1. OR BH,CL ;OR byte in CL with Byte in BH, result in BH. 2. OR BX,00FFH ;OR word in BX with immediate data 00ffH 3. OR [5000H], DX ; OR word in DX with a word in memory with offset 5000 in DS. OR (Logical OR) contd..
  • 7. Numeric Example If AX = 3F0F, After Instruction, OR AX,9078H ; AX  AX OR 9078H ;AX  3F0F OR 9078 3F0F  0011 1111 0000 1111 OR 9078  1001 0000 0111 1000 ------------------------------------- = 1011 1111 0111 1111 BF7FH in AX register
  • 8. XOR (Logical XOR) Syntax :-- XOR destination, source • This instruction is used to bit by bit XOR the contents of source to the destination. •The result is stored in the destination. •The source operand can be a immediate, a register or a memory location. •The destination can be a register or a memory location, but not an immediate data. •Both operands cannot be immediate data or memory location. •Flags affected : OF = 0 ,CF = 0 , AF is undefined. • And other flags (SF, ZF, PF) are affected based on the XOR operation.
  • 9. • Operation Performed :-- • Destination  Destination XOR source • Examples :-- 1. XOR BH,CL ;XOR byte in CL with Byte in BH, result in BH. 2. XOR BX,00FFH ;XOR word in BX with immediate data 00ffH 3. XOR [5000H], DX ; XOR word in DX with a word in memory with offset 5000 in DS. XOR (Logical XOR) contd..
  • 10. Numeric Example If AX = 3F0F, After Instruction, XOR AX,9078H ; AX  AX XOR 0008H ;AX  3F0F XOR 0008 3F0F  0011 1111 0000 1111 XOR 9078  1001 0000 0111 1000 ------------------------------------- = 1010 1111 0111 0111 AF77H in AX register
  • 11. NOT (Logical Invert ) Syntax :-- NOT destination • This instruction complements (inverts) each bit of the byte or word stored in the destination. •The result is stored in the destination. •The destination can be a register or a memory location. •No Flags affected
  • 12. • Operation Performed :-- • Destination  NOT Destination • Examples :-- 1. NOT BH ;Complement byte in BH, result in BH. 2. NOT BX ; Complement word in BX, result in BX. 3. NOT BYTE PTR [5000H] ; Complement byte in memory with offset 5000 in DS. NOT (Logical Invert ) contd..
  • 13. Numeric Example If AX = 3F0F, After Instruction, NOT AX ; AX  NOT AX ;AX  NOT 3F0F 3F0F  0011 1111 0000 1111 Complement ------------------------------------- = 1100 0000 1111 0000 C0F0H in AX register
  • 14. TEST (Logical compare ) Syntax :-- TEST destination, source • This instruction is used to bit by bit AND the contents of source to the destination. •The result is not stored in the destination. •The source operand can be a immediate, a register or a memory location. •The destination can be a register or a memory location, but not an immediate data. •Both operands cannot be immediate data or memory location. •Flags affected : OF = 0 ,CF = 0 , SF, ZF, PF. •TEST instruction is used to set flags before a conditional jump instruction
  • 15. • Operation Performed :-- – Flags  set result of Destination AND source • Examples :-- 1. TEST BH,CL ;AND byte in CL with Byte in BH, no result but flags are affected. 2. TEST BX,00FFH ;AND word in BX with immediate data 00ffH, no result but flags are affected. 3. TEST DX, [5000H];AND word in DX with a word in memory with offset 5000 in DS, no result but flags are affected. TEST (Logical Compare) contd..
  • 16. SHL / SAL (Shift Logical/Arithmetic Left) Syntax :-- SHL/SAL destination, count • SHL & SAL are the opcodes for the same operation •This instruction shifts the destination bit by bit to the left and insert zeroes in the newly introduced least significant bits. •The shift operation is through carry. •The count can be either 1 or specified by CL register. •The destination can be a byte or a word in register or a memory location, but not an immediate data. •Flags affected : OF ,CF, SF, ZF, PF. •These instructions can be used to multiply an unsigned number by power of 2.
  • 17. CF BX 0 0 1 CF BX • Operation Performed :-- –CF  MSB ------------------ LSB  0 • Example :-- – If CF = 0, BX = E6D3H – After SAL BX, 1 ; Shift the contents of BX register by one towards left SHL / SAL (Shift Logical/Arithmetic Left)Cntd.. 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 BX = CDA6
  • 18. • Example :-- • Use of SHL instruction for Multiplication:- – If CF = 0, BH = 04H – MOV CL, 03 ; Load CL register for the count – SHL BH, CL ; Shift the contents of BX register by one towards left – BH = 20H (32D) [ 04 * 23 = 32 D] – Note :-- SHL can be used to multiply a number with powers of 2. SHL / SAL (Shift Logical/Arithmetic Left)Cntd..
  • 19. 0 0 0 1 0 0 0 0 CF BH 0 0 0 0 0 0 0 SHL / SAL (Shift Logical/Arithmetic Left)Cntd.. BH = 20H with CF = 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
  • 20. SAR (Shift Arithmetic Right ) Syntax :-- SAR destination, count • This instruction shifts the destination bit by bit to the right and MSB position is kept in the old MSB position •The shift operation is through carry, LSB is shifted to CF. •The count can be either 1 or specified by CL register. •The destination can be a byte or a word in register or a memory location, but not an immediate data. •Flags affected : OF ,CF, SF, ZF, PF. •This instruction can be used to divide an unsigned number by power of 2.
  • 21. BX CF 0 1 BX CF 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 • Operation Performed :-- – MSB ----------------- LSB  CF • Example :-- – If CF = 0, BX = E6D3H – After SAR BX, 1 ; Shift the contents of BX register by one towards right SAR (Shift Arithmetic Right)Cntd.. 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 BX = F369H
  • 22. • Example :-- • Use of SAR instruction for Division:- – If CF = 0, BH = 14H – MOV CL, 02 ; Load CL register for the count – SAR BH, CL ; Shift the contents of BX register by one towards right – BH = 05H (20D) [ 20 / 22 = 05D] – Note :-- SAR can be used to divide a number with powers of 2 and get the quotient. SAR (Shift Arithmetic Right )Cntd..
  • 23. 0 0 0 0 0 1 0 1 BH CF 0 0 0 SAR (Shift Arithmetic Right)Cntd.. BH = 05H with CF = 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0
  • 24. SHR (Shift Logical Right) Syntax :-- SHR destination, count •This instruction shifts the destination bit by bit to the right and insert zeroes in the newly introduced most significant bits. •The shift operation is through carry. •The count can be either 1 or specified by CL register. •The destination can be a byte or a word in register or a memory location, but not an immediate data. •Flags affected : OF ,CF, SF, ZF, PF.
  • 25. BX CF 0 0 1 BX CF 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 • Operation Performed :-- –0  MSB ------------------ LSB  CF • Example :-- – If CF = 0, BX = E6D3H – After SHR BX, 1 ; Shift the contents of BX register by one towards right SHR (Shift Logical Right)Cntd.. 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 BX = 7369H
  • 26. ROR (Rotate Right without Carry) Syntax :-- ROR destination, count •This instruction rotates the destination bit by bit to the right excluding the carry •The bit moved out of LSB is rotated around into the MSB and also copied to CF. •The count can be either 1 or specified by CL register. •The destination can be a byte or a word in register or a memory location, but not an immediate data. •Flags affected : OF ,CF
  • 27. BX CF 0 1 BX CF 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 • Operation Performed :-- – MSB LSB  CF • Example :-- – If CF = 0, BX = E6D3H – After ROR BX, 1 ; Rotate the contents of BX register by one towards right ROR (Rotate Right without Carry)Cntd.. 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 BX = F369H
  • 28. • Example :-- – If CF = 0, BH = 54H – MOV CL, 02 ; Load CL register for the count ROR BH, CL ; Rotate the contents of BH register by twice towards right ROR (Rotate Right without Carry)Cntd.. 0 0 0 1 0 1 0 1 BH CF 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 BH = 15H with CF = 0
  • 29. • Uses of ROR instruction:-- • This instruction can be used to swap the nibbles in a byte or to swap the bytes in a word. – MOV CL,04H ROR AL, CL • It can also be used to rotate the bit into CF which can be checked later for a conditional jump. (JC or JNC)
  • 30. ROL (Rotate Left without Carry) Syntax :-- ROL destination, count •This instruction rotates the destination bit by bit to the left excluding the carry •The bit moved out of MSB is rotated around into the LSB and also copied to CF. •The count can be either 1 or specified by CL register. •The destination can be a byte or a word in register or a memory location, but not an immediate data. •Flags affected : OF ,CF
  • 31. CF BX 0 1 CF BX 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 • Operation Performed :-- – CF MSB LSB • Example :-- – If CF = 0, BX = E6D3H – After ROL BX, 1 ; Rotate the contents of BX register by one towards left ROL (Rotate Left without Carry)Cntd.. 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 BX = CDA7H
  • 32. • Example :-- – If CF = 0, BH = 54H – MOV CL, 02 ; Load CL register for the count ROL BH, CL ; Rotate the contents of BH register by twice towards Left ROL (Rotate Left without Carry)Cntd.. 0 1 0 1 0 0 0 1 CF BH 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 BH = 51H with CF = 1
  • 33. • Uses of ROL instruction:-- • This instruction can be used to swap the nibbles in a byte or to swap the bytes in a word. – MOV CL,04H ROL AL, CL • It can also be used to rotate the bit into CF which can be checked later for a conditional jump. (JC or JNC)
  • 34. RCR (Rotate Right with Carry) Syntax :-- ROR destination, count •This instruction rotates the destination bit by bit to the right including the carry •The bit moved out of LSB is rotated into CF and the bit in CF is rotated into the MSB. •The count can be either 1 or specified by CL register. •The destination can be a byte or a word in register or a memory location, but not an immediate data. •Flags affected : OF ,CF
  • 35. BX CF 0 1 BX CF 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 • Operation Performed :-- – MSB LSB  CF • Example :-- – If CF = 0, BX = E6D3H – After RCR BX, 1 ; Rotate the contents of BX register by one towards right through carry RCR (Rotate Right with Carry)Cntd.. 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 BX = 7369H
  • 36. • Example :-- – If CF = 0, BH = 54H – MOV CL, 02 ; Load CL register for the count RCR BH, CL ; Rotate the contents of BH register by twice towards right through carry RCR (Rotate Right with Carry)Cntd.. 0 0 0 1 0 1 0 1 BH CF 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 BH = 15H with CF = 0
  • 37. RCL (Rotate Left with Carry) Syntax :-- RCL destination, count •This instruction rotates the destination bit by bit to the left including the carry •The bit moved out of MSB is rotated into CF and the bit in CF is rotated into the LSB. •The count can be either 1 or specified by CL register. •The destination can be a byte or a word in register or a memory location, but not an immediate data. •Flags affected : OF ,CF
  • 38. CF BX 0 1 CF BX 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 • Operation Performed :-- – CF MSB LSB • Example :-- – If CF = 0, BX = E6D3H – After RCL BX, 1 ; Rotate the contents of BX register by one towards left through carry RCL (Rotate Left with Carry)Cntd.. 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 BX = CDA6H
  • 39. • Example :-- – If CF = 0, BH = 54H – MOV CL, 02 ; Load CL register for the count RCL BH, CL ; Rotate the contents of BH register by twice towards Left through carry RCL (Rotate Left with Carry)Cntd.. 0 1 0 1 0 0 0 0 CF BH 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 BH = 50H with CF = 1