SlideShare a Scribd company logo
1 of 30
Download to read offline
Topological Persistence Machine
of Phase Transition
The University ofTokyo
Tran Quoc Hoan
(join work with M. Chen andY. Hasegawa)
MS:Applications of Persistent Homology to PhaseTransitions
Motivation
Data-driven approach in physical system with rich geometric and
topological structure
Quantum Quench
Dynamics
Spins Configuration
Interaction
Network
“It’s black but not a black box.”
AlgebraicTopological Machine
Topological Features
2/30
Topological Data Analysis = Model the Shape of Data
Persistent Homology
Main idea: vary a proximity parameter and track the appearance and
disappearance of features
Barcodes
Persistence
Diagram
Apply Homology
S. Barannikov+(1994),H. Edelsbrunner+(2002),
A. Zomorodian and G. Carlsson (2004),…
Significant features
persist
Filtration
3/30
Persistent Homology
Mathematical encoding: model the filtration as an increasing sequence of
simplicial complexes
S. Barannikov+(1994),H. Edelsbrunner+(2002),
A. Zomorodian and G. Carlsson (2004),…
⊆ ⊆ ⊆
𝜎1
𝜎1
𝜎2 𝜎3
𝜎4
𝜎1
𝜎2 𝜎3
𝜎4 𝜎5
𝜎6
𝜎1
𝜎2 𝜎3
𝜎4 𝜎5
𝜎6
𝜎7
𝐾1 𝐾2 𝐾3 𝐾4
𝐶𝑝 𝐾 = σ𝑖 𝑎𝑖𝜎𝑖 ∣ 𝜎𝑖 ⊂ 𝐾, dim 𝜎𝑖 = 𝑝, 𝑎𝑖 ∈ ℤ2
◼ TheVietoris-Rips complex VR 𝑃, 𝜀
𝑉𝑅 𝑃, 𝜀 = { 𝑖0, … , 𝑖𝑘 ∣ 𝑑 𝑥𝑖𝑎
, 𝑥𝑖𝑏
≤ 2𝜀 ∀0 ≤ 𝑎, 𝑏 ≤ 𝑘}
1 2
3
𝐵1 𝐵2
𝐵3
◼ Filtration
𝜀1 < 𝜀2 < ⋯ < 𝜀𝑇
→ 𝑉𝑅 𝑃, 𝜀1 ⊆ 𝑉𝑅 𝑃, 𝜀2 ⊆ ⋯ ⊆ 𝑉𝑅 𝑃, 𝜀𝑇 4/30
Persistent Homology S. Barannikov+(1994),H. Edelsbrunner+(2002),
A. Zomorodian and G. Carlsson (2004),…
Simplicial
complex
Chain
complex
Homology
group
Algebraic Holes
(Geometrical object) (Algebraic object) (Algebraic object)
𝐻p =
Ker(𝜕𝑝)
Im(𝜕𝑝+1)
Image by Yasuaki Hiraoka via
http://www.wpi-
aimr.tohoku.ac.jp/hiraoka_labo/index-english.html
Standard computational time O(M3), M = number of simplices
Nina Otter+, A roadmap for the computation of persistent homology, EPJ Datascience, 2017
Complex K Size of K Theoretical guarantee
Čech 2𝑂 |𝑃| Nerve theorem
Vietoris-Rips (VR) 2𝑂 |𝑃| Approximate Čech complex
Alpha |𝑃|𝑂([𝑑/2]) (𝑁 points in ℝ𝑑) Nerve theorem
Witness 2𝑂 |𝐿|
(subset L) For curves and surfaces in Euclidean space
Graph-induced complex 2𝑂 |𝑄|
(subsample Q) ApproximatesVR complex
Sparsified Čech 𝑂 |𝑃| Approximate Čech complex
SparsifiedVR 𝑂 |𝑃| ApproximatesVR complex
5/30
Persistent Homology
Persistent Homology encodes both global and local topology of a
dataset into a computational feature set
[F. C. Motta+, Measures of order for nearly hexagonal lattices, Physica D (2018)] 6/30
Thank to Henry Adam for giving this
example
Persistent Homology and Physics of Intelligence
Questions:
◼ Given observations from two groups/phases in a physical system, what
makes them “truly” be different?
◼ Can we know the “key” parameters
underlying the observations?
◼ Can we interpret the phase transition
from features of observations?
◼ Can we predict/infer an unknown phase
transition from limited observations?
Let Persistent
Homology do it
Let Statistical Tools and
Machine Learning do it
+
7/30
Persistent Homology and PhaseTransition
◼ Hoan Tran - University ofTokyo, Japan - Topological Persistence Machine of PhaseTransitions
◼ Bart Olsthoorn - Nordic Institute forTheoretical Physics, Sweden - Mapping Complex Phase Diagrams in
Spin Models
◼ Alex Cole - University of Amsterdam, Netherlands - Quantitative and Interpretable Order Parameters
for PhaseTransitions from Persistent Homology
◼ Nick Sale - Swansea University, United Kingdom - Quantitative Analysis of PhaseTransitions using
Persistent Homology
◼ Irene Donato - Nextatlas, Italy - Persistent Homology Analysis of PhaseTransitions
◼ Kouji Kashiwa - Fukuoka Institute of Technology, Japan - Exploring the Phase Structure of QCD Effective
Models with Persistent Homology
◼ Daniel Spitz - Universität Heidelberg, Germany - Universal Dynamics in Quantum Many-Body Systems via
Persistent Homology
◼ Willem Elbers - Durham University, United Kingdom - Topological Signatures of Cosmic Reionization and
the First Galaxies
MS72
MS83
8/30
Topological Persistence Machine
(1) Decide observations (2) Embedding (3) Make filtration
(4) Compute diagrams for all observations
(each observation = one dataset)
(5) Point summaries or kernel trick
Q. H.Tran et al., Topological persistence machine of phase
transition, PRE (2021) 9/30
Point Summaries of Diagrams
Further compressed features from persistence diagrams
◼ Maximum lifetime 𝒫𝑚𝑎𝑥 𝐷 = max
𝑏,𝑑 ∈𝐷
|𝑑 − 𝑏|
◼ 𝛾-norm 𝒫𝛾 𝐷 = ෍
𝑏,𝑑 ∈𝐷
𝑑 − 𝑏 𝛾
1/𝛾
◼ Normalized entropy
ℰ 𝐷 = −
1
log 𝒫1(𝐷)
෍
𝑏,𝑑 ∈𝐷
|𝑑 − 𝑏|
𝒫1(𝐷)
log
|𝑑 − 𝑏|
𝒫1(𝐷)
(Cohen-Steiner+, 2010)
(Chintakunta+, 2015;Myers+, 2019)
10/30
The space of Persistence Diagrams
◼ Not a vector space
◼ Difficult to use in statistical-learning
tasks (e.g., classification, regression)
◼ Cannot define an inner product
KernelTrick for Persistence Diagrams
AVG( , , )
is meaningless.
Idea: map Persistence
Diagrams into a Hilbert space
11/30
KernelTrick for Persistence Diagrams
◼ Can define an inner product
◼ Use in (linear) statistical-learning tasks (e.g., SVM)
𝐷1
𝐷2
Ω
Φ𝐷1
Φ𝐷2
, 𝐻𝑏
Feature mapping
Φ 𝐻𝑏 = 𝐿2
(ℝ2
)
∞ −dimensional 𝐿2 space
◼ A map 𝑘: Ω × Ω → ℝ is called kernel if there is a Hilbert
space (𝐻𝑏, ⋅,⋅ ) and a feature map Φ: Ω → 𝐻𝑏 s.t.
Ω × Ω
𝐻b × 𝐻b
ℝ
⋅,⋅
𝑘
(Φ, Φ)
Reininghaus+, 2005; Bubenik+, 2015;
Kusano+, 2016; Chachólski+, 2017;
Adams+, 2017; Carrière+, 2017;
Le+, 2018; Corbet+, 2019;…
𝜙𝐷1
, 𝜙𝐷2 𝐻𝑏
= 𝑘 𝐷1, 𝐷2 for ∀𝐷1, 𝐷2 ∈ Ω
12/30
Kernel method
(Corbet+, 2019)The feature map Φ: Ω → 𝐿2
(ℝ2
) is often given by
𝐷 ⟼ ෍
𝒑∈𝐷
𝑤 𝒑 𝑓(⋅, 𝒑)
Peak function
(e.g., Gaussian)
weight
Persistence Scale Space Kernel
(Reininghaus+, 2015)
Persistence Weighted Gaussian
Kernel (Kusano+, 2016)
Persistence Images
(Adam+, 2017)
The kernel is given by the inner product:
𝑘 𝐷1, 𝐷2 = න
ℝ2
Φ𝐷1
𝒑 Φ𝐷2
𝒑 𝑑𝐿2
13/30
Kernel method
We can embed Φ𝐷 into a point
ℙ = {𝜌| ‫׬‬ℝ2 𝜌 𝒙 = 1 , 𝜌 𝒙 ≥ 0}
Positive orthant
in the probability simplex
𝜌𝐷 =
1
𝑍
෍
𝒑∈𝐷
𝒩(𝒑, 𝜈𝑰)
{𝒙 = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛| σ𝑖
𝑛
𝑥𝑖 = 1, 𝑥𝑖 ≥ 0}
ℎ 𝒙 = 𝑥1, … , 𝑥𝑛 = (𝑦1, … , 𝑦𝑛)
𝕊+ = {𝜒| ‫׬‬
ℝ2 𝜒2 𝒙 = 1 , 𝜒 𝒙 ≥ 0}
Fisher Information Metric
𝑑𝐹(𝜌𝐷1
, 𝜌𝐷2
) = arccos ℎ 𝜌𝐷1
, ℎ 𝜌𝐷2
𝑘 𝐷1, 𝐷2 = exp −𝛼𝑑𝐹(𝜌𝐷1
, 𝜌𝐷2
)
The kernel is given by
Persistence Fisher Kernel
(Le+, 2018)
14/30
Applications of Kernel method
◼ Kernel PCA, Kernel SVM
◼ Kernel change point detection with Kernel Fisher Discriminant Ratio (KFDR)
➢ Diagrams along index 𝑠: 𝐷𝑠, 𝑠 = 1, … , 𝑀
➢ For each 𝑠 > 1, two classes are defined by the data before and after 𝒔 and
compute
Ƹ
𝜇1 =
1
𝑠 − 1
෍
𝑖=1
𝑠−1
Φ𝐷𝑖
෠
Σ1 =
1
𝑠 − 1
෍
𝑖=1
𝑠−1
Φ𝐷𝑖
− Ƹ
𝜇1 ⨂ Φ𝐷𝑖
− Ƹ
𝜇1
KFDR𝑀,𝑠,𝛾 =
(𝑠 − 1)(𝑀 − 𝑠 + 1)
𝑀
Ƹ
𝜇2 − Ƹ
𝜇1, ෠
Σ + 𝛾𝐼
−1
Ƹ
𝜇2 − Ƹ
𝜇1
ℋb
while
➢ Find change point as 𝑠𝑐 = max
𝑠>1
KFDR𝑀,𝑠,𝛾 (Kusano+,2015;Tran+, 2019)
෠
Σ2 =
1
𝑀 − 𝑠 + 1
෍
𝑖=𝑠
𝑀
Φ𝐷𝑖
− Ƹ
𝜇2 ⨂ Φ𝐷𝑖
− Ƹ
𝜇2
Ƹ
𝜇2 =
1
𝑀 − 𝑠 + 1
෍
𝑖=𝑠
𝑀
Φ𝐷𝑖
෠
Σ =
𝑠−1
𝑀
෠
Σ1 +
𝑀−𝑠+1
𝑀
෠
Σ2
➢ Change-point regression with Φ𝐷1
, … , Φ𝐷𝑀
Kernel Change-point Analysis
(Harchaoui+, 2009)
15/30
Topological Persistence Machine
(1) Decide observations (2) Embedding (3) Make filtration
(4) Compute diagrams for all observations
(each observation = one dataset)
(5) Point summaries or kernel trick
Q. H.Tran et al., Topological persistence machine of phase
transition, PRE (2021) 16/30
Case-study: 2D-XY model
(no discontinuity in any
observable such as
magnetization or energy,
infinite order transition)
𝑇
Infinite energy to excite a single vortex,
but thermal fluctuations can create
vortex-antivortex pairs bounding
Low High
Entropically favorable for
vortices to separate
BKT transition
𝑻𝒄
𝑱
≅ 𝟎. 𝟖𝟗
𝛽𝐻 = −
𝐽
𝑘𝐵𝑇
෍
𝑖,𝑗
𝑆𝑖 ⋅ 𝑆𝑗
Image by Matthew Beach via
https://mbeach42.github.io/
17/30
Topological defect
𝑤 = 0 𝑤 = 1 𝑤 = −1 𝑤 = 2
◼ A topological defect is a group of spins that have a different topology
than spins that point only one direction
◼ A vortex is a special type of topological defect by having non-zero
winding number
➢ A spin configuration with defects cannot be smoothly transformed into the ferromagnetic
ground state where all spins are aligned
Vortex Anti-vortex Vortex
18/30
XY model –Topological Order
◼ Observations (𝑙th-sample): 𝑆𝑖
(𝑙)
= cos 𝜃𝑖
(𝑙)
, sin 𝜃𝑖
(𝑙)
𝜌 𝜃𝑖 ∝ 𝑒−𝐸({𝜃𝑖})/𝑇
𝐸 𝜃𝑖 = −𝐽 ෍
𝑖,𝑗
cos(𝜃𝑖 − 𝜃𝑗)
◼ Initialize topological defects at 𝑇 = 0
For 1D-XY model
𝜃𝑖
(𝑙)
= 2𝜋𝜈(𝑙)
𝑖
𝑁
+ 𝛿𝜃𝑖
(𝑙)
+ ҧ
𝜃(𝑙)
Winding
number
Spin
fluctuation
Global
rotation
For 2D-XY model
𝜃(𝑖,𝑗)
(𝑙)
= 2𝜋𝜈𝑥
(𝑙) 𝑖
𝑁𝑥
+ 2𝜋𝜈𝑦
(𝑙) 𝑗
𝑁𝑦
+ 𝛿𝜃(𝑖,𝑗)
(𝑙)
+ ҧ
𝜃(𝑙)
Winding number (𝑣𝑥, 𝑣𝑦)
(Rodriguez-Nieva+, Nat. Phys., 2019)
19/30
2D XY model –Topological Order
◼ Initial Purpose: use persistent
homology to identify topological
sectors from spins configuration
𝑣𝑥, 𝑣𝑦 = 0, 0 , 0, 2 , 1, 1 , (2, −1)
𝑁 × 𝑁 spins, 𝑚𝜈 = 100 samples per 𝑣𝑥, 𝑣𝑦
Total = 400 samples at each temperature
◼ Use the Metropolis algorithm to
thermalize samples to temperatureT
(many thanks to J. F. Rodriguez-Nieva for his instruction)
Topological
Persistence Machine
𝑣𝑥, 𝑣𝑦 = ?
20/30
2D XY model –Topological Order
𝑑 𝑠𝑖, 𝑠𝑗 = 𝜉𝑑 𝑺𝑖, 𝑺𝑗 + 1.0 − 𝜉 𝑑 𝒓𝑖, 𝒓𝑗
= 𝜉 |𝜃𝑖 − 𝜃𝑗| + (1.0 − 𝜉) 𝒓𝑖 − 𝒓𝑗
◼ Embedding: we define the distance between spin 𝑖-
th index and 𝑗-th index in 𝑁 × 𝑁 lattice as
Angle distance Lattice distance
◼ Compute Persistence Diagrams of loops: 𝐷𝑙
(𝑇)
for sample 𝑙-th (𝑙 = 1,2, … , 400)
◼ Compute Gram Matrix {𝑘𝑙𝑙′} from Kernel 𝑘 𝐷𝑙
𝑇
, 𝐷𝑙′
𝑇
at eachT
◼ Dimensional Reduction from Gram matrix to see the difference in the
topological order
21/30
2D XY model –Topological Order
Results from Kernel PCA
𝑣𝑥, 𝑣𝑦 =
Distinguishable
Topological sector by winding number
Indistinguishable =Topological Order is lost
We can perform an unsupervised learning of the topological phase transition by
detecting the value of 𝑇 that fails to identify the topological sectors.
What can the Persistence Diagrams tell us more?
22/30
2D XY model –Topological PhaseTransition
𝑣𝑥, 𝑣𝑦 = −1, 2 𝑚𝜈 = 10 samples per 𝑣𝑥, 𝑣𝑦 at each T
𝑇 = {0.30,0.31, … , 1.50} ,Total = 1210 samples
We focus on only one topological sector and see the varying of diagrams via
temperature
Group of well-ordered spins
Group of spins that form
vortices or antivortices
At high 𝑇, it is easy for vortices and antivortices to
appear in many places in the spin configuration
23/30
2D XY model –Topological PhaseTransition
24/24
Dimensional Reduction from Gram
matrix using UMAP (McInnes+,2018)
Kernel Spectral
Clustering
𝑚𝜈 = 10 samples per 𝑣𝑥, 𝑣𝑦 at each T
𝑇
𝐽
≈ 0.89
The transition in the
proportion of diagrams
belonging to each cluster
The number of diagrams
grouped into the cluster
of the low-temperature regime
Q. H.Tran et al., Topological persistence machine of phase
transition, PRE (2021)
24/30
Case-study: Quantum Many Body
𝐻𝐼 = −𝐽 ෍
𝑖=1
𝐿−1
ො
𝜎𝑖
𝑧
ො
𝜎𝑖+1
𝑧
− 𝐽𝑔 ෍
𝑖=1
𝐿
ො
𝜎𝑖
𝑥 𝐻𝐵 = −𝑡 ෍
𝑖=1
𝐿−1
෠
𝑏𝑖
† ෠
𝑏𝑖+1 + ෠
𝑏𝑖+1
† ෠
𝑏𝑖
One-dimensional Transverse Ising
model
One-dimensional Bose Hubbard model
ො
𝑛𝑖 = ෠
𝑏𝑖
† ෠
𝑏𝑖
+
𝑈
2
෍
𝑖=1
𝐿
ො
𝑛𝑖 ො
𝑛𝑖 − 𝕝 − 𝜇 ෍
𝑖=1
𝐿
ො
𝑛𝑖
𝑔𝑐 = 1.0 𝑔
𝑇
𝑇 = 0
Domain-wall
quasiparticles
Flipped-spin
quasiparticles
Ordered phase
(𝑇 = 0) QPT at ground state
Quantum
Critical 𝑇 = 0
L. D. Carr et al., Mesoscopic effects in quantum phases of
ultracold quantum gases in optical lattices, PRA (2010)
𝐿 = 51
25/30
Quantum Many Body
◼ At ground state ො
𝜌, we define the quantum mutual information matrix
ℒ𝑖𝑗 =
1
2
𝑆𝑖 + 𝑆𝑗 − 𝑆𝑖𝑗 for 𝑖 ≠ 𝑗; ℒ𝑖𝑖 = 0
𝑆𝑖 = 𝑇𝑟 ො
𝜌𝑖 log ො
𝜌𝑖
◼ Consider {ℳ𝑖𝑗} as a weighted-graph
𝑑(𝑖, 𝑗) = 1 − 𝑟𝑖𝑗
2
◼ Define the distance where 𝑟𝑖𝑗 is the Pearson
correlation coefficient
𝑆𝑖𝑗 = 𝑇𝑟[ො
𝜌𝑖𝑗 log ො
𝜌𝑖𝑗]
ො
𝜌𝑖 = 𝑇𝑟𝑘≠𝑖 ො
𝜌
ො
𝜌𝑖𝑗 = 𝑇𝑟𝑘≠𝑖,𝑗 ො
𝜌
◼ Observations from the quantum many body system may not have explicit shapes
M.A.Valdez et al., Quantifying Complexity in Quantum PhaseTransitions
via Mutual Information Complex Networks, PRL (2017)
26/30
QPT – IsingTransverse
𝒫𝛾 𝐷 = ෍
𝑏,𝑑 ∈𝐷
𝑑 − 𝑏 𝛾
1/𝛾
ℰ 𝐷 = −
1
log 𝒫1(𝐷)
෍
𝑏,𝑑 ∈𝐷
|𝑑 − 𝑏|
𝒫1(𝐷)
log
|𝑑 − 𝑏|
𝒫1(𝐷)
Persistence Diagrams
calculated for connected
components
Death − Birth
Q. H.Tran et al., Topological persistence
machine of phase transition, PRE (2021)
27/30
QPT Bose-Hubbard
For loops
◼ Fitting 𝑦 𝐿 = 𝑦(∞) + 𝛼𝐿−𝛽
for 𝐿 → ∞
𝑡
𝑈 𝐵𝐾𝑇
= 0.289 ± 0.001
Our
Density-matrix renormalization
𝑡
𝑈 𝐵𝐾𝑇
= 0.29 ± 0.01
Death − Birth
◼ For small 𝐿:
𝑦 𝐿 =
𝑡
𝑈 𝐵𝐾𝑇
≈ 0.2
Q. H.Tran et al., Topological persistence machine of
phase transition, PRE (2021)
28/30
T. D. Kühner et al., One-dimensional
Bose-Hubbard model with nearest-neighbor
interaction, PRB (2000).
For connected components
Summary
◼ We apply persistent homology for the raw data of physical states to
identify the phase of matter with appropriate interpretation.
29/30
◼ Without prior knowledge, this approach provides potential in
general system where the Hamiltonian may be unknown.
◼ The indicator from persistent homology only represents a necessary
but not sufficient condition.
◼ It would be interesting if we can come up this approach for “model
explainability”.
Thank You
and Wish
You all the
Best!

More Related Content

What's hot

what is neural network....???
what is neural network....???what is neural network....???
what is neural network....???
Adii Shah
 
行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)
行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)
行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)
ryotat
 

What's hot (20)

Chapter6.4
Chapter6.4Chapter6.4
Chapter6.4
 
what is neural network....???
what is neural network....???what is neural network....???
what is neural network....???
 
Lecture on classical and quantum information
Lecture on classical and quantum informationLecture on classical and quantum information
Lecture on classical and quantum information
 
Topological Data Analysis: visual presentation of multidimensional data sets
Topological Data Analysis: visual presentation of multidimensional data setsTopological Data Analysis: visual presentation of multidimensional data sets
Topological Data Analysis: visual presentation of multidimensional data sets
 
パターン認識と機械学習 13章 系列データ
パターン認識と機械学習 13章 系列データパターン認識と機械学習 13章 系列データ
パターン認識と機械学習 13章 系列データ
 
トポロジーと圏論の夜明け
トポロジーと圏論の夜明けトポロジーと圏論の夜明け
トポロジーと圏論の夜明け
 
Probabilistic Reasoning
Probabilistic ReasoningProbabilistic Reasoning
Probabilistic Reasoning
 
Graph neural networks overview
Graph neural networks overviewGraph neural networks overview
Graph neural networks overview
 
「3.1.2最小二乗法の幾何学」PRML勉強会4 @筑波大学 #prml学ぼう
「3.1.2最小二乗法の幾何学」PRML勉強会4 @筑波大学 #prml学ぼう 「3.1.2最小二乗法の幾何学」PRML勉強会4 @筑波大学 #prml学ぼう
「3.1.2最小二乗法の幾何学」PRML勉強会4 @筑波大学 #prml学ぼう
 
Artificial nueral network slideshare
Artificial nueral network slideshareArtificial nueral network slideshare
Artificial nueral network slideshare
 
O-RAN and the enterprise
O-RAN and the enterpriseO-RAN and the enterprise
O-RAN and the enterprise
 
Webinar Keysight: Soluções de Teste para Tecnologias Emergentes 5G-NR e IoT-L...
Webinar Keysight: Soluções de Teste para Tecnologias Emergentes 5G-NR e IoT-L...Webinar Keysight: Soluções de Teste para Tecnologias Emergentes 5G-NR e IoT-L...
Webinar Keysight: Soluções de Teste para Tecnologias Emergentes 5G-NR e IoT-L...
 
Tutorial of topological_data_analysis_part_1(basic)
Tutorial of topological_data_analysis_part_1(basic)Tutorial of topological_data_analysis_part_1(basic)
Tutorial of topological_data_analysis_part_1(basic)
 
Topological Data Analysis.pptx
Topological Data Analysis.pptxTopological Data Analysis.pptx
Topological Data Analysis.pptx
 
[기초개념] Graph Convolutional Network (GCN)
[기초개념] Graph Convolutional Network (GCN)[기초개념] Graph Convolutional Network (GCN)
[기초개념] Graph Convolutional Network (GCN)
 
Artificial Neural Network
Artificial Neural NetworkArtificial Neural Network
Artificial Neural Network
 
Ai(인공지능) & ML(머신러닝) 101 Part1
Ai(인공지능) & ML(머신러닝) 101 Part1Ai(인공지능) & ML(머신러닝) 101 Part1
Ai(인공지능) & ML(머신러닝) 101 Part1
 
行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)
行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)
行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)
 
Prml 1.3~1.6 ver3
Prml 1.3~1.6 ver3Prml 1.3~1.6 ver3
Prml 1.3~1.6 ver3
 
(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network
 

Similar to SIAM-AG21-Topological Persistence Machine of Phase Transition

Similar to SIAM-AG21-Topological Persistence Machine of Phase Transition (20)

QTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapQTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature Map
 
Economia01
Economia01Economia01
Economia01
 
Economia01
Economia01Economia01
Economia01
 
Mathematics Colloquium, UCSC
Mathematics Colloquium, UCSCMathematics Colloquium, UCSC
Mathematics Colloquium, UCSC
 
Duel of cosmological screening lengths
Duel of cosmological screening lengthsDuel of cosmological screening lengths
Duel of cosmological screening lengths
 
Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in India
 
Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in India
 
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric SpaceFixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
 
Modifed my_poster
Modifed my_posterModifed my_poster
Modifed my_poster
 
Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...
Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...
Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...
 
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
 
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
 
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
 
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
 
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
 
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
 
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
 
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
 
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
 
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
ARRAY FACTOR OPTIMIZATION OF AN ACTIVE PLANAR PHASED ARRAY USING EVOLUTIONARY...
 

More from Ha Phuong

Tutorial of topological data analysis part 3(Mapper algorithm)
Tutorial of topological data analysis part 3(Mapper algorithm)Tutorial of topological data analysis part 3(Mapper algorithm)
Tutorial of topological data analysis part 3(Mapper algorithm)
Ha Phuong
 

More from Ha Phuong (20)

018 20160902 Machine Learning Framework for Analysis of Transport through Com...
018 20160902 Machine Learning Framework for Analysis of Transport through Com...018 20160902 Machine Learning Framework for Analysis of Transport through Com...
018 20160902 Machine Learning Framework for Analysis of Transport through Com...
 
017_20160826 Thermodynamics Of Stochastic Turing Machines
017_20160826 Thermodynamics Of Stochastic Turing Machines017_20160826 Thermodynamics Of Stochastic Turing Machines
017_20160826 Thermodynamics Of Stochastic Turing Machines
 
016_20160722 Molecular Circuits For Dynamic Noise Filtering
016_20160722 Molecular Circuits For Dynamic Noise Filtering016_20160722 Molecular Circuits For Dynamic Noise Filtering
016_20160722 Molecular Circuits For Dynamic Noise Filtering
 
015_20160422 Controlling Synchronous Patterns In Complex Networks
015_20160422 Controlling Synchronous Patterns In Complex Networks015_20160422 Controlling Synchronous Patterns In Complex Networks
015_20160422 Controlling Synchronous Patterns In Complex Networks
 
Tutorial of topological data analysis part 3(Mapper algorithm)
Tutorial of topological data analysis part 3(Mapper algorithm)Tutorial of topological data analysis part 3(Mapper algorithm)
Tutorial of topological data analysis part 3(Mapper algorithm)
 
013_20160328_Topological_Measurement_Of_Protein_Compressibility
013_20160328_Topological_Measurement_Of_Protein_Compressibility013_20160328_Topological_Measurement_Of_Protein_Compressibility
013_20160328_Topological_Measurement_Of_Protein_Compressibility
 
011_20160321_Topological_data_analysis_of_contagion_map
011_20160321_Topological_data_analysis_of_contagion_map011_20160321_Topological_data_analysis_of_contagion_map
011_20160321_Topological_data_analysis_of_contagion_map
 
010_20160216_Variational Gaussian Process
010_20160216_Variational Gaussian Process010_20160216_Variational Gaussian Process
010_20160216_Variational Gaussian Process
 
009_20150201_Structural Inference for Uncertain Networks
009_20150201_Structural Inference for Uncertain Networks009_20150201_Structural Inference for Uncertain Networks
009_20150201_Structural Inference for Uncertain Networks
 
PRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling MethodPRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling Method
 
Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)
 
008 20151221 Return of Frustrating Easy Domain Adaptation
008 20151221 Return of Frustrating Easy Domain Adaptation008 20151221 Return of Frustrating Easy Domain Adaptation
008 20151221 Return of Frustrating Easy Domain Adaptation
 
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
 
006 20151207 draws - Deep Recurrent Attentive Writer
006 20151207 draws - Deep Recurrent Attentive Writer006 20151207 draws - Deep Recurrent Attentive Writer
006 20151207 draws - Deep Recurrent Attentive Writer
 
005 20151130 adversary_networks
005 20151130 adversary_networks005 20151130 adversary_networks
005 20151130 adversary_networks
 
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
 
003 20151109 nn_faster_andfaster
003 20151109 nn_faster_andfaster003 20151109 nn_faster_andfaster
003 20151109 nn_faster_andfaster
 
002 20151019 interconnected_network
002 20151019 interconnected_network002 20151019 interconnected_network
002 20151019 interconnected_network
 
001 20151005 ranking_nodesingrowingnetwork
001 20151005 ranking_nodesingrowingnetwork001 20151005 ranking_nodesingrowingnetwork
001 20151005 ranking_nodesingrowingnetwork
 
Deep Learning And Business Models (VNITC 2015-09-13)
Deep Learning And Business Models (VNITC 2015-09-13)Deep Learning And Business Models (VNITC 2015-09-13)
Deep Learning And Business Models (VNITC 2015-09-13)
 

Recently uploaded

Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
Cherry
 
ONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for voteONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for vote
RaunakRastogi4
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demerits
Cherry
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Cherry
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 

Recently uploaded (20)

Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
Energy is the beat of life irrespective of the domains. ATP- the energy curre...
Energy is the beat of life irrespective of the domains. ATP- the energy curre...Energy is the beat of life irrespective of the domains. ATP- the energy curre...
Energy is the beat of life irrespective of the domains. ATP- the energy curre...
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
ONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for voteONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for vote
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demerits
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence acceleration
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
Concept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdfConcept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdf
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
GBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of AsepsisGBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of Asepsis
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 

SIAM-AG21-Topological Persistence Machine of Phase Transition

  • 1. Topological Persistence Machine of Phase Transition The University ofTokyo Tran Quoc Hoan (join work with M. Chen andY. Hasegawa) MS:Applications of Persistent Homology to PhaseTransitions
  • 2. Motivation Data-driven approach in physical system with rich geometric and topological structure Quantum Quench Dynamics Spins Configuration Interaction Network “It’s black but not a black box.” AlgebraicTopological Machine Topological Features 2/30 Topological Data Analysis = Model the Shape of Data
  • 3. Persistent Homology Main idea: vary a proximity parameter and track the appearance and disappearance of features Barcodes Persistence Diagram Apply Homology S. Barannikov+(1994),H. Edelsbrunner+(2002), A. Zomorodian and G. Carlsson (2004),… Significant features persist Filtration 3/30
  • 4. Persistent Homology Mathematical encoding: model the filtration as an increasing sequence of simplicial complexes S. Barannikov+(1994),H. Edelsbrunner+(2002), A. Zomorodian and G. Carlsson (2004),… ⊆ ⊆ ⊆ 𝜎1 𝜎1 𝜎2 𝜎3 𝜎4 𝜎1 𝜎2 𝜎3 𝜎4 𝜎5 𝜎6 𝜎1 𝜎2 𝜎3 𝜎4 𝜎5 𝜎6 𝜎7 𝐾1 𝐾2 𝐾3 𝐾4 𝐶𝑝 𝐾 = σ𝑖 𝑎𝑖𝜎𝑖 ∣ 𝜎𝑖 ⊂ 𝐾, dim 𝜎𝑖 = 𝑝, 𝑎𝑖 ∈ ℤ2 ◼ TheVietoris-Rips complex VR 𝑃, 𝜀 𝑉𝑅 𝑃, 𝜀 = { 𝑖0, … , 𝑖𝑘 ∣ 𝑑 𝑥𝑖𝑎 , 𝑥𝑖𝑏 ≤ 2𝜀 ∀0 ≤ 𝑎, 𝑏 ≤ 𝑘} 1 2 3 𝐵1 𝐵2 𝐵3 ◼ Filtration 𝜀1 < 𝜀2 < ⋯ < 𝜀𝑇 → 𝑉𝑅 𝑃, 𝜀1 ⊆ 𝑉𝑅 𝑃, 𝜀2 ⊆ ⋯ ⊆ 𝑉𝑅 𝑃, 𝜀𝑇 4/30
  • 5. Persistent Homology S. Barannikov+(1994),H. Edelsbrunner+(2002), A. Zomorodian and G. Carlsson (2004),… Simplicial complex Chain complex Homology group Algebraic Holes (Geometrical object) (Algebraic object) (Algebraic object) 𝐻p = Ker(𝜕𝑝) Im(𝜕𝑝+1) Image by Yasuaki Hiraoka via http://www.wpi- aimr.tohoku.ac.jp/hiraoka_labo/index-english.html Standard computational time O(M3), M = number of simplices Nina Otter+, A roadmap for the computation of persistent homology, EPJ Datascience, 2017 Complex K Size of K Theoretical guarantee Čech 2𝑂 |𝑃| Nerve theorem Vietoris-Rips (VR) 2𝑂 |𝑃| Approximate Čech complex Alpha |𝑃|𝑂([𝑑/2]) (𝑁 points in ℝ𝑑) Nerve theorem Witness 2𝑂 |𝐿| (subset L) For curves and surfaces in Euclidean space Graph-induced complex 2𝑂 |𝑄| (subsample Q) ApproximatesVR complex Sparsified Čech 𝑂 |𝑃| Approximate Čech complex SparsifiedVR 𝑂 |𝑃| ApproximatesVR complex 5/30
  • 6. Persistent Homology Persistent Homology encodes both global and local topology of a dataset into a computational feature set [F. C. Motta+, Measures of order for nearly hexagonal lattices, Physica D (2018)] 6/30 Thank to Henry Adam for giving this example
  • 7. Persistent Homology and Physics of Intelligence Questions: ◼ Given observations from two groups/phases in a physical system, what makes them “truly” be different? ◼ Can we know the “key” parameters underlying the observations? ◼ Can we interpret the phase transition from features of observations? ◼ Can we predict/infer an unknown phase transition from limited observations? Let Persistent Homology do it Let Statistical Tools and Machine Learning do it + 7/30
  • 8. Persistent Homology and PhaseTransition ◼ Hoan Tran - University ofTokyo, Japan - Topological Persistence Machine of PhaseTransitions ◼ Bart Olsthoorn - Nordic Institute forTheoretical Physics, Sweden - Mapping Complex Phase Diagrams in Spin Models ◼ Alex Cole - University of Amsterdam, Netherlands - Quantitative and Interpretable Order Parameters for PhaseTransitions from Persistent Homology ◼ Nick Sale - Swansea University, United Kingdom - Quantitative Analysis of PhaseTransitions using Persistent Homology ◼ Irene Donato - Nextatlas, Italy - Persistent Homology Analysis of PhaseTransitions ◼ Kouji Kashiwa - Fukuoka Institute of Technology, Japan - Exploring the Phase Structure of QCD Effective Models with Persistent Homology ◼ Daniel Spitz - Universität Heidelberg, Germany - Universal Dynamics in Quantum Many-Body Systems via Persistent Homology ◼ Willem Elbers - Durham University, United Kingdom - Topological Signatures of Cosmic Reionization and the First Galaxies MS72 MS83 8/30
  • 9. Topological Persistence Machine (1) Decide observations (2) Embedding (3) Make filtration (4) Compute diagrams for all observations (each observation = one dataset) (5) Point summaries or kernel trick Q. H.Tran et al., Topological persistence machine of phase transition, PRE (2021) 9/30
  • 10. Point Summaries of Diagrams Further compressed features from persistence diagrams ◼ Maximum lifetime 𝒫𝑚𝑎𝑥 𝐷 = max 𝑏,𝑑 ∈𝐷 |𝑑 − 𝑏| ◼ 𝛾-norm 𝒫𝛾 𝐷 = ෍ 𝑏,𝑑 ∈𝐷 𝑑 − 𝑏 𝛾 1/𝛾 ◼ Normalized entropy ℰ 𝐷 = − 1 log 𝒫1(𝐷) ෍ 𝑏,𝑑 ∈𝐷 |𝑑 − 𝑏| 𝒫1(𝐷) log |𝑑 − 𝑏| 𝒫1(𝐷) (Cohen-Steiner+, 2010) (Chintakunta+, 2015;Myers+, 2019) 10/30
  • 11. The space of Persistence Diagrams ◼ Not a vector space ◼ Difficult to use in statistical-learning tasks (e.g., classification, regression) ◼ Cannot define an inner product KernelTrick for Persistence Diagrams AVG( , , ) is meaningless. Idea: map Persistence Diagrams into a Hilbert space 11/30
  • 12. KernelTrick for Persistence Diagrams ◼ Can define an inner product ◼ Use in (linear) statistical-learning tasks (e.g., SVM) 𝐷1 𝐷2 Ω Φ𝐷1 Φ𝐷2 , 𝐻𝑏 Feature mapping Φ 𝐻𝑏 = 𝐿2 (ℝ2 ) ∞ −dimensional 𝐿2 space ◼ A map 𝑘: Ω × Ω → ℝ is called kernel if there is a Hilbert space (𝐻𝑏, ⋅,⋅ ) and a feature map Φ: Ω → 𝐻𝑏 s.t. Ω × Ω 𝐻b × 𝐻b ℝ ⋅,⋅ 𝑘 (Φ, Φ) Reininghaus+, 2005; Bubenik+, 2015; Kusano+, 2016; Chachólski+, 2017; Adams+, 2017; Carrière+, 2017; Le+, 2018; Corbet+, 2019;… 𝜙𝐷1 , 𝜙𝐷2 𝐻𝑏 = 𝑘 𝐷1, 𝐷2 for ∀𝐷1, 𝐷2 ∈ Ω 12/30
  • 13. Kernel method (Corbet+, 2019)The feature map Φ: Ω → 𝐿2 (ℝ2 ) is often given by 𝐷 ⟼ ෍ 𝒑∈𝐷 𝑤 𝒑 𝑓(⋅, 𝒑) Peak function (e.g., Gaussian) weight Persistence Scale Space Kernel (Reininghaus+, 2015) Persistence Weighted Gaussian Kernel (Kusano+, 2016) Persistence Images (Adam+, 2017) The kernel is given by the inner product: 𝑘 𝐷1, 𝐷2 = න ℝ2 Φ𝐷1 𝒑 Φ𝐷2 𝒑 𝑑𝐿2 13/30
  • 14. Kernel method We can embed Φ𝐷 into a point ℙ = {𝜌| ‫׬‬ℝ2 𝜌 𝒙 = 1 , 𝜌 𝒙 ≥ 0} Positive orthant in the probability simplex 𝜌𝐷 = 1 𝑍 ෍ 𝒑∈𝐷 𝒩(𝒑, 𝜈𝑰) {𝒙 = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛| σ𝑖 𝑛 𝑥𝑖 = 1, 𝑥𝑖 ≥ 0} ℎ 𝒙 = 𝑥1, … , 𝑥𝑛 = (𝑦1, … , 𝑦𝑛) 𝕊+ = {𝜒| ‫׬‬ ℝ2 𝜒2 𝒙 = 1 , 𝜒 𝒙 ≥ 0} Fisher Information Metric 𝑑𝐹(𝜌𝐷1 , 𝜌𝐷2 ) = arccos ℎ 𝜌𝐷1 , ℎ 𝜌𝐷2 𝑘 𝐷1, 𝐷2 = exp −𝛼𝑑𝐹(𝜌𝐷1 , 𝜌𝐷2 ) The kernel is given by Persistence Fisher Kernel (Le+, 2018) 14/30
  • 15. Applications of Kernel method ◼ Kernel PCA, Kernel SVM ◼ Kernel change point detection with Kernel Fisher Discriminant Ratio (KFDR) ➢ Diagrams along index 𝑠: 𝐷𝑠, 𝑠 = 1, … , 𝑀 ➢ For each 𝑠 > 1, two classes are defined by the data before and after 𝒔 and compute Ƹ 𝜇1 = 1 𝑠 − 1 ෍ 𝑖=1 𝑠−1 Φ𝐷𝑖 ෠ Σ1 = 1 𝑠 − 1 ෍ 𝑖=1 𝑠−1 Φ𝐷𝑖 − Ƹ 𝜇1 ⨂ Φ𝐷𝑖 − Ƹ 𝜇1 KFDR𝑀,𝑠,𝛾 = (𝑠 − 1)(𝑀 − 𝑠 + 1) 𝑀 Ƹ 𝜇2 − Ƹ 𝜇1, ෠ Σ + 𝛾𝐼 −1 Ƹ 𝜇2 − Ƹ 𝜇1 ℋb while ➢ Find change point as 𝑠𝑐 = max 𝑠>1 KFDR𝑀,𝑠,𝛾 (Kusano+,2015;Tran+, 2019) ෠ Σ2 = 1 𝑀 − 𝑠 + 1 ෍ 𝑖=𝑠 𝑀 Φ𝐷𝑖 − Ƹ 𝜇2 ⨂ Φ𝐷𝑖 − Ƹ 𝜇2 Ƹ 𝜇2 = 1 𝑀 − 𝑠 + 1 ෍ 𝑖=𝑠 𝑀 Φ𝐷𝑖 ෠ Σ = 𝑠−1 𝑀 ෠ Σ1 + 𝑀−𝑠+1 𝑀 ෠ Σ2 ➢ Change-point regression with Φ𝐷1 , … , Φ𝐷𝑀 Kernel Change-point Analysis (Harchaoui+, 2009) 15/30
  • 16. Topological Persistence Machine (1) Decide observations (2) Embedding (3) Make filtration (4) Compute diagrams for all observations (each observation = one dataset) (5) Point summaries or kernel trick Q. H.Tran et al., Topological persistence machine of phase transition, PRE (2021) 16/30
  • 17. Case-study: 2D-XY model (no discontinuity in any observable such as magnetization or energy, infinite order transition) 𝑇 Infinite energy to excite a single vortex, but thermal fluctuations can create vortex-antivortex pairs bounding Low High Entropically favorable for vortices to separate BKT transition 𝑻𝒄 𝑱 ≅ 𝟎. 𝟖𝟗 𝛽𝐻 = − 𝐽 𝑘𝐵𝑇 ෍ 𝑖,𝑗 𝑆𝑖 ⋅ 𝑆𝑗 Image by Matthew Beach via https://mbeach42.github.io/ 17/30
  • 18. Topological defect 𝑤 = 0 𝑤 = 1 𝑤 = −1 𝑤 = 2 ◼ A topological defect is a group of spins that have a different topology than spins that point only one direction ◼ A vortex is a special type of topological defect by having non-zero winding number ➢ A spin configuration with defects cannot be smoothly transformed into the ferromagnetic ground state where all spins are aligned Vortex Anti-vortex Vortex 18/30
  • 19. XY model –Topological Order ◼ Observations (𝑙th-sample): 𝑆𝑖 (𝑙) = cos 𝜃𝑖 (𝑙) , sin 𝜃𝑖 (𝑙) 𝜌 𝜃𝑖 ∝ 𝑒−𝐸({𝜃𝑖})/𝑇 𝐸 𝜃𝑖 = −𝐽 ෍ 𝑖,𝑗 cos(𝜃𝑖 − 𝜃𝑗) ◼ Initialize topological defects at 𝑇 = 0 For 1D-XY model 𝜃𝑖 (𝑙) = 2𝜋𝜈(𝑙) 𝑖 𝑁 + 𝛿𝜃𝑖 (𝑙) + ҧ 𝜃(𝑙) Winding number Spin fluctuation Global rotation For 2D-XY model 𝜃(𝑖,𝑗) (𝑙) = 2𝜋𝜈𝑥 (𝑙) 𝑖 𝑁𝑥 + 2𝜋𝜈𝑦 (𝑙) 𝑗 𝑁𝑦 + 𝛿𝜃(𝑖,𝑗) (𝑙) + ҧ 𝜃(𝑙) Winding number (𝑣𝑥, 𝑣𝑦) (Rodriguez-Nieva+, Nat. Phys., 2019) 19/30
  • 20. 2D XY model –Topological Order ◼ Initial Purpose: use persistent homology to identify topological sectors from spins configuration 𝑣𝑥, 𝑣𝑦 = 0, 0 , 0, 2 , 1, 1 , (2, −1) 𝑁 × 𝑁 spins, 𝑚𝜈 = 100 samples per 𝑣𝑥, 𝑣𝑦 Total = 400 samples at each temperature ◼ Use the Metropolis algorithm to thermalize samples to temperatureT (many thanks to J. F. Rodriguez-Nieva for his instruction) Topological Persistence Machine 𝑣𝑥, 𝑣𝑦 = ? 20/30
  • 21. 2D XY model –Topological Order 𝑑 𝑠𝑖, 𝑠𝑗 = 𝜉𝑑 𝑺𝑖, 𝑺𝑗 + 1.0 − 𝜉 𝑑 𝒓𝑖, 𝒓𝑗 = 𝜉 |𝜃𝑖 − 𝜃𝑗| + (1.0 − 𝜉) 𝒓𝑖 − 𝒓𝑗 ◼ Embedding: we define the distance between spin 𝑖- th index and 𝑗-th index in 𝑁 × 𝑁 lattice as Angle distance Lattice distance ◼ Compute Persistence Diagrams of loops: 𝐷𝑙 (𝑇) for sample 𝑙-th (𝑙 = 1,2, … , 400) ◼ Compute Gram Matrix {𝑘𝑙𝑙′} from Kernel 𝑘 𝐷𝑙 𝑇 , 𝐷𝑙′ 𝑇 at eachT ◼ Dimensional Reduction from Gram matrix to see the difference in the topological order 21/30
  • 22. 2D XY model –Topological Order Results from Kernel PCA 𝑣𝑥, 𝑣𝑦 = Distinguishable Topological sector by winding number Indistinguishable =Topological Order is lost We can perform an unsupervised learning of the topological phase transition by detecting the value of 𝑇 that fails to identify the topological sectors. What can the Persistence Diagrams tell us more? 22/30
  • 23. 2D XY model –Topological PhaseTransition 𝑣𝑥, 𝑣𝑦 = −1, 2 𝑚𝜈 = 10 samples per 𝑣𝑥, 𝑣𝑦 at each T 𝑇 = {0.30,0.31, … , 1.50} ,Total = 1210 samples We focus on only one topological sector and see the varying of diagrams via temperature Group of well-ordered spins Group of spins that form vortices or antivortices At high 𝑇, it is easy for vortices and antivortices to appear in many places in the spin configuration 23/30
  • 24. 2D XY model –Topological PhaseTransition 24/24 Dimensional Reduction from Gram matrix using UMAP (McInnes+,2018) Kernel Spectral Clustering 𝑚𝜈 = 10 samples per 𝑣𝑥, 𝑣𝑦 at each T 𝑇 𝐽 ≈ 0.89 The transition in the proportion of diagrams belonging to each cluster The number of diagrams grouped into the cluster of the low-temperature regime Q. H.Tran et al., Topological persistence machine of phase transition, PRE (2021) 24/30
  • 25. Case-study: Quantum Many Body 𝐻𝐼 = −𝐽 ෍ 𝑖=1 𝐿−1 ො 𝜎𝑖 𝑧 ො 𝜎𝑖+1 𝑧 − 𝐽𝑔 ෍ 𝑖=1 𝐿 ො 𝜎𝑖 𝑥 𝐻𝐵 = −𝑡 ෍ 𝑖=1 𝐿−1 ෠ 𝑏𝑖 † ෠ 𝑏𝑖+1 + ෠ 𝑏𝑖+1 † ෠ 𝑏𝑖 One-dimensional Transverse Ising model One-dimensional Bose Hubbard model ො 𝑛𝑖 = ෠ 𝑏𝑖 † ෠ 𝑏𝑖 + 𝑈 2 ෍ 𝑖=1 𝐿 ො 𝑛𝑖 ො 𝑛𝑖 − 𝕝 − 𝜇 ෍ 𝑖=1 𝐿 ො 𝑛𝑖 𝑔𝑐 = 1.0 𝑔 𝑇 𝑇 = 0 Domain-wall quasiparticles Flipped-spin quasiparticles Ordered phase (𝑇 = 0) QPT at ground state Quantum Critical 𝑇 = 0 L. D. Carr et al., Mesoscopic effects in quantum phases of ultracold quantum gases in optical lattices, PRA (2010) 𝐿 = 51 25/30
  • 26. Quantum Many Body ◼ At ground state ො 𝜌, we define the quantum mutual information matrix ℒ𝑖𝑗 = 1 2 𝑆𝑖 + 𝑆𝑗 − 𝑆𝑖𝑗 for 𝑖 ≠ 𝑗; ℒ𝑖𝑖 = 0 𝑆𝑖 = 𝑇𝑟 ො 𝜌𝑖 log ො 𝜌𝑖 ◼ Consider {ℳ𝑖𝑗} as a weighted-graph 𝑑(𝑖, 𝑗) = 1 − 𝑟𝑖𝑗 2 ◼ Define the distance where 𝑟𝑖𝑗 is the Pearson correlation coefficient 𝑆𝑖𝑗 = 𝑇𝑟[ො 𝜌𝑖𝑗 log ො 𝜌𝑖𝑗] ො 𝜌𝑖 = 𝑇𝑟𝑘≠𝑖 ො 𝜌 ො 𝜌𝑖𝑗 = 𝑇𝑟𝑘≠𝑖,𝑗 ො 𝜌 ◼ Observations from the quantum many body system may not have explicit shapes M.A.Valdez et al., Quantifying Complexity in Quantum PhaseTransitions via Mutual Information Complex Networks, PRL (2017) 26/30
  • 27. QPT – IsingTransverse 𝒫𝛾 𝐷 = ෍ 𝑏,𝑑 ∈𝐷 𝑑 − 𝑏 𝛾 1/𝛾 ℰ 𝐷 = − 1 log 𝒫1(𝐷) ෍ 𝑏,𝑑 ∈𝐷 |𝑑 − 𝑏| 𝒫1(𝐷) log |𝑑 − 𝑏| 𝒫1(𝐷) Persistence Diagrams calculated for connected components Death − Birth Q. H.Tran et al., Topological persistence machine of phase transition, PRE (2021) 27/30
  • 28. QPT Bose-Hubbard For loops ◼ Fitting 𝑦 𝐿 = 𝑦(∞) + 𝛼𝐿−𝛽 for 𝐿 → ∞ 𝑡 𝑈 𝐵𝐾𝑇 = 0.289 ± 0.001 Our Density-matrix renormalization 𝑡 𝑈 𝐵𝐾𝑇 = 0.29 ± 0.01 Death − Birth ◼ For small 𝐿: 𝑦 𝐿 = 𝑡 𝑈 𝐵𝐾𝑇 ≈ 0.2 Q. H.Tran et al., Topological persistence machine of phase transition, PRE (2021) 28/30 T. D. Kühner et al., One-dimensional Bose-Hubbard model with nearest-neighbor interaction, PRB (2000). For connected components
  • 29. Summary ◼ We apply persistent homology for the raw data of physical states to identify the phase of matter with appropriate interpretation. 29/30 ◼ Without prior knowledge, this approach provides potential in general system where the Hamiltonian may be unknown. ◼ The indicator from persistent homology only represents a necessary but not sufficient condition. ◼ It would be interesting if we can come up this approach for “model explainability”.
  • 30. Thank You and Wish You all the Best!