SlideShare a Scribd company logo
1 of 80
UNIT -IV
ADVANCED NANO FINISHING
PROCESSES
INTRODUCTION
• In order to substitute manual finishing process
and to meet the functional properties such as wear
resistance, power loss, due to friction on most of
the engineering components, we go for advanced
machining process.
• This finishing process is carried out at micro and
nano level. This process is called as advanced
nano finishing process.
NANO FINISHING PROCESSES
• Nano finishing is the only operation which
can make rough surfaces in nanometers range.
The ultimate precision through finishing will
be where processed where there is a change in
size of sub nanometer.
Nano finishing processes
1. Abrasive flow machining
2. Chemo mechanical polishing
3. Magnetic abrasive finishing
4. Magneto rheological finishing
5. Magneto rheological abrasive flow
finishing
• In abrasive flow machining process, the
semisolid abrasive media acts as deformable
grading wheel; which helps to remove small
amount of materials.
• The abrasive media is given larger force or
velocity by hydraulic or mechanical means to
push the media into the areas in which
conventional finishing process cannot be
performed.
ABRASIVE FLOW MACHINING
ABRASIVE FLOW MACHINING
1. One way abrasive flow machining
2. Two way abrasive flow machining
3. Orbital abrasive flow machining
TYPES OF
ABRASIVE FLOW MACHINING
ONE WAY ABRASIVE FLOW
MACHINING
TWO WAY ABRASIVE FLOW
MACHINING
ORBITAL ABRASIVE FLOW
MACHINING
The metal removal rate depends upon the
following parameters.
• 1. Addition of plasticizers
• 2. Extrusion pressure
• 3. Number of cycles
PROCESS PARAMETERS IN ABRASIVE
FLOW MACHINING
Plasticizer Vs Change in Surface
Roughness
Extrusion Pressure Vs Change in
Surface Roughness
• As the finishing cycles are increased from 100
to 400, the surface roughness also increased
and good surface finish is obtained.
• The number of finishing cycles are controlled
by mechanical counter
Finishing Cycles Vs Change in Surface
Roughness
• Operations such as deburring polishing and
radiusing can be done.
• This process is more suitable for batch
production
• It is faster than manual finishing
• It can finish inaccessible areas in one single
movement
ADVANTAGES OF AFM
• It has low finishing rate compared to other
nano finishing process.
• The process involves high production time
and high production cost.
• There should be repeated replacements of
poly abrasive media that is used in AFM
process.
LIMITATIONS OF AFM
• AFM is used in finishing of
• Extrusion dies
• Nozzle of flame cutting touch
• Air foil surfaces of impellors
• Accessory parts like fuel spray, nozzle, fuel
control bodies.
APPLICATIONS OF AFM
• Chemo mechanical polishing is a process of
smoothing and planning surface with the combination
of chemical etching and free abrasive polishing.
• CMP of silicon wafers is a basic processing
technology for production of flat, defect free, highly
reflective surface.
• This planarization method is a choice for < 0.5
micron technologies
CHEMO MECHANICAL POLISHING
• In chemo mechanical polishing, a chemical
reaction is used to soften the material and then
mechanical polishing is done on the layer. The
polishing action is partly mechanical and
partly chemical
PRINCIPLE OF CMP
CMP
CONSTRUCTION AND WORKING OF
CMP
Types of Pad based on its Hardness
• The hardness is quantified by Youngs modulus
value.
• 2GPa – hard pad – good global planarity
• 0.5 GPa – medium pad – good local planarity
• 0.1 GPa – soft pad – good llocal planarity
Pad Asperities
• Pores diameter – 30 – 50 μm
• Peak to peak – 200 – 300 μm
POLISHING PAD
POLISHING PAD
Abrasives in CMP Slurry
• Oxide slurry
• Metal slurry
The process condition are
• Flow rate - 50 to 100 ml / min
• Particle size - 180 to 280 nm
CMP
Metal Slurry
The various types of metal slurry used are
• Fe(NO3)2 – based
• H2O2 – based
• KJO3 – based
• H5IO6 based slurries having oxidizing ability
CMP
CMP Tool
ASPECTS OF MATERIAL REMOVAL
CHEMICAL ASPECT
The six possible two way interaction are
• Fluid and workpiece
• Workpiece and pad
• Workpiece and abrasive particles
• Abrasive particles and pad
• Pad and fluid
• Fluid and abrasive particles.
Mechanical Aspect of Material
Removal
Also four possible three way interaction are
• Workpiece, fluid and abrasives
• Work[piece, abrasives and pad
• Fluid, pad and abrasives.
Mechanical Aspect of Material
Removal
• Process : 10 to 50 kPa
• Platen / carrier rpm: 10 to 100 rpm
• Velocity – 10 – 100 cm/s
• Slurry flow rate – 50 to 500 m/min
Typical material removal rate
• Oxide CMP – 2800 A ∘ / min
• Metal CMP – 3500 A∘ / min
PROCESS PARAMETER
The mechanical material removal rate was given by
person. This is called perston equation.
R = kp x P x△V
The equation works good for the bulk film polishing
processes
Where
P - is the polishing pressure
kp - perston coefficient
V - relative velocity
PERSTON EQUATION
• Temperature in the polishing pad
• Conditioning of polishing pad.
FACTORS AFFECTING PROCESS
PARAMETERS
ADVANTAGES OF CMP
• It is used to polish metal like Aluminium, Copper, Silver titanium
etc.
• It can also polish insulators like SiO2, Si3N4.
• Ceramics like SiC, TiN, TaN can also be polished.
LIMITATIONS OF CMP
• Cleaning of platen surface in a difficult process.
• Embedded particles, residual slurry are to be removed very
carefully.
• Due to residues min scratches are also formed on the surface of the
platen and the pad.
• Surface defects such riping out and dishing are formed on the
surface.
ADVANTAGES AND DISADVANTAGES
• It is used in fabrication of semiconductor
devices
• Oxides are deposited on the wafer in from of
shape trenches
• Flat panel display
• Microelectronic mechanical system
• Magnetic recording head and CD writing
APPLICATIONS OF CMP
• Magnetic abrasive finishing process was
developed in US, USSR, Bulgaria and Japan.
This process is mainly used in finishing
radiusing and deburring of various flat surfaces
and cylindrical surfaces.
MAGNETIC ABRASIVE FINISHING
• In magnetic abrasive finishing process, the
magnetic particles are joined to each other
magnetically between magnetic poles along
the lines of magnetic force forming a flexible
abrasive brush.
• This magnetic abrasive brush is used to
perform surface and edge finishing operation.
PRINCIPLE OF MAF
MAF
Magnetic Abrasive Particles
Magnetic abrasive finishing-
cylindrical surface
Magnetic abrasive finishing – internal
surface
NORMAL AND TENGENTIAL FORCE
1.Pressure
2. Type and size of grains
3. Finishing efficiency
4. Bonded and unbounded magnetic abrasive
5. Magnetic flux density.
FACTORS AFFECTING PROCESS
PARAMETERS
Pressure
Type and size of grains
Finishing efficiency
Bonded and unbounded magnetic
abrasive
Magnetic Flux Density
ADVANTAGES OF MAF
• MAF have self adaptability and easy controllability
• Surface finish is in order of nanometer.
• The device can be easily mounted on other machine without
the need of high capital investment.
DISADVANTAGES OF MAF
• It is difficult to implement MAF in mass production operation.
• It is a time consuming process.
• It is not applicable for some ordinary finishing task where
conventional finishing technique can be easily implemented.
ADVANTAGES AND DISADVANTAGES
OF MAF
• It is used in finishing processes such as
lapping, buffing, honing and burnishing
operation in surface of tubes, bearing and
automobile components.
• Precision deburring can be done on edges of
the workpiece.
• It is used in medical field in areas of capillary
tube, needles and biopsy needles etc.
APPLICATIONS OF MAF
• A magneto rheological fluid is a layer of smart
fluid in a carrier. It is a type of oil when subjected
to a magnetic field, the fluid increases it apparent
viscosity to the point that it becomes a
viscoelastic solid.
• Rheology is a science of flow and deformation
study of rheological properties of the medium.
The performance of the medium. The
performance of the medium is given by its
rheological properties.
MAGNETO RHEOLOGICAL FINISHING
• In magneto rheological finishing process under
the influence of magnetic field the MR fluid
(Magneto rheological fluid) becomes a
viscoelastic solid.
• This act as the cutting tool to remove the
materials from the surface of the workpiece.
PRINCIPLE OF MRF
CONSTRUCTION AND WORKING OF
MRF
1. Magnetic dispersed phase- micron sized
magnetizable particles (0.05 – 10μm)
2. Abrasive particles
3. Stabilizers
4. Carrier fluid
Basic components in MR fluid
• The abrasives used are Aluminium oxide,
silicon carbide, cerium oxide and diamond
powder
• Polishing abrasives such as Alumina and
diamond power is used in polishing optical
materials.
Abrasive particles
• Optimum concentration of magnetic particles
and abrasives
• High yield stress under magnetic field
• Low off state visciocity
• Resistance to corrosion
• High polishing efficiency
Characteristic of Base Carrier Fluid
• The main function of stabilizers is used to
disperse the magnetic particles and abrasives
uniformly in suspension
• The main function of stabilizers is that it
creates a coating on the particles so that MR
fluid can easily re-disperse
STABILIZERS
Magneto rheological fluid circulation
system
ADVANTAGES
• High accuracy
• Enhances product quality and repeatability
• Increases production rate, productivity yield and cost effectiveness.
• Manufacture of precision optics.
• Optical glasses with roughness of less than 10 angstrom can be machined.
• Surface finish upto nanometer level is achieved without sub surface
damage.
LIMITATIONS OF MRF
• High quality fluids are expensive.
• Fluids are subject to thickening after prolonged used and need replacement.
• Settling of ferromagnetic particles can be a problem for some application
• This process is not suitable for finishing of internal and external surface of
cylindrical components.
ADVANTAGES AND DISADVANTAGES
OF MRF
• Use in lens manufacturing
• Optical glasses, single crystals, calcium
fluorides silicon ceramic are machined.
• Square and rectangular aperture surface such
as prism, cylinder and photo blank substrates
are machined
APPLICATIONS OF MRF
• This process is the combination of two
finishing processes. They are abrasive flow
machining and magneto rheological finishing.
This process eliminates the limitations in AFM
and MRF.
MAGNETO RHEOLOGICAL ABRASIVE
FLOW MACHINING
• Magneto rheological polishing fluid comprises
of carbonyl iron powder and silicon carbide,
abrasive dispersed in the viscoplastic base of
grease and mineral oil.
• When external magnetic field is applied these
fluid exhibit change in rheological behavior.
These fluids behaves smartly and does the
finishing operation precisely
PRINCIPLE OF MRAFM
Magneto rheological abrasuive flow
finishing
• Electromagnets - 2000 turns of 17 SWG copper
wire.
• Continuous Phase -Organic fluids are used as
continuous phase for MR fluids. The other type of
fluids are silicone oils, kerosene, mineral oil and
glycol.
• Additives -MR fluid is mixture of 26.6 vol% of
electrolytes, 99.5% of Fe powder, 13.4 vol% of
silicon carbide abrasive with 4.8% paraffin oil
and 12% AP3 grease.
• Faster response time
• High dynamic yield stress
• Low off- state viscosity
• Resistance to setting
• Easy remixing
• Excellent wear and abrasive resistance
Characteristic of Magneto Rheological
Fluids
Mechanism of MRAFF
Microscopic image of MR fluid
Absence of magnetic fluid
Presence of magnetic fluid
FACTOR AFFECTING PROCESS
PARAMETER
When the number of cycles increases beyond
400, the finishing rate get increased
• Complex structures can be easily machined.
• Localized finishing is possible
• Thermal distortion is negligible
• High machining versatility.
ADVANTAGES OF MRAFF
• Low finishing rate
• Non uniform magnetic field produces non
uniform surface finish
• Required a closed environment
LIMITATIONS OF MRAFF
• Used in investment cast milled parts, airfoil, cast
aluminum automobile turbo components
• Complex piping for values, fittings, tubes and
flow meter
• Finishing of automotive gears in a single pass,
heart values, exhaust manifold and high pressure
holes.
• Used in finishing of heart valves, exhaust
manifold and high pressure holes.
APPLICATIONS OF MRAFF
ADVANCED NANO FINISHING PROCESSES
ADVANCED NANO FINISHING PROCESSES
ADVANCED NANO FINISHING PROCESSES
ADVANCED NANO FINISHING PROCESSES
ADVANCED NANO FINISHING PROCESSES
ADVANCED NANO FINISHING PROCESSES
ADVANCED NANO FINISHING PROCESSES
ADVANCED NANO FINISHING PROCESSES

More Related Content

What's hot

UNCONVENTIONAL MACHINING PROCESS
UNCONVENTIONAL MACHINING PROCESSUNCONVENTIONAL MACHINING PROCESS
UNCONVENTIONAL MACHINING PROCESSloganathan99
 
Electro stream drilling(ESD)
Electro stream drilling(ESD)Electro stream drilling(ESD)
Electro stream drilling(ESD)Shwetank Sahu
 
Micromachining Technology Seminar Presentation
Micromachining Technology Seminar PresentationMicromachining Technology Seminar Presentation
Micromachining Technology Seminar PresentationOrange Slides
 
Unit 5 -RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES
Unit 5 -RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSESUnit 5 -RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES
Unit 5 -RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSESShanmathyAR2
 
Abrasive jet machining
Abrasive jet machiningAbrasive jet machining
Abrasive jet machiningmohit99033
 
Electrochemical grinding (ecg)
Electrochemical grinding (ecg)Electrochemical grinding (ecg)
Electrochemical grinding (ecg)Savan Fefar
 
Water jet machining WJM & AWJM
Water jet machining WJM & AWJMWater jet machining WJM & AWJM
Water jet machining WJM & AWJMFOS SOF
 
Magnestic abrasive finishing process
Magnestic abrasive finishing processMagnestic abrasive finishing process
Magnestic abrasive finishing processrahul lokhande
 
Micro machining and classification, and Electro chemical micro machining Elec...
Micro machining and classification, and Electro chemical micro machining Elec...Micro machining and classification, and Electro chemical micro machining Elec...
Micro machining and classification, and Electro chemical micro machining Elec...Mustafa Memon
 
Single Point Cutting Tools
Single Point Cutting ToolsSingle Point Cutting Tools
Single Point Cutting ToolsGIRISH SURVE
 
Electric discharge machining (edm)
Electric discharge machining (edm)Electric discharge machining (edm)
Electric discharge machining (edm)Ravi Pandey
 
ELECTRO CHEMICAL MACHINING PPT.......
ELECTRO CHEMICAL MACHINING PPT.......ELECTRO CHEMICAL MACHINING PPT.......
ELECTRO CHEMICAL MACHINING PPT.......POLAYYA CHINTADA
 
Shaped tube electrolytic machining
Shaped tube electrolytic machiningShaped tube electrolytic machining
Shaped tube electrolytic machiningDhruv Patel
 

What's hot (20)

Laser micro machining
Laser micro machining Laser micro machining
Laser micro machining
 
UNCONVENTIONAL MACHINING PROCESS
UNCONVENTIONAL MACHINING PROCESSUNCONVENTIONAL MACHINING PROCESS
UNCONVENTIONAL MACHINING PROCESS
 
Electro stream drilling(ESD)
Electro stream drilling(ESD)Electro stream drilling(ESD)
Electro stream drilling(ESD)
 
Micromachining Technology Seminar Presentation
Micromachining Technology Seminar PresentationMicromachining Technology Seminar Presentation
Micromachining Technology Seminar Presentation
 
Chemical machining
Chemical machiningChemical machining
Chemical machining
 
Unit 5 -RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES
Unit 5 -RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSESUnit 5 -RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES
Unit 5 -RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES
 
Abrasive jet machining
Abrasive jet machiningAbrasive jet machining
Abrasive jet machining
 
Abrassive Flow Machining
Abrassive Flow MachiningAbrassive Flow Machining
Abrassive Flow Machining
 
Electro chemical grinding
Electro chemical grindingElectro chemical grinding
Electro chemical grinding
 
Electrochemical grinding (ecg)
Electrochemical grinding (ecg)Electrochemical grinding (ecg)
Electrochemical grinding (ecg)
 
Electro Chemical Machining Process
Electro Chemical Machining ProcessElectro Chemical Machining Process
Electro Chemical Machining Process
 
Water jet machining WJM & AWJM
Water jet machining WJM & AWJMWater jet machining WJM & AWJM
Water jet machining WJM & AWJM
 
Unit 4 ucm
Unit 4 ucmUnit 4 ucm
Unit 4 ucm
 
Magnestic abrasive finishing process
Magnestic abrasive finishing processMagnestic abrasive finishing process
Magnestic abrasive finishing process
 
Micro machining and classification, and Electro chemical micro machining Elec...
Micro machining and classification, and Electro chemical micro machining Elec...Micro machining and classification, and Electro chemical micro machining Elec...
Micro machining and classification, and Electro chemical micro machining Elec...
 
Single Point Cutting Tools
Single Point Cutting ToolsSingle Point Cutting Tools
Single Point Cutting Tools
 
Wire cut EDM
Wire cut EDMWire cut EDM
Wire cut EDM
 
Electric discharge machining (edm)
Electric discharge machining (edm)Electric discharge machining (edm)
Electric discharge machining (edm)
 
ELECTRO CHEMICAL MACHINING PPT.......
ELECTRO CHEMICAL MACHINING PPT.......ELECTRO CHEMICAL MACHINING PPT.......
ELECTRO CHEMICAL MACHINING PPT.......
 
Shaped tube electrolytic machining
Shaped tube electrolytic machiningShaped tube electrolytic machining
Shaped tube electrolytic machining
 

Similar to ADVANCED NANO FINISHING PROCESSES

UNIT 4 ADVANCED NANO FINISHING PROCESSES.pptx
UNIT 4 ADVANCED NANO FINISHING PROCESSES.pptxUNIT 4 ADVANCED NANO FINISHING PROCESSES.pptx
UNIT 4 ADVANCED NANO FINISHING PROCESSES.pptxDineshKumar4165
 
UCM - Unit 5 recent trends in non-traditional machining processes
UCM - Unit 5   recent trends in non-traditional machining processesUCM - Unit 5   recent trends in non-traditional machining processes
UCM - Unit 5 recent trends in non-traditional machining processeskarthi keyan
 
UNIT 5 -Recent Trends in Non-Traditional Machining Processes.pptx
UNIT 5  -Recent Trends in Non-Traditional Machining Processes.pptxUNIT 5  -Recent Trends in Non-Traditional Machining Processes.pptx
UNIT 5 -Recent Trends in Non-Traditional Machining Processes.pptxRaja P
 
UNIT 5 UCM.pptx
UNIT 5 UCM.pptxUNIT 5 UCM.pptx
UNIT 5 UCM.pptxKawinKit
 
Abrasive Flow machining.pptx
Abrasive Flow machining.pptxAbrasive Flow machining.pptx
Abrasive Flow machining.pptxVigneshVB10
 
Aero def 2017 high speed dry finishing of rotating hardware
Aero def 2017 high speed dry finishing of rotating hardwareAero def 2017 high speed dry finishing of rotating hardware
Aero def 2017 high speed dry finishing of rotating hardwareDave Davidson
 
Advanced fine finishing process
Advanced fine finishing processAdvanced fine finishing process
Advanced fine finishing processaman1312
 
Advancedfinefinishingprocess 180118172929
Advancedfinefinishingprocess 180118172929Advancedfinefinishingprocess 180118172929
Advancedfinefinishingprocess 180118172929vikramtj
 
Advanced fine finishing process
Advanced fine finishing process Advanced fine finishing process
Advanced fine finishing process Gulamhushen Sipai
 
ABRASIVE JET MACHINING
ABRASIVE JET MACHININGABRASIVE JET MACHINING
ABRASIVE JET MACHININGarunkumar6836
 
Abrasive jet machining
Abrasive jet machiningAbrasive jet machining
Abrasive jet machiningArjun Patial
 
Abrasive Jet Machine
Abrasive Jet MachineAbrasive Jet Machine
Abrasive Jet MachineAhmadBakry3
 

Similar to ADVANCED NANO FINISHING PROCESSES (20)

UCM-UNIT 4.pptx
UCM-UNIT 4.pptxUCM-UNIT 4.pptx
UCM-UNIT 4.pptx
 
UNIT 4 ADVANCED NANO FINISHING PROCESSES.pptx
UNIT 4 ADVANCED NANO FINISHING PROCESSES.pptxUNIT 4 ADVANCED NANO FINISHING PROCESSES.pptx
UNIT 4 ADVANCED NANO FINISHING PROCESSES.pptx
 
UNIT - 4.pptx
UNIT - 4.pptxUNIT - 4.pptx
UNIT - 4.pptx
 
UCM - Unit 5 recent trends in non-traditional machining processes
UCM - Unit 5   recent trends in non-traditional machining processesUCM - Unit 5   recent trends in non-traditional machining processes
UCM - Unit 5 recent trends in non-traditional machining processes
 
UNIT 5 -Recent Trends in Non-Traditional Machining Processes.pptx
UNIT 5  -Recent Trends in Non-Traditional Machining Processes.pptxUNIT 5  -Recent Trends in Non-Traditional Machining Processes.pptx
UNIT 5 -Recent Trends in Non-Traditional Machining Processes.pptx
 
UNIT 5 UCM.pptx
UNIT 5 UCM.pptxUNIT 5 UCM.pptx
UNIT 5 UCM.pptx
 
Unit 5 ucm
Unit 5 ucmUnit 5 ucm
Unit 5 ucm
 
Unit 5 ucm
Unit 5 ucmUnit 5 ucm
Unit 5 ucm
 
UCM-UNIT 5.pptx
UCM-UNIT 5.pptxUCM-UNIT 5.pptx
UCM-UNIT 5.pptx
 
Abrasive Flow machining.pptx
Abrasive Flow machining.pptxAbrasive Flow machining.pptx
Abrasive Flow machining.pptx
 
AFP.pptx
AFP.pptxAFP.pptx
AFP.pptx
 
Aero def 2017 high speed dry finishing of rotating hardware
Aero def 2017 high speed dry finishing of rotating hardwareAero def 2017 high speed dry finishing of rotating hardware
Aero def 2017 high speed dry finishing of rotating hardware
 
Advanced fine finishing process
Advanced fine finishing processAdvanced fine finishing process
Advanced fine finishing process
 
Advancedfinefinishingprocess 180118172929
Advancedfinefinishingprocess 180118172929Advancedfinefinishingprocess 180118172929
Advancedfinefinishingprocess 180118172929
 
Advanced fine finishing process
Advanced fine finishing process Advanced fine finishing process
Advanced fine finishing process
 
Super finishing Processes
Super finishing ProcessesSuper finishing Processes
Super finishing Processes
 
ABRASIVE JET MACHINING
ABRASIVE JET MACHININGABRASIVE JET MACHINING
ABRASIVE JET MACHINING
 
Abrasive jet machining
Abrasive jet machiningAbrasive jet machining
Abrasive jet machining
 
Abrasive Jet Machine
Abrasive Jet MachineAbrasive Jet Machine
Abrasive Jet Machine
 
0052 surface finishing
0052 surface finishing0052 surface finishing
0052 surface finishing
 

More from ravikumarmrk

Hyraulics and Pneumatics
Hyraulics and Pneumatics Hyraulics and Pneumatics
Hyraulics and Pneumatics ravikumarmrk
 
COMPUTER AIDED DESIGN
COMPUTER AIDED DESIGNCOMPUTER AIDED DESIGN
COMPUTER AIDED DESIGNravikumarmrk
 
Pivoted block or shoe brakes
Pivoted block or shoe brakesPivoted block or shoe brakes
Pivoted block or shoe brakesravikumarmrk
 
Kinematics of Machines
Kinematics of MachinesKinematics of Machines
Kinematics of Machinesravikumarmrk
 
CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESS
CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSCHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESS
CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSravikumarmrk
 
THERMAL AND ELECTRICAL BASED PROCESSES
THERMAL AND ELECTRICAL BASED PROCESSESTHERMAL AND ELECTRICAL BASED PROCESSES
THERMAL AND ELECTRICAL BASED PROCESSESravikumarmrk
 
UNCONVENTIONAL MACHINING PROCESSES
UNCONVENTIONAL MACHINING PROCESSESUNCONVENTIONAL MACHINING PROCESSES
UNCONVENTIONAL MACHINING PROCESSESravikumarmrk
 
MEASUREMENT OF POWER, FLOW, AND TEMPERATURE
MEASUREMENT OF POWER, FLOW, AND TEMPERATUREMEASUREMENT OF POWER, FLOW, AND TEMPERATURE
MEASUREMENT OF POWER, FLOW, AND TEMPERATUREravikumarmrk
 
ADVANCES IN METROLOGY
ADVANCES IN METROLOGYADVANCES IN METROLOGY
ADVANCES IN METROLOGYravikumarmrk
 

More from ravikumarmrk (20)

Hyraulics and Pneumatics
Hyraulics and Pneumatics Hyraulics and Pneumatics
Hyraulics and Pneumatics
 
CAD
CADCAD
CAD
 
CAD
CAD CAD
CAD
 
CAD
CAD CAD
CAD
 
CAD
CADCAD
CAD
 
COMPUTER AIDED DESIGN
COMPUTER AIDED DESIGNCOMPUTER AIDED DESIGN
COMPUTER AIDED DESIGN
 
Gear
Gear Gear
Gear
 
Gear train
Gear trainGear train
Gear train
 
Clutches
 Clutches Clutches
Clutches
 
Pivoted block or shoe brakes
Pivoted block or shoe brakesPivoted block or shoe brakes
Pivoted block or shoe brakes
 
Friction
FrictionFriction
Friction
 
Belt
BeltBelt
Belt
 
Tangent cam
Tangent camTangent cam
Tangent cam
 
Kinematics of Machines
Kinematics of MachinesKinematics of Machines
Kinematics of Machines
 
CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESS
CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSCHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESS
CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESS
 
THERMAL AND ELECTRICAL BASED PROCESSES
THERMAL AND ELECTRICAL BASED PROCESSESTHERMAL AND ELECTRICAL BASED PROCESSES
THERMAL AND ELECTRICAL BASED PROCESSES
 
UNCONVENTIONAL MACHINING PROCESSES
UNCONVENTIONAL MACHINING PROCESSESUNCONVENTIONAL MACHINING PROCESSES
UNCONVENTIONAL MACHINING PROCESSES
 
MEASUREMENT OF POWER, FLOW, AND TEMPERATURE
MEASUREMENT OF POWER, FLOW, AND TEMPERATUREMEASUREMENT OF POWER, FLOW, AND TEMPERATURE
MEASUREMENT OF POWER, FLOW, AND TEMPERATURE
 
FORM MEASUREMENTS
FORM MEASUREMENTSFORM MEASUREMENTS
FORM MEASUREMENTS
 
ADVANCES IN METROLOGY
ADVANCES IN METROLOGYADVANCES IN METROLOGY
ADVANCES IN METROLOGY
 

Recently uploaded

Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixingviprabot1
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture designssuser87fa0c1
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 

Recently uploaded (20)

Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixing
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture design
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 

ADVANCED NANO FINISHING PROCESSES

  • 1. UNIT -IV ADVANCED NANO FINISHING PROCESSES
  • 2. INTRODUCTION • In order to substitute manual finishing process and to meet the functional properties such as wear resistance, power loss, due to friction on most of the engineering components, we go for advanced machining process. • This finishing process is carried out at micro and nano level. This process is called as advanced nano finishing process.
  • 3. NANO FINISHING PROCESSES • Nano finishing is the only operation which can make rough surfaces in nanometers range. The ultimate precision through finishing will be where processed where there is a change in size of sub nanometer.
  • 4. Nano finishing processes 1. Abrasive flow machining 2. Chemo mechanical polishing 3. Magnetic abrasive finishing 4. Magneto rheological finishing 5. Magneto rheological abrasive flow finishing
  • 5. • In abrasive flow machining process, the semisolid abrasive media acts as deformable grading wheel; which helps to remove small amount of materials. • The abrasive media is given larger force or velocity by hydraulic or mechanical means to push the media into the areas in which conventional finishing process cannot be performed. ABRASIVE FLOW MACHINING
  • 7. 1. One way abrasive flow machining 2. Two way abrasive flow machining 3. Orbital abrasive flow machining TYPES OF ABRASIVE FLOW MACHINING
  • 8. ONE WAY ABRASIVE FLOW MACHINING
  • 9. TWO WAY ABRASIVE FLOW MACHINING
  • 11. The metal removal rate depends upon the following parameters. • 1. Addition of plasticizers • 2. Extrusion pressure • 3. Number of cycles PROCESS PARAMETERS IN ABRASIVE FLOW MACHINING
  • 12. Plasticizer Vs Change in Surface Roughness
  • 13. Extrusion Pressure Vs Change in Surface Roughness
  • 14. • As the finishing cycles are increased from 100 to 400, the surface roughness also increased and good surface finish is obtained. • The number of finishing cycles are controlled by mechanical counter Finishing Cycles Vs Change in Surface Roughness
  • 15. • Operations such as deburring polishing and radiusing can be done. • This process is more suitable for batch production • It is faster than manual finishing • It can finish inaccessible areas in one single movement ADVANTAGES OF AFM
  • 16. • It has low finishing rate compared to other nano finishing process. • The process involves high production time and high production cost. • There should be repeated replacements of poly abrasive media that is used in AFM process. LIMITATIONS OF AFM
  • 17. • AFM is used in finishing of • Extrusion dies • Nozzle of flame cutting touch • Air foil surfaces of impellors • Accessory parts like fuel spray, nozzle, fuel control bodies. APPLICATIONS OF AFM
  • 18. • Chemo mechanical polishing is a process of smoothing and planning surface with the combination of chemical etching and free abrasive polishing. • CMP of silicon wafers is a basic processing technology for production of flat, defect free, highly reflective surface. • This planarization method is a choice for < 0.5 micron technologies CHEMO MECHANICAL POLISHING
  • 19. • In chemo mechanical polishing, a chemical reaction is used to soften the material and then mechanical polishing is done on the layer. The polishing action is partly mechanical and partly chemical PRINCIPLE OF CMP
  • 20. CMP
  • 22. Types of Pad based on its Hardness • The hardness is quantified by Youngs modulus value. • 2GPa – hard pad – good global planarity • 0.5 GPa – medium pad – good local planarity • 0.1 GPa – soft pad – good llocal planarity Pad Asperities • Pores diameter – 30 – 50 μm • Peak to peak – 200 – 300 μm POLISHING PAD POLISHING PAD
  • 23. Abrasives in CMP Slurry • Oxide slurry • Metal slurry The process condition are • Flow rate - 50 to 100 ml / min • Particle size - 180 to 280 nm CMP
  • 24. Metal Slurry The various types of metal slurry used are • Fe(NO3)2 – based • H2O2 – based • KJO3 – based • H5IO6 based slurries having oxidizing ability CMP
  • 28. The six possible two way interaction are • Fluid and workpiece • Workpiece and pad • Workpiece and abrasive particles • Abrasive particles and pad • Pad and fluid • Fluid and abrasive particles. Mechanical Aspect of Material Removal
  • 29. Also four possible three way interaction are • Workpiece, fluid and abrasives • Work[piece, abrasives and pad • Fluid, pad and abrasives. Mechanical Aspect of Material Removal
  • 30. • Process : 10 to 50 kPa • Platen / carrier rpm: 10 to 100 rpm • Velocity – 10 – 100 cm/s • Slurry flow rate – 50 to 500 m/min Typical material removal rate • Oxide CMP – 2800 A ∘ / min • Metal CMP – 3500 A∘ / min PROCESS PARAMETER
  • 31. The mechanical material removal rate was given by person. This is called perston equation. R = kp x P x△V The equation works good for the bulk film polishing processes Where P - is the polishing pressure kp - perston coefficient V - relative velocity PERSTON EQUATION
  • 32. • Temperature in the polishing pad • Conditioning of polishing pad. FACTORS AFFECTING PROCESS PARAMETERS
  • 33. ADVANTAGES OF CMP • It is used to polish metal like Aluminium, Copper, Silver titanium etc. • It can also polish insulators like SiO2, Si3N4. • Ceramics like SiC, TiN, TaN can also be polished. LIMITATIONS OF CMP • Cleaning of platen surface in a difficult process. • Embedded particles, residual slurry are to be removed very carefully. • Due to residues min scratches are also formed on the surface of the platen and the pad. • Surface defects such riping out and dishing are formed on the surface. ADVANTAGES AND DISADVANTAGES
  • 34. • It is used in fabrication of semiconductor devices • Oxides are deposited on the wafer in from of shape trenches • Flat panel display • Microelectronic mechanical system • Magnetic recording head and CD writing APPLICATIONS OF CMP
  • 35. • Magnetic abrasive finishing process was developed in US, USSR, Bulgaria and Japan. This process is mainly used in finishing radiusing and deburring of various flat surfaces and cylindrical surfaces. MAGNETIC ABRASIVE FINISHING
  • 36. • In magnetic abrasive finishing process, the magnetic particles are joined to each other magnetically between magnetic poles along the lines of magnetic force forming a flexible abrasive brush. • This magnetic abrasive brush is used to perform surface and edge finishing operation. PRINCIPLE OF MAF
  • 37. MAF
  • 40. Magnetic abrasive finishing – internal surface
  • 42. 1.Pressure 2. Type and size of grains 3. Finishing efficiency 4. Bonded and unbounded magnetic abrasive 5. Magnetic flux density. FACTORS AFFECTING PROCESS PARAMETERS
  • 44. Type and size of grains
  • 46. Bonded and unbounded magnetic abrasive
  • 48. ADVANTAGES OF MAF • MAF have self adaptability and easy controllability • Surface finish is in order of nanometer. • The device can be easily mounted on other machine without the need of high capital investment. DISADVANTAGES OF MAF • It is difficult to implement MAF in mass production operation. • It is a time consuming process. • It is not applicable for some ordinary finishing task where conventional finishing technique can be easily implemented. ADVANTAGES AND DISADVANTAGES OF MAF
  • 49. • It is used in finishing processes such as lapping, buffing, honing and burnishing operation in surface of tubes, bearing and automobile components. • Precision deburring can be done on edges of the workpiece. • It is used in medical field in areas of capillary tube, needles and biopsy needles etc. APPLICATIONS OF MAF
  • 50. • A magneto rheological fluid is a layer of smart fluid in a carrier. It is a type of oil when subjected to a magnetic field, the fluid increases it apparent viscosity to the point that it becomes a viscoelastic solid. • Rheology is a science of flow and deformation study of rheological properties of the medium. The performance of the medium. The performance of the medium is given by its rheological properties. MAGNETO RHEOLOGICAL FINISHING
  • 51. • In magneto rheological finishing process under the influence of magnetic field the MR fluid (Magneto rheological fluid) becomes a viscoelastic solid. • This act as the cutting tool to remove the materials from the surface of the workpiece. PRINCIPLE OF MRF
  • 53. 1. Magnetic dispersed phase- micron sized magnetizable particles (0.05 – 10μm) 2. Abrasive particles 3. Stabilizers 4. Carrier fluid Basic components in MR fluid
  • 54. • The abrasives used are Aluminium oxide, silicon carbide, cerium oxide and diamond powder • Polishing abrasives such as Alumina and diamond power is used in polishing optical materials. Abrasive particles
  • 55. • Optimum concentration of magnetic particles and abrasives • High yield stress under magnetic field • Low off state visciocity • Resistance to corrosion • High polishing efficiency Characteristic of Base Carrier Fluid
  • 56. • The main function of stabilizers is used to disperse the magnetic particles and abrasives uniformly in suspension • The main function of stabilizers is that it creates a coating on the particles so that MR fluid can easily re-disperse STABILIZERS
  • 57. Magneto rheological fluid circulation system
  • 58. ADVANTAGES • High accuracy • Enhances product quality and repeatability • Increases production rate, productivity yield and cost effectiveness. • Manufacture of precision optics. • Optical glasses with roughness of less than 10 angstrom can be machined. • Surface finish upto nanometer level is achieved without sub surface damage. LIMITATIONS OF MRF • High quality fluids are expensive. • Fluids are subject to thickening after prolonged used and need replacement. • Settling of ferromagnetic particles can be a problem for some application • This process is not suitable for finishing of internal and external surface of cylindrical components. ADVANTAGES AND DISADVANTAGES OF MRF
  • 59. • Use in lens manufacturing • Optical glasses, single crystals, calcium fluorides silicon ceramic are machined. • Square and rectangular aperture surface such as prism, cylinder and photo blank substrates are machined APPLICATIONS OF MRF
  • 60. • This process is the combination of two finishing processes. They are abrasive flow machining and magneto rheological finishing. This process eliminates the limitations in AFM and MRF. MAGNETO RHEOLOGICAL ABRASIVE FLOW MACHINING
  • 61. • Magneto rheological polishing fluid comprises of carbonyl iron powder and silicon carbide, abrasive dispersed in the viscoplastic base of grease and mineral oil. • When external magnetic field is applied these fluid exhibit change in rheological behavior. These fluids behaves smartly and does the finishing operation precisely PRINCIPLE OF MRAFM
  • 63. • Electromagnets - 2000 turns of 17 SWG copper wire. • Continuous Phase -Organic fluids are used as continuous phase for MR fluids. The other type of fluids are silicone oils, kerosene, mineral oil and glycol. • Additives -MR fluid is mixture of 26.6 vol% of electrolytes, 99.5% of Fe powder, 13.4 vol% of silicon carbide abrasive with 4.8% paraffin oil and 12% AP3 grease.
  • 64. • Faster response time • High dynamic yield stress • Low off- state viscosity • Resistance to setting • Easy remixing • Excellent wear and abrasive resistance Characteristic of Magneto Rheological Fluids
  • 69. FACTOR AFFECTING PROCESS PARAMETER When the number of cycles increases beyond 400, the finishing rate get increased
  • 70. • Complex structures can be easily machined. • Localized finishing is possible • Thermal distortion is negligible • High machining versatility. ADVANTAGES OF MRAFF
  • 71. • Low finishing rate • Non uniform magnetic field produces non uniform surface finish • Required a closed environment LIMITATIONS OF MRAFF
  • 72. • Used in investment cast milled parts, airfoil, cast aluminum automobile turbo components • Complex piping for values, fittings, tubes and flow meter • Finishing of automotive gears in a single pass, heart values, exhaust manifold and high pressure holes. • Used in finishing of heart valves, exhaust manifold and high pressure holes. APPLICATIONS OF MRAFF