SlideShare a Scribd company logo
1 of 78
KONGUNADU COLLEGE OF ENGINEERING AND TECHNOLOGY
(AUTONOMOUS)
NAMAKKAL- TRICHY MAIN ROAD, THOTTIAM, TRICHY
DEPARTMENT OF MECHANICAL ENGINEERING
20ME503PE –UNCONVENTIONAL MACHINING
PROCESSES
FIFTH SEMESTER
PRESENTED BY
M.DINESHKUMAR,
ASSISTANT PROFESSOR,
DEPARTMENT OF MECHANICAL ENGINEERING,
KONGUNADU COLLEGE OF ENGINEERING AND TECHNOLOGY.
UNIT -IV
ADVANCED NANO FINISHING
PROCESSES
TOPICS
Abrasive flow machining, chemo-mechanical polishing,
magnetic abrasive finishing, magneto rheological finishing,
magneto rheological abrasive flow finishing their working
principles, equipments, effect of process parameters,
applications, advantages and limitations.
INTRODUCTION
• In order to substitute manual finishing process
and to meet the functional properties such as wear
resistance, power loss, due to friction on most of
the engineering components, we go for advanced
machining process.
• This finishing process is carried out at micro and
nano level. This process is called as advanced
nano finishing process.
NANO FINISHING PROCESSES
• Nano finishing is the only operation which
can make rough surfaces in nanometers range.
The ultimate precision through finishing will
be where processed where there is a change in
size of sub nanometer.
Nano finishing processes
1. Abrasive flow machining
2. Chemo mechanical polishing
3. Magnetic abrasive finishing
4. Magneto rheological finishing
5. Magneto rheological abrasive flow
finishing
• In abrasive flow machining process, the
semisolid abrasive media acts as deformable
grading wheel; which helps to remove small
amount of materials.
• The abrasive media is given larger force or
velocity by hydraulic or mechanical means to
push the media into the areas in which
conventional finishing process cannot be
performed.
ABRASIVE FLOW MACHINING
ABRASIVE FLOW MACHINING
1. One way abrasive flow machining
2. Two way abrasive flow machining
3. Orbital abrasive flow machining
TYPES OF
ABRASIVE FLOW MACHINING
ONE WAY ABRASIVE FLOW
MACHINING
TWO WAY ABRASIVE FLOW
MACHINING
ORBITAL ABRASIVE FLOW
MACHINING
The metal removal rate depends upon the
following parameters.
• 1. Addition of plasticizers
• 2. Extrusion pressure
• 3. Number of cycles
PROCESS PARAMETERS IN ABRASIVE
FLOW MACHINING
Plasticizer Vs Change in Surface
Roughness
Extrusion Pressure Vs Change in
Surface Roughness
• As the finishing cycles are increased from 100
to 400, the surface roughness also increased
and good surface finish is obtained.
• The number of finishing cycles are controlled
by mechanical counter
Finishing Cycles Vs Change in Surface
Roughness
• Operations such as deburring polishing and
radiusing can be done.
• This process is more suitable for batch
production
• It is faster than manual finishing
• It can finish inaccessible areas in one single
movement
ADVANTAGES OF AFM
• It has low finishing rate compared to other
nano finishing process.
• The process involves high production time
and high production cost.
• There should be repeated replacements of
poly abrasive media that is used in AFM
process.
LIMITATIONS OF AFM
• AFM is used in finishing of
• Extrusion dies
• Nozzle of flame cutting touch
• Air foil surfaces of impellors
• Accessory parts like fuel spray, nozzle, fuel
control bodies.
APPLICATIONS OF AFM
• Chemo mechanical polishing is a process of
smoothing and planning surface with the combination
of chemical etching and free abrasive polishing.
• CMP of silicon wafers is a basic processing
technology for production of flat, defect free, highly
reflective surface.
• This planarization method is a choice for < 0.5
micron technologies
CHEMO MECHANICAL POLISHING
• In chemo mechanical polishing, a chemical
reaction is used to soften the material and then
mechanical polishing is done on the layer. The
polishing action is partly mechanical and
partly chemical
PRINCIPLE OF CMP
CMP
CONSTRUCTION AND WORKING OF
CMP
WAFER
WAFER
CMP POLISHING
CMP POLISHING
Types of Pad based on its Hardness
• The hardness is quantified by Youngs modulus
value.
• 2GPa – hard pad – good global planarity
• 0.5 GPa – medium pad – good local planarity
• 0.1 GPa – soft pad – good local planarity
Pad Asperities
• Pores diameter – 30 – 50 μm
• Peak to peak – 200 – 300 μm
POLISHING PAD
POLISHING PAD
Abrasives in CMP Slurry
• Oxide slurry
• Metal slurry
The process condition are
• Flow rate - 50 to 100 ml / min
• Particle size - 180 to 280 nm
CMP
Metal Slurry
The various types of metal slurry used are
• Fe(NO3)2 – based
• H2O2 – based
• KJO3 – based
• H5IO6 based slurries having oxidizing ability
CMP
CMP Tool
ASPECTS OF MATERIAL REMOVAL
CHEMICAL ASPECT
The six possible two way interaction are
• Fluid and workpiece
• Workpiece and pad
• Workpiece and abrasive particles
• Abrasive particles and pad
• Pad and fluid
• Fluid and abrasive particles.
Mechanical Aspect of Material
Removal
Also four possible three way interaction are
• Workpiece, fluid and abrasives
• Work[piece, abrasives and pad
• Fluid, pad and abrasives.
Mechanical Aspect of Material
Removal
• Process : 10 to 50 kPa
• Platen / carrier rpm: 10 to 100 rpm
• Velocity – 10 – 100 cm/s
• Slurry flow rate – 50 to 500 m/min
Typical material removal rate
• Oxide CMP – 2800 A ∘ / min
• Metal CMP – 3500 A∘ / min
PROCESS PARAMETER
The mechanical material removal rate was given by
person. This is called perston equation.
R = kp x P x△V
The equation works good for the bulk film polishing
processes
Where
P - is the polishing pressure
kp - perston coefficient
V - relative velocity
PERSTON EQUATION
• Temperature in the polishing pad
• Conditioning of polishing pad.
FACTORS AFFECTING PROCESS
PARAMETERS
ADVANTAGES OF CMP
• It is used to polish metal like Aluminium, Copper, Silver titanium
etc.
• It can also polish insulators like SiO2, Si3N4.
• Ceramics like SiC, TiN, TaN can also be polished.
LIMITATIONS OF CMP
• Cleaning of platen surface in a difficult process.
• Embedded particles, residual slurry are to be removed very
carefully.
• Due to residues min scratches are also formed on the surface of the
platen and the pad.
• Surface defects such riping out and dishing are formed on the
surface.
ADVANTAGES AND DISADVANTAGES
• It is used in fabrication of semiconductor
devices
• Oxides are deposited on the wafer in from of
shape trenches
• Flat panel display
• Microelectronic mechanical system
• Magnetic recording head and CD writing
APPLICATIONS OF CMP
• Magnetic abrasive finishing process was
developed in US, USSR, Bulgaria and Japan.
This process is mainly used in finishing
radiusing and deburring of various flat surfaces
and cylindrical surfaces.
MAGNETIC ABRASIVE FINISHING
• In magnetic abrasive finishing process, the
magnetic particles are joined to each other
magnetically between magnetic poles along
the lines of magnetic force forming a flexible
abrasive brush.
• This magnetic abrasive brush is used to
perform surface and edge finishing operation.
PRINCIPLE OF MAF
MAF
Magnetic Abrasive Particles
Magnetic abrasive finishing-
cylindrical surface
Magnetic abrasive finishing – internal
surface
NORMAL AND TENGENTIAL FORCE
1.Pressure
2. Type and size of grains
3. Finishing efficiency
4. Bonded and unbounded magnetic abrasive
5. Magnetic flux density.
FACTORS AFFECTING PROCESS
PARAMETERS
Pressure
Type and size of grains
Finishing efficiency
Bonded and unbounded magnetic
abrasive
Magnetic Flux Density
ADVANTAGES OF MAF
• MAF have self adaptability and easy controllability
• Surface finish is in order of nanometer.
• The device can be easily mounted on other machine without
the need of high capital investment.
DISADVANTAGES OF MAF
• It is difficult to implement MAF in mass production operation.
• It is a time consuming process.
• It is not applicable for some ordinary finishing task where
conventional finishing technique can be easily implemented.
ADVANTAGES AND DISADVANTAGES
OF MAF
• It is used in finishing processes such as
lapping, buffing, honing and burnishing
operation in surface of tubes, bearing and
automobile components.
• Precision deburring can be done on edges of
the workpiece.
• It is used in medical field in areas of capillary
tube, needles and biopsy needles etc.
APPLICATIONS OF MAF
• A magneto rheological fluid is a layer of smart
fluid in a carrier. It is a type of oil when subjected
to a magnetic field, the fluid increases it apparent
viscosity to the point that it becomes a
viscoelastic solid.
• Rheology is a science of flow and deformation
study of rheological properties of the medium.
The performance of the medium. The
performance of the medium is given by its
rheological properties.
MAGNETO RHEOLOGICAL FINISHING
• In magneto rheological finishing process under
the influence of magnetic field the MR fluid
(Magneto rheological fluid) becomes a
viscoelastic solid.
• This act as the cutting tool to remove the
materials from the surface of the workpiece.
PRINCIPLE OF MRF
CONSTRUCTION AND WORKING OF
MRF
1. Magnetic dispersed phase- micron sized
magnetizable particles (0.05 – 10μm)
2. Abrasive particles
3. Stabilizers
4. Carrier fluid
Basic components in MR fluid
• The abrasives used are Aluminium oxide,
silicon carbide, cerium oxide and diamond
powder
• Polishing abrasives such as Alumina and
diamond power is used in polishing optical
materials.
Abrasive particles
• Optimum concentration of magnetic particles
and abrasives
• High yield stress under magnetic field
• Low off state visciocity
• Resistance to corrosion
• High polishing efficiency
Characteristic of Base Carrier Fluid
• The main function of stabilizers is used to
disperse the magnetic particles and abrasives
uniformly in suspension
• The main function of stabilizers is that it
creates a coating on the particles so that MR
fluid can easily re-disperse
STABILIZERS
Magneto rheological fluid circulation
system
ADVANTAGES
• High accuracy
• Enhances product quality and repeatability
• Increases production rate, productivity yield and cost effectiveness.
• Manufacture of precision optics.
• Optical glasses with roughness of less than 10 angstrom can be machined.
• Surface finish upto nanometer level is achieved without sub surface
damage.
LIMITATIONS OF MRF
• High quality fluids are expensive.
• Fluids are subject to thickening after prolonged used and need replacement.
• Settling of ferromagnetic particles can be a problem for some application
• This process is not suitable for finishing of internal and external surface of
cylindrical components.
ADVANTAGES AND DISADVANTAGES
OF MRF
• Use in lens manufacturing
• Optical glasses, single crystals, calcium
fluorides silicon ceramic are machined.
• Square and rectangular aperture surface such
as prism, cylinder and photo blank substrates
are machined
APPLICATIONS OF MRF
• This process is the combination of two
finishing processes. They are abrasive flow
machining and magneto rheological finishing.
This process eliminates the limitations in AFM
and MRF.
MAGNETO RHEOLOGICAL ABRASIVE
FLOW MACHINING
• Magneto rheological polishing fluid comprises
of carbonyl iron powder and silicon carbide,
abrasive dispersed in the viscoplastic base of
grease and mineral oil.
• When external magnetic field is applied these
fluid exhibit change in rheological behavior.
These fluids behaves smartly and does the
finishing operation precisely
PRINCIPLE OF MRAFM
Magneto rheological abrasuive flow
finishing
• Electromagnets - 2000 turns of 17 SWG copper
wire.
• Continuous Phase -Organic fluids are used as
continuous phase for MR fluids. The other type of
fluids are silicone oils, kerosene, mineral oil and
glycol.
• Additives -MR fluid is mixture of 26.6 vol% of
electrolytes, 99.5% of Fe powder, 13.4 vol% of
silicon carbide abrasive with 4.8% paraffin oil
and 12% AP3 grease.
• Faster response time
• High dynamic yield stress
• Low off- state viscosity
• Resistance to setting
• Easy remixing
• Excellent wear and abrasive resistance
Characteristic of Magneto Rheological
Fluids
Mechanism of MRAFF
Microscopic image of MR fluid
Absence of magnetic fluid
Presence of magnetic fluid
FACTOR AFFECTING PROCESS
PARAMETER
When the number of cycles increases beyond
400, the finishing rate get increased
• Complex structures can be easily machined.
• Localized finishing is possible
• Thermal distortion is negligible
• High machining versatility.
ADVANTAGES OF MRAFF
• Low finishing rate
• Non uniform magnetic field produces non
uniform surface finish
• Required a closed environment
LIMITATIONS OF MRAFF
• Used in investment cast milled parts, airfoil, cast
aluminum automobile turbo components
• Complex piping for values, fittings, tubes and
flow meter
• Finishing of automotive gears in a single pass,
heart values, exhaust manifold and high pressure
holes.
• Used in finishing of heart valves, exhaust
manifold and high pressure holes.
APPLICATIONS OF MRAFF

More Related Content

What's hot

Electrochemical Machining
Electrochemical MachiningElectrochemical Machining
Electrochemical MachiningSushima Keisham
 
Electrical discharge machining [EDM]
Electrical discharge machining [EDM]Electrical discharge machining [EDM]
Electrical discharge machining [EDM]Dhruv Shah
 
Equipment for Ultra-Precision Machining
Equipment for Ultra-Precision MachiningEquipment for Ultra-Precision Machining
Equipment for Ultra-Precision MachiningVishakhaTalmale
 
Electron beam micromachining
Electron beam micromachiningElectron beam micromachining
Electron beam micromachiningAnurag Chaudhary
 
Abrasive flow machining (afm)
Abrasive flow machining (afm)Abrasive flow machining (afm)
Abrasive flow machining (afm)sagar agarwal
 
Electrochemical+micromachining+(emm)
Electrochemical+micromachining+(emm)Electrochemical+micromachining+(emm)
Electrochemical+micromachining+(emm)Mahesh Todkar
 
Laser Beam Manufacturing- Non Conventional machining
Laser Beam Manufacturing- Non Conventional machining Laser Beam Manufacturing- Non Conventional machining
Laser Beam Manufacturing- Non Conventional machining Hany G. Amer
 
Magnetorheological finishing : A review
Magnetorheological finishing : A reviewMagnetorheological finishing : A review
Magnetorheological finishing : A reviewPriyabrata nath
 
MECHANICAL ENERGY BASED PROCESSES
MECHANICAL ENERGY BASED PROCESSESMECHANICAL ENERGY BASED PROCESSES
MECHANICAL ENERGY BASED PROCESSESlaxtwinsme
 
Electrochemical Machining (ECM)
Electrochemical Machining (ECM)Electrochemical Machining (ECM)
Electrochemical Machining (ECM)RAVI KUMAR
 

What's hot (20)

Usm g.venkatesh
Usm g.venkateshUsm g.venkatesh
Usm g.venkatesh
 
Process Planning and Cost Estimation
Process Planning and Cost EstimationProcess Planning and Cost Estimation
Process Planning and Cost Estimation
 
Electrochemical honing
Electrochemical honingElectrochemical honing
Electrochemical honing
 
2.superfinishing process
2.superfinishing process2.superfinishing process
2.superfinishing process
 
FORM MEASUREMENTS
FORM MEASUREMENTSFORM MEASUREMENTS
FORM MEASUREMENTS
 
Micromachining-module 3
Micromachining-module 3Micromachining-module 3
Micromachining-module 3
 
Electron Beam machining
Electron Beam machiningElectron Beam machining
Electron Beam machining
 
Electrochemical Machining
Electrochemical MachiningElectrochemical Machining
Electrochemical Machining
 
Electrical discharge machining [EDM]
Electrical discharge machining [EDM]Electrical discharge machining [EDM]
Electrical discharge machining [EDM]
 
Equipment for Ultra-Precision Machining
Equipment for Ultra-Precision MachiningEquipment for Ultra-Precision Machining
Equipment for Ultra-Precision Machining
 
Electron beam micromachining
Electron beam micromachiningElectron beam micromachining
Electron beam micromachining
 
Abrasive flow machining (afm)
Abrasive flow machining (afm)Abrasive flow machining (afm)
Abrasive flow machining (afm)
 
Electrochemical+micromachining+(emm)
Electrochemical+micromachining+(emm)Electrochemical+micromachining+(emm)
Electrochemical+micromachining+(emm)
 
Laser Beam Machining (LBM)
Laser Beam Machining (LBM)Laser Beam Machining (LBM)
Laser Beam Machining (LBM)
 
Ultrasonic machining
Ultrasonic machiningUltrasonic machining
Ultrasonic machining
 
Super finishing Processes
Super finishing ProcessesSuper finishing Processes
Super finishing Processes
 
Laser Beam Manufacturing- Non Conventional machining
Laser Beam Manufacturing- Non Conventional machining Laser Beam Manufacturing- Non Conventional machining
Laser Beam Manufacturing- Non Conventional machining
 
Magnetorheological finishing : A review
Magnetorheological finishing : A reviewMagnetorheological finishing : A review
Magnetorheological finishing : A review
 
MECHANICAL ENERGY BASED PROCESSES
MECHANICAL ENERGY BASED PROCESSESMECHANICAL ENERGY BASED PROCESSES
MECHANICAL ENERGY BASED PROCESSES
 
Electrochemical Machining (ECM)
Electrochemical Machining (ECM)Electrochemical Machining (ECM)
Electrochemical Machining (ECM)
 

Similar to Advanced nano finishing processes

UNIT 4 UCM.pptx
UNIT 4 UCM.pptxUNIT 4 UCM.pptx
UNIT 4 UCM.pptxKawinKit
 
UNIT 4 -Advanced Nano finishing Processes.pptx
UNIT 4  -Advanced Nano finishing Processes.pptxUNIT 4  -Advanced Nano finishing Processes.pptx
UNIT 4 -Advanced Nano finishing Processes.pptxRaja P
 
ADVANCED NANO FINISHING PROCESSES
ADVANCED NANO FINISHING PROCESSESADVANCED NANO FINISHING PROCESSES
ADVANCED NANO FINISHING PROCESSESravikumarmrk
 
UCM - Unit 4 advanced nano finishing processes
UCM - Unit 4   advanced nano finishing processesUCM - Unit 4   advanced nano finishing processes
UCM - Unit 4 advanced nano finishing processeskarthi keyan
 
Advanced fine finishing process
Advanced fine finishing processAdvanced fine finishing process
Advanced fine finishing processaman1312
 
Advancedfinefinishingprocess 180118172929
Advancedfinefinishingprocess 180118172929Advancedfinefinishingprocess 180118172929
Advancedfinefinishingprocess 180118172929vikramtj
 
Advanced fine finishing process
Advanced fine finishing process Advanced fine finishing process
Advanced fine finishing process Gulamhushen Sipai
 
ABRASIVE JET MACHINING
ABRASIVE JET MACHININGABRASIVE JET MACHINING
ABRASIVE JET MACHININGarunkumar6836
 
UCM - Unit 5 recent trends in non-traditional machining processes
UCM - Unit 5   recent trends in non-traditional machining processesUCM - Unit 5   recent trends in non-traditional machining processes
UCM - Unit 5 recent trends in non-traditional machining processeskarthi keyan
 
UNIT 5 -Recent Trends in Non-Traditional Machining Processes.pptx
UNIT 5  -Recent Trends in Non-Traditional Machining Processes.pptxUNIT 5  -Recent Trends in Non-Traditional Machining Processes.pptx
UNIT 5 -Recent Trends in Non-Traditional Machining Processes.pptxRaja P
 
UNIT 5 UCM.pptx
UNIT 5 UCM.pptxUNIT 5 UCM.pptx
UNIT 5 UCM.pptxKawinKit
 
Abrasive Flow machining.pptx
Abrasive Flow machining.pptxAbrasive Flow machining.pptx
Abrasive Flow machining.pptxVigneshVB10
 

Similar to Advanced nano finishing processes (20)

UNIT 4 UCM.pptx
UNIT 4 UCM.pptxUNIT 4 UCM.pptx
UNIT 4 UCM.pptx
 
Unit 4 ucm
Unit 4 ucmUnit 4 ucm
Unit 4 ucm
 
Unit 4 ucm
Unit 4 ucmUnit 4 ucm
Unit 4 ucm
 
UNIT 4 -Advanced Nano finishing Processes.pptx
UNIT 4  -Advanced Nano finishing Processes.pptxUNIT 4  -Advanced Nano finishing Processes.pptx
UNIT 4 -Advanced Nano finishing Processes.pptx
 
ADVANCED NANO FINISHING PROCESSES
ADVANCED NANO FINISHING PROCESSESADVANCED NANO FINISHING PROCESSES
ADVANCED NANO FINISHING PROCESSES
 
UCM - Unit 4 advanced nano finishing processes
UCM - Unit 4   advanced nano finishing processesUCM - Unit 4   advanced nano finishing processes
UCM - Unit 4 advanced nano finishing processes
 
UCM-UNIT 4.pptx
UCM-UNIT 4.pptxUCM-UNIT 4.pptx
UCM-UNIT 4.pptx
 
UNIT - 4.pptx
UNIT - 4.pptxUNIT - 4.pptx
UNIT - 4.pptx
 
Advanced fine finishing process
Advanced fine finishing processAdvanced fine finishing process
Advanced fine finishing process
 
Advancedfinefinishingprocess 180118172929
Advancedfinefinishingprocess 180118172929Advancedfinefinishingprocess 180118172929
Advancedfinefinishingprocess 180118172929
 
Advanced fine finishing process
Advanced fine finishing process Advanced fine finishing process
Advanced fine finishing process
 
ABRASIVE JET MACHINING
ABRASIVE JET MACHININGABRASIVE JET MACHINING
ABRASIVE JET MACHINING
 
UCM-UNIT 5.pptx
UCM-UNIT 5.pptxUCM-UNIT 5.pptx
UCM-UNIT 5.pptx
 
UCM - Unit 5 recent trends in non-traditional machining processes
UCM - Unit 5   recent trends in non-traditional machining processesUCM - Unit 5   recent trends in non-traditional machining processes
UCM - Unit 5 recent trends in non-traditional machining processes
 
UNIT 5 -Recent Trends in Non-Traditional Machining Processes.pptx
UNIT 5  -Recent Trends in Non-Traditional Machining Processes.pptxUNIT 5  -Recent Trends in Non-Traditional Machining Processes.pptx
UNIT 5 -Recent Trends in Non-Traditional Machining Processes.pptx
 
UNIT 5 UCM.pptx
UNIT 5 UCM.pptxUNIT 5 UCM.pptx
UNIT 5 UCM.pptx
 
Unit 5 ucm
Unit 5 ucmUnit 5 ucm
Unit 5 ucm
 
Unit 5 ucm
Unit 5 ucmUnit 5 ucm
Unit 5 ucm
 
AFP.pptx
AFP.pptxAFP.pptx
AFP.pptx
 
Abrasive Flow machining.pptx
Abrasive Flow machining.pptxAbrasive Flow machining.pptx
Abrasive Flow machining.pptx
 

More from DineshKumar4165

UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptxUNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptxDineshKumar4165
 
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptx
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptxUNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptx
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptxDineshKumar4165
 
UNIT-III-TRANSMISSION SYSTEMS REAR AXLES
UNIT-III-TRANSMISSION SYSTEMS REAR AXLESUNIT-III-TRANSMISSION SYSTEMS REAR AXLES
UNIT-III-TRANSMISSION SYSTEMS REAR AXLESDineshKumar4165
 
UNIT-II-ENGINE AUXILIARY SYSTEMS &TURBOCHARGER
UNIT-II-ENGINE AUXILIARY SYSTEMS &TURBOCHARGERUNIT-II-ENGINE AUXILIARY SYSTEMS &TURBOCHARGER
UNIT-II-ENGINE AUXILIARY SYSTEMS &TURBOCHARGERDineshKumar4165
 
UNIT-1-VEHICLE STRUCTURE AND ENGINES.ppt
UNIT-1-VEHICLE STRUCTURE AND ENGINES.pptUNIT-1-VEHICLE STRUCTURE AND ENGINES.ppt
UNIT-1-VEHICLE STRUCTURE AND ENGINES.pptDineshKumar4165
 
UNIT 5 RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES.pptx
UNIT 5 RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES.pptxUNIT 5 RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES.pptx
UNIT 5 RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES.pptxDineshKumar4165
 
UNIT 3 CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES.pptx
UNIT 3 CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES.pptxUNIT 3 CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES.pptx
UNIT 3 CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES.pptxDineshKumar4165
 
UNIT 2 THERMAL AND ELECTRICAL ENERGY BASED PROCESSES.pptx
UNIT 2 THERMAL AND ELECTRICAL  ENERGY  BASED  PROCESSES.pptxUNIT 2 THERMAL AND ELECTRICAL  ENERGY  BASED  PROCESSES.pptx
UNIT 2 THERMAL AND ELECTRICAL ENERGY BASED PROCESSES.pptxDineshKumar4165
 
UNIT- 1 INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES.pptx
UNIT- 1 INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES.pptxUNIT- 1 INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES.pptx
UNIT- 1 INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES.pptxDineshKumar4165
 
SHAPER, MILLING AND BROACHING MACHINES.ppt
SHAPER, MILLING AND BROACHING MACHINES.pptSHAPER, MILLING AND BROACHING MACHINES.ppt
SHAPER, MILLING AND BROACHING MACHINES.pptDineshKumar4165
 
CENTRE LATHE AND SPECIAL PURPOSE LATHES.ppt
CENTRE LATHE AND SPECIAL PURPOSE LATHES.pptCENTRE LATHE AND SPECIAL PURPOSE LATHES.ppt
CENTRE LATHE AND SPECIAL PURPOSE LATHES.pptDineshKumar4165
 
THEORY OF METAL CUTTING.ppt
THEORY OF METAL CUTTING.pptTHEORY OF METAL CUTTING.ppt
THEORY OF METAL CUTTING.pptDineshKumar4165
 
Unit IIITHERMOGRAPHY AND EDDY CURRENT TESTING (ET)
Unit IIITHERMOGRAPHY AND EDDY CURRENT TESTING (ET) 	Unit IIITHERMOGRAPHY AND EDDY CURRENT TESTING (ET)
Unit IIITHERMOGRAPHY AND EDDY CURRENT TESTING (ET) DineshKumar4165
 
Unit II SURFACE NDE METHODS
Unit II SURFACE NDE METHODS Unit II SURFACE NDE METHODS
Unit II SURFACE NDE METHODS DineshKumar4165
 
Unit I Non-destructive Testing and Evaluation
Unit I  Non-destructive Testing and Evaluation Unit I  Non-destructive Testing and Evaluation
Unit I Non-destructive Testing and Evaluation DineshKumar4165
 

More from DineshKumar4165 (20)

UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptxUNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
 
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptx
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptxUNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptx
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptx
 
UNIT-III-TRANSMISSION SYSTEMS REAR AXLES
UNIT-III-TRANSMISSION SYSTEMS REAR AXLESUNIT-III-TRANSMISSION SYSTEMS REAR AXLES
UNIT-III-TRANSMISSION SYSTEMS REAR AXLES
 
UNIT-II-ENGINE AUXILIARY SYSTEMS &TURBOCHARGER
UNIT-II-ENGINE AUXILIARY SYSTEMS &TURBOCHARGERUNIT-II-ENGINE AUXILIARY SYSTEMS &TURBOCHARGER
UNIT-II-ENGINE AUXILIARY SYSTEMS &TURBOCHARGER
 
UNIT-1-VEHICLE STRUCTURE AND ENGINES.ppt
UNIT-1-VEHICLE STRUCTURE AND ENGINES.pptUNIT-1-VEHICLE STRUCTURE AND ENGINES.ppt
UNIT-1-VEHICLE STRUCTURE AND ENGINES.ppt
 
UNIT 5 RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES.pptx
UNIT 5 RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES.pptxUNIT 5 RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES.pptx
UNIT 5 RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES.pptx
 
UNIT 3 CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES.pptx
UNIT 3 CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES.pptxUNIT 3 CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES.pptx
UNIT 3 CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES.pptx
 
UNIT 2 THERMAL AND ELECTRICAL ENERGY BASED PROCESSES.pptx
UNIT 2 THERMAL AND ELECTRICAL  ENERGY  BASED  PROCESSES.pptxUNIT 2 THERMAL AND ELECTRICAL  ENERGY  BASED  PROCESSES.pptx
UNIT 2 THERMAL AND ELECTRICAL ENERGY BASED PROCESSES.pptx
 
UNIT- 1 INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES.pptx
UNIT- 1 INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES.pptxUNIT- 1 INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES.pptx
UNIT- 1 INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES.pptx
 
CNC MACHINE TOOLS.ppt
CNC MACHINE TOOLS.pptCNC MACHINE TOOLS.ppt
CNC MACHINE TOOLS.ppt
 
ABRASIVE PROCESSES.pptx
ABRASIVE PROCESSES.pptxABRASIVE PROCESSES.pptx
ABRASIVE PROCESSES.pptx
 
SHAPER, MILLING AND BROACHING MACHINES.ppt
SHAPER, MILLING AND BROACHING MACHINES.pptSHAPER, MILLING AND BROACHING MACHINES.ppt
SHAPER, MILLING AND BROACHING MACHINES.ppt
 
CENTRE LATHE AND SPECIAL PURPOSE LATHES.ppt
CENTRE LATHE AND SPECIAL PURPOSE LATHES.pptCENTRE LATHE AND SPECIAL PURPOSE LATHES.ppt
CENTRE LATHE AND SPECIAL PURPOSE LATHES.ppt
 
THEORY OF METAL CUTTING.ppt
THEORY OF METAL CUTTING.pptTHEORY OF METAL CUTTING.ppt
THEORY OF METAL CUTTING.ppt
 
Unit IIITHERMOGRAPHY AND EDDY CURRENT TESTING (ET)
Unit IIITHERMOGRAPHY AND EDDY CURRENT TESTING (ET) 	Unit IIITHERMOGRAPHY AND EDDY CURRENT TESTING (ET)
Unit IIITHERMOGRAPHY AND EDDY CURRENT TESTING (ET)
 
Unit II SURFACE NDE METHODS
Unit II SURFACE NDE METHODS Unit II SURFACE NDE METHODS
Unit II SURFACE NDE METHODS
 
Unit I Non-destructive Testing and Evaluation
Unit I  Non-destructive Testing and Evaluation Unit I  Non-destructive Testing and Evaluation
Unit I Non-destructive Testing and Evaluation
 
Unit 5 controlling
Unit 5 controllingUnit 5 controlling
Unit 5 controlling
 
Unit 4 communication
Unit 4 communicationUnit 4 communication
Unit 4 communication
 
Unit 4 leadership
Unit 4 leadershipUnit 4 leadership
Unit 4 leadership
 

Recently uploaded

High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...Call Girls in Nagpur High Profile
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Recently uploaded (20)

Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 

Advanced nano finishing processes

  • 1. KONGUNADU COLLEGE OF ENGINEERING AND TECHNOLOGY (AUTONOMOUS) NAMAKKAL- TRICHY MAIN ROAD, THOTTIAM, TRICHY DEPARTMENT OF MECHANICAL ENGINEERING 20ME503PE –UNCONVENTIONAL MACHINING PROCESSES FIFTH SEMESTER PRESENTED BY M.DINESHKUMAR, ASSISTANT PROFESSOR, DEPARTMENT OF MECHANICAL ENGINEERING, KONGUNADU COLLEGE OF ENGINEERING AND TECHNOLOGY.
  • 2. UNIT -IV ADVANCED NANO FINISHING PROCESSES
  • 3. TOPICS Abrasive flow machining, chemo-mechanical polishing, magnetic abrasive finishing, magneto rheological finishing, magneto rheological abrasive flow finishing their working principles, equipments, effect of process parameters, applications, advantages and limitations.
  • 4. INTRODUCTION • In order to substitute manual finishing process and to meet the functional properties such as wear resistance, power loss, due to friction on most of the engineering components, we go for advanced machining process. • This finishing process is carried out at micro and nano level. This process is called as advanced nano finishing process.
  • 5. NANO FINISHING PROCESSES • Nano finishing is the only operation which can make rough surfaces in nanometers range. The ultimate precision through finishing will be where processed where there is a change in size of sub nanometer.
  • 6. Nano finishing processes 1. Abrasive flow machining 2. Chemo mechanical polishing 3. Magnetic abrasive finishing 4. Magneto rheological finishing 5. Magneto rheological abrasive flow finishing
  • 7. • In abrasive flow machining process, the semisolid abrasive media acts as deformable grading wheel; which helps to remove small amount of materials. • The abrasive media is given larger force or velocity by hydraulic or mechanical means to push the media into the areas in which conventional finishing process cannot be performed. ABRASIVE FLOW MACHINING
  • 9. 1. One way abrasive flow machining 2. Two way abrasive flow machining 3. Orbital abrasive flow machining TYPES OF ABRASIVE FLOW MACHINING
  • 10. ONE WAY ABRASIVE FLOW MACHINING
  • 11. TWO WAY ABRASIVE FLOW MACHINING
  • 13. The metal removal rate depends upon the following parameters. • 1. Addition of plasticizers • 2. Extrusion pressure • 3. Number of cycles PROCESS PARAMETERS IN ABRASIVE FLOW MACHINING
  • 14. Plasticizer Vs Change in Surface Roughness
  • 15. Extrusion Pressure Vs Change in Surface Roughness
  • 16. • As the finishing cycles are increased from 100 to 400, the surface roughness also increased and good surface finish is obtained. • The number of finishing cycles are controlled by mechanical counter Finishing Cycles Vs Change in Surface Roughness
  • 17. • Operations such as deburring polishing and radiusing can be done. • This process is more suitable for batch production • It is faster than manual finishing • It can finish inaccessible areas in one single movement ADVANTAGES OF AFM
  • 18. • It has low finishing rate compared to other nano finishing process. • The process involves high production time and high production cost. • There should be repeated replacements of poly abrasive media that is used in AFM process. LIMITATIONS OF AFM
  • 19. • AFM is used in finishing of • Extrusion dies • Nozzle of flame cutting touch • Air foil surfaces of impellors • Accessory parts like fuel spray, nozzle, fuel control bodies. APPLICATIONS OF AFM
  • 20. • Chemo mechanical polishing is a process of smoothing and planning surface with the combination of chemical etching and free abrasive polishing. • CMP of silicon wafers is a basic processing technology for production of flat, defect free, highly reflective surface. • This planarization method is a choice for < 0.5 micron technologies CHEMO MECHANICAL POLISHING
  • 21. • In chemo mechanical polishing, a chemical reaction is used to soften the material and then mechanical polishing is done on the layer. The polishing action is partly mechanical and partly chemical PRINCIPLE OF CMP
  • 22. CMP
  • 24. WAFER
  • 25. WAFER
  • 28. Types of Pad based on its Hardness • The hardness is quantified by Youngs modulus value. • 2GPa – hard pad – good global planarity • 0.5 GPa – medium pad – good local planarity • 0.1 GPa – soft pad – good local planarity Pad Asperities • Pores diameter – 30 – 50 μm • Peak to peak – 200 – 300 μm POLISHING PAD POLISHING PAD
  • 29. Abrasives in CMP Slurry • Oxide slurry • Metal slurry The process condition are • Flow rate - 50 to 100 ml / min • Particle size - 180 to 280 nm CMP
  • 30. Metal Slurry The various types of metal slurry used are • Fe(NO3)2 – based • H2O2 – based • KJO3 – based • H5IO6 based slurries having oxidizing ability CMP
  • 34. The six possible two way interaction are • Fluid and workpiece • Workpiece and pad • Workpiece and abrasive particles • Abrasive particles and pad • Pad and fluid • Fluid and abrasive particles. Mechanical Aspect of Material Removal
  • 35. Also four possible three way interaction are • Workpiece, fluid and abrasives • Work[piece, abrasives and pad • Fluid, pad and abrasives. Mechanical Aspect of Material Removal
  • 36. • Process : 10 to 50 kPa • Platen / carrier rpm: 10 to 100 rpm • Velocity – 10 – 100 cm/s • Slurry flow rate – 50 to 500 m/min Typical material removal rate • Oxide CMP – 2800 A ∘ / min • Metal CMP – 3500 A∘ / min PROCESS PARAMETER
  • 37. The mechanical material removal rate was given by person. This is called perston equation. R = kp x P x△V The equation works good for the bulk film polishing processes Where P - is the polishing pressure kp - perston coefficient V - relative velocity PERSTON EQUATION
  • 38. • Temperature in the polishing pad • Conditioning of polishing pad. FACTORS AFFECTING PROCESS PARAMETERS
  • 39. ADVANTAGES OF CMP • It is used to polish metal like Aluminium, Copper, Silver titanium etc. • It can also polish insulators like SiO2, Si3N4. • Ceramics like SiC, TiN, TaN can also be polished. LIMITATIONS OF CMP • Cleaning of platen surface in a difficult process. • Embedded particles, residual slurry are to be removed very carefully. • Due to residues min scratches are also formed on the surface of the platen and the pad. • Surface defects such riping out and dishing are formed on the surface. ADVANTAGES AND DISADVANTAGES
  • 40. • It is used in fabrication of semiconductor devices • Oxides are deposited on the wafer in from of shape trenches • Flat panel display • Microelectronic mechanical system • Magnetic recording head and CD writing APPLICATIONS OF CMP
  • 41. • Magnetic abrasive finishing process was developed in US, USSR, Bulgaria and Japan. This process is mainly used in finishing radiusing and deburring of various flat surfaces and cylindrical surfaces. MAGNETIC ABRASIVE FINISHING
  • 42. • In magnetic abrasive finishing process, the magnetic particles are joined to each other magnetically between magnetic poles along the lines of magnetic force forming a flexible abrasive brush. • This magnetic abrasive brush is used to perform surface and edge finishing operation. PRINCIPLE OF MAF
  • 43. MAF
  • 46. Magnetic abrasive finishing – internal surface
  • 48. 1.Pressure 2. Type and size of grains 3. Finishing efficiency 4. Bonded and unbounded magnetic abrasive 5. Magnetic flux density. FACTORS AFFECTING PROCESS PARAMETERS
  • 50. Type and size of grains
  • 52. Bonded and unbounded magnetic abrasive
  • 54. ADVANTAGES OF MAF • MAF have self adaptability and easy controllability • Surface finish is in order of nanometer. • The device can be easily mounted on other machine without the need of high capital investment. DISADVANTAGES OF MAF • It is difficult to implement MAF in mass production operation. • It is a time consuming process. • It is not applicable for some ordinary finishing task where conventional finishing technique can be easily implemented. ADVANTAGES AND DISADVANTAGES OF MAF
  • 55. • It is used in finishing processes such as lapping, buffing, honing and burnishing operation in surface of tubes, bearing and automobile components. • Precision deburring can be done on edges of the workpiece. • It is used in medical field in areas of capillary tube, needles and biopsy needles etc. APPLICATIONS OF MAF
  • 56. • A magneto rheological fluid is a layer of smart fluid in a carrier. It is a type of oil when subjected to a magnetic field, the fluid increases it apparent viscosity to the point that it becomes a viscoelastic solid. • Rheology is a science of flow and deformation study of rheological properties of the medium. The performance of the medium. The performance of the medium is given by its rheological properties. MAGNETO RHEOLOGICAL FINISHING
  • 57. • In magneto rheological finishing process under the influence of magnetic field the MR fluid (Magneto rheological fluid) becomes a viscoelastic solid. • This act as the cutting tool to remove the materials from the surface of the workpiece. PRINCIPLE OF MRF
  • 59. 1. Magnetic dispersed phase- micron sized magnetizable particles (0.05 – 10μm) 2. Abrasive particles 3. Stabilizers 4. Carrier fluid Basic components in MR fluid
  • 60. • The abrasives used are Aluminium oxide, silicon carbide, cerium oxide and diamond powder • Polishing abrasives such as Alumina and diamond power is used in polishing optical materials. Abrasive particles
  • 61. • Optimum concentration of magnetic particles and abrasives • High yield stress under magnetic field • Low off state visciocity • Resistance to corrosion • High polishing efficiency Characteristic of Base Carrier Fluid
  • 62. • The main function of stabilizers is used to disperse the magnetic particles and abrasives uniformly in suspension • The main function of stabilizers is that it creates a coating on the particles so that MR fluid can easily re-disperse STABILIZERS
  • 63. Magneto rheological fluid circulation system
  • 64. ADVANTAGES • High accuracy • Enhances product quality and repeatability • Increases production rate, productivity yield and cost effectiveness. • Manufacture of precision optics. • Optical glasses with roughness of less than 10 angstrom can be machined. • Surface finish upto nanometer level is achieved without sub surface damage. LIMITATIONS OF MRF • High quality fluids are expensive. • Fluids are subject to thickening after prolonged used and need replacement. • Settling of ferromagnetic particles can be a problem for some application • This process is not suitable for finishing of internal and external surface of cylindrical components. ADVANTAGES AND DISADVANTAGES OF MRF
  • 65. • Use in lens manufacturing • Optical glasses, single crystals, calcium fluorides silicon ceramic are machined. • Square and rectangular aperture surface such as prism, cylinder and photo blank substrates are machined APPLICATIONS OF MRF
  • 66. • This process is the combination of two finishing processes. They are abrasive flow machining and magneto rheological finishing. This process eliminates the limitations in AFM and MRF. MAGNETO RHEOLOGICAL ABRASIVE FLOW MACHINING
  • 67. • Magneto rheological polishing fluid comprises of carbonyl iron powder and silicon carbide, abrasive dispersed in the viscoplastic base of grease and mineral oil. • When external magnetic field is applied these fluid exhibit change in rheological behavior. These fluids behaves smartly and does the finishing operation precisely PRINCIPLE OF MRAFM
  • 69. • Electromagnets - 2000 turns of 17 SWG copper wire. • Continuous Phase -Organic fluids are used as continuous phase for MR fluids. The other type of fluids are silicone oils, kerosene, mineral oil and glycol. • Additives -MR fluid is mixture of 26.6 vol% of electrolytes, 99.5% of Fe powder, 13.4 vol% of silicon carbide abrasive with 4.8% paraffin oil and 12% AP3 grease.
  • 70. • Faster response time • High dynamic yield stress • Low off- state viscosity • Resistance to setting • Easy remixing • Excellent wear and abrasive resistance Characteristic of Magneto Rheological Fluids
  • 75. FACTOR AFFECTING PROCESS PARAMETER When the number of cycles increases beyond 400, the finishing rate get increased
  • 76. • Complex structures can be easily machined. • Localized finishing is possible • Thermal distortion is negligible • High machining versatility. ADVANTAGES OF MRAFF
  • 77. • Low finishing rate • Non uniform magnetic field produces non uniform surface finish • Required a closed environment LIMITATIONS OF MRAFF
  • 78. • Used in investment cast milled parts, airfoil, cast aluminum automobile turbo components • Complex piping for values, fittings, tubes and flow meter • Finishing of automotive gears in a single pass, heart values, exhaust manifold and high pressure holes. • Used in finishing of heart valves, exhaust manifold and high pressure holes. APPLICATIONS OF MRAFF