SlideShare a Scribd company logo
1 of 55
Synthesis Of Nano Materials
Subject: Methods and Techniques of Experimental Physics
By
Dr. Hafiz Naeem-ur-Rahman
Introduction
 Nanomaterials describe, in principle, materials of which a
single unit is sized (in at least one dimension) between 1
and 1000 nanometres.
 Biological systems often feature natural, functional
nanomaterials. The structure of foraminifera and viruses
(capsid), the wax crystals covering a lotus or nasturtium
leaf, spider and spider-mite silk are few examples of natural
nanomaterials.
 Natural inorganic nanomaterials occur through crystal
growth in the diverse chemical conditions of the earth's
crust. For example clays display complex nanostructures
due to anisotropy of their underlying crystal structure, and
volcanic activity can give rise to opals, which are an
instance of a naturally occurring photonic crystals due to
their nanoscale structure.
Introduction
Photonic Crystals
 A photonic crystal is a periodic optical nanostructure that
affects the motion of photons. They are used to
manipulate light flow. Used to form colour changing
paints and inks.
Synthesis
 Includes two methods
 Bottom Up Approach
 Top Down Approach
Top Down
 Start with bulk material and “cut away material “ to
make what you want.
 Examples:
 ATTRITION: In attrition, macro- or micro-scale
particles are ground in a ball mill, a planetary ball mill,
or other size-reducing mechanism. The resulting
particles are air classified to recover nanoparticles.
Top Down
 Lithography : It is a wafer scale process to prepare
homogenous 1D,2D or 3D nanomaterials.
 The method combines the advantages of both top down
and bottom up approaches and is a two step process :
 The preparation of colloidal crystal mask (CCM) made of nano
spheres.
 The decomposition of desired material through the mask.
 The mask is then removed and the layer keeps the ordered pattern
of the mask interstices.
Bottom Up
 Building what you want by assembling it from building
blocks (Such as atoms and molecules).
 Controlled
 Controlled Processes involve the controlled delivery of
the constituent atoms or molecules to the site(s) of
nanoparticle formation such that the nanoparticle can
grow to a prescribed sizes in a controlled manner.
Bottom Up
 Bottom up approach are further classified into 1.)
Gas (Vapor) Phase Fabrication: Pyrolysis
2.) Liquid Phase Fabrication: Solvothermal Reaction, Sol-
gel.
Bottom Up Approach Types
Simplest method of making nanoparticle in the form
of powder
Various types of mills
• Planetary
• Vibratory
• Rod
• Tumbler
HIGH ENERGY BALL
MILLING
Consists of a container filled with hardened steel or
tungsten carbide balls
Material of interest is fed as flakes
2:1 mass ratio of balls to materials
Container may be filled with air or inert gas
Containers are rotated at high speed around a central
axis
Material is forced to the walls and pressed against the
walls
Control the speed of rotation and duration of milling-
grind material to fine powder( few nm to few tens of
nm)
Some materials like Co, Cr, W, Al-Fe, Ag-Fe etc are
made nanocrystalline using ball mill.
To form or arrest nanoparticles in glass
Glass – amorphous solid, lacking symmetric
arrangement of atoms/molecules
Metals , when cooled at very high cooling rates (10⁵-
10⁶ K/s) can form amorphous solids- metallic glasses
Mixing molten streams of metals at high velocity with
turbulence- form nanoparticles
Ex: a molten stream of Cu-B and molten stream of Ti
form nanoparticles of TiB₂
MELT MIXING
Pyrolysis
 In pyrolysis, is a process in which a thin film is deposited by spraying a
solution on a heated surface, where the constituents react to form a
chemical compound. The chemical reactants are selected such that the
products other than the desired compound are volatile at the
temperature of deposition
 The advantages of vapor phase pyrolysis include it being a simple
process, cost effective, a continuous operation with high yield.
Solvothermal Process
 Precursors are dissolved in hot solvents (e.g., n-butyl
alcohol) and solvent other than water can provide milder
and friendlier reaction conditions. If the solvent is water
then the process is referred to as hydrothermal
method.
 It is synthesis method for growing for crystals from a non
aqueous solution in a autoenclave (a thick walled steel
vessel) at high temperature ( 400 deg.C) and pressure.
Sol-Gel
 The sol-gel process is a wet-chemical technique (also
known as chemical solution deposition) widely used
recently in the fields of materials science and ceramic
engineering.
Steps Include
 Formation of stable sol.
 Gelation
 Gel aging into a solid mass. This causes contraction of the
gel network, also phase transformations and Ostwald
ripening.
 Drying of the gel to remove liquid phases. This can lead
to fundamental changes in the structure of the gel.
 Nanoparticles synthesized by chemical methods form “colloids”
 Two or more phases (solid, liquid or gas) of same or different materials co-exist
with the dimensions of at least one of the phases less than a micrometre
 May be particles, plates or fibres
 Nanomaterials are a subclass of colloids, in which the dimensions of colloids is in
the nanometre range
COLLOIDS AND COLLOIDS IN
SOLUTION
Reduction of some metal salt or acid
Highly stable gold particles can be obtained by
reducing chloroauric acid (HAuCl₄)with tri sodium
citrate(Na₃C₆H₅O₇)
HAuCl₄+ Na₃C₆H₅O₇ Au ⁺+ C₆H₅O₇⁻+ HCl+3 NaCl
Metal gold nanoparticles exhibit intense
red, magenta etc., colours depending upon the
particle size
SYNTHESIS OF METAL NANOPARTICLES BY
COLLOIDAL ROUTE
Gold nanoparticles can be stabilised by repulsive
Coloumbic interactions
Also stabilised by thiol or some other capping
molecules
In a similar manner, silver, palladium, copper and few
other metal nanoparticles can be synthesized.
Wet chemical route using appropriate salts
Sulphide semiconductors like CdS and ZnS can be
synthesized by coprecipitation
To obtain Zns nanoparticles, any Zn salt is dissolved in
aqueous( or non aqueous) medium and H₂S is added
ZnCl₂+ H₂S ZnS + 2 HCl
SYNTHESIS OF SEMI-CONDUCTOR
NANOPARTICLES BY COLLOIDAL ROUTE
Steric hindrance created by “chemical capping”
Chemical capping- high or low temperature
depending on the reactants
High temp reactions- cold organometallic reactants
are injected in solvent like
trioctylphosphineoxide(TOPO) held at > 300ºC
Although it Is a very good method of synthesis, most
organometallic compounds are expensive.
2types of materials or components- “sol” and “gel”
M. Ebelman synthesized them in 1845
Low temperature process- less energy consumption
and less pollution
Generates highly pure, well controlled ceramics
Economical route, provided precursors are not
expensive
Possible to synthesize
nanoparticles, nanorods, nanotubes etc.,
SOL GEL METHOD
Sols are solid particles in a liquid- subclass of colloids
Gels – polymers containing liquid
The process involves formation of ‘sols’ in a liquid and
then connecting the sol particles to form a network
Liquid is dried- powders, thin films or even monolithic
solid
Particularly useful to synthesize ceramics or metal
oxides
Hydrolysis of
precursors
condensation
polycondensation
Precursors-tendency to form gels
Alkoxides or metal salts
Oxide ceramics are best synthesized by sol gel route
For ex: in SiO₄, Si is at the centre
and 4 oxygen atoms at the apexes
of tetrahedron
Very ideal for forming sols
By polycondensation process
sols are nucleated and sol-gel is formed
Simple techniques
Inexpensive instrumentation
Low temperature (<350ºC) synthesis
Doping of foreign atoms (ions) is possible during
synthesis
Large quantities of material can be obtained
Variety of sizes and shapes are possible
Self assembly or patterning is possible
ADVANTAGES
BIOLOGICAL
METHODS
Green synthesis
3 types:
1.Use of microorganisms like fungi, yeats(eukaryotes)
or bacteria, actinomycetes(prokaryotes)
2. Use of plant extracts or enzymes
3.Use of templates like DNA, membranes, virusesand
diatoms
Microorganisms are capable of interacting with
metals coming in contact with hem through their cells
and form nanoparticles.
The cell- metal interactions are quite complex
Certain microorganisms are capable of separating
metal ions.
SYNTHESIS USING MICROORGANISMS
Pseudomonas stuzeri Ag259 bacteria are commonly found
in silver mines.
Capable of accumulating silver inside or outside their cell
walls
Numerous types of silver nanoparticles of different shapes
can be produced having size <200nm intracellularly
Low concentrations of metal ions (Au⁺,Ag⁺ etc) can be
converted to metal nanoparticles by Lactobacillus strain
present in butter milk.
Fungi – Fusarium oxysporum challenged with gold or
silver salt for app. 3 days produces gold or silver
nanoparticles extracellularly.
Extremophilic actinomycete Thermomonospora sp.
Produces gold nanoparticles extracellularly.
Semiconductor nanoparticles like CdS, ZnS, PbS
etc., can be produced using different microbial
routes.
Sulphate reducing bateria of the family
Desulfobacteriaceae can form 2-5nm ZnS nanoparticle.
Klebsiella pneumoniae can be used to synthesize CdS
nanoparticles.
when [Cd(NO₃)₂] salt is mixed in a solution containing
bacteria and solution is shaken for about1 day at
~38ºC ,CdS nanoparticle in the size range ~5 to 200 nm
can be formed.
Leaves of geranium plant ( Pelargonium graveolens)
have been used to synthesize gold nanoparticles
Plant associated fungus- produce compounds such as
taxol and gibberellins
Exchange of intergenic genetics between
fungus and plant.
Nanoparticles produced by fungus and
leaves have different shapes and sizes.
SYNTHESIS USING PLANT EXTRACTS
Nanoparticles obtained using Colletotrichum sp.,
fungus is mostly spherical while thoe obtained
from geranium leaves are rod and disk shaped.
finely crushed leaves
(Erlenmeyer flask)
boiled in water ( 1min)
cooled and decanted
added to HAuCl₄ aq. Solution
gold nanoparticles within a minute
CdS or other sulfide nanoparticles can be synthesized
using DNA.
DNA can bind to the surface of growing
nanoparticles.
ds Salmon sperm DNA can be sheared to an average
size of 500bp.
Cadmium acetate is added to a
desired medium like water, ethanol,
propanol etc.
SYNTHESIS USING DNA
Reaction is carried out in a glass flask- facility to purge
the solution and flow with an inert gas like N₂.
Addition of DNA should be made and then Na₂S can
be added dropwise.
Depending on the concentrations of cadmium
acetate, sodium chloride and DNA ,nanoparticles of
CdS with sizes less than ~10 nm can be obtained.
DNA bonds through its negatively charged PO₄ group
to positively charged (Cd⁺) nanoparticle surface.
Various inorganic materials such as carbonates,
phosphates, silicates etc are found in parts of bones,
teeth, shells etc.
Biological systems are capable of integrating with
inorganic materials
Widely used to synthesize nanoparticles
USE OF PROTEINS, TEMPLATES LIKE
DNA , S- LAYERS ETC
Ferritin is a colloidal protein of nanosize.
Stored iron in metabolic process and is abundant in
animals.
Capable of forming 3 dimensional hierarchical
structure.
24 peptide subunits – arranged in such a way that
they create a central cavity of ~6 nm.
Diameter of polypeptide shell is 12 nm.
Ferritin can accommodate 4500 Fe atoms.
FERRITI
N
Ferritin without inorganic matter in its cavity is called
apoferritin and can be used to entrap desired
nanomaterial inside the protein cage.
Remove iron from ferritin to form apoferritin
Introduce metal ions to form metal nanoparticles
inside the cavity
Horse spleen ferritin
diluted with sodium
acetate buffer (placedin
dialysis bag)
sodium+ thioglycolic
acetate acid
dialysis bag kept under
N₂ gas flow for 2-3 hrs
PROCEDURE TO CONVERT FERRITIN TO
APOFERRITIN
solution needs to be
replaced from time to time
for 4-5 hrs.
saline for 1 hr
refreshed saline
for 15-20 hrs
APOFERRITIN
APOFERRITIN
mixed with NaCl and N-tris
methyl-2-aminoethanosulphonic
acid (TES)
aq. Cadmium acetate added and
stirred with constant N₂ spurging
aq. Solution of Na₂S is added twice
with 1 hr interval.
Applications
 Drug delivery systems
 Anti-corrosion barrier coatings
 UV protection gels
 Lubricants and scratch free paints
 New fire retardant materials
 New scratch/abrasion resistant materials
 Superior strength fibres and films

More Related Content

What's hot

Synthesis of Nano Materials
Synthesis of Nano MaterialsSynthesis of Nano Materials
Synthesis of Nano MaterialsJp Reddy
 
NANO Physics ppt ---2017
 NANO Physics ppt ---2017  NANO Physics ppt ---2017
NANO Physics ppt ---2017 ANANT VYAS
 
Nanotechnology20120918 19-26 lecture 4-5-6 - Nanomaterials
Nanotechnology20120918  19-26 lecture 4-5-6 - NanomaterialsNanotechnology20120918  19-26 lecture 4-5-6 - Nanomaterials
Nanotechnology20120918 19-26 lecture 4-5-6 - NanomaterialsChin Yung Jyi
 
Bio nano (Top-down bottom up approach)
Bio nano (Top-down bottom up approach) Bio nano (Top-down bottom up approach)
Bio nano (Top-down bottom up approach) ManojKumar6080
 
Synthesis of Nanomaterials
Synthesis of NanomaterialsSynthesis of Nanomaterials
Synthesis of NanomaterialsAnantha Kumar
 
Techniques for synthesis of nanomaterials (II)
Techniques for synthesis of nanomaterials (II) Techniques for synthesis of nanomaterials (II)
Techniques for synthesis of nanomaterials (II) shubham211
 
TYPES OF NANOMATERIAL
TYPES OF NANOMATERIALTYPES OF NANOMATERIAL
TYPES OF NANOMATERIALNehaSingla51
 
Nanomaterial and their application
Nanomaterial and their applicationNanomaterial and their application
Nanomaterial and their applicationPreeti Choudhary
 
Thin films in nano particles
Thin films in nano particlesThin films in nano particles
Thin films in nano particlesN.MANI KANDAN
 
ENVIRONMENTAL NANOTECHNOLOGY
ENVIRONMENTAL NANOTECHNOLOGYENVIRONMENTAL NANOTECHNOLOGY
ENVIRONMENTAL NANOTECHNOLOGYJenson Samraj
 
nano science and nano technology
nano science and nano technologynano science and nano technology
nano science and nano technologyAnmol Bagga
 

What's hot (20)

Synthesis of Nano Materials
Synthesis of Nano MaterialsSynthesis of Nano Materials
Synthesis of Nano Materials
 
Basics of nanotechnology
Basics of nanotechnologyBasics of nanotechnology
Basics of nanotechnology
 
NANO Physics ppt ---2017
 NANO Physics ppt ---2017  NANO Physics ppt ---2017
NANO Physics ppt ---2017
 
Nanotechnology20120918 19-26 lecture 4-5-6 - Nanomaterials
Nanotechnology20120918  19-26 lecture 4-5-6 - NanomaterialsNanotechnology20120918  19-26 lecture 4-5-6 - Nanomaterials
Nanotechnology20120918 19-26 lecture 4-5-6 - Nanomaterials
 
Bio nano (Top-down bottom up approach)
Bio nano (Top-down bottom up approach) Bio nano (Top-down bottom up approach)
Bio nano (Top-down bottom up approach)
 
Synthesis of Nanomaterials
Synthesis of NanomaterialsSynthesis of Nanomaterials
Synthesis of Nanomaterials
 
Nanomaterials 2
Nanomaterials 2Nanomaterials 2
Nanomaterials 2
 
Nano particles
Nano particlesNano particles
Nano particles
 
Techniques for synthesis of nanomaterials (II)
Techniques for synthesis of nanomaterials (II) Techniques for synthesis of nanomaterials (II)
Techniques for synthesis of nanomaterials (II)
 
Ceo2 nps
Ceo2 npsCeo2 nps
Ceo2 nps
 
TYPES OF NANOMATERIAL
TYPES OF NANOMATERIALTYPES OF NANOMATERIAL
TYPES OF NANOMATERIAL
 
Nanomaterials
NanomaterialsNanomaterials
Nanomaterials
 
Nanomaterial and their application
Nanomaterial and their applicationNanomaterial and their application
Nanomaterial and their application
 
Nanosprings
NanospringsNanosprings
Nanosprings
 
nano wire
nano wirenano wire
nano wire
 
Synthesis of nanomaterials
Synthesis of nanomaterialsSynthesis of nanomaterials
Synthesis of nanomaterials
 
Thin films in nano particles
Thin films in nano particlesThin films in nano particles
Thin films in nano particles
 
ENVIRONMENTAL NANOTECHNOLOGY
ENVIRONMENTAL NANOTECHNOLOGYENVIRONMENTAL NANOTECHNOLOGY
ENVIRONMENTAL NANOTECHNOLOGY
 
nano science and nano technology
nano science and nano technologynano science and nano technology
nano science and nano technology
 
Molecular nanomachines
Molecular nanomachinesMolecular nanomachines
Molecular nanomachines
 

Similar to synthesis of nanomaterials

Lecture12_Various Fabrication Techniques1.pdf
Lecture12_Various Fabrication Techniques1.pdfLecture12_Various Fabrication Techniques1.pdf
Lecture12_Various Fabrication Techniques1.pdfSelvaBabu2
 
Synthesis of nanoparticles- physical,chemical and biological
Synthesis of nanoparticles- physical,chemical and biologicalSynthesis of nanoparticles- physical,chemical and biological
Synthesis of nanoparticles- physical,chemical and biologicalPriya Nanda
 
Nanomaterials & nanotechnology Part 5
Nanomaterials & nanotechnology Part 5Nanomaterials & nanotechnology Part 5
Nanomaterials & nanotechnology Part 5Usama Abdelhafeez
 
syntesis-nanoppt-171031050730.pdf
syntesis-nanoppt-171031050730.pdfsyntesis-nanoppt-171031050730.pdf
syntesis-nanoppt-171031050730.pdfmukhtareffendi2
 
engineering chemistry - nano slides.pptx
engineering chemistry - nano slides.pptxengineering chemistry - nano slides.pptx
engineering chemistry - nano slides.pptxhappycocoman
 
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptxNANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptxSriharsha203438
 
Introduction to Nanoparticals
Introduction to NanoparticalsIntroduction to Nanoparticals
Introduction to Nanoparticalsganeshapsunde
 
Preparation of Nanoparticles
Preparation of NanoparticlesPreparation of Nanoparticles
Preparation of Nanoparticleshephz
 
NANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptx
NANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptxNANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptx
NANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptxmonishasarai25
 
sol gel method by Mr AMAN PATHANIApptx
sol gel method by  Mr AMAN PATHANIApptxsol gel method by  Mr AMAN PATHANIApptx
sol gel method by Mr AMAN PATHANIApptxAman Pathania
 
Synthesis of Nanoparticles an Overew, a Review Article
Synthesis of Nanoparticles an Overew, a Review ArticleSynthesis of Nanoparticles an Overew, a Review Article
Synthesis of Nanoparticles an Overew, a Review Articleijtsrd
 
Manufacturing technique of Nanomaterial's
Manufacturing technique of Nanomaterial'sManufacturing technique of Nanomaterial's
Manufacturing technique of Nanomaterial'sSheama Farheen Savanur
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Nanotechnology Notes by Jaideep Aluru
Nanotechnology Notes by Jaideep AluruNanotechnology Notes by Jaideep Aluru
Nanotechnology Notes by Jaideep AluruAluru Jaideep Reddy
 
Thinfilms and nanomaterials_Modified October 2020.pptx
Thinfilms and nanomaterials_Modified October 2020.pptxThinfilms and nanomaterials_Modified October 2020.pptx
Thinfilms and nanomaterials_Modified October 2020.pptxhappycocoman
 
6_2020_04_11!06_48_32_AM.pptx
6_2020_04_11!06_48_32_AM.pptx6_2020_04_11!06_48_32_AM.pptx
6_2020_04_11!06_48_32_AM.pptxShamimAkhter52
 

Similar to synthesis of nanomaterials (20)

Lecture12_Various Fabrication Techniques1.pdf
Lecture12_Various Fabrication Techniques1.pdfLecture12_Various Fabrication Techniques1.pdf
Lecture12_Various Fabrication Techniques1.pdf
 
Synthesis of nanoparticles- physical,chemical and biological
Synthesis of nanoparticles- physical,chemical and biologicalSynthesis of nanoparticles- physical,chemical and biological
Synthesis of nanoparticles- physical,chemical and biological
 
Nanomaterials & nanotechnology Part 5
Nanomaterials & nanotechnology Part 5Nanomaterials & nanotechnology Part 5
Nanomaterials & nanotechnology Part 5
 
syntesis-nanoppt-171031050730.pdf
syntesis-nanoppt-171031050730.pdfsyntesis-nanoppt-171031050730.pdf
syntesis-nanoppt-171031050730.pdf
 
Nano technology
Nano technologyNano technology
Nano technology
 
engineering chemistry - nano slides.pptx
engineering chemistry - nano slides.pptxengineering chemistry - nano slides.pptx
engineering chemistry - nano slides.pptx
 
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptxNANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
 
Introduction to Nanoparticals
Introduction to NanoparticalsIntroduction to Nanoparticals
Introduction to Nanoparticals
 
Preparation of Nanoparticles
Preparation of NanoparticlesPreparation of Nanoparticles
Preparation of Nanoparticles
 
Nanophysics
NanophysicsNanophysics
Nanophysics
 
NANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptx
NANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptxNANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptx
NANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptx
 
Nanotechnology-4.docx
Nanotechnology-4.docxNanotechnology-4.docx
Nanotechnology-4.docx
 
sol gel method by Mr AMAN PATHANIApptx
sol gel method by  Mr AMAN PATHANIApptxsol gel method by  Mr AMAN PATHANIApptx
sol gel method by Mr AMAN PATHANIApptx
 
Synthesis of Nanoparticles an Overew, a Review Article
Synthesis of Nanoparticles an Overew, a Review ArticleSynthesis of Nanoparticles an Overew, a Review Article
Synthesis of Nanoparticles an Overew, a Review Article
 
Manufacturing technique of Nanomaterial's
Manufacturing technique of Nanomaterial'sManufacturing technique of Nanomaterial's
Manufacturing technique of Nanomaterial's
 
Nanocomposite
NanocompositeNanocomposite
Nanocomposite
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Nanotechnology Notes by Jaideep Aluru
Nanotechnology Notes by Jaideep AluruNanotechnology Notes by Jaideep Aluru
Nanotechnology Notes by Jaideep Aluru
 
Thinfilms and nanomaterials_Modified October 2020.pptx
Thinfilms and nanomaterials_Modified October 2020.pptxThinfilms and nanomaterials_Modified October 2020.pptx
Thinfilms and nanomaterials_Modified October 2020.pptx
 
6_2020_04_11!06_48_32_AM.pptx
6_2020_04_11!06_48_32_AM.pptx6_2020_04_11!06_48_32_AM.pptx
6_2020_04_11!06_48_32_AM.pptx
 

Recently uploaded

Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Silpa
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Servicenishacall1
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)Areesha Ahmad
 
Introduction to Viruses
Introduction to VirusesIntroduction to Viruses
Introduction to VirusesAreesha Ahmad
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptxryanrooker
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...chandars293
 
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai YoungDubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Youngkajalvid75
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Servicemonikaservice1
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Monika Rani
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 

Recently uploaded (20)

Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Introduction to Viruses
Introduction to VirusesIntroduction to Viruses
Introduction to Viruses
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai YoungDubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 

synthesis of nanomaterials

  • 1. Synthesis Of Nano Materials Subject: Methods and Techniques of Experimental Physics By Dr. Hafiz Naeem-ur-Rahman
  • 2. Introduction  Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 1000 nanometres.  Biological systems often feature natural, functional nanomaterials. The structure of foraminifera and viruses (capsid), the wax crystals covering a lotus or nasturtium leaf, spider and spider-mite silk are few examples of natural nanomaterials.
  • 3.  Natural inorganic nanomaterials occur through crystal growth in the diverse chemical conditions of the earth's crust. For example clays display complex nanostructures due to anisotropy of their underlying crystal structure, and volcanic activity can give rise to opals, which are an instance of a naturally occurring photonic crystals due to their nanoscale structure. Introduction
  • 4.
  • 5. Photonic Crystals  A photonic crystal is a periodic optical nanostructure that affects the motion of photons. They are used to manipulate light flow. Used to form colour changing paints and inks.
  • 6. Synthesis  Includes two methods  Bottom Up Approach  Top Down Approach
  • 7. Top Down  Start with bulk material and “cut away material “ to make what you want.  Examples:  ATTRITION: In attrition, macro- or micro-scale particles are ground in a ball mill, a planetary ball mill, or other size-reducing mechanism. The resulting particles are air classified to recover nanoparticles.
  • 8. Top Down  Lithography : It is a wafer scale process to prepare homogenous 1D,2D or 3D nanomaterials.  The method combines the advantages of both top down and bottom up approaches and is a two step process :  The preparation of colloidal crystal mask (CCM) made of nano spheres.  The decomposition of desired material through the mask.  The mask is then removed and the layer keeps the ordered pattern of the mask interstices.
  • 9. Bottom Up  Building what you want by assembling it from building blocks (Such as atoms and molecules).  Controlled  Controlled Processes involve the controlled delivery of the constituent atoms or molecules to the site(s) of nanoparticle formation such that the nanoparticle can grow to a prescribed sizes in a controlled manner.
  • 10. Bottom Up  Bottom up approach are further classified into 1.) Gas (Vapor) Phase Fabrication: Pyrolysis 2.) Liquid Phase Fabrication: Solvothermal Reaction, Sol- gel.
  • 12. Simplest method of making nanoparticle in the form of powder Various types of mills • Planetary • Vibratory • Rod • Tumbler HIGH ENERGY BALL MILLING
  • 13.
  • 14. Consists of a container filled with hardened steel or tungsten carbide balls Material of interest is fed as flakes 2:1 mass ratio of balls to materials Container may be filled with air or inert gas Containers are rotated at high speed around a central axis Material is forced to the walls and pressed against the walls
  • 15. Control the speed of rotation and duration of milling- grind material to fine powder( few nm to few tens of nm) Some materials like Co, Cr, W, Al-Fe, Ag-Fe etc are made nanocrystalline using ball mill.
  • 16.
  • 17. To form or arrest nanoparticles in glass Glass – amorphous solid, lacking symmetric arrangement of atoms/molecules Metals , when cooled at very high cooling rates (10⁵- 10⁶ K/s) can form amorphous solids- metallic glasses Mixing molten streams of metals at high velocity with turbulence- form nanoparticles Ex: a molten stream of Cu-B and molten stream of Ti form nanoparticles of TiB₂ MELT MIXING
  • 18. Pyrolysis  In pyrolysis, is a process in which a thin film is deposited by spraying a solution on a heated surface, where the constituents react to form a chemical compound. The chemical reactants are selected such that the products other than the desired compound are volatile at the temperature of deposition  The advantages of vapor phase pyrolysis include it being a simple process, cost effective, a continuous operation with high yield.
  • 19. Solvothermal Process  Precursors are dissolved in hot solvents (e.g., n-butyl alcohol) and solvent other than water can provide milder and friendlier reaction conditions. If the solvent is water then the process is referred to as hydrothermal method.  It is synthesis method for growing for crystals from a non aqueous solution in a autoenclave (a thick walled steel vessel) at high temperature ( 400 deg.C) and pressure.
  • 20. Sol-Gel  The sol-gel process is a wet-chemical technique (also known as chemical solution deposition) widely used recently in the fields of materials science and ceramic engineering.
  • 21. Steps Include  Formation of stable sol.  Gelation  Gel aging into a solid mass. This causes contraction of the gel network, also phase transformations and Ostwald ripening.  Drying of the gel to remove liquid phases. This can lead to fundamental changes in the structure of the gel.
  • 22.  Nanoparticles synthesized by chemical methods form “colloids”  Two or more phases (solid, liquid or gas) of same or different materials co-exist with the dimensions of at least one of the phases less than a micrometre  May be particles, plates or fibres  Nanomaterials are a subclass of colloids, in which the dimensions of colloids is in the nanometre range COLLOIDS AND COLLOIDS IN SOLUTION
  • 23.
  • 24. Reduction of some metal salt or acid Highly stable gold particles can be obtained by reducing chloroauric acid (HAuCl₄)with tri sodium citrate(Na₃C₆H₅O₇) HAuCl₄+ Na₃C₆H₅O₇ Au ⁺+ C₆H₅O₇⁻+ HCl+3 NaCl Metal gold nanoparticles exhibit intense red, magenta etc., colours depending upon the particle size SYNTHESIS OF METAL NANOPARTICLES BY COLLOIDAL ROUTE
  • 25.
  • 26. Gold nanoparticles can be stabilised by repulsive Coloumbic interactions Also stabilised by thiol or some other capping molecules In a similar manner, silver, palladium, copper and few other metal nanoparticles can be synthesized.
  • 27. Wet chemical route using appropriate salts Sulphide semiconductors like CdS and ZnS can be synthesized by coprecipitation To obtain Zns nanoparticles, any Zn salt is dissolved in aqueous( or non aqueous) medium and H₂S is added ZnCl₂+ H₂S ZnS + 2 HCl SYNTHESIS OF SEMI-CONDUCTOR NANOPARTICLES BY COLLOIDAL ROUTE
  • 28. Steric hindrance created by “chemical capping” Chemical capping- high or low temperature depending on the reactants High temp reactions- cold organometallic reactants are injected in solvent like trioctylphosphineoxide(TOPO) held at > 300ºC Although it Is a very good method of synthesis, most organometallic compounds are expensive.
  • 29. 2types of materials or components- “sol” and “gel” M. Ebelman synthesized them in 1845 Low temperature process- less energy consumption and less pollution Generates highly pure, well controlled ceramics Economical route, provided precursors are not expensive Possible to synthesize nanoparticles, nanorods, nanotubes etc., SOL GEL METHOD
  • 30. Sols are solid particles in a liquid- subclass of colloids Gels – polymers containing liquid The process involves formation of ‘sols’ in a liquid and then connecting the sol particles to form a network Liquid is dried- powders, thin films or even monolithic solid Particularly useful to synthesize ceramics or metal oxides
  • 31.
  • 32. Hydrolysis of precursors condensation polycondensation Precursors-tendency to form gels Alkoxides or metal salts Oxide ceramics are best synthesized by sol gel route
  • 33. For ex: in SiO₄, Si is at the centre and 4 oxygen atoms at the apexes of tetrahedron Very ideal for forming sols By polycondensation process sols are nucleated and sol-gel is formed
  • 34.
  • 35. Simple techniques Inexpensive instrumentation Low temperature (<350ºC) synthesis Doping of foreign atoms (ions) is possible during synthesis Large quantities of material can be obtained Variety of sizes and shapes are possible Self assembly or patterning is possible ADVANTAGES
  • 37. Green synthesis 3 types: 1.Use of microorganisms like fungi, yeats(eukaryotes) or bacteria, actinomycetes(prokaryotes) 2. Use of plant extracts or enzymes 3.Use of templates like DNA, membranes, virusesand diatoms
  • 38. Microorganisms are capable of interacting with metals coming in contact with hem through their cells and form nanoparticles. The cell- metal interactions are quite complex Certain microorganisms are capable of separating metal ions. SYNTHESIS USING MICROORGANISMS
  • 39. Pseudomonas stuzeri Ag259 bacteria are commonly found in silver mines. Capable of accumulating silver inside or outside their cell walls Numerous types of silver nanoparticles of different shapes can be produced having size <200nm intracellularly Low concentrations of metal ions (Au⁺,Ag⁺ etc) can be converted to metal nanoparticles by Lactobacillus strain present in butter milk.
  • 40. Fungi – Fusarium oxysporum challenged with gold or silver salt for app. 3 days produces gold or silver nanoparticles extracellularly. Extremophilic actinomycete Thermomonospora sp. Produces gold nanoparticles extracellularly. Semiconductor nanoparticles like CdS, ZnS, PbS etc., can be produced using different microbial routes.
  • 41. Sulphate reducing bateria of the family Desulfobacteriaceae can form 2-5nm ZnS nanoparticle. Klebsiella pneumoniae can be used to synthesize CdS nanoparticles. when [Cd(NO₃)₂] salt is mixed in a solution containing bacteria and solution is shaken for about1 day at ~38ºC ,CdS nanoparticle in the size range ~5 to 200 nm can be formed.
  • 42. Leaves of geranium plant ( Pelargonium graveolens) have been used to synthesize gold nanoparticles Plant associated fungus- produce compounds such as taxol and gibberellins Exchange of intergenic genetics between fungus and plant. Nanoparticles produced by fungus and leaves have different shapes and sizes. SYNTHESIS USING PLANT EXTRACTS
  • 43. Nanoparticles obtained using Colletotrichum sp., fungus is mostly spherical while thoe obtained from geranium leaves are rod and disk shaped.
  • 44. finely crushed leaves (Erlenmeyer flask) boiled in water ( 1min) cooled and decanted added to HAuCl₄ aq. Solution gold nanoparticles within a minute
  • 45. CdS or other sulfide nanoparticles can be synthesized using DNA. DNA can bind to the surface of growing nanoparticles. ds Salmon sperm DNA can be sheared to an average size of 500bp. Cadmium acetate is added to a desired medium like water, ethanol, propanol etc. SYNTHESIS USING DNA
  • 46. Reaction is carried out in a glass flask- facility to purge the solution and flow with an inert gas like N₂. Addition of DNA should be made and then Na₂S can be added dropwise. Depending on the concentrations of cadmium acetate, sodium chloride and DNA ,nanoparticles of CdS with sizes less than ~10 nm can be obtained. DNA bonds through its negatively charged PO₄ group to positively charged (Cd⁺) nanoparticle surface.
  • 47. Various inorganic materials such as carbonates, phosphates, silicates etc are found in parts of bones, teeth, shells etc. Biological systems are capable of integrating with inorganic materials Widely used to synthesize nanoparticles USE OF PROTEINS, TEMPLATES LIKE DNA , S- LAYERS ETC
  • 48. Ferritin is a colloidal protein of nanosize. Stored iron in metabolic process and is abundant in animals. Capable of forming 3 dimensional hierarchical structure. 24 peptide subunits – arranged in such a way that they create a central cavity of ~6 nm. Diameter of polypeptide shell is 12 nm. Ferritin can accommodate 4500 Fe atoms. FERRITI N
  • 49.
  • 50. Ferritin without inorganic matter in its cavity is called apoferritin and can be used to entrap desired nanomaterial inside the protein cage. Remove iron from ferritin to form apoferritin Introduce metal ions to form metal nanoparticles inside the cavity
  • 51.
  • 52. Horse spleen ferritin diluted with sodium acetate buffer (placedin dialysis bag) sodium+ thioglycolic acetate acid dialysis bag kept under N₂ gas flow for 2-3 hrs PROCEDURE TO CONVERT FERRITIN TO APOFERRITIN
  • 53. solution needs to be replaced from time to time for 4-5 hrs. saline for 1 hr refreshed saline for 15-20 hrs APOFERRITIN
  • 54. APOFERRITIN mixed with NaCl and N-tris methyl-2-aminoethanosulphonic acid (TES) aq. Cadmium acetate added and stirred with constant N₂ spurging aq. Solution of Na₂S is added twice with 1 hr interval.
  • 55. Applications  Drug delivery systems  Anti-corrosion barrier coatings  UV protection gels  Lubricants and scratch free paints  New fire retardant materials  New scratch/abrasion resistant materials  Superior strength fibres and films