SlideShare a Scribd company logo
1 of 1
Download to read offline
Microfluidic	
  Synthesis	
  of	
  Lipid	
  Polymer	
  Hybrid	
  Nanopar;cles	
  
for	
  Targeted	
  Drug	
  Delivery	
  
Eri	
  Takami,	
  Folarin	
  Erogbogbo	
  
Biomedical,	
  Chemical	
  and	
  Materials	
  	
  Engineering	
  Department	
  
San	
  Jose	
  State	
  University,	
  San	
  Jose,	
  CA	
  95112	
  USA	
  
ABSTRACT	
  
In	
  recent	
  years,	
  lipid-­‐polymer	
  hybrid	
  nanopar5cles	
  have	
  gained	
  a8en5on	
  as	
  an	
  efficient	
  drug	
  
delivery	
  device	
  to	
  treat	
  various	
  diseases,	
  including	
  cardiovascular	
  disease,	
  tuberculosis,	
  and	
  
cancer.	
  Nanoprecipita5on	
  and	
  self	
  assembly	
  of	
  lipid	
  polymer	
  par5cles	
  is	
  a	
  common	
  method	
  
to	
  synthesize	
  drug	
  encapsulated	
  nanopar5cles	
  in	
  a	
  low	
  cost	
  manner.	
  	
  However,	
  the	
  mul5-­‐
step	
  process	
  of	
  this	
  synthesis	
  method	
  causes	
  difficulty	
  in	
  consistently	
  producing	
  uniformly	
  
sized	
  nanopar5cles.	
  	
  Here	
  we	
  developed	
  a	
  microfluidic	
  device	
  that	
  u5lizes	
  a	
  three	
  channel	
  
pathway	
  and	
  mixer	
  channel	
  to	
  produce	
  uniformly	
  sized	
  lipid	
  polymer	
  nanopar5cles	
  in	
  a	
  
controlled	
  manner.	
  	
  The	
  microfluidics	
  device	
  can	
  be	
  customized	
  to	
  synthesize	
  nanopar5cles	
  
of	
  different	
  size,	
  different	
  encapsulated	
  drug,	
  and	
  different	
  surface	
  func5onaliza5on.	
  	
  The	
  
produc5on	
  of	
  higher	
  quality	
  nanopar5cles	
  in	
  an	
  efficient	
  manner	
  using	
  our	
  microfluidics	
  
device	
  can	
  expedite	
  the	
  research	
  and	
  development	
  process	
  of	
  drug	
  delivering	
  lipid	
  polymer	
  
nanopar5cles.	
  
	
  
INTRODUCTION	
  
What	
  are	
  Lipid	
  Polymer	
  Hybrid	
  Nanopar5cles?	
  
•  Lipid	
  Polymer	
  Hybrid	
  Nanopar5cles	
  (LPHN)	
  are	
  drug	
  delivery	
  vesicles	
  that	
  
consists	
  of	
  a	
  polymer	
  core	
  and	
  a	
  lipid/lipid-­‐PEG	
  shell.	
  
•  The	
  polymer	
  core	
  allows	
  slow	
  elu5on	
  of	
  drug	
  	
  
•  The	
  lipid/lipid-­‐PEG	
  shell	
  allows	
  the	
  nanopar5cle	
  to	
  evade	
  the	
  immune	
  
system.	
  
•  The	
  PEG	
  extension	
  can	
  be	
  func5onalized	
  to	
  allow	
  targeted	
  drug	
  delivery	
  
Benefits	
  
•  Low	
  drug	
  toxicity	
  
•  High	
  drug	
  reten5on	
  rate	
  
•  Targeted	
  drug	
  delivery	
  
•  Biocompa5ble	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
REFERENCES	
  
1.  Y.	
  Kim,	
  B.	
  Chung,	
  M.	
  Ma,	
  W.	
  Mulder,	
  Z.	
  Fayad,	
  O.	
  Farokhzad,	
  
R.	
  and	
  Langer,	
  “Mass	
  produc+on	
  and	
  size	
  control	
  of	
  lipid-­‐
polymer	
  hybrid	
  nanopar+cles	
  through	
  controlled	
  
microvor+ces,”	
  Nano	
  le8ers.	
  12,	
  3587–91	
  (2012).	
  
2.  L.	
  Zhang,	
  J.M.	
  Chan,	
  F.X.	
  Gu,	
  J.	
  Rhee,	
  	
  A.	
  Wang,	
  A.	
  Radovic-­‐
Moreno,	
  F.	
  Alexis,	
  R.	
  Langer,	
  and	
  O.	
  Farokhzad,	
  “Self-­‐
assembled	
  lipid-­‐-­‐polymer	
  hybrid	
  nanopar+cles:	
  a	
  robust	
  drug	
  
delivery	
  pla=orm,”	
  ACS	
  nano.	
  2,	
  1696–702	
  (2008).	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
LIPID	
  POLYMER	
  HYBRID	
  NANOPARTICLE	
  SYNTHESIS	
  
•  Conven5onal	
  method:	
  Nanoprecipita5on	
  method	
  
•  	
  	
  	
  	
  	
  	
  	
  	
  Prepare	
  lipid/lipid-­‐PEG	
  solu5on	
  in	
  4%	
  ethanol	
  	
  
•  	
  	
  	
  	
  	
  	
  	
  	
  Heat	
  lipid	
  solu5on	
  to	
  65	
  to	
  allow	
  dispersion	
  of	
  lipid	
  par5cles	
  
•  	
  	
  	
  	
  	
  	
  	
  	
  Dissolve	
  PLGA	
  in	
  acetonitrile	
  
•  	
  	
  	
  	
  	
  	
  	
  	
  Add	
  PLGA	
  solvent	
  into	
  lipid	
  solu5on	
  dropwise	
  via	
  pipenng	
  
•  	
  	
  	
  	
  	
  	
  	
  	
  Sonicate	
  solu5on	
  for	
  2	
  hours	
  to	
  allow	
  lipid	
  par5cles	
  form	
  shell	
  around	
  PLGA	
  par5cles	
  
•  Simple	
  and	
  robust;	
  requires	
  few	
  instruments	
  and	
  materials	
  
•  Main	
  drawbacks:	
  inefficiency	
  and	
  inconsistency	
  in	
  nanopar5cle	
  size	
  between	
  batches	
  
•  	
  	
  	
  	
  	
  	
  	
  	
  	
  Requires	
  4	
  hours	
  to	
  produce	
  5	
  mL	
  of	
  LPHN	
  
•  	
  	
  	
  	
  	
  	
  	
  	
  	
  Pipenng	
  and	
  sonica5on	
  is	
  not	
  consistent	
  each	
  5me	
  
	
  
MICROFLUIDIC	
  SYNTHESIS	
  
Microfluidic	
  Chip	
  Design	
  
•  Three	
  inlets	
  (top	
  for	
  polymer	
  solvent	
  and	
  sides	
  for	
  lipid	
  solu5on)	
  with	
  channels	
  at	
  200um	
  in	
  width.	
  
•  One	
  outlet	
  channel	
  at	
  3mm	
  width	
  for	
  solvent/solu5on	
  mixing.	
  
•  Height	
  of	
  the	
  channels	
  are	
  at	
  80	
  um.	
  
	
  
Fabrica;on	
  Method	
  
•  Sop	
  Lithography;	
  silicone	
  wafer	
  mold	
  
•  PDMS	
  mold	
  on	
  glass	
  slide	
  via	
  plasma	
  bonding	
  
•  Syringe	
  needle	
  inlets	
  	
  
	
  
Nanopar;cle	
  Synthesis	
  
•  Flow	
  lipid/lipid-­‐PEG	
  solu5on	
  from	
  the	
  side	
  inlets	
  and	
  the	
  polymer	
  solvent	
  from	
  the	
  top	
  inlet	
  using	
  
syringe	
  pumps.	
  
•  Adjust	
  flow	
  rate	
  of	
  solu5on	
  to	
  produce	
  desired	
  LPHN	
  par5cle	
  size.	
  
•  Collect	
  LPHN	
  par5cles	
  from	
  the	
  outlet	
  and	
  filter	
  out	
  solvent	
  using	
  tangen5al	
  flow	
  filtra5on.	
  
	
  
	
  
Func5onalized	
  PEG	
Lipid-­‐PEG	
Lipid	
PLGA	
Drug	
  
Receptor	
Targe5ng	
  Lipid	
  Polymer	
  
Hybrid	
  Nanopar5cle	
Released	
  drug	
Lipid/Lipid	
  PEG	
  solu;on	
Polymer	
  solvent	
Fig.	
  1:	
  Lipid	
  Polymer	
  Hybrid	
  Nanopar;cle	
Fig.	
  2:	
  Targeted	
  Drug	
  Delivery	
  	
Fig.	
  3:	
  Nanoprecipita;on	
  Method	
Fig.	
  4:	
  Silicone	
  wafer	
  	
  	
  	
  	
  	
  	
  Fig.	
  5:	
  PDMS	
  mold	
 Fig.	
  6:	
  Microfluidic	
  design	
  to	
  create	
  microvor;ces	
  [1]	
MICROVORTICES	
  
•  According	
  to	
  research	
  by	
  Kim	
  et	
  al.,	
  Reynolds	
  number	
  above	
  30	
  produces	
  
microvor5ces	
  in	
  the	
  middle	
  channel	
  of	
  the	
  microfluidic	
  device.	
  
•  Microvor5ces	
  allow	
  controlled	
  mixing	
  of	
  lipid	
  and	
  polymer	
  solu5on.	
  
•  Different	
  Reynolds	
  number	
  produces	
  different	
  nanopar5cle	
  diameter	
  size;	
  the	
  
greater	
  the	
  Reynolds	
  number,	
  the	
  smaller	
  the	
  diameter.	
  
	
  	
  
RESULTS	
  
•  Flow	
  rate	
  of	
  polymer	
  solvent	
  was	
  kept	
  at	
  0.1	
  mL/min	
  while	
  lipid	
  solu5on	
  flow	
  rate	
  
was	
  increased	
  incrementally:	
  0.1,	
  0.2,	
  1,	
  2,	
  3,	
  and	
  4	
  mL/min.	
  
•  At	
  1:10	
  polymer	
  to	
  lipid	
  flow	
  rate	
  ra5o	
  and	
  Reynold	
  number	
  of	
  22.73	
  and	
  below,	
  
laminar	
  flow	
  can	
  be	
  seen	
  in	
  the	
  middle	
  channel.	
  	
  	
  
•  At	
  1:30	
  polymer	
  to	
  lipid	
  flow	
  rate	
  ra5o	
  and	
  Reynold	
  number	
  of	
  66.02,	
  microvor5ces	
  
appeared	
  in	
  the	
  middle	
  channel.	
  
	
  
	
  
	
  
	
  
	
  
	
  
A	
 B	
 C	
D	
 E	
 F	
Flow	
  Rate	
  (mL/min)	
   Reynolds	
  Number	
  
A	
   0.3	
   3.25	
  
B	
   0.5	
   5.41	
  
C	
   2.1	
   22.73	
  
D	
   4.1	
   44.37	
  
E	
   6.1	
   66.02	
  
F	
   8.1	
   87.66	
  
Fig.	
  7:	
  Effect	
  of	
  Reynold	
  number	
  on	
  forma;on	
  of	
  microvor;ces	
  	
FUTURE	
  DIRECTIONS	
  
•  Using	
  DLS	
  and	
  TEM,	
  the	
  effects	
  of	
  Reynolds	
  number	
  on	
  the	
  nanopar5cle	
  size	
  will	
  be	
  
measured	
  quanta5vely.	
  
•  Drug	
  encapsula5on/elu5on	
  rate	
  will	
  be	
  measured	
  using	
  LPHN	
  produced	
  through	
  
microfluidic	
  synthesis.	
  
•  In	
  vitro	
  studies	
  will	
  be	
  conducted	
  on	
  bacteria	
  to	
  determine	
  LPHN	
  efficacy	
  in	
  inhibi5ng	
  
bacterial	
  growth.	
  

More Related Content

What's hot

Solid lipid nanoparticles
Solid lipid nanoparticlesSolid lipid nanoparticles
Solid lipid nanoparticles
Anay Kacharia
 

What's hot (19)

Solid Lipid Nanopaticles
Solid Lipid NanopaticlesSolid Lipid Nanopaticles
Solid Lipid Nanopaticles
 
Liposomes and liposomal drug delivery system( recent advancement)
Liposomes and liposomal drug delivery system( recent advancement)Liposomes and liposomal drug delivery system( recent advancement)
Liposomes and liposomal drug delivery system( recent advancement)
 
Cubosomes
CubosomesCubosomes
Cubosomes
 
Liposome and niosomes
Liposome and niosomes  Liposome and niosomes
Liposome and niosomes
 
Liposomes: On The Drug Delivery Highway
Liposomes: On The Drug Delivery HighwayLiposomes: On The Drug Delivery Highway
Liposomes: On The Drug Delivery Highway
 
Micelle and Critical Micelle Concentration
Micelle and Critical Micelle ConcentrationMicelle and Critical Micelle Concentration
Micelle and Critical Micelle Concentration
 
Liposomal drug delivery system
Liposomal drug delivery systemLiposomal drug delivery system
Liposomal drug delivery system
 
Liposomal Drug Delivery
Liposomal Drug DeliveryLiposomal Drug Delivery
Liposomal Drug Delivery
 
Surface Modification of LNPs
Surface Modification of LNPsSurface Modification of LNPs
Surface Modification of LNPs
 
Solid lipid nanoparticles review published
Solid lipid nanoparticles review publishedSolid lipid nanoparticles review published
Solid lipid nanoparticles review published
 
Liposomes in drug delivery
Liposomes in drug deliveryLiposomes in drug delivery
Liposomes in drug delivery
 
NANOSYSTEMS - Vesicles, Liposomes, Polymeric micelles & Dendrimers
NANOSYSTEMS - Vesicles, Liposomes, Polymeric micelles & DendrimersNANOSYSTEMS - Vesicles, Liposomes, Polymeric micelles & Dendrimers
NANOSYSTEMS - Vesicles, Liposomes, Polymeric micelles & Dendrimers
 
Solid lipid nanoparticles
Solid lipid nanoparticlesSolid lipid nanoparticles
Solid lipid nanoparticles
 
Solid lipid nanoparticles
Solid lipid nanoparticlesSolid lipid nanoparticles
Solid lipid nanoparticles
 
Liposomes
LiposomesLiposomes
Liposomes
 
Stability aspects of liposomes
Stability aspects of liposomesStability aspects of liposomes
Stability aspects of liposomes
 
Liposomes ppt
Liposomes pptLiposomes ppt
Liposomes ppt
 
Liposomes
LiposomesLiposomes
Liposomes
 
Polymeric Micelle
Polymeric MicellePolymeric Micelle
Polymeric Micelle
 

Viewers also liked

Polymer hybrid thin-film composites with tailored permeability and anti-fouli...
Polymer hybrid thin-film composites with tailored permeability and anti-fouli...Polymer hybrid thin-film composites with tailored permeability and anti-fouli...
Polymer hybrid thin-film composites with tailored permeability and anti-fouli...
VTT Technical Research Centre of Finland Ltd
 

Viewers also liked (17)

Polymer hybrid thin-film composites with tailored permeability and anti-fouli...
Polymer hybrid thin-film composites with tailored permeability and anti-fouli...Polymer hybrid thin-film composites with tailored permeability and anti-fouli...
Polymer hybrid thin-film composites with tailored permeability and anti-fouli...
 
Seamless Epoxy Terrazzo vs Cementitious Terrazzo
Seamless Epoxy Terrazzo vs Cementitious TerrazzoSeamless Epoxy Terrazzo vs Cementitious Terrazzo
Seamless Epoxy Terrazzo vs Cementitious Terrazzo
 
Epoxy Coating/ Flooring
Epoxy Coating/ FlooringEpoxy Coating/ Flooring
Epoxy Coating/ Flooring
 
Concrete Polishing Training Seminar
Concrete Polishing Training SeminarConcrete Polishing Training Seminar
Concrete Polishing Training Seminar
 
Enhancing elongation at break - Highlight
Enhancing elongation at break - HighlightEnhancing elongation at break - Highlight
Enhancing elongation at break - Highlight
 
Raising performance in sheet molding compounds (SMC) - Highlight
Raising performance in sheet molding compounds (SMC) - HighlightRaising performance in sheet molding compounds (SMC) - Highlight
Raising performance in sheet molding compounds (SMC) - Highlight
 
Surface preparation and pretreatments - User guide
Surface preparation and pretreatments - User guideSurface preparation and pretreatments - User guide
Surface preparation and pretreatments - User guide
 
Basic information about epoxy flooring
Basic information about epoxy flooringBasic information about epoxy flooring
Basic information about epoxy flooring
 
Crystalline waterproofing technology
Crystalline waterproofing technologyCrystalline waterproofing technology
Crystalline waterproofing technology
 
Chemistry for composites powering oil & gas industry - Highlight
Chemistry for composites powering oil & gas industry - HighlightChemistry for composites powering oil & gas industry - Highlight
Chemistry for composites powering oil & gas industry - Highlight
 
surface preparation
surface preparationsurface preparation
surface preparation
 
Integral Crystalline Waterproofing Technology
Integral Crystalline Waterproofing TechnologyIntegral Crystalline Waterproofing Technology
Integral Crystalline Waterproofing Technology
 
Adhesives
AdhesivesAdhesives
Adhesives
 
Understanding waterproofing
Understanding waterproofingUnderstanding waterproofing
Understanding waterproofing
 
Waterproofing
WaterproofingWaterproofing
Waterproofing
 
Epoxy resin presented by biswajit maity
Epoxy resin  presented by biswajit maityEpoxy resin  presented by biswajit maity
Epoxy resin presented by biswajit maity
 
Seven reasons why epoxy floors fail
Seven reasons why epoxy floors failSeven reasons why epoxy floors fail
Seven reasons why epoxy floors fail
 

Similar to CSUPERB-Ashley

Nanoparticles drug delivery system
Nanoparticles drug delivery systemNanoparticles drug delivery system
Nanoparticles drug delivery system
Adnan Siddique
 
Formulation and evaluation of sustained release microspheres of
Formulation and evaluation of sustained release microspheres ofFormulation and evaluation of sustained release microspheres of
Formulation and evaluation of sustained release microspheres of
Reshma Fathima .K
 
Nano-particles and targeting strategies in drug delivery
Nano-particles and targeting strategies in drug deliveryNano-particles and targeting strategies in drug delivery
Nano-particles and targeting strategies in drug delivery
Gautham Reddy
 

Similar to CSUPERB-Ashley (20)

Nanostructure lipid carrier rahul dalvi
Nanostructure lipid carrier rahul dalviNanostructure lipid carrier rahul dalvi
Nanostructure lipid carrier rahul dalvi
 
solid lipid_nanonoparticle_
 solid lipid_nanonoparticle_ solid lipid_nanonoparticle_
solid lipid_nanonoparticle_
 
solid lipid nanoparticles
solid lipid nanoparticlessolid lipid nanoparticles
solid lipid nanoparticles
 
Nanoformulation
NanoformulationNanoformulation
Nanoformulation
 
Nanosponges
NanospongesNanosponges
Nanosponges
 
NANOPARTICLE DRUG DELIVERY SYSTEM
NANOPARTICLE DRUG DELIVERY SYSTEMNANOPARTICLE DRUG DELIVERY SYSTEM
NANOPARTICLE DRUG DELIVERY SYSTEM
 
Solid lipid n ps
Solid lipid n psSolid lipid n ps
Solid lipid n ps
 
Shivaoo1
Shivaoo1Shivaoo1
Shivaoo1
 
Shivaoo1
Shivaoo1Shivaoo1
Shivaoo1
 
Recent Advancement and Patents of the Lipid Polymer Hybrid Nanoparticles
Recent Advancement and Patents of the Lipid Polymer Hybrid NanoparticlesRecent Advancement and Patents of the Lipid Polymer Hybrid Nanoparticles
Recent Advancement and Patents of the Lipid Polymer Hybrid Nanoparticles
 
Open Journal of Chemistry
Open Journal of ChemistryOpen Journal of Chemistry
Open Journal of Chemistry
 
nanotechnology.pptx
nanotechnology.pptxnanotechnology.pptx
nanotechnology.pptx
 
Lipid Polymer Hybrid Nanoparticles
 Lipid Polymer Hybrid Nanoparticles Lipid Polymer Hybrid Nanoparticles
Lipid Polymer Hybrid Nanoparticles
 
Nanoparticles drug delivery system
Nanoparticles drug delivery systemNanoparticles drug delivery system
Nanoparticles drug delivery system
 
Formulation and evaluation of sustained release microspheres of
Formulation and evaluation of sustained release microspheres ofFormulation and evaluation of sustained release microspheres of
Formulation and evaluation of sustained release microspheres of
 
Nano-particles and targeting strategies in drug delivery
Nano-particles and targeting strategies in drug deliveryNano-particles and targeting strategies in drug delivery
Nano-particles and targeting strategies in drug delivery
 
INDUSTRIAL PRODUCTION,ESTIMATION AND UTILIZATION OF PODOPHYLLOTOXIN
INDUSTRIAL PRODUCTION,ESTIMATION AND UTILIZATION OFPODOPHYLLOTOXININDUSTRIAL PRODUCTION,ESTIMATION AND UTILIZATION OFPODOPHYLLOTOXIN
INDUSTRIAL PRODUCTION,ESTIMATION AND UTILIZATION OF PODOPHYLLOTOXIN
 
Niosomes PPT presentation, B&M pharma slides.pptx
Niosomes PPT presentation, B&M pharma slides.pptxNiosomes PPT presentation, B&M pharma slides.pptx
Niosomes PPT presentation, B&M pharma slides.pptx
 
kri.pptx
kri.pptxkri.pptx
kri.pptx
 
Nanoparticles
NanoparticlesNanoparticles
Nanoparticles
 

CSUPERB-Ashley

  • 1. Microfluidic  Synthesis  of  Lipid  Polymer  Hybrid  Nanopar;cles   for  Targeted  Drug  Delivery   Eri  Takami,  Folarin  Erogbogbo   Biomedical,  Chemical  and  Materials    Engineering  Department   San  Jose  State  University,  San  Jose,  CA  95112  USA   ABSTRACT   In  recent  years,  lipid-­‐polymer  hybrid  nanopar5cles  have  gained  a8en5on  as  an  efficient  drug   delivery  device  to  treat  various  diseases,  including  cardiovascular  disease,  tuberculosis,  and   cancer.  Nanoprecipita5on  and  self  assembly  of  lipid  polymer  par5cles  is  a  common  method   to  synthesize  drug  encapsulated  nanopar5cles  in  a  low  cost  manner.    However,  the  mul5-­‐ step  process  of  this  synthesis  method  causes  difficulty  in  consistently  producing  uniformly   sized  nanopar5cles.    Here  we  developed  a  microfluidic  device  that  u5lizes  a  three  channel   pathway  and  mixer  channel  to  produce  uniformly  sized  lipid  polymer  nanopar5cles  in  a   controlled  manner.    The  microfluidics  device  can  be  customized  to  synthesize  nanopar5cles   of  different  size,  different  encapsulated  drug,  and  different  surface  func5onaliza5on.    The   produc5on  of  higher  quality  nanopar5cles  in  an  efficient  manner  using  our  microfluidics   device  can  expedite  the  research  and  development  process  of  drug  delivering  lipid  polymer   nanopar5cles.     INTRODUCTION   What  are  Lipid  Polymer  Hybrid  Nanopar5cles?   •  Lipid  Polymer  Hybrid  Nanopar5cles  (LPHN)  are  drug  delivery  vesicles  that   consists  of  a  polymer  core  and  a  lipid/lipid-­‐PEG  shell.   •  The  polymer  core  allows  slow  elu5on  of  drug     •  The  lipid/lipid-­‐PEG  shell  allows  the  nanopar5cle  to  evade  the  immune   system.   •  The  PEG  extension  can  be  func5onalized  to  allow  targeted  drug  delivery   Benefits   •  Low  drug  toxicity   •  High  drug  reten5on  rate   •  Targeted  drug  delivery   •  Biocompa5ble                       REFERENCES   1.  Y.  Kim,  B.  Chung,  M.  Ma,  W.  Mulder,  Z.  Fayad,  O.  Farokhzad,   R.  and  Langer,  “Mass  produc+on  and  size  control  of  lipid-­‐ polymer  hybrid  nanopar+cles  through  controlled   microvor+ces,”  Nano  le8ers.  12,  3587–91  (2012).   2.  L.  Zhang,  J.M.  Chan,  F.X.  Gu,  J.  Rhee,    A.  Wang,  A.  Radovic-­‐ Moreno,  F.  Alexis,  R.  Langer,  and  O.  Farokhzad,  “Self-­‐ assembled  lipid-­‐-­‐polymer  hybrid  nanopar+cles:  a  robust  drug   delivery  pla=orm,”  ACS  nano.  2,  1696–702  (2008).                   LIPID  POLYMER  HYBRID  NANOPARTICLE  SYNTHESIS   •  Conven5onal  method:  Nanoprecipita5on  method   •                 Prepare  lipid/lipid-­‐PEG  solu5on  in  4%  ethanol     •                 Heat  lipid  solu5on  to  65  to  allow  dispersion  of  lipid  par5cles   •                 Dissolve  PLGA  in  acetonitrile   •                 Add  PLGA  solvent  into  lipid  solu5on  dropwise  via  pipenng   •                 Sonicate  solu5on  for  2  hours  to  allow  lipid  par5cles  form  shell  around  PLGA  par5cles   •  Simple  and  robust;  requires  few  instruments  and  materials   •  Main  drawbacks:  inefficiency  and  inconsistency  in  nanopar5cle  size  between  batches   •                   Requires  4  hours  to  produce  5  mL  of  LPHN   •                   Pipenng  and  sonica5on  is  not  consistent  each  5me     MICROFLUIDIC  SYNTHESIS   Microfluidic  Chip  Design   •  Three  inlets  (top  for  polymer  solvent  and  sides  for  lipid  solu5on)  with  channels  at  200um  in  width.   •  One  outlet  channel  at  3mm  width  for  solvent/solu5on  mixing.   •  Height  of  the  channels  are  at  80  um.     Fabrica;on  Method   •  Sop  Lithography;  silicone  wafer  mold   •  PDMS  mold  on  glass  slide  via  plasma  bonding   •  Syringe  needle  inlets       Nanopar;cle  Synthesis   •  Flow  lipid/lipid-­‐PEG  solu5on  from  the  side  inlets  and  the  polymer  solvent  from  the  top  inlet  using   syringe  pumps.   •  Adjust  flow  rate  of  solu5on  to  produce  desired  LPHN  par5cle  size.   •  Collect  LPHN  par5cles  from  the  outlet  and  filter  out  solvent  using  tangen5al  flow  filtra5on.       Func5onalized  PEG Lipid-­‐PEG Lipid PLGA Drug   Receptor Targe5ng  Lipid  Polymer   Hybrid  Nanopar5cle Released  drug Lipid/Lipid  PEG  solu;on Polymer  solvent Fig.  1:  Lipid  Polymer  Hybrid  Nanopar;cle Fig.  2:  Targeted  Drug  Delivery   Fig.  3:  Nanoprecipita;on  Method Fig.  4:  Silicone  wafer              Fig.  5:  PDMS  mold Fig.  6:  Microfluidic  design  to  create  microvor;ces  [1] MICROVORTICES   •  According  to  research  by  Kim  et  al.,  Reynolds  number  above  30  produces   microvor5ces  in  the  middle  channel  of  the  microfluidic  device.   •  Microvor5ces  allow  controlled  mixing  of  lipid  and  polymer  solu5on.   •  Different  Reynolds  number  produces  different  nanopar5cle  diameter  size;  the   greater  the  Reynolds  number,  the  smaller  the  diameter.       RESULTS   •  Flow  rate  of  polymer  solvent  was  kept  at  0.1  mL/min  while  lipid  solu5on  flow  rate   was  increased  incrementally:  0.1,  0.2,  1,  2,  3,  and  4  mL/min.   •  At  1:10  polymer  to  lipid  flow  rate  ra5o  and  Reynold  number  of  22.73  and  below,   laminar  flow  can  be  seen  in  the  middle  channel.       •  At  1:30  polymer  to  lipid  flow  rate  ra5o  and  Reynold  number  of  66.02,  microvor5ces   appeared  in  the  middle  channel.               A B C D E F Flow  Rate  (mL/min)   Reynolds  Number   A   0.3   3.25   B   0.5   5.41   C   2.1   22.73   D   4.1   44.37   E   6.1   66.02   F   8.1   87.66   Fig.  7:  Effect  of  Reynold  number  on  forma;on  of  microvor;ces   FUTURE  DIRECTIONS   •  Using  DLS  and  TEM,  the  effects  of  Reynolds  number  on  the  nanopar5cle  size  will  be   measured  quanta5vely.   •  Drug  encapsula5on/elu5on  rate  will  be  measured  using  LPHN  produced  through   microfluidic  synthesis.   •  In  vitro  studies  will  be  conducted  on  bacteria  to  determine  LPHN  efficacy  in  inhibi5ng   bacterial  growth.