SlideShare a Scribd company logo
1 of 37
Digital I/Q loop
1
Digital I/Q loop for accelerating cavities
Technical document
Digital I/Q loop
2
Contents
I I/Q loop description........................................................................................................................................................................4
I.1 I/Q loop.....................................................................................................................................................................................4
I.2 Low level Hardware description ...............................................................................................................................................5
II Synoptic..........................................................................................................................................................................................6
III Frequency down conversion .....................................................................................................................................................7
III.1 EMHISER TELE-TECH Inc I/Q modulator ........................................................................................................................7
III.2 362.202 MHz SSB Synoptic ................................................................................................................................................8
III.3 362.202MHz Band pass filter...............................................................................................................................................9
III.4 Down conversion 352.202MHz to 10MHz IF...................................................................................................................11
IV 352.202 MHz base band modulation.......................................................................................................................................13
IV.1 Hittite Modulator................................................................................................................................................................13
IV.1.1 Specifications ................................................................................................................................................................13
IV.2 Electronic Interface and modulator ....................................................................................................................................13
V Software and hardware used.........................................................................................................................................................15
V.1 Hardware:...........................................................................................................................................................................15
V.2 Software:............................................................................................................................................................................15
VI Signal Theory..........................................................................................................................................................................16
VI.1 Complex Base band representation of a band pass signal ..................................................................................................16
VII Band pass to complex Base band conversion..........................................................................................................................17
VIII Simulink Design......................................................................................................................................................................17
VIII.1 First method: Using a DDS ................................................................................................................................................17
VIII.2 Second method: I/Q sampling Method...............................................................................................................................18
VIII.3 Sign detection and down conversion around zero ..............................................................................................................19
IX Phase rotator ...........................................................................................................................................................................21
X Sum of the Two Cavities ..............................................................................................................................................................22
XI Controller Structure.................................................................................................................................................................22
Controller Transfer function:............................................................................................................................................................22
XI.1 W transform ......................................................................................................................................................................23
XI.2 Final Controller Structure...................................................................................................................................................25
XI.3 Translation to DAC............................................................................................................................................................26
XII Band Pass Signal.....................................................................................................................................................................27
XII.1 Definition ...........................................................................................................................................................................27
XII.2 Transmission through a linear time-invariant system ........................................................................................................28
XII.2.1 Band pass filter............................................................................................................................................................28
XII.2.2 Transmission through a band pass filter ...............................................................................................................28
XII.3 Band pass filter is a cavity..................................................................................................................................................29
XII.3.1 Find transfer function of hI(t) and hQ(t).......................................................................................................................30
XII.3.2 Using simulink control system toolbox.......................................................................................................................35
XII.4 Root locus of the close loop and open loop bode ...............................................................................................................36
XIII Conclusion ..............................................................................................................................................................................37
Digital I/Q loop
3
Bibliography
Haugen, F. (2005). Discrete-time signals and systems. discrete.pdf.
Complex Baseband Representation of Band pass Signals by Mike Fitz, UCLA
Complex Signal Processing is Not — Complex Ken Martin Dept. of Elect. and Comp. Engr., Univ. of Toronto
Garoby R. Low Level RF and Feedback CERN PS/RF
G.Gautier Wednesday, May 04, 2016
Digital I/Q loop
4
I I/Q loop description
I.1 I/Q loop
Error! Reference source not found.shows the I/Q modulation and I/Q demodulation synoptic. This I/Q loop is
made up of four parts. The first part is the 362.202MHz single side band generation. This part allows doing a down
conversion from 352.202 MHz to 10MHz. The second part is the down conversion, the third is the FPGA correction and
finally the fourth part is the I/Q modulation performs by Hittite HMC497LP4E. The RF plant is constituted of a solid
state amplifier and a warm radiofrequency cavity.
Figure 1 I/Q loop synoptic
Digital I/Q loop
5
Figure 2 loop synoptic, more details
I.2 Low level Hardware description
The synoptic next page shows the low level hardware (FPGA is not included in this drawing)
1. 362.202 MHz Single Sind band generation
2. Down conversion to 10MHz
3. Base band modulation
Digital I/Q loop
6
II Synoptic
Digital I/Q loop EMHISER TELE-TECH Inc I/Q modulator
ESRF Page 7
IIIFrequency down conversion
III.1 EMHISER TELE-TECH Inc I/Q modulator
Used to create the 362.202MHz sideband
Digital I/Q loop 362.202 MHz SSB Synoptic
ESRF Page 8
III.2 362.202 MHz SSB Synoptic
10MHz + DC signal
10MHz + DC signal
Input 352.202MHz
Output 362.202MHz
Bias Tee
DC signal
90 degree hybrids
Input 10MHz
I/Q modulator
50 Load
DC Offset
Digital I/Q loop //362.202MHz Band pass filter
ESRF Page 9
III.3 362.202MHz Band pass filter
It is used to suppress the spurious frequencies after modulation.
 Master source 352.202MHz local oscillator frequency spectrum.
Digital I/Q loop //362.202MHz Band pass filter
ESRF Page 10
 Output 362.202MHz spectrumbefore filtering
 362.202 MHz spectrum filtering
Digital I/Q loop Down conversion 352.202MHz to 10MHz IF
ESRF Page 11
III.4 Down conversion 352.202MHz to 10MHz IF
Digital I/Q loop Down conversion 352.202MHz to 10MHz IF
ESRF Page 12
Digital I/Q loop Hittite Modulator
ESRF Page 13
IV 352.202 MHz base band modulation
The base band correction signal modulate the 352.202MHz
IV.1 Hittite Modulator
IV.1.1 Specifications
hmc497lp4 Hittite modulator specifications
IV.2 Electronic Interface and modulator
Baseband signal
from DAC A
Baseband signal
from DAC B
352.202MHz input
Modulated 352.202MHz output
Digital I/Q loop Electronic Interface and modulator
ESRF Page 14
Designation
Brand or
distributor
reference
Amplificateur Mini-circuits ZX60-14012L+
Amplificateur Mini-circuits ZFL-1000H
Step attenuateur Mini-circuits ZX76-15R5-PP+
Mixer LO 17 dBm Mini-circuits TAK-1WH +
Bias Tee Mini-circuits ZFBT-4R2GW
I/Q modulator
EMHISER TELE-TECH
Inc
9211-44
Coupler hybrid 90 Pulsar (Elyte) 90 Q3-01-412
10MHz Filter Band pass Elythe B10-4/T-7C1FS
352.202 Mhz filter band
pass
Elythe
TB352-10-
4ACSJ
362.202 Mhz filter band
pass
Elythe BP21/362.202-9
Power Splitter Mini-circuits ZX10Q-2-12
I/Q modulator Hittite HMC 497 LP4E
Directional coupler Mini-circuits ZEDC-15-2B
Digital I/Q loop Hardware:
ESRF Page 15
V Software and hardware used
V.1 Hardware:
HERON Module with 200K/1M gate FPGA: Virtex 2V1000fg456-4
2 channels of 125Mhz 12 bit A/D
2 channels of 125Mhz 14 bit D/A
V.2 Software:
MATLAB Version 7.5.0.342 (R2007b)
MATLAB License Number: 143600
Operating System: Microsoft Windows XP Version 5.1 (Build 2600: Service Pack 3)
Java VM Version: Java 1.6.0 with Sun Microsystems Inc. Java HotSpot(TM) Client VM mixed mode
MATLAB Version 7.5 (R2007b)
Simulink Version 7.0 (R2007b)
Control System Toolbox Version 8.0.1 (R2007b)
Filter Design Toolbox Version 4.2 (R2007b)
Signal Processing Blockset Version 6.6 (R2007b)
Signal Processing Toolbox Version 6.8 (R2007b)
Simulink Control Design Version 2.2 (R2007b)
Symbolic Math Toolbox Version 3.2.2 (R2007b)
System Identification Toolbox Version 7.1 (R2007b)
Xilinx System Generator Version 10.1.3 build 1386
ISE 10.1.03
Digital I/Q loop Complex Base band representation of a band pass signal
ESRF Page 16
VI Signal Theory
VI.1 Complex Base band representation of a band pass signal1
A pure sine wave signal can be consider like a analytic signal (or a complex base band signal) modulated by a
carrier frequency. The signal can be write where is the carrier frequency. is name a
band pass signal.
The energy spectrum is always symmetric
around f =0.
with :
In phase signal: I
Quadrature signal:Q
Figure 3
Finally
Eq 1
If we want to demodulate we have to obtain the and components of the signal
1
Théorie et traitement des signaux (F. de Coulon) dunod
Théorie et Applications de la notion de signal analytique (J.Ville)
The Ohio State University (Michael P.Fitz) Complex Baseband Representation
Digital I/Q loop First method: Using a DDS
ESRF Page 17
VII Band pass to complex Base band conversion
Figure 4 shows the method to
obtain the two components I and Q
from a band pass signal. The signals
cosines and sinus must have the same
frequency than the band pass signal
in order to translate the band pass
frequency spectrum around f=0. Two
low pass filters are needed to
eliminate the harmonics due to the
multiplication.
Figure 4
There are several ways to perform this conversion. Here we will show two methods.
One is directly inspire by the
Figure 4 and the other is name I/Q sampling Method.
VIII Simulink Design
VIII.1 First method: Using a DDS2
Figure 5 Conversion using DDS
2
Direct Digital Synthesizer
Digital I/Q loop Second method: I/Q sampling Method
ESRF Page 18
In Figure 5 a DDS is use to generate the Sinus and Cosine signal to the right frequency. Two CIC3
filter are use to
low pass filtering.
The important restriction for this design is that the value of the carrier frequency must be o power of 2. If this condition
is not respected there will be a `battement` between the two frequencies.
This design has been cancelled for our application. The carrier frequency which comes from a down conversion has a
value of 10MHz
VIII.2 Second method: I/Q sampling Method
The I/Q sampling method is simple method. We only need two D registers.
The
Figure 6 details the method
used to obtain the I and Q signal
from a real signal.
V2 is the analogue input
signal (10 MHz) which fed the
ADC.
V1 is the ADC frequency
sampling.
In Green is the representation of an
ideal sampling.
V3 shows the effect of a real
sampling. The data is sampling
during the rising edge of the clock
and hold at the same value until the
next rising edge of the clock.
The frequency clock must be four
time higher than the input signal in
order to have four samples per
period. Each sample is separate
from the other by a pi/2 angle. So
S1 = -S3, S2 = -S4
Figure 6
Now the goal is to obtain two distinct signals. One signal witch com from S1,S3 and the other comes from S2, S4. In
orde to separate the signals we have to generate a 20MHz clock with its opposite. This clock derive from the 40MHz
clock.
3
CIC Filter Introduction Matthew P. Donadio
Digital I/Q loop Sign detection and down conversion around zero
ESRF Page 19
Figure 7 I/Q Sampling
VIII.3 Sign detection and down conversion around zero
Before to realize the down conversion (or
rectification), we have needed a time reference inside the
design. This reference will used to fix the right quadrant
(see Figure 8). So the first step is to test the sign of the
signal I and Q.
A clock at 10MHz samples the signal I and Q in order to
test the sign. The sign is tested by threshold 1 and
threshold 2 (see
Figure 9). The output of threshold 1 and 2 is equal to -1
when the input is negative. The result is used has a
multiplexer input control (see Figure 10).
Figure 8
To understand the rectification, it is essential to know
that phase is stable during many 10MHz clock periods
One clock cycle before the rectification, we test the I
and Q signal sign. This test is used to control the
rectification multiplexer
If sign is negative the signal sample will be multiplied
by -1 if the sample is positive and by 1 if the sample is
negative (see Figure 10 Rectification)
Figure 9 Sign detection
Digital I/Q loop Sign detection and down conversion around zero
ESRF Page 20
Figure 10 Rectification
The Figure 11 shows how the process runs in case of a phase step
Figure 11
Digital I/Q loop Sign detection and down conversion around zero
ESRF Page 21
IX Phase rotator
Phase rotator will be used to calibrate the loop
We used the Eq 2 to change the phase of the I/Q component
Figure 12 Shows the Simulink realization of the rotation matrix.
The Calibration function is to set the I and Q value before to close
the loop.
Eq 2
Figure 12
Digital I/Q loop Sign detection and down conversion around zero
ESRF Page 22
X Sum of the Two Cavities
XI Controller Structure
In first approach, we will used the simplest form of a Proportional and integral controller.
Eq 3
The integral is expressed by time Ti, which represents the time required for the change in the output (u) is equal to that
of the input (e)
Laplace transforme
Eq 4
Controller Transfer function:
Eq5
Z transform used for a integration is :
thus or
avec
Recursion equation:
Digital I/Q loop W transform
ESRF Page 23
XI.1 W transform 4
Fictive pulsation ν of the W transform:
4
Transformation conform
w(n)
Digital I/Q loop W transform
ESRF Page 24
We can see that the transfer function is an integrator and a zero
Digital I/Q loop Final Controller Structure
ESRF Page 25
XI.2 Final Controller Structure
1) one integration
2) A zero to cancel the cavity HI pole
fc = 9.1481e+003 Hz
3) A gain k
Kp = 1 ki =
10
2
10
3
10
4
10
5
10
6
10
7
-360
-315
-270
-225
-180
-135
-90
-45
0
P.M.: 79 deg
Freq: 4.54e+004 Hz
Frequency (Hz)
Phase(deg)
-40
-20
0
20
40
60
G.M.: 18.2 dB
Freq: 3.7e+005 Hz
Stable loop
Open-Loop Bode
Magnitude(dB)
Cavity pole and zero compensation
Digital I/Q loop Translation to DAC
ESRF Page 26
XI.3 Translation to DAC
The data inside the FPGA is fix point 14.13 (signed, 2’s comp). The fractional part is 13bits and the integer part is 1bits.
binary Decimal Integer . Xor with 8192
Unsigned
Hex
01111111111111 +0 .9998779296875Volt 8191 16383 3FFF
00000000000000 0 Volt 0 8192 2000
10000000000000 -1 Volt -8192 0 0000
The D/A’s analogue output level is related to the input digital value as shown in the table below. Each of the D/As are
connected to the FPGA directly, which must provide 14 bit data in offset binary format
Input Dec Input Hex Input binary Analog Output
0 0000 00000000000000 -1 Volt
8191 1FFF 01111111111111 0 Volt
16383 3FFF 11111111111111 +1 Volt
Figure 13 Translation to DAC
Digital I/Q loop Definition
ESRF Page 27
XII Band Pass Signal
XII.1 Definition
Band pass signal is:
is the base band signal
with :
In phase signal
Quadrature signal
Eq 7
Digital I/Q loop Transmission through a linear time-invariant system
ESRF Page 28
XII.2 Transmission through a linear time-invariant system 567
This is a detail of a calculus already performed by Gary R from CERN
XII.2.1 Band pass filter
with
Eq 8
Eq 9
XII.2.2 Transmission through a band pass filter
 Definition
In other words, the base band signal is modulated by the carrier signal
 Complex Base band signal
 Complex band pass signal
5
Garoby R. Low Level RF and Feedback CERN PS/RF
6
Complex Baseband Representation of Band pass Signals by Mike Fitz, UCLA
7
Complex Signal Processing is Not — Complex Ken Martin Dept. of Elect. and Comp. Engr., Univ. of Toronto
Digital I/Q loop Band pass filter is a cavity
ESRF Page 29
 Real band pass signal
Eq 10
XII.3 Band pass filter is a cavity
Digital I/Q loop Band pass filter is a cavity
ESRF Page 30
Resonator impedance:
We reorganize the transfer function in order to find the Laplace inverse transform:
Rs = 25.8MΩ
Q = 38500
F = 352.202MHz
Band width around
9kHz
Eq 11
XII.3.1 Find transfer function of hI(t) and hQ(t)
Digital I/Q loop Band pass filter is a cavity
ESRF Page 31
XII.3.1.1 hI(t)
Eq 12
XII.3.1.2 hQ(t)
XII.3.1.3 Laplace transform of hI(t) and hQ(t)
and
After filtering the terms
Eq 13
Digital I/Q loop Band pass filter is a cavity
ESRF Page 32
Eq 14
Parameters cavities 352202000
Rs 26.8MΩ
Q0 38500
σ 28739.68
Digital I/Q loop Band pass filter is a cavity
ESRF Page 33
XII.3.1.4 Z transform of HI(p) and HQ(p) (Haugen, 2005)
Figure 14 Hi(p) R
Figure 15 Hq(p) R
The effect of the Hq(p) can be neglected compare with the direct path Hi(p). For the simulation of the loop, I will
use Hi(p) or Hi(z).
Digital I/Q loop Band pass filter is a cavity
ESRF Page 34
XII.3.1.5 HI(p) Z transform for simulink simulation
Figure 16
8
In order to increase the bandwidth of the loop, we need to cancel the pole of the cavity and add a dominant pole
to the controller. This dominant pole sets the response of the loop.
Controller structure must have:
4) one or more integration
5) A zero to cancel the HI pole
6) A gain K
7) A pole in order to set le behaviour in close loop
So
Close loop characteristic equation
8
Digital I/Q loop Band pass filter is a cavity
ESRF Page 35
XII.3.2 Using simulink control system toolbox
Matalb simulink control system toolbox provides all the necessary tools to tune a loop.
% ---------- Hi(z ) -----------------------------------------------
% First method to convert Hi(p) to Hi(z)-------------------
display(' Cavity (c2d)');
sys_Hi_z = c2d(sys_Hi,Ts,'zoh')
% Second method to convert Hi(p) to Hi(z)-------------------
pole_Hi_z = exp(-sigma_*Ts);
num_Hi_z = [1-pole_Hi_z];
den_Hi_z = [1 -pole_Hi_z];
display(' Cavity (tf)');
sys_Hi_z = tf(num_Hi_z,den_Hi_z,Ts)
Figure 17 Hi(p) green and Hi(z) blue
Digital I/Q loop Root locus of the close loop and open loop bode
ESRF Page 36
XII.4 Root locus of the close loop and open loop bode
Figure 18 Simulink simulation: Controller and cavity
Rule for pole placement
1) Not too near of the unity circle because a small variation of the system should cause an instability
2) Not too near the point 1.
3) No negative poles
kc
1
k_Hi
k_Hi
Pulse
Generator1
Kout
1
Kf
1
Corrector
sys_C
Cavity
sys_Hi_z
Digital I/Q loop Root locus of the close loop and open loop bode
ESRF Page 37
XIII Conclusion
The loop has been installed and finally a single loop controlled two cavities.
After 3 years of run, we decided to change the regulation. Many reasons motivated this decision.
1. The system was complex and it was difficult for the person in standby apprehend the system. In others words,
it was difficult to find the solution in case of break down.
2. At this end of this 3 year, The manufacturer of the FPGA board stops his activities.
3. Xilinx has frozen the ISE to ISE 10.1 for the Virtex 2.
4. ISE 10.1 was frozen for XP
5. And XP is now gave up by Microsoft
6. The design chain is complex and requires specialist people. The major problems are generally not where you
expect them. To much upgrade of software for a insignificant profit.
Design reasons
1. It was not a good idea to stay in I/Q signal for the loop because the same controller was used for the signal I
and the signal Q. And in this case, we have the same parameters for the phase loop and the magnitude loop.
The two loops were not independent. In order to have two independent loops, we should have to transform the
signals I and Q in two signals phase and amplitude (Cordic algorithm).
2. The Hittite I/Q modulator was not perfect. An amplitude variation led a phase variation so it was not easy to
tuning the system.
In October 2015 we have changed the Digital loop by two analog loops which using the same features. We obtain the
same result with the analog loops.
We know that the fashion leads to use digital I/Q loops. But we think that the real benefice of the I/Q loop will be reach
when we will able to sampling directly the RF signal without use RF down conversion stage.
Flexibility is used as argument is use for the digital loops. But in the real life for systems which run continuously the
persons who program such systems become more and more reticent to change often the code.
The analog loops run perfectly since two years without break down.
Out1
1
p1plus_1
p1+1
p1
p1
k
k
alpha
alpha
Integer Delay4
-1
Z
Integer Delay3
-1
Z
Integer Delay2
-1
Z
Integer Delay1
-1
Z
In1
1

More Related Content

What's hot

F frame tc01200002 e tbg 4-9-18 fd
F frame tc01200002 e tbg 4-9-18 fdF frame tc01200002 e tbg 4-9-18 fd
F frame tc01200002 e tbg 4-9-18 fdAmerico Guerrero
 
Crown wf3000 series forklift service repair manual
Crown wf3000 series forklift service repair manualCrown wf3000 series forklift service repair manual
Crown wf3000 series forklift service repair manualfhhsjdkmem
 
Crown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manualCrown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manualjfksekmmdme
 
dB or not dB? Everything you ever wanted to know about decibels but were afra...
dB or not dB? Everything you ever wanted to know about decibels but were afra...dB or not dB? Everything you ever wanted to know about decibels but were afra...
dB or not dB? Everything you ever wanted to know about decibels but were afra...Rohde & Schwarz North America
 
Claas c540 c450 folding lexion (type 713) service repair manual
Claas c540 c450 folding lexion (type 713) service repair manualClaas c540 c450 folding lexion (type 713) service repair manual
Claas c540 c450 folding lexion (type 713) service repair manualjfdjskmdmme
 
Logic Design - Book: Final notes without combinational
Logic Design - Book: Final notes without combinationalLogic Design - Book: Final notes without combinational
Logic Design - Book: Final notes without combinationalGouda Mando
 
TC-100-EN_Apex_Fastener-Catalog-LR
TC-100-EN_Apex_Fastener-Catalog-LRTC-100-EN_Apex_Fastener-Catalog-LR
TC-100-EN_Apex_Fastener-Catalog-LRSean Ibrahim
 
Crown ws2000 series forklift service repair manual
Crown ws2000 series forklift service repair manualCrown ws2000 series forklift service repair manual
Crown ws2000 series forklift service repair manualfjsekkdmme
 
Original IC Mosfet Driver IXDN602SIATR IXDN602SIA 602 SOP-8 New IXYS Corporation
Original IC Mosfet Driver IXDN602SIATR IXDN602SIA 602 SOP-8 New IXYS CorporationOriginal IC Mosfet Driver IXDN602SIATR IXDN602SIA 602 SOP-8 New IXYS Corporation
Original IC Mosfet Driver IXDN602SIATR IXDN602SIA 602 SOP-8 New IXYS CorporationAUTHELECTRONIC
 
Liquipoint t ftw31 32 endress+hauser datasheet-level limit switch for multipl...
Liquipoint t ftw31 32 endress+hauser datasheet-level limit switch for multipl...Liquipoint t ftw31 32 endress+hauser datasheet-level limit switch for multipl...
Liquipoint t ftw31 32 endress+hauser datasheet-level limit switch for multipl...ENVIMART
 
2259 file spectrum_analysis_basics_application_note_150_aligent_2005
2259 file spectrum_analysis_basics_application_note_150_aligent_20052259 file spectrum_analysis_basics_application_note_150_aligent_2005
2259 file spectrum_analysis_basics_application_note_150_aligent_2005Philipp Isla
 
20 Magnificos proyectos para ARDUINO
20 Magnificos proyectos para ARDUINO20 Magnificos proyectos para ARDUINO
20 Magnificos proyectos para ARDUINOdave
 
PolyRacks Production Binder
PolyRacks Production BinderPolyRacks Production Binder
PolyRacks Production BinderRyan Nguyen
 
Proline promag 50 h endress+hauser datasheet-electromagnetic flowmeter
Proline promag 50 h endress+hauser datasheet-electromagnetic flowmeterProline promag 50 h endress+hauser datasheet-electromagnetic flowmeter
Proline promag 50 h endress+hauser datasheet-electromagnetic flowmeterENVIMART
 
Liquiphant m density densitycontroller fml621 endress+hauser datasheet
Liquiphant m density densitycontroller fml621 endress+hauser datasheetLiquiphant m density densitycontroller fml621 endress+hauser datasheet
Liquiphant m density densitycontroller fml621 endress+hauser datasheetENVIMART
 

What's hot (18)

F frame tc01200002 e tbg 4-9-18 fd
F frame tc01200002 e tbg 4-9-18 fdF frame tc01200002 e tbg 4-9-18 fd
F frame tc01200002 e tbg 4-9-18 fd
 
Crown wf3000 series forklift service repair manual
Crown wf3000 series forklift service repair manualCrown wf3000 series forklift service repair manual
Crown wf3000 series forklift service repair manual
 
Crown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manualCrown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manual
 
dB or not dB? Everything you ever wanted to know about decibels but were afra...
dB or not dB? Everything you ever wanted to know about decibels but were afra...dB or not dB? Everything you ever wanted to know about decibels but were afra...
dB or not dB? Everything you ever wanted to know about decibels but were afra...
 
Vx3unsecured
Vx3unsecuredVx3unsecured
Vx3unsecured
 
Fundamentals of Oscilloscopes, Version 1.1
Fundamentals of Oscilloscopes, Version 1.1Fundamentals of Oscilloscopes, Version 1.1
Fundamentals of Oscilloscopes, Version 1.1
 
Claas c540 c450 folding lexion (type 713) service repair manual
Claas c540 c450 folding lexion (type 713) service repair manualClaas c540 c450 folding lexion (type 713) service repair manual
Claas c540 c450 folding lexion (type 713) service repair manual
 
Logic Design - Book: Final notes without combinational
Logic Design - Book: Final notes without combinationalLogic Design - Book: Final notes without combinational
Logic Design - Book: Final notes without combinational
 
TC-100-EN_Apex_Fastener-Catalog-LR
TC-100-EN_Apex_Fastener-Catalog-LRTC-100-EN_Apex_Fastener-Catalog-LR
TC-100-EN_Apex_Fastener-Catalog-LR
 
Crown ws2000 series forklift service repair manual
Crown ws2000 series forklift service repair manualCrown ws2000 series forklift service repair manual
Crown ws2000 series forklift service repair manual
 
Original IC Mosfet Driver IXDN602SIATR IXDN602SIA 602 SOP-8 New IXYS Corporation
Original IC Mosfet Driver IXDN602SIATR IXDN602SIA 602 SOP-8 New IXYS CorporationOriginal IC Mosfet Driver IXDN602SIATR IXDN602SIA 602 SOP-8 New IXYS Corporation
Original IC Mosfet Driver IXDN602SIATR IXDN602SIA 602 SOP-8 New IXYS Corporation
 
Liquipoint t ftw31 32 endress+hauser datasheet-level limit switch for multipl...
Liquipoint t ftw31 32 endress+hauser datasheet-level limit switch for multipl...Liquipoint t ftw31 32 endress+hauser datasheet-level limit switch for multipl...
Liquipoint t ftw31 32 endress+hauser datasheet-level limit switch for multipl...
 
2259 file spectrum_analysis_basics_application_note_150_aligent_2005
2259 file spectrum_analysis_basics_application_note_150_aligent_20052259 file spectrum_analysis_basics_application_note_150_aligent_2005
2259 file spectrum_analysis_basics_application_note_150_aligent_2005
 
20 Magnificos proyectos para ARDUINO
20 Magnificos proyectos para ARDUINO20 Magnificos proyectos para ARDUINO
20 Magnificos proyectos para ARDUINO
 
PolyRacks Production Binder
PolyRacks Production BinderPolyRacks Production Binder
PolyRacks Production Binder
 
Proline promag 50 h endress+hauser datasheet-electromagnetic flowmeter
Proline promag 50 h endress+hauser datasheet-electromagnetic flowmeterProline promag 50 h endress+hauser datasheet-electromagnetic flowmeter
Proline promag 50 h endress+hauser datasheet-electromagnetic flowmeter
 
Liquiphant m density densitycontroller fml621 endress+hauser datasheet
Liquiphant m density densitycontroller fml621 endress+hauser datasheetLiquiphant m density densitycontroller fml621 endress+hauser datasheet
Liquiphant m density densitycontroller fml621 endress+hauser datasheet
 
Water samplers-Liquistation CSF48
Water samplers-Liquistation CSF48Water samplers-Liquistation CSF48
Water samplers-Liquistation CSF48
 

Viewers also liked

Resume shannonmurphyms201601
Resume shannonmurphyms201601Resume shannonmurphyms201601
Resume shannonmurphyms201601Shannon Murphy
 
CV-Nirav Dave(Academics)
CV-Nirav Dave(Academics)CV-Nirav Dave(Academics)
CV-Nirav Dave(Academics)Nirav Dave
 
coidak led lights motion sensor spotlight
coidak led lights motion sensor spotlightcoidak led lights motion sensor spotlight
coidak led lights motion sensor spotlightXiao Yiely
 
Fatturazione Elettronica Register.it
Fatturazione Elettronica Register.itFatturazione Elettronica Register.it
Fatturazione Elettronica Register.itRegister.it
 
Aggiornare il proprio PC a Windows 10: e perché no?
Aggiornare il proprio PC a Windows 10: e perché no?Aggiornare il proprio PC a Windows 10: e perché no?
Aggiornare il proprio PC a Windows 10: e perché no?Enzo Contini
 

Viewers also liked (11)

Resume shannonmurphyms201601
Resume shannonmurphyms201601Resume shannonmurphyms201601
Resume shannonmurphyms201601
 
Benefits Of Concrete Polishing
Benefits Of Concrete PolishingBenefits Of Concrete Polishing
Benefits Of Concrete Polishing
 
Informacion de la web
Informacion de la webInformacion de la web
Informacion de la web
 
MADERSA-AP-Model
MADERSA-AP-ModelMADERSA-AP-Model
MADERSA-AP-Model
 
CV-Nirav Dave(Academics)
CV-Nirav Dave(Academics)CV-Nirav Dave(Academics)
CV-Nirav Dave(Academics)
 
Intro to Devops
Intro to DevopsIntro to Devops
Intro to Devops
 
coidak led lights motion sensor spotlight
coidak led lights motion sensor spotlightcoidak led lights motion sensor spotlight
coidak led lights motion sensor spotlight
 
Fatturazione Elettronica Register.it
Fatturazione Elettronica Register.itFatturazione Elettronica Register.it
Fatturazione Elettronica Register.it
 
Aggiornare il proprio PC a Windows 10: e perché no?
Aggiornare il proprio PC a Windows 10: e perché no?Aggiornare il proprio PC a Windows 10: e perché no?
Aggiornare il proprio PC a Windows 10: e perché no?
 
Определение целевой аудитории и ее портрет. SMM Day 20.05.16
Определение целевой аудитории и ее портрет. SMM Day 20.05.16 Определение целевой аудитории и ее портрет. SMM Day 20.05.16
Определение целевой аудитории и ее портрет. SMM Day 20.05.16
 
The Ballad
The BalladThe Ballad
The Ballad
 

Similar to Low Level RF : Digital IQ loop for accelerating cavities

Miele Gas Dryer T9820 Service Manual
Miele Gas Dryer T9820 Service ManualMiele Gas Dryer T9820 Service Manual
Miele Gas Dryer T9820 Service ManualAjit Verma
 
TRU_v29_Reference_Manual_EN_20140325.pdf
TRU_v29_Reference_Manual_EN_20140325.pdfTRU_v29_Reference_Manual_EN_20140325.pdf
TRU_v29_Reference_Manual_EN_20140325.pdfPEDRO MORALES HERNANDEZ
 
2016.10.24 halvledere - pdf v.01 - DIODE TRANSISTOR SEMICONDUCTOR - Sven ...
2016.10.24   halvledere - pdf v.01  -  DIODE TRANSISTOR SEMICONDUCTOR - Sven ...2016.10.24   halvledere - pdf v.01  -  DIODE TRANSISTOR SEMICONDUCTOR - Sven ...
2016.10.24 halvledere - pdf v.01 - DIODE TRANSISTOR SEMICONDUCTOR - Sven ...Sven Åge Eriksen
 
Notes of 8051 Micro Controller for BCA, MCA, MSC (CS), MSC (IT) & AMIE IEI- b...
Notes of 8051 Micro Controller for BCA, MCA, MSC (CS), MSC (IT) & AMIE IEI- b...Notes of 8051 Micro Controller for BCA, MCA, MSC (CS), MSC (IT) & AMIE IEI- b...
Notes of 8051 Micro Controller for BCA, MCA, MSC (CS), MSC (IT) & AMIE IEI- b...ssuserd6b1fd
 
8051 micro controller
8051 micro controller8051 micro controller
8051 micro controllerArun Umrao
 
VoLTE and ViLTE.pdf
VoLTE and ViLTE.pdfVoLTE and ViLTE.pdf
VoLTE and ViLTE.pdfAsitSwain5
 
Datacolor 650 600 400 Users Guide 4230 0395 M Rev 1
Datacolor 650 600 400 Users Guide 4230 0395 M Rev 1Datacolor 650 600 400 Users Guide 4230 0395 M Rev 1
Datacolor 650 600 400 Users Guide 4230 0395 M Rev 1Andreas Peny
 
Tinyos programming
Tinyos programmingTinyos programming
Tinyos programmingssuserf04f61
 
Manual micrologix 1100
Manual micrologix 1100Manual micrologix 1100
Manual micrologix 1100pedrocu
 
Frc F Vvf 537 83 6 1805507 Uk
Frc F Vvf 537 83 6 1805507 UkFrc F Vvf 537 83 6 1805507 Uk
Frc F Vvf 537 83 6 1805507 Ukguest597cc37
 

Similar to Low Level RF : Digital IQ loop for accelerating cavities (20)

digital.pdf
digital.pdfdigital.pdf
digital.pdf
 
Miele Gas Dryer T9820 Service Manual
Miele Gas Dryer T9820 Service ManualMiele Gas Dryer T9820 Service Manual
Miele Gas Dryer T9820 Service Manual
 
SPI Concepts.pdf
SPI Concepts.pdfSPI Concepts.pdf
SPI Concepts.pdf
 
Bucher lift control guide
Bucher lift control guideBucher lift control guide
Bucher lift control guide
 
TRU_v29_Reference_Manual_EN_20140325.pdf
TRU_v29_Reference_Manual_EN_20140325.pdfTRU_v29_Reference_Manual_EN_20140325.pdf
TRU_v29_Reference_Manual_EN_20140325.pdf
 
2016.10.24 halvledere - pdf v.01 - DIODE TRANSISTOR SEMICONDUCTOR - Sven ...
2016.10.24   halvledere - pdf v.01  -  DIODE TRANSISTOR SEMICONDUCTOR - Sven ...2016.10.24   halvledere - pdf v.01  -  DIODE TRANSISTOR SEMICONDUCTOR - Sven ...
2016.10.24 halvledere - pdf v.01 - DIODE TRANSISTOR SEMICONDUCTOR - Sven ...
 
49529487 abis-interface
49529487 abis-interface49529487 abis-interface
49529487 abis-interface
 
In ultramat 23
In ultramat  23In ultramat  23
In ultramat 23
 
Voip
VoipVoip
Voip
 
thesis
thesisthesis
thesis
 
Notes of 8051 Micro Controller for BCA, MCA, MSC (CS), MSC (IT) & AMIE IEI- b...
Notes of 8051 Micro Controller for BCA, MCA, MSC (CS), MSC (IT) & AMIE IEI- b...Notes of 8051 Micro Controller for BCA, MCA, MSC (CS), MSC (IT) & AMIE IEI- b...
Notes of 8051 Micro Controller for BCA, MCA, MSC (CS), MSC (IT) & AMIE IEI- b...
 
8051 micro controller
8051 micro controller8051 micro controller
8051 micro controller
 
VoLTE and ViLTE.pdf
VoLTE and ViLTE.pdfVoLTE and ViLTE.pdf
VoLTE and ViLTE.pdf
 
Datacolor 650 600 400 Users Guide 4230 0395 M Rev 1
Datacolor 650 600 400 Users Guide 4230 0395 M Rev 1Datacolor 650 600 400 Users Guide 4230 0395 M Rev 1
Datacolor 650 600 400 Users Guide 4230 0395 M Rev 1
 
Tinyos programming
Tinyos programmingTinyos programming
Tinyos programming
 
Manual micrologix 1100
Manual micrologix 1100Manual micrologix 1100
Manual micrologix 1100
 
ASIC_Design.pdf
ASIC_Design.pdfASIC_Design.pdf
ASIC_Design.pdf
 
Frc F Vvf 537 83 6 1805507 Uk
Frc F Vvf 537 83 6 1805507 UkFrc F Vvf 537 83 6 1805507 Uk
Frc F Vvf 537 83 6 1805507 Uk
 
Dse8620 operators-manual
Dse8620 operators-manualDse8620 operators-manual
Dse8620 operators-manual
 
Vx6r Manual E
Vx6r Manual EVx6r Manual E
Vx6r Manual E
 

Recently uploaded

HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...Call Girls in Nagpur High Profile
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 

Recently uploaded (20)

9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 

Low Level RF : Digital IQ loop for accelerating cavities

  • 1. Digital I/Q loop 1 Digital I/Q loop for accelerating cavities Technical document
  • 2. Digital I/Q loop 2 Contents I I/Q loop description........................................................................................................................................................................4 I.1 I/Q loop.....................................................................................................................................................................................4 I.2 Low level Hardware description ...............................................................................................................................................5 II Synoptic..........................................................................................................................................................................................6 III Frequency down conversion .....................................................................................................................................................7 III.1 EMHISER TELE-TECH Inc I/Q modulator ........................................................................................................................7 III.2 362.202 MHz SSB Synoptic ................................................................................................................................................8 III.3 362.202MHz Band pass filter...............................................................................................................................................9 III.4 Down conversion 352.202MHz to 10MHz IF...................................................................................................................11 IV 352.202 MHz base band modulation.......................................................................................................................................13 IV.1 Hittite Modulator................................................................................................................................................................13 IV.1.1 Specifications ................................................................................................................................................................13 IV.2 Electronic Interface and modulator ....................................................................................................................................13 V Software and hardware used.........................................................................................................................................................15 V.1 Hardware:...........................................................................................................................................................................15 V.2 Software:............................................................................................................................................................................15 VI Signal Theory..........................................................................................................................................................................16 VI.1 Complex Base band representation of a band pass signal ..................................................................................................16 VII Band pass to complex Base band conversion..........................................................................................................................17 VIII Simulink Design......................................................................................................................................................................17 VIII.1 First method: Using a DDS ................................................................................................................................................17 VIII.2 Second method: I/Q sampling Method...............................................................................................................................18 VIII.3 Sign detection and down conversion around zero ..............................................................................................................19 IX Phase rotator ...........................................................................................................................................................................21 X Sum of the Two Cavities ..............................................................................................................................................................22 XI Controller Structure.................................................................................................................................................................22 Controller Transfer function:............................................................................................................................................................22 XI.1 W transform ......................................................................................................................................................................23 XI.2 Final Controller Structure...................................................................................................................................................25 XI.3 Translation to DAC............................................................................................................................................................26 XII Band Pass Signal.....................................................................................................................................................................27 XII.1 Definition ...........................................................................................................................................................................27 XII.2 Transmission through a linear time-invariant system ........................................................................................................28 XII.2.1 Band pass filter............................................................................................................................................................28 XII.2.2 Transmission through a band pass filter ...............................................................................................................28 XII.3 Band pass filter is a cavity..................................................................................................................................................29 XII.3.1 Find transfer function of hI(t) and hQ(t).......................................................................................................................30 XII.3.2 Using simulink control system toolbox.......................................................................................................................35 XII.4 Root locus of the close loop and open loop bode ...............................................................................................................36 XIII Conclusion ..............................................................................................................................................................................37
  • 3. Digital I/Q loop 3 Bibliography Haugen, F. (2005). Discrete-time signals and systems. discrete.pdf. Complex Baseband Representation of Band pass Signals by Mike Fitz, UCLA Complex Signal Processing is Not — Complex Ken Martin Dept. of Elect. and Comp. Engr., Univ. of Toronto Garoby R. Low Level RF and Feedback CERN PS/RF G.Gautier Wednesday, May 04, 2016
  • 4. Digital I/Q loop 4 I I/Q loop description I.1 I/Q loop Error! Reference source not found.shows the I/Q modulation and I/Q demodulation synoptic. This I/Q loop is made up of four parts. The first part is the 362.202MHz single side band generation. This part allows doing a down conversion from 352.202 MHz to 10MHz. The second part is the down conversion, the third is the FPGA correction and finally the fourth part is the I/Q modulation performs by Hittite HMC497LP4E. The RF plant is constituted of a solid state amplifier and a warm radiofrequency cavity. Figure 1 I/Q loop synoptic
  • 5. Digital I/Q loop 5 Figure 2 loop synoptic, more details I.2 Low level Hardware description The synoptic next page shows the low level hardware (FPGA is not included in this drawing) 1. 362.202 MHz Single Sind band generation 2. Down conversion to 10MHz 3. Base band modulation
  • 7. Digital I/Q loop EMHISER TELE-TECH Inc I/Q modulator ESRF Page 7 IIIFrequency down conversion III.1 EMHISER TELE-TECH Inc I/Q modulator Used to create the 362.202MHz sideband
  • 8. Digital I/Q loop 362.202 MHz SSB Synoptic ESRF Page 8 III.2 362.202 MHz SSB Synoptic 10MHz + DC signal 10MHz + DC signal Input 352.202MHz Output 362.202MHz Bias Tee DC signal 90 degree hybrids Input 10MHz I/Q modulator 50 Load DC Offset
  • 9. Digital I/Q loop //362.202MHz Band pass filter ESRF Page 9 III.3 362.202MHz Band pass filter It is used to suppress the spurious frequencies after modulation.  Master source 352.202MHz local oscillator frequency spectrum.
  • 10. Digital I/Q loop //362.202MHz Band pass filter ESRF Page 10  Output 362.202MHz spectrumbefore filtering  362.202 MHz spectrum filtering
  • 11. Digital I/Q loop Down conversion 352.202MHz to 10MHz IF ESRF Page 11 III.4 Down conversion 352.202MHz to 10MHz IF
  • 12. Digital I/Q loop Down conversion 352.202MHz to 10MHz IF ESRF Page 12
  • 13. Digital I/Q loop Hittite Modulator ESRF Page 13 IV 352.202 MHz base band modulation The base band correction signal modulate the 352.202MHz IV.1 Hittite Modulator IV.1.1 Specifications hmc497lp4 Hittite modulator specifications IV.2 Electronic Interface and modulator Baseband signal from DAC A Baseband signal from DAC B 352.202MHz input Modulated 352.202MHz output
  • 14. Digital I/Q loop Electronic Interface and modulator ESRF Page 14 Designation Brand or distributor reference Amplificateur Mini-circuits ZX60-14012L+ Amplificateur Mini-circuits ZFL-1000H Step attenuateur Mini-circuits ZX76-15R5-PP+ Mixer LO 17 dBm Mini-circuits TAK-1WH + Bias Tee Mini-circuits ZFBT-4R2GW I/Q modulator EMHISER TELE-TECH Inc 9211-44 Coupler hybrid 90 Pulsar (Elyte) 90 Q3-01-412 10MHz Filter Band pass Elythe B10-4/T-7C1FS 352.202 Mhz filter band pass Elythe TB352-10- 4ACSJ 362.202 Mhz filter band pass Elythe BP21/362.202-9 Power Splitter Mini-circuits ZX10Q-2-12 I/Q modulator Hittite HMC 497 LP4E Directional coupler Mini-circuits ZEDC-15-2B
  • 15. Digital I/Q loop Hardware: ESRF Page 15 V Software and hardware used V.1 Hardware: HERON Module with 200K/1M gate FPGA: Virtex 2V1000fg456-4 2 channels of 125Mhz 12 bit A/D 2 channels of 125Mhz 14 bit D/A V.2 Software: MATLAB Version 7.5.0.342 (R2007b) MATLAB License Number: 143600 Operating System: Microsoft Windows XP Version 5.1 (Build 2600: Service Pack 3) Java VM Version: Java 1.6.0 with Sun Microsystems Inc. Java HotSpot(TM) Client VM mixed mode MATLAB Version 7.5 (R2007b) Simulink Version 7.0 (R2007b) Control System Toolbox Version 8.0.1 (R2007b) Filter Design Toolbox Version 4.2 (R2007b) Signal Processing Blockset Version 6.6 (R2007b) Signal Processing Toolbox Version 6.8 (R2007b) Simulink Control Design Version 2.2 (R2007b) Symbolic Math Toolbox Version 3.2.2 (R2007b) System Identification Toolbox Version 7.1 (R2007b) Xilinx System Generator Version 10.1.3 build 1386 ISE 10.1.03
  • 16. Digital I/Q loop Complex Base band representation of a band pass signal ESRF Page 16 VI Signal Theory VI.1 Complex Base band representation of a band pass signal1 A pure sine wave signal can be consider like a analytic signal (or a complex base band signal) modulated by a carrier frequency. The signal can be write where is the carrier frequency. is name a band pass signal. The energy spectrum is always symmetric around f =0. with : In phase signal: I Quadrature signal:Q Figure 3 Finally Eq 1 If we want to demodulate we have to obtain the and components of the signal 1 Théorie et traitement des signaux (F. de Coulon) dunod Théorie et Applications de la notion de signal analytique (J.Ville) The Ohio State University (Michael P.Fitz) Complex Baseband Representation
  • 17. Digital I/Q loop First method: Using a DDS ESRF Page 17 VII Band pass to complex Base band conversion Figure 4 shows the method to obtain the two components I and Q from a band pass signal. The signals cosines and sinus must have the same frequency than the band pass signal in order to translate the band pass frequency spectrum around f=0. Two low pass filters are needed to eliminate the harmonics due to the multiplication. Figure 4 There are several ways to perform this conversion. Here we will show two methods. One is directly inspire by the Figure 4 and the other is name I/Q sampling Method. VIII Simulink Design VIII.1 First method: Using a DDS2 Figure 5 Conversion using DDS 2 Direct Digital Synthesizer
  • 18. Digital I/Q loop Second method: I/Q sampling Method ESRF Page 18 In Figure 5 a DDS is use to generate the Sinus and Cosine signal to the right frequency. Two CIC3 filter are use to low pass filtering. The important restriction for this design is that the value of the carrier frequency must be o power of 2. If this condition is not respected there will be a `battement` between the two frequencies. This design has been cancelled for our application. The carrier frequency which comes from a down conversion has a value of 10MHz VIII.2 Second method: I/Q sampling Method The I/Q sampling method is simple method. We only need two D registers. The Figure 6 details the method used to obtain the I and Q signal from a real signal. V2 is the analogue input signal (10 MHz) which fed the ADC. V1 is the ADC frequency sampling. In Green is the representation of an ideal sampling. V3 shows the effect of a real sampling. The data is sampling during the rising edge of the clock and hold at the same value until the next rising edge of the clock. The frequency clock must be four time higher than the input signal in order to have four samples per period. Each sample is separate from the other by a pi/2 angle. So S1 = -S3, S2 = -S4 Figure 6 Now the goal is to obtain two distinct signals. One signal witch com from S1,S3 and the other comes from S2, S4. In orde to separate the signals we have to generate a 20MHz clock with its opposite. This clock derive from the 40MHz clock. 3 CIC Filter Introduction Matthew P. Donadio
  • 19. Digital I/Q loop Sign detection and down conversion around zero ESRF Page 19 Figure 7 I/Q Sampling VIII.3 Sign detection and down conversion around zero Before to realize the down conversion (or rectification), we have needed a time reference inside the design. This reference will used to fix the right quadrant (see Figure 8). So the first step is to test the sign of the signal I and Q. A clock at 10MHz samples the signal I and Q in order to test the sign. The sign is tested by threshold 1 and threshold 2 (see Figure 9). The output of threshold 1 and 2 is equal to -1 when the input is negative. The result is used has a multiplexer input control (see Figure 10). Figure 8 To understand the rectification, it is essential to know that phase is stable during many 10MHz clock periods One clock cycle before the rectification, we test the I and Q signal sign. This test is used to control the rectification multiplexer If sign is negative the signal sample will be multiplied by -1 if the sample is positive and by 1 if the sample is negative (see Figure 10 Rectification) Figure 9 Sign detection
  • 20. Digital I/Q loop Sign detection and down conversion around zero ESRF Page 20 Figure 10 Rectification The Figure 11 shows how the process runs in case of a phase step Figure 11
  • 21. Digital I/Q loop Sign detection and down conversion around zero ESRF Page 21 IX Phase rotator Phase rotator will be used to calibrate the loop We used the Eq 2 to change the phase of the I/Q component Figure 12 Shows the Simulink realization of the rotation matrix. The Calibration function is to set the I and Q value before to close the loop. Eq 2 Figure 12
  • 22. Digital I/Q loop Sign detection and down conversion around zero ESRF Page 22 X Sum of the Two Cavities XI Controller Structure In first approach, we will used the simplest form of a Proportional and integral controller. Eq 3 The integral is expressed by time Ti, which represents the time required for the change in the output (u) is equal to that of the input (e) Laplace transforme Eq 4 Controller Transfer function: Eq5 Z transform used for a integration is : thus or avec Recursion equation:
  • 23. Digital I/Q loop W transform ESRF Page 23 XI.1 W transform 4 Fictive pulsation ν of the W transform: 4 Transformation conform w(n)
  • 24. Digital I/Q loop W transform ESRF Page 24 We can see that the transfer function is an integrator and a zero
  • 25. Digital I/Q loop Final Controller Structure ESRF Page 25 XI.2 Final Controller Structure 1) one integration 2) A zero to cancel the cavity HI pole fc = 9.1481e+003 Hz 3) A gain k Kp = 1 ki = 10 2 10 3 10 4 10 5 10 6 10 7 -360 -315 -270 -225 -180 -135 -90 -45 0 P.M.: 79 deg Freq: 4.54e+004 Hz Frequency (Hz) Phase(deg) -40 -20 0 20 40 60 G.M.: 18.2 dB Freq: 3.7e+005 Hz Stable loop Open-Loop Bode Magnitude(dB) Cavity pole and zero compensation
  • 26. Digital I/Q loop Translation to DAC ESRF Page 26 XI.3 Translation to DAC The data inside the FPGA is fix point 14.13 (signed, 2’s comp). The fractional part is 13bits and the integer part is 1bits. binary Decimal Integer . Xor with 8192 Unsigned Hex 01111111111111 +0 .9998779296875Volt 8191 16383 3FFF 00000000000000 0 Volt 0 8192 2000 10000000000000 -1 Volt -8192 0 0000 The D/A’s analogue output level is related to the input digital value as shown in the table below. Each of the D/As are connected to the FPGA directly, which must provide 14 bit data in offset binary format Input Dec Input Hex Input binary Analog Output 0 0000 00000000000000 -1 Volt 8191 1FFF 01111111111111 0 Volt 16383 3FFF 11111111111111 +1 Volt Figure 13 Translation to DAC
  • 27. Digital I/Q loop Definition ESRF Page 27 XII Band Pass Signal XII.1 Definition Band pass signal is: is the base band signal with : In phase signal Quadrature signal Eq 7
  • 28. Digital I/Q loop Transmission through a linear time-invariant system ESRF Page 28 XII.2 Transmission through a linear time-invariant system 567 This is a detail of a calculus already performed by Gary R from CERN XII.2.1 Band pass filter with Eq 8 Eq 9 XII.2.2 Transmission through a band pass filter  Definition In other words, the base band signal is modulated by the carrier signal  Complex Base band signal  Complex band pass signal 5 Garoby R. Low Level RF and Feedback CERN PS/RF 6 Complex Baseband Representation of Band pass Signals by Mike Fitz, UCLA 7 Complex Signal Processing is Not — Complex Ken Martin Dept. of Elect. and Comp. Engr., Univ. of Toronto
  • 29. Digital I/Q loop Band pass filter is a cavity ESRF Page 29  Real band pass signal Eq 10 XII.3 Band pass filter is a cavity
  • 30. Digital I/Q loop Band pass filter is a cavity ESRF Page 30 Resonator impedance: We reorganize the transfer function in order to find the Laplace inverse transform: Rs = 25.8MΩ Q = 38500 F = 352.202MHz Band width around 9kHz Eq 11 XII.3.1 Find transfer function of hI(t) and hQ(t)
  • 31. Digital I/Q loop Band pass filter is a cavity ESRF Page 31 XII.3.1.1 hI(t) Eq 12 XII.3.1.2 hQ(t) XII.3.1.3 Laplace transform of hI(t) and hQ(t) and After filtering the terms Eq 13
  • 32. Digital I/Q loop Band pass filter is a cavity ESRF Page 32 Eq 14 Parameters cavities 352202000 Rs 26.8MΩ Q0 38500 σ 28739.68
  • 33. Digital I/Q loop Band pass filter is a cavity ESRF Page 33 XII.3.1.4 Z transform of HI(p) and HQ(p) (Haugen, 2005) Figure 14 Hi(p) R Figure 15 Hq(p) R The effect of the Hq(p) can be neglected compare with the direct path Hi(p). For the simulation of the loop, I will use Hi(p) or Hi(z).
  • 34. Digital I/Q loop Band pass filter is a cavity ESRF Page 34 XII.3.1.5 HI(p) Z transform for simulink simulation Figure 16 8 In order to increase the bandwidth of the loop, we need to cancel the pole of the cavity and add a dominant pole to the controller. This dominant pole sets the response of the loop. Controller structure must have: 4) one or more integration 5) A zero to cancel the HI pole 6) A gain K 7) A pole in order to set le behaviour in close loop So Close loop characteristic equation 8
  • 35. Digital I/Q loop Band pass filter is a cavity ESRF Page 35 XII.3.2 Using simulink control system toolbox Matalb simulink control system toolbox provides all the necessary tools to tune a loop. % ---------- Hi(z ) ----------------------------------------------- % First method to convert Hi(p) to Hi(z)------------------- display(' Cavity (c2d)'); sys_Hi_z = c2d(sys_Hi,Ts,'zoh') % Second method to convert Hi(p) to Hi(z)------------------- pole_Hi_z = exp(-sigma_*Ts); num_Hi_z = [1-pole_Hi_z]; den_Hi_z = [1 -pole_Hi_z]; display(' Cavity (tf)'); sys_Hi_z = tf(num_Hi_z,den_Hi_z,Ts) Figure 17 Hi(p) green and Hi(z) blue
  • 36. Digital I/Q loop Root locus of the close loop and open loop bode ESRF Page 36 XII.4 Root locus of the close loop and open loop bode Figure 18 Simulink simulation: Controller and cavity Rule for pole placement 1) Not too near of the unity circle because a small variation of the system should cause an instability 2) Not too near the point 1. 3) No negative poles kc 1 k_Hi k_Hi Pulse Generator1 Kout 1 Kf 1 Corrector sys_C Cavity sys_Hi_z
  • 37. Digital I/Q loop Root locus of the close loop and open loop bode ESRF Page 37 XIII Conclusion The loop has been installed and finally a single loop controlled two cavities. After 3 years of run, we decided to change the regulation. Many reasons motivated this decision. 1. The system was complex and it was difficult for the person in standby apprehend the system. In others words, it was difficult to find the solution in case of break down. 2. At this end of this 3 year, The manufacturer of the FPGA board stops his activities. 3. Xilinx has frozen the ISE to ISE 10.1 for the Virtex 2. 4. ISE 10.1 was frozen for XP 5. And XP is now gave up by Microsoft 6. The design chain is complex and requires specialist people. The major problems are generally not where you expect them. To much upgrade of software for a insignificant profit. Design reasons 1. It was not a good idea to stay in I/Q signal for the loop because the same controller was used for the signal I and the signal Q. And in this case, we have the same parameters for the phase loop and the magnitude loop. The two loops were not independent. In order to have two independent loops, we should have to transform the signals I and Q in two signals phase and amplitude (Cordic algorithm). 2. The Hittite I/Q modulator was not perfect. An amplitude variation led a phase variation so it was not easy to tuning the system. In October 2015 we have changed the Digital loop by two analog loops which using the same features. We obtain the same result with the analog loops. We know that the fashion leads to use digital I/Q loops. But we think that the real benefice of the I/Q loop will be reach when we will able to sampling directly the RF signal without use RF down conversion stage. Flexibility is used as argument is use for the digital loops. But in the real life for systems which run continuously the persons who program such systems become more and more reticent to change often the code. The analog loops run perfectly since two years without break down. Out1 1 p1plus_1 p1+1 p1 p1 k k alpha alpha Integer Delay4 -1 Z Integer Delay3 -1 Z Integer Delay2 -1 Z Integer Delay1 -1 Z In1 1