SlideShare a Scribd company logo
1 of 31
INTRODUCTION TO FOOD ENGINEERING
Lecture 5
HEAT TRANSFER IN
FOOD PROCESSING
Objectives
• Calculate convective heat transfer coefficient
• Calculate overall heat transfer coefficient
• Calculate heat transfer area in tubular heat exchanger
Estimation of Convective Heat-Transfer
Coefficient
• h is predicted from empirical correlation for
Newtonian fluids only
• Forced convection
Forced Convection
 
Pr
Re
Nu N
,
N
f
N 
k
hD

NNu = Nusselt number
NRe = Reynold number
NPr = Prandtl number
μ
D
u
ρ
_

k
μcp

(4.
38)
100,
L
D
N
N Pr
Re 





 

14
.
0
w
b
66
.
0
Pr
Re
Pr
Re
Nu
L
D
N
N
045
.
0
1
L
D
N
N
085
.
0
3.66
N 














 







 



Larminar flow in pipes
NRe < 2100
For
b = bulk, w = wall
(4.
39)
100,
L
D
N
N Pr
Re 








14
.
0
w
b
0.33
Pr
Re
Nu
L
D
N
N
1.86
N 














 



For
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
(4.
41)
imeter
wetted per
area
free
4
De


(4.
42)
 70,000
N
1
400
N
6
.
0
3
1
Pr
0.5
Re
Nu
Re
Pr
for
N
0.60N
2
N 






Free Convection
(4.
43)
 m
Pr
Gr
Nu N
N
a
k
hD
N 

CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
Example
• Water flowing at 0.02 kg/s is heated from 20 to 60 C
in a horizontal pipe (D = 2.5 cm). Inside T = 90 C.
Estimate h if the pipe is 1 m long.
– Average T = (20+60)/2 = 40 C
–  = 992.2 kg/m3, cp = 4.175 kJ/kg C
– k = 0.633 W/m C,  = 658.026 x 10-6 Pa.s
– NPr = cp/k = 4.3, w is  at 90 C
D
m
D
u
N



.
_
Re
4


= 1547.9 laminar flow
)
025
.
0
)(
3
.
4
)(
9
.
1547
(
)
( Pr
Re 


L
D
N
N
= 166.4 > 100
NNu = 11.2
14
.
0
6
6
Nu
10
909
.
308
10
026
.
658
33
.
0
)
4
.
166
(
86
.
1 







 

N
(0.025m)
C)
33W/m
(11.2)(0.6
Nu 


D
k
N
h
= 284 W/m2 C
Turbulent flow in pipes
14
.
0
w
b
33
.
0
Pr
8
.
0
Re
Nu
μ
μ
023
.
0 









 N
N
N
Estimation of Overall Heat-Transfer
Coefficient
• Conduction + Convection
• If temperature of fluid in pipe is higher
– Heat flows to outside
– Ti > T
Ui = overall heat transfer coefficient
based on inside area
 

 T
-
T
A
U
q i
i
i
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
 
1
i
i
i T
-
T
A
h

q
 
 
1
2
2
1
lm
r
-
r
T
-
T
A
k
q 
 

 T
-
T
A
h
q 2
0
0
Convection from inside
Conduction
Convection to outside
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
(4.
48)
 
l
i
i
i
T
-
T
A
h
q

(4.
49)
 
2
l
lm
1
2
T
-
T
A
k
r
-
r
q

(4.
50)
 

 T
-
T
A
h
q
2
0
0
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
(4.
51)

 T
-
T
A
U
q
i
i
i
(4.
52)
 
0
0
lm
1
2
i
i
i
i A
h
q
A
k
r
-
r
q
A
h
q
A
U
q



(4.
53)
 
0
0
lm
1
2
i
i
i
i A
h
1
A
k
r
-
r
A
h
1
A
U
1



(4.
Example
• A steel pipe (k = 43 W/mC) inside D = 2.5 cm, 0.5
cm thick, conveys liquid food at 80 C. Inside h = 10
W/m2C. Outside temp = 20 C, outside h = 100
W/m2C. Calculate overall heat transfer coefficient
and heat loss from 1 m length of pipe.
 
0
0
lm
1
2
i
i
i
i A
h
1
A
k
r
-
r
A
h
1
A
U
1



o
o
i
lm
i
i
o
i
i r
h
r
kr
)r
r
(r
h
1
U
1




– ro = 0.0175 m
– Ri = 0.0125 m
– rlm = 0.01486 m
– 1/Ui = 0.10724 m2 C/W
– Ui = 9.32 W/m2 C
• Heat loss
– q = UiAi(80 – 20)
– = 43.9 W
• Uo = 6.66 W/m2 C
– q = 43.9 W
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
6.Role of Insulation in Reducing Heat Loss from
Process Equipment
(4.
55)
Lh
r
2
1
r
r
ln
Lk
2
l
T
-
T
q
0
0
i
0
i



 
(4.
56)
 
 
  0
r
h
k
-
r
l
r
h
k
r
r
ln
T
-
T
kL
2
-
dr
dq
2
0
0
0
2
0
0
i
0
b
i
0












CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
(4.
57)
0
r
h
k
-
r
l
2
0
0
0









(4.
58)
0
c
h
k
r 
Design of a Tubular Heat Exchanger
• Determine desired heat-transfer area for a given
application. Assuming
– Steady-state conditions
– Overall heat-transfer coefficient is constant
throughout the pipe length
– No axial conduction of heat in metal pipe
– Well insulated, negligible heat loss
(4.
59)
  i
overall
i dA
T
U
dq 

(4.
60)
  i
c
h
i
h
ph
h
c
pc
c
q dA
T
-
T
U
dT
c
m
dT
c
m
d 


(4.
61)
q
T
-
T
dq
T
d l
2 



Design of Tubular Heat Exchanger
• Heat transfer from one fluid to another
• Energy balance for double-pipe heat exchanger
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
(4.
62)
q
T
-
T
1 l
2 









 
 i
i dA
T
d
T
U
(4.
63)
 









i
2
l
A
0
i
l
2
T
T
i
dA
q
T
-
T
T
T
U
1
Slope of T line
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
(4.
64)
 
 
l
2
l
2
i
i
T
T
ln
T
-
T
A
U
q





(4.
65)
 
  difference
rature
mean tempe
log
T
T
ln
T
-
T
l
2
l
2





Example
• A liquid food (Cp = 4.0 kJ/kgC) flows in inner pipe
of heat exchanger. The food enters at 20 C and exits
at 60 C. Flow rate = 0.5 kg/s. Hot water at 90 C enters
and flows countercurrently at 1 kg/s. Average Cp of
water is 4.18 kJ/kgC.
– Calculate exit temp of water
– Calculate log-mean temperature difference
– If U = 2000 W/m2C and Di = 5 cm calculate L.
– Repeat calculations for parallel flow.
• Liquid food
– Inlet temp = 20 C
– Exit temp = 60 C
– Cp = 4.0 kJ/kg C
– Flow rate = 0.5 kg/s
• Water
– Inlet temp = 90 C exit temp = ?
– Cp = 4.18 kJ/kgC
– Flow rate = 1.0 kg/s
• q = mcCpc Tc = mhCph  Th
• Tc = 70.9 C
• Tlm = 39.5 C
• q = UA(T)lm = UDiL(T)lm
• = mCp T = 80 kJ/s
• L = 6.45 m
• For parallel flow L = 8 m

More Related Content

Similar to 05_convec (1).ppt

4.4.heat exchanger
4.4.heat exchanger4.4.heat exchanger
4.4.heat exchangercmyan
 
carnot cycle (a theoretical thermodynamic cycle).ppt
carnot cycle (a theoretical thermodynamic cycle).pptcarnot cycle (a theoretical thermodynamic cycle).ppt
carnot cycle (a theoretical thermodynamic cycle).pptHafizMudaserAhmad
 
Heatexchangers 120419133732-phpapp02 (1)
Heatexchangers 120419133732-phpapp02 (1)Heatexchangers 120419133732-phpapp02 (1)
Heatexchangers 120419133732-phpapp02 (1)asim ahsan
 
Enthalpy of vaporization of liquid
Enthalpy of vaporization of liquidEnthalpy of vaporization of liquid
Enthalpy of vaporization of liquidNoaman Ahmed
 
Process equipment numericals problems
Process equipment numericals problemsProcess equipment numericals problems
Process equipment numericals problemsAnand Upadhyay
 
Thermo One
Thermo OneThermo One
Thermo Onesarapot
 
Worked Example_LMTD.pptx
Worked Example_LMTD.pptxWorked Example_LMTD.pptx
Worked Example_LMTD.pptxKrish72569
 
Week#3_Olefins Production_Steam Cracking_Part2.pdf
Week#3_Olefins Production_Steam Cracking_Part2.pdfWeek#3_Olefins Production_Steam Cracking_Part2.pdf
Week#3_Olefins Production_Steam Cracking_Part2.pdfshilpyakurniasih1
 
types of heat exchangers.pdf
types of heat exchangers.pdftypes of heat exchangers.pdf
types of heat exchangers.pdfhassanzain10
 
Entropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptEntropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptMichaelTegegn
 
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...Bishal Bhandari
 
Beige and Brown Modern Minimalist Company Profile Presentation.pdf
Beige and Brown Modern Minimalist Company Profile Presentation.pdfBeige and Brown Modern Minimalist Company Profile Presentation.pdf
Beige and Brown Modern Minimalist Company Profile Presentation.pdfSrushtiPatil608123
 
convection-1.ppt
convection-1.pptconvection-1.ppt
convection-1.pptOISTMEHOD
 
Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...
Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...
Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...ijiert bestjournal
 

Similar to 05_convec (1).ppt (20)

10-L1-L2-Heat Exchange.ppt
10-L1-L2-Heat Exchange.ppt10-L1-L2-Heat Exchange.ppt
10-L1-L2-Heat Exchange.ppt
 
4.4.heat exchanger
4.4.heat exchanger4.4.heat exchanger
4.4.heat exchanger
 
carnot cycle.ppt
carnot cycle.pptcarnot cycle.ppt
carnot cycle.ppt
 
carnot cycle (a theoretical thermodynamic cycle).ppt
carnot cycle (a theoretical thermodynamic cycle).pptcarnot cycle (a theoretical thermodynamic cycle).ppt
carnot cycle (a theoretical thermodynamic cycle).ppt
 
Heatexchangers 120419133732-phpapp02 (1)
Heatexchangers 120419133732-phpapp02 (1)Heatexchangers 120419133732-phpapp02 (1)
Heatexchangers 120419133732-phpapp02 (1)
 
Heat exchanger lab 2
Heat exchanger lab 2Heat exchanger lab 2
Heat exchanger lab 2
 
Enthalpy of vaporization of liquid
Enthalpy of vaporization of liquidEnthalpy of vaporization of liquid
Enthalpy of vaporization of liquid
 
Process equipment numericals problems
Process equipment numericals problemsProcess equipment numericals problems
Process equipment numericals problems
 
Agitated Vessel
Agitated VesselAgitated Vessel
Agitated Vessel
 
Thermo One
Thermo OneThermo One
Thermo One
 
Worked Example_LMTD.pptx
Worked Example_LMTD.pptxWorked Example_LMTD.pptx
Worked Example_LMTD.pptx
 
Week#3_Olefins Production_Steam Cracking_Part2.pdf
Week#3_Olefins Production_Steam Cracking_Part2.pdfWeek#3_Olefins Production_Steam Cracking_Part2.pdf
Week#3_Olefins Production_Steam Cracking_Part2.pdf
 
types of heat exchangers.pdf
types of heat exchangers.pdftypes of heat exchangers.pdf
types of heat exchangers.pdf
 
Team a01 9_lab_2
Team a01 9_lab_2Team a01 9_lab_2
Team a01 9_lab_2
 
Entropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptEntropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.ppt
 
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
 
Beige and Brown Modern Minimalist Company Profile Presentation.pdf
Beige and Brown Modern Minimalist Company Profile Presentation.pdfBeige and Brown Modern Minimalist Company Profile Presentation.pdf
Beige and Brown Modern Minimalist Company Profile Presentation.pdf
 
convection-1.ppt
convection-1.pptconvection-1.ppt
convection-1.ppt
 
Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...
Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...
Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...
 
Thermodynamic, examples a
Thermodynamic, examples aThermodynamic, examples a
Thermodynamic, examples a
 

Recently uploaded

Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfCherry
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cherry
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Cherry
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.Cherry
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCherry
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxANSARKHAN96
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspectsmuralinath2
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Cherry
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Cherry
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.Cherry
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.takadzanijustinmaime
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptxMuhammadRazzaq31
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...Scintica Instrumentation
 

Recently uploaded (20)

Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 

05_convec (1).ppt

  • 1. INTRODUCTION TO FOOD ENGINEERING Lecture 5 HEAT TRANSFER IN FOOD PROCESSING
  • 2. Objectives • Calculate convective heat transfer coefficient • Calculate overall heat transfer coefficient • Calculate heat transfer area in tubular heat exchanger
  • 3. Estimation of Convective Heat-Transfer Coefficient • h is predicted from empirical correlation for Newtonian fluids only • Forced convection
  • 4. Forced Convection   Pr Re Nu N , N f N  k hD  NNu = Nusselt number NRe = Reynold number NPr = Prandtl number μ D u ρ _  k μcp 
  • 5. (4. 38) 100, L D N N Pr Re          14 . 0 w b 66 . 0 Pr Re Pr Re Nu L D N N 045 . 0 1 L D N N 085 . 0 3.66 N                              Larminar flow in pipes NRe < 2100 For b = bulk, w = wall
  • 6. (4. 39) 100, L D N N Pr Re          14 . 0 w b 0.33 Pr Re Nu L D N N 1.86 N                     For
  • 7. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
  • 8. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING (4. 41) imeter wetted per area free 4 De   (4. 42)  70,000 N 1 400 N 6 . 0 3 1 Pr 0.5 Re Nu Re Pr for N 0.60N 2 N       
  • 10. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
  • 11. Example • Water flowing at 0.02 kg/s is heated from 20 to 60 C in a horizontal pipe (D = 2.5 cm). Inside T = 90 C. Estimate h if the pipe is 1 m long. – Average T = (20+60)/2 = 40 C –  = 992.2 kg/m3, cp = 4.175 kJ/kg C – k = 0.633 W/m C,  = 658.026 x 10-6 Pa.s – NPr = cp/k = 4.3, w is  at 90 C
  • 12. D m D u N    . _ Re 4   = 1547.9 laminar flow ) 025 . 0 )( 3 . 4 )( 9 . 1547 ( ) ( Pr Re    L D N N = 166.4 > 100 NNu = 11.2 14 . 0 6 6 Nu 10 909 . 308 10 026 . 658 33 . 0 ) 4 . 166 ( 86 . 1            N
  • 14. Turbulent flow in pipes 14 . 0 w b 33 . 0 Pr 8 . 0 Re Nu μ μ 023 . 0            N N N
  • 15. Estimation of Overall Heat-Transfer Coefficient • Conduction + Convection
  • 16. • If temperature of fluid in pipe is higher – Heat flows to outside – Ti > T Ui = overall heat transfer coefficient based on inside area     T - T A U q i i i
  • 17. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING   1 i i i T - T A h  q     1 2 2 1 lm r - r T - T A k q      T - T A h q 2 0 0 Convection from inside Conduction Convection to outside
  • 18. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING (4. 48)   l i i i T - T A h q  (4. 49)   2 l lm 1 2 T - T A k r - r q  (4. 50)     T - T A h q 2 0 0
  • 19. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING (4. 51)   T - T A U q i i i (4. 52)   0 0 lm 1 2 i i i i A h q A k r - r q A h q A U q    (4. 53)   0 0 lm 1 2 i i i i A h 1 A k r - r A h 1 A U 1    (4.
  • 20. Example • A steel pipe (k = 43 W/mC) inside D = 2.5 cm, 0.5 cm thick, conveys liquid food at 80 C. Inside h = 10 W/m2C. Outside temp = 20 C, outside h = 100 W/m2C. Calculate overall heat transfer coefficient and heat loss from 1 m length of pipe.   0 0 lm 1 2 i i i i A h 1 A k r - r A h 1 A U 1    o o i lm i i o i i r h r kr )r r (r h 1 U 1    
  • 21. – ro = 0.0175 m – Ri = 0.0125 m – rlm = 0.01486 m – 1/Ui = 0.10724 m2 C/W – Ui = 9.32 W/m2 C • Heat loss – q = UiAi(80 – 20) – = 43.9 W • Uo = 6.66 W/m2 C – q = 43.9 W
  • 22. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING 6.Role of Insulation in Reducing Heat Loss from Process Equipment (4. 55) Lh r 2 1 r r ln Lk 2 l T - T q 0 0 i 0 i      (4. 56)       0 r h k - r l r h k r r ln T - T kL 2 - dr dq 2 0 0 0 2 0 0 i 0 b i 0            
  • 23. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING (4. 57) 0 r h k - r l 2 0 0 0          (4. 58) 0 c h k r 
  • 24. Design of a Tubular Heat Exchanger • Determine desired heat-transfer area for a given application. Assuming – Steady-state conditions – Overall heat-transfer coefficient is constant throughout the pipe length – No axial conduction of heat in metal pipe – Well insulated, negligible heat loss
  • 25. (4. 59)   i overall i dA T U dq   (4. 60)   i c h i h ph h c pc c q dA T - T U dT c m dT c m d    (4. 61) q T - T dq T d l 2     Design of Tubular Heat Exchanger • Heat transfer from one fluid to another • Energy balance for double-pipe heat exchanger
  • 26. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
  • 27. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING (4. 62) q T - T 1 l 2              i i dA T d T U (4. 63)            i 2 l A 0 i l 2 T T i dA q T - T T T U 1 Slope of T line
  • 28. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING (4. 64)     l 2 l 2 i i T T ln T - T A U q      (4. 65)     difference rature mean tempe log T T ln T - T l 2 l 2     
  • 29. Example • A liquid food (Cp = 4.0 kJ/kgC) flows in inner pipe of heat exchanger. The food enters at 20 C and exits at 60 C. Flow rate = 0.5 kg/s. Hot water at 90 C enters and flows countercurrently at 1 kg/s. Average Cp of water is 4.18 kJ/kgC. – Calculate exit temp of water – Calculate log-mean temperature difference – If U = 2000 W/m2C and Di = 5 cm calculate L. – Repeat calculations for parallel flow.
  • 30. • Liquid food – Inlet temp = 20 C – Exit temp = 60 C – Cp = 4.0 kJ/kg C – Flow rate = 0.5 kg/s • Water – Inlet temp = 90 C exit temp = ? – Cp = 4.18 kJ/kgC – Flow rate = 1.0 kg/s
  • 31. • q = mcCpc Tc = mhCph  Th • Tc = 70.9 C • Tlm = 39.5 C • q = UA(T)lm = UDiL(T)lm • = mCp T = 80 kJ/s • L = 6.45 m • For parallel flow L = 8 m