SlideShare a Scribd company logo
1 of 108
โ€ซุงู„ุฑุญูŠู…โ€ฌ โ€ซุงู„ุฑุญู…ู†โ€ฌ โ€ซู‡ู„ู„ุงโ€ฌ โ€ซุจุณู…โ€ฌ
Graduation Project II
Supervisor: Dr. Riyad Awad. Prepared by: Ahmad Abdel All
Omar Barham
Zafer Nasrallah
An-Najah National University
Faculty of Engineering
โ€ซุงู„ูˆุทู†ูŠุฉโ€ฌ โ€ซุงู„ู†ุฌุงุญโ€ฌ โ€ซุฌุงู…ุนุฉโ€ฌ
โ€ซุงู„ู‡ู†ุฏุณุฉโ€ฌ โ€ซูƒู„ูŠุฉโ€ฌ
Civil Engineering Department
3D-DYNAMIC ANALYSIS AND DESIGN OF ODEHโ€™S HOTEL IN NABLUS
Outline:
๏‚งIntroduction.
๏‚งPreliminary dimensions and 3D model.
๏‚งDynamic Analysis
๏‚งDynamic design.
Challenges and problems :
The architect didnโ€™t take any consideration for structural purposes.
The columns was so scattered so we have a panel of 10 * 7 m,and so
a long spans
The unsymmetrical shape of the building causes an extra load from
lateral forces and so the natural period is too high .
Introduction
๏ฑ Hotel is located in Nablus city.
๏ฑ The Hotel is composed of two Blocks, A and B.
๏ฑ Both of block A,B have a 7 stories
๏ฑ The total area of structure is 5400 m2.
1) Introduction:
โ€ข Project description:
Basement
1) Introduction:
โ€ข Project description:
Ground Floor
1) Introduction:
โ€ข Project description:
Mezzanine
1) Introduction:
โ€ข Project description:
First Floor
1) Introduction:
โ€ข Project description:
2nd , 3rd and 4th floors
1) Introduction:
โ€ข Project description:
Story Elevation(๐’Ž) Area (๐’Ž๐Ÿ)
Basement -4.75 805.24
Ground 0.00 805.24
Mezzanine 3.25 482.57
First 6.00 805.24
Second 9.25 805.24
Third 12.5 805.24
Forth 15.75 805.24
1) Introduction:
โ€ข Geotechnical information:
Soil layers are close to be soft stone so the
design bearing capacity is250 kN/๐‘š2
โ€ข Codes and Standards:
โ€ข IBC 2012
โ€ข ACI 318M-14
โ€ข ASCE 2010
1) Introduction:
โ€ข Materials:
Rebar Steel: - Yielding strength of used steel (fy) = 420MPa.
- Modulus of elasticity of used steel (Es) = 200GPa.
Concrete: strength: 30 MPa
Type: B375
1) Introduction:
โ€ข Loads:
1- Super-imposed dead load:3.5 ๐‘˜๐‘/๐‘š2
Zone Material Unit Weigh
KN/mยณ
Thickness
cm
Wight (KN/mยฒ)
(unit weigh *
thickness in m)
A Ceramic 0.12 1.0 1.2 *10โ€พยณ
B Mortar 23 3.0 0.69
C Filling Material 17 7.0 1.190
D Slab Thickness 25 - -
E Plaster 23 1.5 0.345
a. Static load
1) Introduction:
โ€ข Loads:
2- Live Load : In Basement, Ground, First floors 5 ๐‘˜๐‘/๐‘š2
In 2nd , 3rd and 4th floors 2 ๐‘˜๐‘/๐‘š2
a. Static load
1) Introduction:
โ€ข Loads:
b. Lateral loads (seismic)
The hotel is located in Nablus area which is classified zone
2B, according to Palestine seismic zone (z=0.2).
1) Introduction:
โ€ข Programs:
1- ETABS 2015
2- SAFE 2014
3- AutoCAD
Preliminary dimensions and 3D model
2) Preliminary dimensions and 3D model:
โ€ข Introduction to structural system.
We divided the project into 2 blocks
2) Preliminary design and 3D model:
โ€ข Introduction to structural system.
One-way Voided Slab:
๐ป๐‘’๐‘–๐‘”โ„Ž๐‘ก, ๐ป = 16 ๐‘๐‘š
๐น๐‘œ๐‘œ๐‘ก โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก, ๐‘ƒ = 7 ๐‘๐‘š
๐‘†๐‘๐‘Ž๐‘๐‘’๐‘Ÿ โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก, ๐‘‘ = 0.8 ๐‘๐‘š
๐‘Š๐‘’๐‘–๐‘”โ„Ž๐‘ก = 1.24 ๐พ๐‘”
๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ = 0.028 ๐‘š3
๐ท๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ = 46.13 ๐พ๐‘” ๐‘š3
๐›พ = 0.453 ๐‘˜๐‘ ๐‘š3
2) Preliminary design and 3D model:
Block A
2) Preliminary design and 3D model:
Block B
2) Preliminary dimensions and 3D model:
โ€ข Preliminary dimensions:
Column dimensions
Name: Cross section:
C1 60x30
C2 80x30
C3 40x40
CB 80x40
Beam dimensions
B1 30x70 Drop
B2 50x30 Hidden
B3 60x30 Hidden
B4 30x30 Hidden
B5 30x90 Drop
2) Preliminary dimensions and 3D model:
โ€ข Materials and modifiers:
2) Preliminary dimensions and 3D model:
โ€ข Materials and modifiers:
2) Preliminary dimensions and 3D model:
โ€ข Materials and modifiers:
2) Preliminary dimensions and 3D model:
โ€ข Materials and modifiers:
Slab modifiers in block A
2) Preliminary dimensions and 3D model:
โ€ข Checks
As shown the structure
move as a rigid unit
(moving together)
1- Checks for Compatibility:
2) Preliminary dimensions and 3D model:
โ€ข Checks
2- Equilibrium check (Base reactions):
All less than 5%, OK
Total load:
By hand By model Error %
Dead 23181.15 22687.28 2.18
Live 7748 7553.819 2.58
SD 8227.345 8001.932 2.82
Wall 10013.902 9614.58 4.15
2) Preliminary dimensions and 3D model:
โ€ข Checks
3- Checks moment stress-strain relationships:
In our calculations we take slab strip and the interior beam in
block A
2) Preliminary dimensions and 3D model:
โ€ข Checks
3- Checks moment stress-strain relationships:
And we did the same for a beam
๐‘€1 = 15.2 ๐‘˜๐‘. ๐‘š/๐‘š
๐‘€2 = 19.1 ๐‘˜๐‘. ๐‘š/๐‘š
๐‘€3 = 1.1 ๐‘˜๐‘. ๐‘š/๐‘š
๐‘€ =
15.2 + 1.1
2
+ 19.1 = 27.25 ๐‘˜๐‘. ๐‘š/๐‘š
From 1-D analysis:
๐‘Š๐‘ข = 1.2 ร— 3.5 + 4.64 + 1.6 ร— 2 = 12.97 ๐‘˜๐‘/๐‘š
๐‘€โ„Ž๐‘Ž๐‘›๐‘‘ =
๐‘Š๐‘ข ร— ๐‘™2
8
=
12.97 ร— 4.5 โˆ’ 0.3 2
8
= 28.6 ๐‘˜๐‘. ๐‘š/๐‘š
๐ธ๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ =
28.6 โˆ’ 27.25
28.6
ร— 100% = 4.7% < 10% ๐‘‚๐พ
2) Preliminary dimensions and 3D model:
โ€ข Checks
4- Checks for deflection:
We have case 4 that is: L/240
2) Preliminary dimensions and 3D model:
โ€ข Checks
4- Checks for deflection:
(we assumed the โˆ† sustained live load=0.5โˆ†๐ฟ๐‘–๐‘ฃ๐‘’)
โˆ†๐‘™๐‘œ๐‘›๐‘” ๐‘ก๐‘’๐‘Ÿ๐‘š= 34.8 โˆ’ โˆ†๐‘Ž๐‘ฃ๐‘” ๐‘๐‘œ๐‘Ÿ๐‘›๐‘’๐‘Ÿ= 34.8 โˆ’
7.4 + 6.3 + 2.5 + 4.1
4
= 29.73 ๐‘š๐‘š
The value from ACI-code = ๐ฟ / 240 =
7.8
240
= 32.5 ๐‘š๐‘š
32.5 > 29.73 ( โˆ†๐‘™๐‘œ๐‘›๐‘” ๐‘ก๐‘’๐‘Ÿ๐‘š ) ๐‘‚๐พ
2) Preliminary dimensions and 3D model:
โ€ข Checks
5- Checks the period:
The fundamental period T=0.472
To check this value, we used Rayleigh analytical
method:
2) Preliminary dimensions and 3D model:
โ€ข Checks
5- Checks the period:
Mass calculation:
Element/Stor
y
S1 S2 S3 S4 S5 S6 S7
Slab 1517.87 1517.87 1517.87 1517.87 1517.87 1517.87 1517.87
Masonry Wall 1450 1450 1450 1450 1450 1450 1450
SID 1157.8 1157.8 1157.8 1157.8 1157.8 1157.8 1157.8
Stairs 179.5 179.5 179.5 179.5 179.5 179.5 89.75
Beams 696.85 696.85 696.85 696.85 696.85 696.85 696.85
Columns 257.5 186 164.625 157.625 157.625 157.625 78.8125
Walls 864.75 532 532 532 532 532 266
Mass (kN) 6124.27 5720.02 5698.65 5691.65 5691.65 5691.65 5257.08
Mass (ton) 624.29 583.08 580.90 580.19 580.19 580.19 535.89
2) Preliminary dimensions and 3D model:
โ€ข Checks
5- Checks the period:
To find the period in Y:
Drift values due to (1 KN/m2 โ€“ in y-direction)
delta1 delta2 delta3 delta average
(mm)
story 1 0.3 0.3 0.2 0.27
story 2 0.8 0.8 0.8 0.80
story 3 1.4 1.4 1.4 1.40
story 4 2.1 2.1 2.2 2.13
story 5 2.8 2.9 3.1 2.93
story 6 3.6 3.7 3.9 3.73
story 7 4.3 4.5 4.7 4.50
2) Preliminary dimensions and 3D model:
โ€ข Checks
5- Checks the period:
Period in Y:
mass force delta Mass*(delta
^2)
force*delta
S1 624.29 331 0.0002667 4.44E-05 0.088267
S2 583.08 331 0.0008 0.000373 0.2648
S3 580.90 331 0.0014 0.001139 0.4634
S4 580.19 331 0.0021333 0.002641 0.706133
S5 580.19 331 0.0029333 0.004992 0.970933
S6 580.19 331 0.0037333 0.008087 1.235733
S7 535.89 331 0.0045 0.010852 1.4895
Total 0.028127 5.218767
2) Preliminary dimensions and 3D model:
โ€ข Checks
5- Checks the period:
Period in Y:
๐‘‡ ๐‘Ž๐‘›๐‘Ž๐‘™๐‘ฆ๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› = 2 ร— 3.14
0.028127
5.218767
= 0.4610
๐ธ๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ =
0.4820 โˆ’ 0.4610
0.4820
= 4.35 % < 5 % โ€ฆ โ€ฆ โ€ฆ . ๐‘œ๐‘˜
2) Preliminary dimensions and 3D model:
โ€ข Checks
6- Check if torsion mode exist in 1st two modes:
Dynamic Analysis
3) Dynamic Analysis:
โ€ข Seismic Parameters
1- Site classifications
๐‘†๐‘ข =
250 ๐พ ๐‘ ๐‘š2
2
= 125
๐‘˜๐‘
๐‘š2
> 2000๐‘ƒ๐‘ ๐‘– 100
๐พ๐‘
๐‘š2
โ†’
โ†’ ๐‘†๐‘œ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘œ๐‘–๐‘™ ๐‘–๐‘  ๐‘๐‘™๐‘Ž๐‘ ๐‘ ๐‘–๐‘“๐‘–๐‘’๐‘‘ ๐‘Ž๐‘  ๐‘ช ๐’„๐’๐’‚๐’”๐’”
3) Dynamic Analysis:
โ€ข Seismic Parameters
2- Seismic Zone factor and design seismic spectral acceleration (SD1, SDs):
The hotel located in Nablus city which
is in Zone 2B, and has Z = 0.2 g
3) Dynamic Analysis:
โ€ข Seismic Parameters
2- Seismic Zone factor and design seismic spectral acceleration (SD1, SDs):
๐‘†๐‘  = 2.5 ร— ๐‘ = 2.5 ร— 0.2 = 0.5
๐‘†1 = 1.25 ร— ๐‘ = 1.25 ร— 0.2 = 0.25
๐‘†๐‘€๐‘† = ๐น๐‘Ž ร— ๐‘†๐‘ 
๐‘†๐‘€1 = ๐น๐‘ฃ ร— ๐‘†1
Determine the maximum considered earthquake spectral response
accelerations adjusted for site class effects, SMS at short period and SM1
at long period according to IBC 1613.3.3:
3) Dynamic Analysis:
โ€ข Seismic Parameters
2- Seismic Zone factor and design seismic spectral acceleration (SD1, SDs):
3) Dynamic Analysis:
โ€ข Seismic Parameters
2- Seismic Zone factor and design seismic spectral acceleration (SD1, SDs):
๐‘†๐‘€๐‘† = ๐น๐‘Ž ร— ๐‘†๐‘  = 1.2 ร— 0.5 = 0.6 ๐‘” ๐‘†๐‘€1 = ๐น๐‘ฃ ร— ๐‘†1 = 1.55 ร— 0.25 = 0.3875
Determine the 5% damped design spectral response accelerations SDS at short
period and SD1 at long period in accordance with IBC 1613.3.4.
๐‘†๐ท๐‘† =
2
3
ร— ๐‘†๐‘€๐‘  ๐‘†๐ท1 =
2
3
ร— ๐‘†๐‘€1
3) Dynamic Analysis:
โ€ข Seismic Parameters
2- Seismic Zone factor and design seismic spectral acceleration (SD1, SDs):
Because of the Z factor is taken from the map (which is probability of exceedance =
10 % and the IBC code is probability of exceedance = 2 %) so we multiply the
values of SDs and SD1 by (3/2).
NOTE: we want to design the structure as 10 % of exceedance at 50 year exposure
time with return design period of 475 years.
๐‘†๐ท๐‘† =
3
2
ร— (
2
3
ร— ๐‘†๐‘€๐‘ ) =
3
2
ร—
2
3
ร— 0.6 = 0.6 ๐‘”
๐‘†๐ท1 =
3
2
ร— (
2
3
ร— ๐‘†๐‘€1) =
3
2
ร—
2
3
ร— 0.3875 = 0.3875 ๐‘”
3) Dynamic Analysis:
โ€ข Seismic Parameters
3- Determination of seismic Design category and importance factor (Ie):
The IBC code classifies the structures according to the nature of occupancy,
and the hotel is defined as risk category 2, because it is a normal building.
3) Dynamic Analysis:
โ€ข Seismic Parameters
3- Determination of seismic Design category and importance factor (Ie):
Then using ASCE 7-10 to determine the importance factor of the Building
from (table 1.5-2: in ASCE)
3) Dynamic Analysis:
โ€ข Seismic Parameters
3- Determination of seismic Design category and importance factor (Ie):
So the seismic design category is D
Since all other structures shall be assigned to a seismic design category based on their
risk category and the design spectral response acceleration parameters, SDS and
SD1. Using ASCE 7-10:
3) Dynamic Analysis:
โ€ข Determination of building frame system and
Response modification factor (R):
There are 3 types of building frame system according to
resistance the gravity and lateral loads:
1- Bearing wall system
2- Building frame system
3- The moment resisting frame system
3) Dynamic Analysis:
โ€ข Determination of building frame system and
Response modification factor (R):
Walls take 97.75% of lateral loads in y-directions
Walls take 98% of lateral loads in x-directions
From this results and since the building is located in moderate seismic area
then the system is building frame system with intermediate reinforcement.
3) Dynamic Analysis:
โ€ข Determination of building frame system and
Response modification factor (R):
So we will use the Ordinary reinforced concrete shear walls
system with R = 5, Cd = 4.5 and โ„ฆ = 2.5
3) Dynamic Analysis:
โ€ข Determinations of Approximate Fundamental
Period (Ta):
According to ASCE 7-10 code the analytical periods shall be less than
approximate fundamental method (Ta):
๐‘‡๐‘Ž = ๐ถ๐‘ก ร— โ„Ž๐‘›
๐‘ฅ
3) Dynamic Analysis:
โ€ข Determinations of Approximate Fundamental
Period (Ta):
๐‘‡๐‘Ž = ๐ถ๐‘ก ร— โ„Ž๐‘›
๐‘ฅ
= 0.0488 โˆ— 23.75 0.75
= 0.525 ๐‘ ๐‘’๐‘
Also the code suggests maximizing this value by multiply it by Cu coefficient of upper limits
๐‘‡๐‘Ž = ๐ถ๐‘ข ร— ๐‘‡๐‘Ž = 1.40 ร— 0.525 = 0.735 ๐‘ ๐‘’๐‘
3) Dynamic Analysis:
โ€ข Determination of Seismic Base reactions:
Equivalent static methods
Dynamic methods: Linear modal response spectrum analysis
3) Dynamic Analysis:
โ€ข Determination of Seismic Base reactions:
1- Equivalent Static Method
According to ASCE 7-10, ๐‘‡โ„Ž๐‘’ ๐‘†๐‘’๐‘–๐‘ ๐‘š๐‘–๐‘ ๐ต๐‘Ž๐‘ ๐‘’ ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ
(๐‘‰) = ๐ถ๐‘†๐‘’ ร— ๐‘Š
3) Dynamic Analysis:
โ€ข Determination of Seismic Base reactions:
1- Equivalent Static Method
W = 41057.28 kN
Calculating the Seismic Response Coefficient ๐ถ๐‘†๐‘’:
๐‘‡๐‘  =
๐‘†๐ท1
๐‘†๐ท๐‘ 
=
0.3875
0.6
= 0.645 ๐‘ ๐‘’๐‘. ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘‡๐‘  > ๐‘‡ = 0.482, ๐‘กโ„Ž๐‘’๐‘›:
๐ถ๐‘†๐‘’ =
๐‘†๐ท๐‘ 
๐‘…
๐ผ๐‘’
>
0.044 ร— ๐‘†๐ท๐‘  ร— ๐ผ๐‘’
0.01
๐ถ๐‘†๐‘’ =
0.6
5
1
= 0.12 >
0.044 ร— 0.6 ร— 1 = 0.0264
0.01
๐‘‡โ„Ž๐‘’ ๐‘†๐‘’๐‘–๐‘ ๐‘š๐‘–๐‘ ๐ต๐‘Ž๐‘ ๐‘’ ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘‰ = ๐ถ๐‘†๐‘’ ร— ๐‘Š = 0.12 ร— 41057.28 = 4925 ๐‘˜๐‘
3) Dynamic Analysis:
โ€ข Determination of Seismic Base reactions:
1- Equivalent Static Method We assigned equivalent static load in ETABS
3) Dynamic Analysis:
โ€ข Determination of Seismic Base reactions:
1- Equivalent Static Method
The following results was obtained:
๐ธ๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ =
4925 โˆ’ 4726
4726
ร— 100% = 4.22% < 5%
3) Dynamic Analysis:
โ€ข Determination of Seismic Base reactions:
2- Modal response spectrum analysis
3) Dynamic Analysis:
โ€ข Determination of Seismic Base reactions:
2- Modal response spectrum analysis
๐ธ๐‘ฅ = ๐ธ๐‘ฅ + 0.3 ๐ธ๐‘ฆ
๐ธ๐‘ฆ = ๐ธ๐‘ฆ + 0.3๐ธ๐‘ฅ
Then, the acceleration of main direction should be
multiplied by a
scale factor of =
๐ผ ร— ๐‘”
๐‘…
=
1 ร— 9810
5
= 1962
And the other direction should be multiplied by:
0.3 ร—
๐ผ ร— ๐‘”
๐‘…
= 0.3 ร—
1 ร— 9810
5
= 588.6
x-directions
3) Dynamic Analysis:
โ€ข Determination of Seismic Base reactions:
2- Modal response spectrum analysis
3) Dynamic Analysis:
โ€ข Determination of Seismic Base reactions:
2- Modal response spectrum analysis
the response spectrum base shear is less than static base shear so we have to make
the response spectrum is the dominant method to make a design by it, to achieve
this the ASCE7-10 code scale the forces by multiply the scale factor by
0.85 ร—
๐‘‰๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘
๐‘‰๐‘Ÿ๐‘’๐‘ ๐‘๐‘œ๐‘›๐‘ ๐‘’
So the scale factor for response in X-direction is:
= 1962 ร— 0.85 ร—
4726
2679.97
= 2940.9
The scale factor for response in Y-direction is:
= 1962 ร— 0.85 ร—
4726
2954.11
= 2667.99
3) Dynamic Analysis:
โ€ข Determination of Seismic Base reactions:
2- Modal response spectrum analysis
So the base reaction after modification:
3) Dynamic Analysis:
โ€ข Determination of Seismic Base reactions:
2- Modal response spectrum analysis
The modal mass participation ratio(MMPR):
3) Dynamic Analysis:
โ€ข Load combinations:
Ultimate load combinations Service load combinations
1.4D D+L
1.2D+1.6L 1D+0.75L+0.7E
1.2D+1E +1L 0.6D+0.7 E
0.9D+1E 1D+0.7E
๐ธ = ๐œŒ ร— ๐ธโ„Ž ยฑ ๐ธ๐‘ฃ
Eh including Eh-x and Eh-y
๐œŒ= 1.3
3) Dynamic Analysis:
โ€ข Load combinations:
For example:
)
1.2๐ท + 1๐ฟ + 1๐ธ(๐‘Ÿ๐‘’๐‘ ๐‘๐‘œ๐‘›๐‘ ๐‘’ โˆ’ ๐‘ฆ
๐ธ = ๐œŒ ร— ๐ธโ„Ž + ๐ธ๐‘ฃ
3) Dynamic Analysis:
โ€ข Structural Configuration:
1- Plane Configuration
Displacement from mode 3
3) Dynamic Analysis:
โ€ข Structural Configuration:
1- Plane Configuration
โˆ†1(๐‘ฆ) = 0.03459 ๐‘š๐‘š โˆ†2(๐‘ฆ) = 0.03132 ๐‘š๐‘š
๐‘†๐‘œ โˆ†๐‘Ž๐‘ฃ๐‘”(๐‘ฆ) =
โˆ†1 + โˆ†2
2
=
0.03459 + 0.03132
2
= 0.03295 ๐‘š๐‘š
โˆ† ๐‘š๐‘Ž๐‘ฅ = 0.03559 < 1.2 โˆ†๐‘Ž๐‘ฃ๐‘” = 0.03954 ๐‘š๐‘š
So there is no torsional irregularity nor extreme torsional irregularity.
3) Dynamic Analysis:
โ€ข Structural Configuration:
2- Vertical configuration
The drift values from the ETABS are taken from story 7 and 6
from response in Y-directions:
โˆ† 6 โˆ’ 7 = 2.3 ๐‘š๐‘š, โˆ†(5 โˆ’ 6) = 2.333 ๐‘š๐‘š
1
โˆ† 5 โˆ’ 6
= 0.428 > 0.7
1
โˆ† 6 โˆ’ 7
= 0.304
So there is no story drift nor extreme story drift
Soft story checks
3) Dynamic Analysis:
โ€ข Story Drifts Checks and Design of seismic Joint:
3) Dynamic Analysis:
โ€ข Story Drifts Checks and Design of seismic Joint:
Risk category: ฮ™ฮ™
Structure type: Masonry cantilever shear wall
Allowable story drift โˆ†๐‘Ž = 0.01 ร— 3.25 = 32.5 ๐‘š๐‘š
But we have seismic design category D. So, according to 12.12.1.1 in ASCE 7-10,
the story drift shall not exceed: โˆ†๐‘Ž
๐œŒ ,
๐œŒ = 1.3
โˆ†๐‘Ž
๐œŒ =
32.5
1.3
= 25 ๐‘š๐‘š
3) Dynamic Analysis:
โ€ข Story Drifts Checks and Design of seismic Joint:
3) Dynamic Analysis:
โ€ข Story Drifts Checks and Design of seismic Joint:
12.12.3 in ASCE 7-10: allow for the maximum inelastic response displacement (๐›ฟ๐‘€).
๐›ฟ๐‘€ =
๐ถ๐‘‘ ร— ๐›ฟ๐‘š๐‘Ž๐‘ฅ
๐ผ
, ๐ถ๐‘‘ = 4.5 , ๐ผ = 1 , ๐›ฟ๐‘€ = 2.5๐‘š๐‘š
๐›ฟ๐‘€ =
4.5 ร— 2.5
1
= 11.25 ๐‘š๐‘š
The maximum inelastic story drift (11.25mm) is less than the allowed story
drift (25mm)
3) Dynamic Analysis:
โ€ข Story Drifts Checks and Design of seismic Joint:
The seismic joint:
According to ASCE seismic separation should be SRSS of inelastic displacements by
this formula:
โˆ† = ๐ผ๐‘›๐‘’๐‘™๐‘Ž๐‘ ๐‘ก๐‘–๐‘ โˆ† ๐‘œ๐‘“ ๐‘๐‘™๐‘œ๐‘๐‘˜ ๐ด 2
+ ๐ผ๐‘›๐‘’๐‘™๐‘Ž๐‘ ๐‘ก๐‘–๐‘ โˆ† ๐‘œ๐‘“ ๐‘๐‘™๐‘œ๐‘๐‘˜ ๐ต 2 0.5
โˆ† = 11.25 2
+ 21.6 2 0.5
= 24.4๐‘š๐‘š
so take the seismic joint distance equal 3 cm
Dynamic design
Design criteria
๏ฑStrength
๏ฑServiceability and Stability
๏ฑCost effective
3) 3-D analysis and Static design:
โ€ข Check slab for shear:
From V23 the ๐‘‰
๐‘š๐‘Ž๐‘ฅ = 51.544 ๐‘˜๐‘/๐‘š = 51.544 ร— 0.55 = 28.35 ๐‘˜๐‘/๐‘Ÿ๐‘–๐‘
๐ต๐‘ข๐‘ก โˆ…๐‘‰
๐‘ =
1
6
โˆš30 ร— 150 ร— 260 = 35.6 ๐‘˜๐‘
โˆ…๐‘‰
๐‘ > ๐‘‰
๐‘š๐‘Ž๐‘ฅ,
4) Dynamic design
โ€ข Design of slab for flexure:
The maximum moment is 52.8 (๐‘˜๐‘. ๐‘š) ๐‘š =
29.04 (๐‘˜๐‘. ๐‘š) ๐‘Ÿ๐‘–๐‘
4) Dynamic design
โ€ข Design of slab:
4) Dynamic design
โ€ข Design of beams:
4) Dynamic design โ€ข Design of beams:
4) Dynamic design
โ€ข Design of columns:
4) Dynamic design โ€ข Design of columns:
4) Dynamic design
โ€ข Design of shear wall:
4) Dynamic design
โ€ข Design of shear wall:
Pu Mu2 Mu3 Vu2 Vu3
3405 kN 65 KN.m 160 KN.m 38.14 KN 198 KN
1) ๐‘‰2 = 38.14 ๐‘˜๐‘
โˆ…๐‘‰๐ถ =
โˆ… ร— ๐œ† ร— ๐‘“โ€ฒ๐‘ ร— ๐ต๐‘ค ร— ๐‘‘
6
=
0.75 ร— 1 ร— 30 ร— 1000 ร— 250
6 โˆ— 1000
= 194 ๐‘˜๐‘
๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘‰๐‘ข2 = 38.14 ๐‘˜๐‘ <
โˆ…๐‘‰๐ถ
2
= 97 ๐‘˜๐‘
So we donโ€™t need any reinforcement in the 2-direction (weak direction).
4) Dynamic design
โ€ข Design of shear wall:
Pu Mu2 Mu3 Vu2 Vu3
3405 kN 65 KN.m 160 KN.m 38.14 KN 198 KN
2) ๐‘‰3 = 198 ๐‘˜๐‘
โˆ…๐‘‰๐ถ =
โˆ… ร— ๐œ† ร— ๐‘“โ€ฒ๐‘ ร— ๐ต๐‘ค ร— ๐‘‘
6
=
0.75 ร— 1 ร— 30 ร— 300 ร— 1260
6 โˆ— 1000
= 248.5๐พ๐‘
๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘‰๐‘ข2 = 198 ๐พ๐‘ >
โˆ…๐‘‰๐ถ
2
= 129.37 ๐พ๐‘ , ๐‘ค๐‘’ ๐‘ข๐‘ ๐‘’ ๐‘š๐‘–๐‘› ๐‘Ÿ๐‘’๐‘–๐‘›๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก
๐ด๐‘ฃ
๐‘†
๐‘š๐‘–๐‘› = max 0.062 fโ€ฒc
bw
fyt
0.35 bw
fyt
= 0.25
mm2
mm
๐œŒ๐‘ก =
๐ด๐‘ฃ/๐‘ 
๐‘ก
=
0.25
300
= 0.000833 < 0.0025 ๐‘ข๐‘ ๐‘’ ๐œŒ๐‘ก, ๐‘š๐‘–๐‘› = 0.0025
๐‘†๐‘œ ๐‘กโ„Ž๐‘’ ๐ด๐‘ก = 0.0025 โˆ— 300 โˆ— 1000 = 750 ๐‘š๐‘š2 (๐Ÿ’โˆ…๐Ÿ๐Ÿ /๐’Ž ๐’Š๐’ ๐’†๐’‚๐’„๐’‰ ๐’‡๐’‚๐’„๐’†)
4) Dynamic design
โ€ข Design of shear wall:
Pu Mu2 Mu3 Vu2 Vu3
3405 kN 65 KN.m 160 KN.m 38.14 KN 198 KN
4) Dynamic design
โ€ข Design of shear wall:
Pu Mu2 Mu3 Vu2 Vu3
3405 kN 65 KN.m 160 KN.m 38.14 KN 198 KN
About Y axis(2-direction):
โ„Ž = 300 ๐‘š๐‘š, ๐‘€๐‘ข = 65 ๐พ๐‘. ๐‘š, ๐œŒ๐‘™ = 0.0053 (๐น๐‘Ÿ๐‘œ๐‘š ๐ธ๐‘‡๐ด๐ต๐‘ )
๐›พ =
โ„Ž โˆ’ 2 โˆ— ๐‘๐‘œ๐‘ฃ๐‘’๐‘Ÿ
โ„Ž
=
300 โˆ’ 2 โˆ— 60
300
= 0.6
๐‘€๐‘ข
๐‘โ„Ž2
= (65 โˆ— 10โถ)/(1400 โˆ— (300ยฒ)) /7 = 0.07369
Then from curve of moment-axial interaction diagram we determine:
โˆ…P๐‘œ
๐‘โ„Ž
= 1.4
So, the โˆ…๐‘ƒ๐‘œ ๐‘ฆ = 1.46 ร— 300 ร— 1400 = 4292
4) Dynamic design
โ€ข Design of shear wall:
Pu Mu2 Mu3 Vu2 Vu3
3405 kN 65 KN.m 160 KN.m 38.14 KN 198 KN
About X axis(3-direction):
๐ด๐‘ ๐‘ ๐‘ข๐‘š๐‘’ โ„Ž = 1400 ๐‘š๐‘š, ๐‘€๐‘ข = 160 ๐พ๐‘. ๐‘š, ๐œŒ๐‘™ = 0.0053 (๐ธ๐‘‡๐ด๐ต๐‘† ๐‘‰๐ด๐ฟ๐‘ˆ๐ธ)
๐œธ =
๐’‰ โˆ’ ๐Ÿ โˆ— ๐’„๐’๐’—๐’†๐’“
๐’‰
=
๐Ÿ๐Ÿ’๐ŸŽ๐ŸŽ โˆ’ ๐Ÿ โˆ— ๐Ÿ”๐ŸŽ
๐Ÿ๐Ÿ’๐ŸŽ๐ŸŽ
= ๐ŸŽ. ๐Ÿ—๐Ÿ
๐‘ด๐’–
๐’ƒ๐’‰๐Ÿ = (๐Ÿ๐Ÿ”๐ŸŽ โˆ— ๐Ÿ๐ŸŽโถ)/(๐Ÿ๐Ÿ’๐ŸŽ๐ŸŽ โˆ— (๐Ÿ‘๐ŸŽ๐ŸŽยฒ)) /๐Ÿ• = ๐ŸŽ. ๐ŸŽ๐Ÿ‘๐Ÿ–๐Ÿ–
Then from curve of moment-axial interaction diagram we determine:
โˆ…P๐‘œ
๐‘โ„Ž
= 1.5
So, the โˆ…๐‘ท๐’ ๐’™ = ๐Ÿ. ๐Ÿ“ ร— ๐Ÿ‘๐ŸŽ๐ŸŽ ร— ๐Ÿ๐Ÿ’๐ŸŽ๐ŸŽ = ๐Ÿ’๐Ÿ’๐Ÿ๐ŸŽ
Pure axial from ACI-code:
๐œฑ๐‘ท๐ŸŽ = 0.65 ร— 0.85(0.85๐‘“๐‘ ร— (๐ด๐‘” โˆ’ ๐ด๐‘ ) + (๐‘“๐‘ฆ. ๐ด๐‘ )) = ๐Ÿ“๐Ÿ—๐Ÿ๐Ÿ. ๐Ÿ๐Ÿ
4) Dynamic design
โ€ข Design of shear wall:
Pu Mu2 Mu3 Vu2 Vu3
3405 kN 65 KN.m 160 KN.m 38.14 KN 198 KN
So from equation of reciprocal method:
1
๐›ท๐‘ƒ๐‘›
=
1
๐›ท๐‘ƒ๐‘›๐‘ฅ
+
1
๐›ท๐‘ƒ๐‘›๐‘ฆ
โˆ’
1
๐›ท๐‘ƒ๐‘›0
=
1
4410
+
1
4292
โˆ’
1
5922.12
= 0.00029
๐›ท๐‘ƒ๐‘› = 3437.45 > 3405 ๐‘˜๐‘ โ‰ซ ๐‘œ๐‘˜
So the assumption is true which is ๐œŒ๐‘™ = 0.0053
4) Dynamic design
โ€ข Design of shear wall:
Check for ๐œŒ๐‘™ ๐‘š๐‘–๐‘› :
๐œŒ๐‘™ ๐‘š๐‘–๐‘› = ๐‘š๐‘Ž๐‘ฅ{0.0025 + 0.5 โˆ— (2.5 โˆ’ โ„Ž๐‘ค/๐ฟ๐‘ค) โˆ— (๐œŒ๐‘ก โˆ’ 0.0025)โ”‚0.0025} = 0.0025
Since,๐œŒ๐‘™ = 0.0053 > ๐œŒ๐‘™ min โ‰ซโ‰ซโ‰ซ ๐‘‚๐พ
So, ๐ด๐‘ฃ = 0.0053 โˆ— 300 โˆ— 1400 = 2226 ๐‘š๐‘š2
/1.4๐‘š(4โˆ…16 /๐‘š ๐‘–๐‘› ๐‘’๐‘Ž๐‘โ„Ž ๐‘“๐‘Ž๐‘๐‘’)
4) Dynamic design
โ€ข Design of shear wall:
4) Dynamic design
โ€ข Design of stairs:
Thickness: 20 cm
4) Dynamic design
โ€ข Design of stairs:
1) Loads
The own weight of stairs = 0.2 โˆ— 25 = 5 ๐‘˜๐‘/๐‘š2
Live load = 5 ๐‘˜๐‘/๐‘š2
Super Imposed dead load = 5๐‘˜๐‘/๐‘š2
4) Dynamic design
โ€ข Design of stairs:
2) Deflection
Long term max. deflection = 7.3 mm
Deflection limitation: โ€œACIโ€
๐‘™
360
=
4240
360
= 11.1 ๐‘š๐‘š
4) Dynamic design
โ€ข Design of stairs:
3) Shear
๐‘‰๐‘ข = 46 ๐‘˜๐‘ /๐‘š
๐‘‘ = 200 โˆ’ 40 = 160 ๐‘š๐‘š
โˆ… ๐‘‰๐‘ = 0.75 ร—
1
6
ร— ๐‘“๐‘` ๐‘ ร— ๐‘‘
= 0.75 ร—
1
6
ร— 30 ร— 1000 ร—
160
1000
= 109 ๐‘˜๐‘ /๐‘š
๐‘†๐‘–๐‘›๐‘๐‘’ โˆ… ๐‘‰๐‘ = 109 ๐‘˜๐‘ > ๐‘‰๐‘ข = 46 ๐‘˜๐‘ , there is no need for
shear reinforcement.
4) Dynamic design
โ€ข Design of stairs:
4) flexure
longitudinal steel
In flight: For M22 (positive) = 8.5 KN.m, bottom steel
(4 โˆ…12 /1m)
For M22 (negative) = 25 KN.m, top steel
Use (4 โˆ…12 /1m)
In landing: M22 in the Landing= 25 kN.m and it is negative moment (top steel)
Use (4 โˆ…12 /1m)
4) Dynamic design
โ€ข Design of stairs:
4) Dynamic design
โ€ข Design of footings:
To determine the type of footing:
Total load from the building:
Block: P service (from gravity) P service (from seismic
combination)
Block A 47857 kN 47875 kN
Block B 67089 kN 68951 kN
Area of footing from gravity loads:
๐ด๐‘Ÿ๐‘’๐‘Ž =
๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ƒ๐‘ ๐‘’๐‘Ÿ๐‘ฃ๐‘–๐‘๐‘’
๐œŽ
=
114946
250
= 460 ๐‘š2
Area of footing from seismic loads:
๐ด๐‘Ÿ๐‘’๐‘Ž =
๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ƒ๐‘ ๐‘’๐‘Ÿ๐‘ฃ๐‘–๐‘๐‘’
1.3 ร— ๐œŽ
=
116826
1.3 ร— 250
= 359.5 ๐‘š2
4) Dynamic design
โ€ข Design of footings:
1) Dimension:
๐ด๐‘Ÿ๐‘’๐‘Ž = 27๐‘ฅ18 = 486 ๐‘š2,
๐‘‘๐‘’๐‘๐‘กโ„Ž: 1.1 ๐‘š ๐‘‘๐‘๐‘œ๐‘ฃ๐‘’๐‘Ÿ = 7 ๐‘๐‘š
4) Dynamic design
โ€ข Design of footings:
2) Deflection:
๐‘‡โ„Ž๐‘’ ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘‘๐‘’๐‘“๐‘™๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘ :
8 ๐‘š๐‘š < 10 ๐‘š๐‘š ๐‘‚๐พ
4) Dynamic design
โ€ข Design of footings:
3) Soil failure:
Maximum stress on the footing is
200.61 kN/m^2
and there is no tension on the footing.
Maximum allowable ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘  ๐‘–๐‘  250 ๐‘˜ ๐‘ ๐‘š2
4) Dynamic design
โ€ข Design of footings:
4) Thickness:
based on punching shear
4) Dynamic design
โ€ข Design of footings:
5) Design:
Design of one strip
4) Dynamic design
โ€ข Design of footings:
5) Design: Column strip
a) Shear:
๐‘‰
๐‘ข = 1132 ๐‘˜๐‘
โˆ…๐‘‰
๐‘=
0.75
6
ร— 30 ร—
1030 ร— 2000
1000
= 1410.4 ๐‘˜๐‘ ๐‘‚๐พ
4) Dynamic design
โ€ข Design of footings:
5) Design: Column strip
b) Flexure:
Moment diagram:
Area of steel (per column strip):
4) Dynamic design
โ€ข Design of footings:
5) Design: Middle strip
Moment diagram:
๐ด๐‘  < ๐ด๐‘ ๐‘š๐‘–๐‘›
Total maximum moment
= 1500 kN.m /4.1 strip
For practical use, A mesh reinforcement of 8โˆ…18/m is used (both top and bottom)
Thanks for your attention.
Any Questions?

More Related Content

Similar to gp2_2.pptx

Design and analasys of a g+3 residential building using staad
Design and analasys of a g+3 residential building using staadDesign and analasys of a g+3 residential building using staad
Design and analasys of a g+3 residential building using staad
gopichand's
ย 

Similar to gp2_2.pptx (20)

INTRODUCTION TO STRUCUTRAL DESIGN RCC PRESENTATION
INTRODUCTION TO STRUCUTRAL DESIGN RCC PRESENTATIONINTRODUCTION TO STRUCUTRAL DESIGN RCC PRESENTATION
INTRODUCTION TO STRUCUTRAL DESIGN RCC PRESENTATION
ย 
EQ21.pdf
EQ21.pdfEQ21.pdf
EQ21.pdf
ย 
IRJET- Analysis of Diagrid Structure
IRJET-  	  Analysis of Diagrid StructureIRJET-  	  Analysis of Diagrid Structure
IRJET- Analysis of Diagrid Structure
ย 
Design and analasys of a g+3 residential building using staad
Design and analasys of a g+3 residential building using staadDesign and analasys of a g+3 residential building using staad
Design and analasys of a g+3 residential building using staad
ย 
Design and analasys of a g+3 residential building using staad
Design and analasys of a g+3 residential building using staadDesign and analasys of a g+3 residential building using staad
Design and analasys of a g+3 residential building using staad
ย 
presentation1_28.pptx
presentation1_28.pptxpresentation1_28.pptx
presentation1_28.pptx
ย 
IRJET- Analysis and Design of Multi - Storey Building Under Load Combination
IRJET- Analysis and Design of Multi - Storey Building Under Load CombinationIRJET- Analysis and Design of Multi - Storey Building Under Load Combination
IRJET- Analysis and Design of Multi - Storey Building Under Load Combination
ย 
Analysis of g+3 rcc storied building
Analysis of g+3 rcc storied buildingAnalysis of g+3 rcc storied building
Analysis of g+3 rcc storied building
ย 
FYP Structure.pdf
FYP Structure.pdfFYP Structure.pdf
FYP Structure.pdf
ย 
Design Assessment and Parametric Study of Expansion Bellow
Design Assessment and Parametric Study of Expansion BellowDesign Assessment and Parametric Study of Expansion Bellow
Design Assessment and Parametric Study of Expansion Bellow
ย 
Response of RCC Structure under Influence of Earthquake using Etabs
Response of RCC Structure under Influence of Earthquake using EtabsResponse of RCC Structure under Influence of Earthquake using Etabs
Response of RCC Structure under Influence of Earthquake using Etabs
ย 
Comparative Study on Seismic Behavior of Different Shapes of RC Structure wit...
Comparative Study on Seismic Behavior of Different Shapes of RC Structure wit...Comparative Study on Seismic Behavior of Different Shapes of RC Structure wit...
Comparative Study on Seismic Behavior of Different Shapes of RC Structure wit...
ย 
IRJET- Design of Optimum Parameters of Tuned Mass Damper for a G+8 Story Resi...
IRJET- Design of Optimum Parameters of Tuned Mass Damper for a G+8 Story Resi...IRJET- Design of Optimum Parameters of Tuned Mass Damper for a G+8 Story Resi...
IRJET- Design of Optimum Parameters of Tuned Mass Damper for a G+8 Story Resi...
ย 
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
ย 
Dp24742745
Dp24742745Dp24742745
Dp24742745
ย 
Hospital building project
Hospital building projectHospital building project
Hospital building project
ย 
IRJET- Probabilistic Risk Analysis of Seismic Irregular RC Structure using Fr...
IRJET- Probabilistic Risk Analysis of Seismic Irregular RC Structure using Fr...IRJET- Probabilistic Risk Analysis of Seismic Irregular RC Structure using Fr...
IRJET- Probabilistic Risk Analysis of Seismic Irregular RC Structure using Fr...
ย 
IRJET- Structural Analysis and Design of Pump House
IRJET- Structural Analysis and Design of Pump HouseIRJET- Structural Analysis and Design of Pump House
IRJET- Structural Analysis and Design of Pump House
ย 
Incremental Dynamic Analysis of RC Frames
Incremental Dynamic Analysis of RC FramesIncremental Dynamic Analysis of RC Frames
Incremental Dynamic Analysis of RC Frames
ย 
IRJET - To Study Analysis and Design of Multi-Storey Building using STAAD-Pro...
IRJET - To Study Analysis and Design of Multi-Storey Building using STAAD-Pro...IRJET - To Study Analysis and Design of Multi-Storey Building using STAAD-Pro...
IRJET - To Study Analysis and Design of Multi-Storey Building using STAAD-Pro...
ย 

Recently uploaded

VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
SUHANI PANDEY
ย 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
ย 
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
KreezheaRecto
ย 

Recently uploaded (20)

Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
ย 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
ย 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
ย 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
ย 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
ย 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
ย 
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
ย 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
ย 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
ย 
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
ย 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
ย 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
ย 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
ย 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
ย 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
ย 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
ย 
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
ย 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
ย 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
ย 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
ย 

gp2_2.pptx

  • 1. โ€ซุงู„ุฑุญูŠู…โ€ฌ โ€ซุงู„ุฑุญู…ู†โ€ฌ โ€ซู‡ู„ู„ุงโ€ฌ โ€ซุจุณู…โ€ฌ Graduation Project II Supervisor: Dr. Riyad Awad. Prepared by: Ahmad Abdel All Omar Barham Zafer Nasrallah An-Najah National University Faculty of Engineering โ€ซุงู„ูˆุทู†ูŠุฉโ€ฌ โ€ซุงู„ู†ุฌุงุญโ€ฌ โ€ซุฌุงู…ุนุฉโ€ฌ โ€ซุงู„ู‡ู†ุฏุณุฉโ€ฌ โ€ซูƒู„ูŠุฉโ€ฌ Civil Engineering Department 3D-DYNAMIC ANALYSIS AND DESIGN OF ODEHโ€™S HOTEL IN NABLUS
  • 2. Outline: ๏‚งIntroduction. ๏‚งPreliminary dimensions and 3D model. ๏‚งDynamic Analysis ๏‚งDynamic design.
  • 3. Challenges and problems : The architect didnโ€™t take any consideration for structural purposes. The columns was so scattered so we have a panel of 10 * 7 m,and so a long spans The unsymmetrical shape of the building causes an extra load from lateral forces and so the natural period is too high .
  • 4. Introduction ๏ฑ Hotel is located in Nablus city. ๏ฑ The Hotel is composed of two Blocks, A and B. ๏ฑ Both of block A,B have a 7 stories ๏ฑ The total area of structure is 5400 m2.
  • 5. 1) Introduction: โ€ข Project description: Basement
  • 6. 1) Introduction: โ€ข Project description: Ground Floor
  • 7. 1) Introduction: โ€ข Project description: Mezzanine
  • 8. 1) Introduction: โ€ข Project description: First Floor
  • 9. 1) Introduction: โ€ข Project description: 2nd , 3rd and 4th floors
  • 10. 1) Introduction: โ€ข Project description: Story Elevation(๐’Ž) Area (๐’Ž๐Ÿ) Basement -4.75 805.24 Ground 0.00 805.24 Mezzanine 3.25 482.57 First 6.00 805.24 Second 9.25 805.24 Third 12.5 805.24 Forth 15.75 805.24
  • 11. 1) Introduction: โ€ข Geotechnical information: Soil layers are close to be soft stone so the design bearing capacity is250 kN/๐‘š2 โ€ข Codes and Standards: โ€ข IBC 2012 โ€ข ACI 318M-14 โ€ข ASCE 2010
  • 12. 1) Introduction: โ€ข Materials: Rebar Steel: - Yielding strength of used steel (fy) = 420MPa. - Modulus of elasticity of used steel (Es) = 200GPa. Concrete: strength: 30 MPa Type: B375
  • 13. 1) Introduction: โ€ข Loads: 1- Super-imposed dead load:3.5 ๐‘˜๐‘/๐‘š2 Zone Material Unit Weigh KN/mยณ Thickness cm Wight (KN/mยฒ) (unit weigh * thickness in m) A Ceramic 0.12 1.0 1.2 *10โ€พยณ B Mortar 23 3.0 0.69 C Filling Material 17 7.0 1.190 D Slab Thickness 25 - - E Plaster 23 1.5 0.345 a. Static load
  • 14. 1) Introduction: โ€ข Loads: 2- Live Load : In Basement, Ground, First floors 5 ๐‘˜๐‘/๐‘š2 In 2nd , 3rd and 4th floors 2 ๐‘˜๐‘/๐‘š2 a. Static load
  • 15. 1) Introduction: โ€ข Loads: b. Lateral loads (seismic) The hotel is located in Nablus area which is classified zone 2B, according to Palestine seismic zone (z=0.2).
  • 16. 1) Introduction: โ€ข Programs: 1- ETABS 2015 2- SAFE 2014 3- AutoCAD
  • 18. 2) Preliminary dimensions and 3D model: โ€ข Introduction to structural system. We divided the project into 2 blocks
  • 19. 2) Preliminary design and 3D model: โ€ข Introduction to structural system. One-way Voided Slab: ๐ป๐‘’๐‘–๐‘”โ„Ž๐‘ก, ๐ป = 16 ๐‘๐‘š ๐น๐‘œ๐‘œ๐‘ก โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก, ๐‘ƒ = 7 ๐‘๐‘š ๐‘†๐‘๐‘Ž๐‘๐‘’๐‘Ÿ โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก, ๐‘‘ = 0.8 ๐‘๐‘š ๐‘Š๐‘’๐‘–๐‘”โ„Ž๐‘ก = 1.24 ๐พ๐‘” ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ = 0.028 ๐‘š3 ๐ท๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ = 46.13 ๐พ๐‘” ๐‘š3 ๐›พ = 0.453 ๐‘˜๐‘ ๐‘š3
  • 20. 2) Preliminary design and 3D model: Block A
  • 21. 2) Preliminary design and 3D model: Block B
  • 22. 2) Preliminary dimensions and 3D model: โ€ข Preliminary dimensions: Column dimensions Name: Cross section: C1 60x30 C2 80x30 C3 40x40 CB 80x40 Beam dimensions B1 30x70 Drop B2 50x30 Hidden B3 60x30 Hidden B4 30x30 Hidden B5 30x90 Drop
  • 23. 2) Preliminary dimensions and 3D model: โ€ข Materials and modifiers:
  • 24. 2) Preliminary dimensions and 3D model: โ€ข Materials and modifiers:
  • 25. 2) Preliminary dimensions and 3D model: โ€ข Materials and modifiers:
  • 26. 2) Preliminary dimensions and 3D model: โ€ข Materials and modifiers: Slab modifiers in block A
  • 27. 2) Preliminary dimensions and 3D model: โ€ข Checks As shown the structure move as a rigid unit (moving together) 1- Checks for Compatibility:
  • 28. 2) Preliminary dimensions and 3D model: โ€ข Checks 2- Equilibrium check (Base reactions): All less than 5%, OK Total load: By hand By model Error % Dead 23181.15 22687.28 2.18 Live 7748 7553.819 2.58 SD 8227.345 8001.932 2.82 Wall 10013.902 9614.58 4.15
  • 29. 2) Preliminary dimensions and 3D model: โ€ข Checks 3- Checks moment stress-strain relationships: In our calculations we take slab strip and the interior beam in block A
  • 30. 2) Preliminary dimensions and 3D model: โ€ข Checks 3- Checks moment stress-strain relationships: And we did the same for a beam ๐‘€1 = 15.2 ๐‘˜๐‘. ๐‘š/๐‘š ๐‘€2 = 19.1 ๐‘˜๐‘. ๐‘š/๐‘š ๐‘€3 = 1.1 ๐‘˜๐‘. ๐‘š/๐‘š ๐‘€ = 15.2 + 1.1 2 + 19.1 = 27.25 ๐‘˜๐‘. ๐‘š/๐‘š From 1-D analysis: ๐‘Š๐‘ข = 1.2 ร— 3.5 + 4.64 + 1.6 ร— 2 = 12.97 ๐‘˜๐‘/๐‘š ๐‘€โ„Ž๐‘Ž๐‘›๐‘‘ = ๐‘Š๐‘ข ร— ๐‘™2 8 = 12.97 ร— 4.5 โˆ’ 0.3 2 8 = 28.6 ๐‘˜๐‘. ๐‘š/๐‘š ๐ธ๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ = 28.6 โˆ’ 27.25 28.6 ร— 100% = 4.7% < 10% ๐‘‚๐พ
  • 31. 2) Preliminary dimensions and 3D model: โ€ข Checks 4- Checks for deflection: We have case 4 that is: L/240
  • 32. 2) Preliminary dimensions and 3D model: โ€ข Checks 4- Checks for deflection: (we assumed the โˆ† sustained live load=0.5โˆ†๐ฟ๐‘–๐‘ฃ๐‘’) โˆ†๐‘™๐‘œ๐‘›๐‘” ๐‘ก๐‘’๐‘Ÿ๐‘š= 34.8 โˆ’ โˆ†๐‘Ž๐‘ฃ๐‘” ๐‘๐‘œ๐‘Ÿ๐‘›๐‘’๐‘Ÿ= 34.8 โˆ’ 7.4 + 6.3 + 2.5 + 4.1 4 = 29.73 ๐‘š๐‘š The value from ACI-code = ๐ฟ / 240 = 7.8 240 = 32.5 ๐‘š๐‘š 32.5 > 29.73 ( โˆ†๐‘™๐‘œ๐‘›๐‘” ๐‘ก๐‘’๐‘Ÿ๐‘š ) ๐‘‚๐พ
  • 33. 2) Preliminary dimensions and 3D model: โ€ข Checks 5- Checks the period: The fundamental period T=0.472 To check this value, we used Rayleigh analytical method:
  • 34. 2) Preliminary dimensions and 3D model: โ€ข Checks 5- Checks the period: Mass calculation: Element/Stor y S1 S2 S3 S4 S5 S6 S7 Slab 1517.87 1517.87 1517.87 1517.87 1517.87 1517.87 1517.87 Masonry Wall 1450 1450 1450 1450 1450 1450 1450 SID 1157.8 1157.8 1157.8 1157.8 1157.8 1157.8 1157.8 Stairs 179.5 179.5 179.5 179.5 179.5 179.5 89.75 Beams 696.85 696.85 696.85 696.85 696.85 696.85 696.85 Columns 257.5 186 164.625 157.625 157.625 157.625 78.8125 Walls 864.75 532 532 532 532 532 266 Mass (kN) 6124.27 5720.02 5698.65 5691.65 5691.65 5691.65 5257.08 Mass (ton) 624.29 583.08 580.90 580.19 580.19 580.19 535.89
  • 35. 2) Preliminary dimensions and 3D model: โ€ข Checks 5- Checks the period: To find the period in Y: Drift values due to (1 KN/m2 โ€“ in y-direction) delta1 delta2 delta3 delta average (mm) story 1 0.3 0.3 0.2 0.27 story 2 0.8 0.8 0.8 0.80 story 3 1.4 1.4 1.4 1.40 story 4 2.1 2.1 2.2 2.13 story 5 2.8 2.9 3.1 2.93 story 6 3.6 3.7 3.9 3.73 story 7 4.3 4.5 4.7 4.50
  • 36. 2) Preliminary dimensions and 3D model: โ€ข Checks 5- Checks the period: Period in Y: mass force delta Mass*(delta ^2) force*delta S1 624.29 331 0.0002667 4.44E-05 0.088267 S2 583.08 331 0.0008 0.000373 0.2648 S3 580.90 331 0.0014 0.001139 0.4634 S4 580.19 331 0.0021333 0.002641 0.706133 S5 580.19 331 0.0029333 0.004992 0.970933 S6 580.19 331 0.0037333 0.008087 1.235733 S7 535.89 331 0.0045 0.010852 1.4895 Total 0.028127 5.218767
  • 37. 2) Preliminary dimensions and 3D model: โ€ข Checks 5- Checks the period: Period in Y: ๐‘‡ ๐‘Ž๐‘›๐‘Ž๐‘™๐‘ฆ๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› = 2 ร— 3.14 0.028127 5.218767 = 0.4610 ๐ธ๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ = 0.4820 โˆ’ 0.4610 0.4820 = 4.35 % < 5 % โ€ฆ โ€ฆ โ€ฆ . ๐‘œ๐‘˜
  • 38. 2) Preliminary dimensions and 3D model: โ€ข Checks 6- Check if torsion mode exist in 1st two modes:
  • 40. 3) Dynamic Analysis: โ€ข Seismic Parameters 1- Site classifications ๐‘†๐‘ข = 250 ๐พ ๐‘ ๐‘š2 2 = 125 ๐‘˜๐‘ ๐‘š2 > 2000๐‘ƒ๐‘ ๐‘– 100 ๐พ๐‘ ๐‘š2 โ†’ โ†’ ๐‘†๐‘œ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘œ๐‘–๐‘™ ๐‘–๐‘  ๐‘๐‘™๐‘Ž๐‘ ๐‘ ๐‘–๐‘“๐‘–๐‘’๐‘‘ ๐‘Ž๐‘  ๐‘ช ๐’„๐’๐’‚๐’”๐’”
  • 41. 3) Dynamic Analysis: โ€ข Seismic Parameters 2- Seismic Zone factor and design seismic spectral acceleration (SD1, SDs): The hotel located in Nablus city which is in Zone 2B, and has Z = 0.2 g
  • 42. 3) Dynamic Analysis: โ€ข Seismic Parameters 2- Seismic Zone factor and design seismic spectral acceleration (SD1, SDs): ๐‘†๐‘  = 2.5 ร— ๐‘ = 2.5 ร— 0.2 = 0.5 ๐‘†1 = 1.25 ร— ๐‘ = 1.25 ร— 0.2 = 0.25 ๐‘†๐‘€๐‘† = ๐น๐‘Ž ร— ๐‘†๐‘  ๐‘†๐‘€1 = ๐น๐‘ฃ ร— ๐‘†1 Determine the maximum considered earthquake spectral response accelerations adjusted for site class effects, SMS at short period and SM1 at long period according to IBC 1613.3.3:
  • 43. 3) Dynamic Analysis: โ€ข Seismic Parameters 2- Seismic Zone factor and design seismic spectral acceleration (SD1, SDs):
  • 44. 3) Dynamic Analysis: โ€ข Seismic Parameters 2- Seismic Zone factor and design seismic spectral acceleration (SD1, SDs): ๐‘†๐‘€๐‘† = ๐น๐‘Ž ร— ๐‘†๐‘  = 1.2 ร— 0.5 = 0.6 ๐‘” ๐‘†๐‘€1 = ๐น๐‘ฃ ร— ๐‘†1 = 1.55 ร— 0.25 = 0.3875 Determine the 5% damped design spectral response accelerations SDS at short period and SD1 at long period in accordance with IBC 1613.3.4. ๐‘†๐ท๐‘† = 2 3 ร— ๐‘†๐‘€๐‘  ๐‘†๐ท1 = 2 3 ร— ๐‘†๐‘€1
  • 45. 3) Dynamic Analysis: โ€ข Seismic Parameters 2- Seismic Zone factor and design seismic spectral acceleration (SD1, SDs): Because of the Z factor is taken from the map (which is probability of exceedance = 10 % and the IBC code is probability of exceedance = 2 %) so we multiply the values of SDs and SD1 by (3/2). NOTE: we want to design the structure as 10 % of exceedance at 50 year exposure time with return design period of 475 years. ๐‘†๐ท๐‘† = 3 2 ร— ( 2 3 ร— ๐‘†๐‘€๐‘ ) = 3 2 ร— 2 3 ร— 0.6 = 0.6 ๐‘” ๐‘†๐ท1 = 3 2 ร— ( 2 3 ร— ๐‘†๐‘€1) = 3 2 ร— 2 3 ร— 0.3875 = 0.3875 ๐‘”
  • 46. 3) Dynamic Analysis: โ€ข Seismic Parameters 3- Determination of seismic Design category and importance factor (Ie): The IBC code classifies the structures according to the nature of occupancy, and the hotel is defined as risk category 2, because it is a normal building.
  • 47. 3) Dynamic Analysis: โ€ข Seismic Parameters 3- Determination of seismic Design category and importance factor (Ie): Then using ASCE 7-10 to determine the importance factor of the Building from (table 1.5-2: in ASCE)
  • 48. 3) Dynamic Analysis: โ€ข Seismic Parameters 3- Determination of seismic Design category and importance factor (Ie): So the seismic design category is D Since all other structures shall be assigned to a seismic design category based on their risk category and the design spectral response acceleration parameters, SDS and SD1. Using ASCE 7-10:
  • 49. 3) Dynamic Analysis: โ€ข Determination of building frame system and Response modification factor (R): There are 3 types of building frame system according to resistance the gravity and lateral loads: 1- Bearing wall system 2- Building frame system 3- The moment resisting frame system
  • 50. 3) Dynamic Analysis: โ€ข Determination of building frame system and Response modification factor (R): Walls take 97.75% of lateral loads in y-directions Walls take 98% of lateral loads in x-directions From this results and since the building is located in moderate seismic area then the system is building frame system with intermediate reinforcement.
  • 51. 3) Dynamic Analysis: โ€ข Determination of building frame system and Response modification factor (R): So we will use the Ordinary reinforced concrete shear walls system with R = 5, Cd = 4.5 and โ„ฆ = 2.5
  • 52. 3) Dynamic Analysis: โ€ข Determinations of Approximate Fundamental Period (Ta): According to ASCE 7-10 code the analytical periods shall be less than approximate fundamental method (Ta): ๐‘‡๐‘Ž = ๐ถ๐‘ก ร— โ„Ž๐‘› ๐‘ฅ
  • 53. 3) Dynamic Analysis: โ€ข Determinations of Approximate Fundamental Period (Ta): ๐‘‡๐‘Ž = ๐ถ๐‘ก ร— โ„Ž๐‘› ๐‘ฅ = 0.0488 โˆ— 23.75 0.75 = 0.525 ๐‘ ๐‘’๐‘ Also the code suggests maximizing this value by multiply it by Cu coefficient of upper limits ๐‘‡๐‘Ž = ๐ถ๐‘ข ร— ๐‘‡๐‘Ž = 1.40 ร— 0.525 = 0.735 ๐‘ ๐‘’๐‘
  • 54. 3) Dynamic Analysis: โ€ข Determination of Seismic Base reactions: Equivalent static methods Dynamic methods: Linear modal response spectrum analysis
  • 55. 3) Dynamic Analysis: โ€ข Determination of Seismic Base reactions: 1- Equivalent Static Method According to ASCE 7-10, ๐‘‡โ„Ž๐‘’ ๐‘†๐‘’๐‘–๐‘ ๐‘š๐‘–๐‘ ๐ต๐‘Ž๐‘ ๐‘’ ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ (๐‘‰) = ๐ถ๐‘†๐‘’ ร— ๐‘Š
  • 56. 3) Dynamic Analysis: โ€ข Determination of Seismic Base reactions: 1- Equivalent Static Method W = 41057.28 kN Calculating the Seismic Response Coefficient ๐ถ๐‘†๐‘’: ๐‘‡๐‘  = ๐‘†๐ท1 ๐‘†๐ท๐‘  = 0.3875 0.6 = 0.645 ๐‘ ๐‘’๐‘. ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘‡๐‘  > ๐‘‡ = 0.482, ๐‘กโ„Ž๐‘’๐‘›: ๐ถ๐‘†๐‘’ = ๐‘†๐ท๐‘  ๐‘… ๐ผ๐‘’ > 0.044 ร— ๐‘†๐ท๐‘  ร— ๐ผ๐‘’ 0.01 ๐ถ๐‘†๐‘’ = 0.6 5 1 = 0.12 > 0.044 ร— 0.6 ร— 1 = 0.0264 0.01 ๐‘‡โ„Ž๐‘’ ๐‘†๐‘’๐‘–๐‘ ๐‘š๐‘–๐‘ ๐ต๐‘Ž๐‘ ๐‘’ ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘‰ = ๐ถ๐‘†๐‘’ ร— ๐‘Š = 0.12 ร— 41057.28 = 4925 ๐‘˜๐‘
  • 57. 3) Dynamic Analysis: โ€ข Determination of Seismic Base reactions: 1- Equivalent Static Method We assigned equivalent static load in ETABS
  • 58. 3) Dynamic Analysis: โ€ข Determination of Seismic Base reactions: 1- Equivalent Static Method The following results was obtained: ๐ธ๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ = 4925 โˆ’ 4726 4726 ร— 100% = 4.22% < 5%
  • 59. 3) Dynamic Analysis: โ€ข Determination of Seismic Base reactions: 2- Modal response spectrum analysis
  • 60. 3) Dynamic Analysis: โ€ข Determination of Seismic Base reactions: 2- Modal response spectrum analysis ๐ธ๐‘ฅ = ๐ธ๐‘ฅ + 0.3 ๐ธ๐‘ฆ ๐ธ๐‘ฆ = ๐ธ๐‘ฆ + 0.3๐ธ๐‘ฅ Then, the acceleration of main direction should be multiplied by a scale factor of = ๐ผ ร— ๐‘” ๐‘… = 1 ร— 9810 5 = 1962 And the other direction should be multiplied by: 0.3 ร— ๐ผ ร— ๐‘” ๐‘… = 0.3 ร— 1 ร— 9810 5 = 588.6 x-directions
  • 61. 3) Dynamic Analysis: โ€ข Determination of Seismic Base reactions: 2- Modal response spectrum analysis
  • 62. 3) Dynamic Analysis: โ€ข Determination of Seismic Base reactions: 2- Modal response spectrum analysis the response spectrum base shear is less than static base shear so we have to make the response spectrum is the dominant method to make a design by it, to achieve this the ASCE7-10 code scale the forces by multiply the scale factor by 0.85 ร— ๐‘‰๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘‰๐‘Ÿ๐‘’๐‘ ๐‘๐‘œ๐‘›๐‘ ๐‘’ So the scale factor for response in X-direction is: = 1962 ร— 0.85 ร— 4726 2679.97 = 2940.9 The scale factor for response in Y-direction is: = 1962 ร— 0.85 ร— 4726 2954.11 = 2667.99
  • 63. 3) Dynamic Analysis: โ€ข Determination of Seismic Base reactions: 2- Modal response spectrum analysis So the base reaction after modification:
  • 64. 3) Dynamic Analysis: โ€ข Determination of Seismic Base reactions: 2- Modal response spectrum analysis The modal mass participation ratio(MMPR):
  • 65. 3) Dynamic Analysis: โ€ข Load combinations: Ultimate load combinations Service load combinations 1.4D D+L 1.2D+1.6L 1D+0.75L+0.7E 1.2D+1E +1L 0.6D+0.7 E 0.9D+1E 1D+0.7E ๐ธ = ๐œŒ ร— ๐ธโ„Ž ยฑ ๐ธ๐‘ฃ Eh including Eh-x and Eh-y ๐œŒ= 1.3
  • 66. 3) Dynamic Analysis: โ€ข Load combinations: For example: ) 1.2๐ท + 1๐ฟ + 1๐ธ(๐‘Ÿ๐‘’๐‘ ๐‘๐‘œ๐‘›๐‘ ๐‘’ โˆ’ ๐‘ฆ ๐ธ = ๐œŒ ร— ๐ธโ„Ž + ๐ธ๐‘ฃ
  • 67. 3) Dynamic Analysis: โ€ข Structural Configuration: 1- Plane Configuration Displacement from mode 3
  • 68. 3) Dynamic Analysis: โ€ข Structural Configuration: 1- Plane Configuration โˆ†1(๐‘ฆ) = 0.03459 ๐‘š๐‘š โˆ†2(๐‘ฆ) = 0.03132 ๐‘š๐‘š ๐‘†๐‘œ โˆ†๐‘Ž๐‘ฃ๐‘”(๐‘ฆ) = โˆ†1 + โˆ†2 2 = 0.03459 + 0.03132 2 = 0.03295 ๐‘š๐‘š โˆ† ๐‘š๐‘Ž๐‘ฅ = 0.03559 < 1.2 โˆ†๐‘Ž๐‘ฃ๐‘” = 0.03954 ๐‘š๐‘š So there is no torsional irregularity nor extreme torsional irregularity.
  • 69. 3) Dynamic Analysis: โ€ข Structural Configuration: 2- Vertical configuration The drift values from the ETABS are taken from story 7 and 6 from response in Y-directions: โˆ† 6 โˆ’ 7 = 2.3 ๐‘š๐‘š, โˆ†(5 โˆ’ 6) = 2.333 ๐‘š๐‘š 1 โˆ† 5 โˆ’ 6 = 0.428 > 0.7 1 โˆ† 6 โˆ’ 7 = 0.304 So there is no story drift nor extreme story drift Soft story checks
  • 70. 3) Dynamic Analysis: โ€ข Story Drifts Checks and Design of seismic Joint:
  • 71. 3) Dynamic Analysis: โ€ข Story Drifts Checks and Design of seismic Joint: Risk category: ฮ™ฮ™ Structure type: Masonry cantilever shear wall Allowable story drift โˆ†๐‘Ž = 0.01 ร— 3.25 = 32.5 ๐‘š๐‘š But we have seismic design category D. So, according to 12.12.1.1 in ASCE 7-10, the story drift shall not exceed: โˆ†๐‘Ž ๐œŒ , ๐œŒ = 1.3 โˆ†๐‘Ž ๐œŒ = 32.5 1.3 = 25 ๐‘š๐‘š
  • 72. 3) Dynamic Analysis: โ€ข Story Drifts Checks and Design of seismic Joint:
  • 73. 3) Dynamic Analysis: โ€ข Story Drifts Checks and Design of seismic Joint: 12.12.3 in ASCE 7-10: allow for the maximum inelastic response displacement (๐›ฟ๐‘€). ๐›ฟ๐‘€ = ๐ถ๐‘‘ ร— ๐›ฟ๐‘š๐‘Ž๐‘ฅ ๐ผ , ๐ถ๐‘‘ = 4.5 , ๐ผ = 1 , ๐›ฟ๐‘€ = 2.5๐‘š๐‘š ๐›ฟ๐‘€ = 4.5 ร— 2.5 1 = 11.25 ๐‘š๐‘š The maximum inelastic story drift (11.25mm) is less than the allowed story drift (25mm)
  • 74. 3) Dynamic Analysis: โ€ข Story Drifts Checks and Design of seismic Joint: The seismic joint: According to ASCE seismic separation should be SRSS of inelastic displacements by this formula: โˆ† = ๐ผ๐‘›๐‘’๐‘™๐‘Ž๐‘ ๐‘ก๐‘–๐‘ โˆ† ๐‘œ๐‘“ ๐‘๐‘™๐‘œ๐‘๐‘˜ ๐ด 2 + ๐ผ๐‘›๐‘’๐‘™๐‘Ž๐‘ ๐‘ก๐‘–๐‘ โˆ† ๐‘œ๐‘“ ๐‘๐‘™๐‘œ๐‘๐‘˜ ๐ต 2 0.5 โˆ† = 11.25 2 + 21.6 2 0.5 = 24.4๐‘š๐‘š so take the seismic joint distance equal 3 cm
  • 77. 3) 3-D analysis and Static design: โ€ข Check slab for shear: From V23 the ๐‘‰ ๐‘š๐‘Ž๐‘ฅ = 51.544 ๐‘˜๐‘/๐‘š = 51.544 ร— 0.55 = 28.35 ๐‘˜๐‘/๐‘Ÿ๐‘–๐‘ ๐ต๐‘ข๐‘ก โˆ…๐‘‰ ๐‘ = 1 6 โˆš30 ร— 150 ร— 260 = 35.6 ๐‘˜๐‘ โˆ…๐‘‰ ๐‘ > ๐‘‰ ๐‘š๐‘Ž๐‘ฅ,
  • 78. 4) Dynamic design โ€ข Design of slab for flexure: The maximum moment is 52.8 (๐‘˜๐‘. ๐‘š) ๐‘š = 29.04 (๐‘˜๐‘. ๐‘š) ๐‘Ÿ๐‘–๐‘
  • 79. 4) Dynamic design โ€ข Design of slab:
  • 80. 4) Dynamic design โ€ข Design of beams:
  • 81. 4) Dynamic design โ€ข Design of beams:
  • 82. 4) Dynamic design โ€ข Design of columns:
  • 83. 4) Dynamic design โ€ข Design of columns:
  • 84. 4) Dynamic design โ€ข Design of shear wall:
  • 85. 4) Dynamic design โ€ข Design of shear wall: Pu Mu2 Mu3 Vu2 Vu3 3405 kN 65 KN.m 160 KN.m 38.14 KN 198 KN 1) ๐‘‰2 = 38.14 ๐‘˜๐‘ โˆ…๐‘‰๐ถ = โˆ… ร— ๐œ† ร— ๐‘“โ€ฒ๐‘ ร— ๐ต๐‘ค ร— ๐‘‘ 6 = 0.75 ร— 1 ร— 30 ร— 1000 ร— 250 6 โˆ— 1000 = 194 ๐‘˜๐‘ ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘‰๐‘ข2 = 38.14 ๐‘˜๐‘ < โˆ…๐‘‰๐ถ 2 = 97 ๐‘˜๐‘ So we donโ€™t need any reinforcement in the 2-direction (weak direction).
  • 86. 4) Dynamic design โ€ข Design of shear wall: Pu Mu2 Mu3 Vu2 Vu3 3405 kN 65 KN.m 160 KN.m 38.14 KN 198 KN 2) ๐‘‰3 = 198 ๐‘˜๐‘ โˆ…๐‘‰๐ถ = โˆ… ร— ๐œ† ร— ๐‘“โ€ฒ๐‘ ร— ๐ต๐‘ค ร— ๐‘‘ 6 = 0.75 ร— 1 ร— 30 ร— 300 ร— 1260 6 โˆ— 1000 = 248.5๐พ๐‘ ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘‰๐‘ข2 = 198 ๐พ๐‘ > โˆ…๐‘‰๐ถ 2 = 129.37 ๐พ๐‘ , ๐‘ค๐‘’ ๐‘ข๐‘ ๐‘’ ๐‘š๐‘–๐‘› ๐‘Ÿ๐‘’๐‘–๐‘›๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก ๐ด๐‘ฃ ๐‘† ๐‘š๐‘–๐‘› = max 0.062 fโ€ฒc bw fyt 0.35 bw fyt = 0.25 mm2 mm ๐œŒ๐‘ก = ๐ด๐‘ฃ/๐‘  ๐‘ก = 0.25 300 = 0.000833 < 0.0025 ๐‘ข๐‘ ๐‘’ ๐œŒ๐‘ก, ๐‘š๐‘–๐‘› = 0.0025 ๐‘†๐‘œ ๐‘กโ„Ž๐‘’ ๐ด๐‘ก = 0.0025 โˆ— 300 โˆ— 1000 = 750 ๐‘š๐‘š2 (๐Ÿ’โˆ…๐Ÿ๐Ÿ /๐’Ž ๐’Š๐’ ๐’†๐’‚๐’„๐’‰ ๐’‡๐’‚๐’„๐’†)
  • 87. 4) Dynamic design โ€ข Design of shear wall: Pu Mu2 Mu3 Vu2 Vu3 3405 kN 65 KN.m 160 KN.m 38.14 KN 198 KN
  • 88. 4) Dynamic design โ€ข Design of shear wall: Pu Mu2 Mu3 Vu2 Vu3 3405 kN 65 KN.m 160 KN.m 38.14 KN 198 KN About Y axis(2-direction): โ„Ž = 300 ๐‘š๐‘š, ๐‘€๐‘ข = 65 ๐พ๐‘. ๐‘š, ๐œŒ๐‘™ = 0.0053 (๐น๐‘Ÿ๐‘œ๐‘š ๐ธ๐‘‡๐ด๐ต๐‘ ) ๐›พ = โ„Ž โˆ’ 2 โˆ— ๐‘๐‘œ๐‘ฃ๐‘’๐‘Ÿ โ„Ž = 300 โˆ’ 2 โˆ— 60 300 = 0.6 ๐‘€๐‘ข ๐‘โ„Ž2 = (65 โˆ— 10โถ)/(1400 โˆ— (300ยฒ)) /7 = 0.07369 Then from curve of moment-axial interaction diagram we determine: โˆ…P๐‘œ ๐‘โ„Ž = 1.4 So, the โˆ…๐‘ƒ๐‘œ ๐‘ฆ = 1.46 ร— 300 ร— 1400 = 4292
  • 89. 4) Dynamic design โ€ข Design of shear wall: Pu Mu2 Mu3 Vu2 Vu3 3405 kN 65 KN.m 160 KN.m 38.14 KN 198 KN About X axis(3-direction): ๐ด๐‘ ๐‘ ๐‘ข๐‘š๐‘’ โ„Ž = 1400 ๐‘š๐‘š, ๐‘€๐‘ข = 160 ๐พ๐‘. ๐‘š, ๐œŒ๐‘™ = 0.0053 (๐ธ๐‘‡๐ด๐ต๐‘† ๐‘‰๐ด๐ฟ๐‘ˆ๐ธ) ๐œธ = ๐’‰ โˆ’ ๐Ÿ โˆ— ๐’„๐’๐’—๐’†๐’“ ๐’‰ = ๐Ÿ๐Ÿ’๐ŸŽ๐ŸŽ โˆ’ ๐Ÿ โˆ— ๐Ÿ”๐ŸŽ ๐Ÿ๐Ÿ’๐ŸŽ๐ŸŽ = ๐ŸŽ. ๐Ÿ—๐Ÿ ๐‘ด๐’– ๐’ƒ๐’‰๐Ÿ = (๐Ÿ๐Ÿ”๐ŸŽ โˆ— ๐Ÿ๐ŸŽโถ)/(๐Ÿ๐Ÿ’๐ŸŽ๐ŸŽ โˆ— (๐Ÿ‘๐ŸŽ๐ŸŽยฒ)) /๐Ÿ• = ๐ŸŽ. ๐ŸŽ๐Ÿ‘๐Ÿ–๐Ÿ– Then from curve of moment-axial interaction diagram we determine: โˆ…P๐‘œ ๐‘โ„Ž = 1.5 So, the โˆ…๐‘ท๐’ ๐’™ = ๐Ÿ. ๐Ÿ“ ร— ๐Ÿ‘๐ŸŽ๐ŸŽ ร— ๐Ÿ๐Ÿ’๐ŸŽ๐ŸŽ = ๐Ÿ’๐Ÿ’๐Ÿ๐ŸŽ Pure axial from ACI-code: ๐œฑ๐‘ท๐ŸŽ = 0.65 ร— 0.85(0.85๐‘“๐‘ ร— (๐ด๐‘” โˆ’ ๐ด๐‘ ) + (๐‘“๐‘ฆ. ๐ด๐‘ )) = ๐Ÿ“๐Ÿ—๐Ÿ๐Ÿ. ๐Ÿ๐Ÿ
  • 90. 4) Dynamic design โ€ข Design of shear wall: Pu Mu2 Mu3 Vu2 Vu3 3405 kN 65 KN.m 160 KN.m 38.14 KN 198 KN So from equation of reciprocal method: 1 ๐›ท๐‘ƒ๐‘› = 1 ๐›ท๐‘ƒ๐‘›๐‘ฅ + 1 ๐›ท๐‘ƒ๐‘›๐‘ฆ โˆ’ 1 ๐›ท๐‘ƒ๐‘›0 = 1 4410 + 1 4292 โˆ’ 1 5922.12 = 0.00029 ๐›ท๐‘ƒ๐‘› = 3437.45 > 3405 ๐‘˜๐‘ โ‰ซ ๐‘œ๐‘˜ So the assumption is true which is ๐œŒ๐‘™ = 0.0053
  • 91. 4) Dynamic design โ€ข Design of shear wall: Check for ๐œŒ๐‘™ ๐‘š๐‘–๐‘› : ๐œŒ๐‘™ ๐‘š๐‘–๐‘› = ๐‘š๐‘Ž๐‘ฅ{0.0025 + 0.5 โˆ— (2.5 โˆ’ โ„Ž๐‘ค/๐ฟ๐‘ค) โˆ— (๐œŒ๐‘ก โˆ’ 0.0025)โ”‚0.0025} = 0.0025 Since,๐œŒ๐‘™ = 0.0053 > ๐œŒ๐‘™ min โ‰ซโ‰ซโ‰ซ ๐‘‚๐พ So, ๐ด๐‘ฃ = 0.0053 โˆ— 300 โˆ— 1400 = 2226 ๐‘š๐‘š2 /1.4๐‘š(4โˆ…16 /๐‘š ๐‘–๐‘› ๐‘’๐‘Ž๐‘โ„Ž ๐‘“๐‘Ž๐‘๐‘’)
  • 92. 4) Dynamic design โ€ข Design of shear wall:
  • 93. 4) Dynamic design โ€ข Design of stairs: Thickness: 20 cm
  • 94. 4) Dynamic design โ€ข Design of stairs: 1) Loads The own weight of stairs = 0.2 โˆ— 25 = 5 ๐‘˜๐‘/๐‘š2 Live load = 5 ๐‘˜๐‘/๐‘š2 Super Imposed dead load = 5๐‘˜๐‘/๐‘š2
  • 95. 4) Dynamic design โ€ข Design of stairs: 2) Deflection Long term max. deflection = 7.3 mm Deflection limitation: โ€œACIโ€ ๐‘™ 360 = 4240 360 = 11.1 ๐‘š๐‘š
  • 96. 4) Dynamic design โ€ข Design of stairs: 3) Shear ๐‘‰๐‘ข = 46 ๐‘˜๐‘ /๐‘š ๐‘‘ = 200 โˆ’ 40 = 160 ๐‘š๐‘š โˆ… ๐‘‰๐‘ = 0.75 ร— 1 6 ร— ๐‘“๐‘` ๐‘ ร— ๐‘‘ = 0.75 ร— 1 6 ร— 30 ร— 1000 ร— 160 1000 = 109 ๐‘˜๐‘ /๐‘š ๐‘†๐‘–๐‘›๐‘๐‘’ โˆ… ๐‘‰๐‘ = 109 ๐‘˜๐‘ > ๐‘‰๐‘ข = 46 ๐‘˜๐‘ , there is no need for shear reinforcement.
  • 97. 4) Dynamic design โ€ข Design of stairs: 4) flexure longitudinal steel In flight: For M22 (positive) = 8.5 KN.m, bottom steel (4 โˆ…12 /1m) For M22 (negative) = 25 KN.m, top steel Use (4 โˆ…12 /1m) In landing: M22 in the Landing= 25 kN.m and it is negative moment (top steel) Use (4 โˆ…12 /1m)
  • 98. 4) Dynamic design โ€ข Design of stairs:
  • 99. 4) Dynamic design โ€ข Design of footings: To determine the type of footing: Total load from the building: Block: P service (from gravity) P service (from seismic combination) Block A 47857 kN 47875 kN Block B 67089 kN 68951 kN Area of footing from gravity loads: ๐ด๐‘Ÿ๐‘’๐‘Ž = ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ƒ๐‘ ๐‘’๐‘Ÿ๐‘ฃ๐‘–๐‘๐‘’ ๐œŽ = 114946 250 = 460 ๐‘š2 Area of footing from seismic loads: ๐ด๐‘Ÿ๐‘’๐‘Ž = ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ƒ๐‘ ๐‘’๐‘Ÿ๐‘ฃ๐‘–๐‘๐‘’ 1.3 ร— ๐œŽ = 116826 1.3 ร— 250 = 359.5 ๐‘š2
  • 100. 4) Dynamic design โ€ข Design of footings: 1) Dimension: ๐ด๐‘Ÿ๐‘’๐‘Ž = 27๐‘ฅ18 = 486 ๐‘š2, ๐‘‘๐‘’๐‘๐‘กโ„Ž: 1.1 ๐‘š ๐‘‘๐‘๐‘œ๐‘ฃ๐‘’๐‘Ÿ = 7 ๐‘๐‘š
  • 101. 4) Dynamic design โ€ข Design of footings: 2) Deflection: ๐‘‡โ„Ž๐‘’ ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘‘๐‘’๐‘“๐‘™๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘–๐‘ : 8 ๐‘š๐‘š < 10 ๐‘š๐‘š ๐‘‚๐พ
  • 102. 4) Dynamic design โ€ข Design of footings: 3) Soil failure: Maximum stress on the footing is 200.61 kN/m^2 and there is no tension on the footing. Maximum allowable ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘  ๐‘–๐‘  250 ๐‘˜ ๐‘ ๐‘š2
  • 103. 4) Dynamic design โ€ข Design of footings: 4) Thickness: based on punching shear
  • 104. 4) Dynamic design โ€ข Design of footings: 5) Design: Design of one strip
  • 105. 4) Dynamic design โ€ข Design of footings: 5) Design: Column strip a) Shear: ๐‘‰ ๐‘ข = 1132 ๐‘˜๐‘ โˆ…๐‘‰ ๐‘= 0.75 6 ร— 30 ร— 1030 ร— 2000 1000 = 1410.4 ๐‘˜๐‘ ๐‘‚๐พ
  • 106. 4) Dynamic design โ€ข Design of footings: 5) Design: Column strip b) Flexure: Moment diagram: Area of steel (per column strip):
  • 107. 4) Dynamic design โ€ข Design of footings: 5) Design: Middle strip Moment diagram: ๐ด๐‘  < ๐ด๐‘ ๐‘š๐‘–๐‘› Total maximum moment = 1500 kN.m /4.1 strip For practical use, A mesh reinforcement of 8โˆ…18/m is used (both top and bottom)
  • 108. Thanks for your attention. Any Questions?

Editor's Notes

  1. In this project weโ€™ll design a hotel consist of 7 stories. The total area of the hotel is approximately 5400 ๐‘š 2 . The basement contain an indoor pool and some facilities for the hotel.
  2. The ground floor contains the reception, the management offices and cafeteria. In this floor there is a mezzanine.
  3. A restaurant is located in the first floor.
  4. rooms for hotel guests
  5. For modal 1 and 2, both modes are transition, no torsion
  6. For modal 1 and 2, both modes are transition, no torsion
  7. For modal 1 and 2, both modes are transition, no torsion
  8. For modal 1 and 2, both modes are transition, no torsion
  9. For modal 1 and 2, both modes are transition, no torsion
  10. For modal 1 and 2, both modes are transition, no torsion
  11. For modal 1 and 2, both modes are transition, no torsion
  12. For modal 1 and 2, both modes are transition, no torsion
  13. For modal 1 and 2, both modes are transition, no torsion
  14. For modal 1 and 2, both modes are transition, no torsion
  15. For modal 1 and 2, both modes are transition, no torsion
  16. For modal 1 and 2, both modes are transition, no torsion
  17. The value from ETABS = 0.482 sec which is less than the approximate fundamental Period (Ta)
  18. The structural analysis shall consist of one of the types permitted in ASCE 7-10 Table 12.6-1, based on the structureโ€™s seismic design category, structural system, dynamic properties and regularity. The analysis procedure selected shall be completed in accordance with the requirements of the corresponding section referenced in (Table 12.6-1 in ASCE).
  19. First we calculated the base reactions manually and from the ETABS models to compare between both of the results.
  20. We used ETABS model to calculate the seismic forces from Response spectrum in two directions (X-direction, Y-direction).
  21. Because the earthquake loads donโ€™t come from one directions, so the structure shall be designed to resist any seismic forces in each direction, then to simulate the reality we add 30% of seismic load in perpendicular direction in addition of the main directions.
  22. The code is trying to make the limits of torsional regularity by dividing it in two cases: Torsional irregularity. Extreme torsional irregularity
  23. Note that: We didnโ€™t re-do for the rest corners because the plan is nearly square shape after we divided it in two Blocks, in addition the diaphragm is similar in all stories and it is continuous and the opening is less than 50 % of the total area.
  24. the soft story is one of the important issues in seismic design effect, we have to avoid it so letโ€™s check it in-out structure. 1- Soft Story. 2- Extreme soft story.
  25. The maximum story drift in a building shall not exceed the allowable story drift โˆ†๐‘Ž as obtained from table 12.12-1 in ASCE 7-10.
  26. Between 4th and 5th : 2.5mm Y-direction
  27. 12.12.3 in ASCE 7-10, Separation shall allow for the maximum inelastic response displacement ( ๐›ฟ ๐‘€ ).
  28. Beam on grid line 2 as example
  29. +As = 1/3 โ€“As shear reinf. S1 = 1.5 (2H) each 9 cm shear reinf S2 = middle each 30 cm
  30. Column A3 as example
  31. At both end โ€ฆ spacing 12 cm for L0= 45 cm First one not more than 6 cm in the middle โ€ฆ. Spacing 25 cm Lab splice middle column
  32. Sw 5 as example ๐ฟ๐‘ค=1400 ๐‘š๐‘š, ๐‘‡โ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘ =300 ๐‘š๐‘š
  33. biaxial columns and using the reciprocal method for design. ๐œŒ๐‘™=0.0025
  34. biaxial columns and using the reciprocal method for design. ๐œŒ๐‘™=0.0025
  35. biaxial columns and using the reciprocal method for design. ๐œŒ๐‘™=0.0025
  36. biaxial columns and using the reciprocal method for design. ๐œŒ๐‘™=0.0025
  37. Using the section designer on ETABS to draw a bending moment-axial interaction diagram:
  38. So, we used the larger area which come from gravity service loads. ๐‘‡โ„Ž๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ ๐‘œ๐‘“ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž= ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘“๐‘œ๐‘œ๐‘ก๐‘–๐‘›๐‘” ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘๐‘ข๐‘–๐‘™๐‘‘๐‘–๐‘›๐‘” = 460 835 =55%, ย  Itโ€™s preferred to use MAT foundation: We used CSI SAFE (using finite elements) to analysis and design the MAT footing that consider the footing flexible. We separated the footing for each block. Below footing A design:
  39. The punching shear ratio to the capacity is less than 1 for all columns