SlideShare a Scribd company logo
1 of 107
Download to read offline
1
General Comparison between
AISC LRFD and ASD
Hamid Zand
GT STRUDL Users Group
Las Vegas, Nevada
June 22-25, 2005
2
AISC ASD and LRFD
• AISC = American Institute of Steel
Construction
• ASD = Allowable Stress Design
AISC Ninth Edition
• LRFD = Load and Resistance Factor Design
AISC Third Edition
3
AISC Steel Design Manuals
• 1963 AISC ASD 6th Edition
• 1969 AISC ASD 7th Edition
• 1978 AISC ASD 8th Edition
• 1989 AISC ASD 9th Edition
• 1986 AISC LRFD 1st Edition
• 1993 AISC LRFD 2nd Edition
• 1999 AISC LRFD 3rd Edition
4
ASD and LRFD
Major Differences
• Load Combinations and load factors
• ASD results are based on the stresses and
LRFD results are based on the forces and
moments capacity
• Static analysis is acceptable for ASD but
nonlinear geometric analysis is required for
LRFD
• Beams and flexural members
• Cb computation
5
ASD Load Combinations
• 1.0D + 1.0L
• 0.75D + 0.75L + 0.75W
• 0.75D + 0.75L + 0.75E
D = dead load
L = live load
W = wind load
E = earthquake load
6
ASD Load Combinations
Or you can use following load combinations with the
parameter ALSTRINC to account for the 1/3 allowable
increase for the wind and seismic load
1. 1.0D + 1.0L
2. 1.0D + 1.0L + 1.0W
3. 1.0D + 1.0L + 1.0E
• PARAMETER$ ALSTRINC based on the % increase
• ALSTRINC 33.333 LOADINGS 2 3
7
LRFD Load Combinations
• 1.4D
• 1.2D + 1.6L
• 1.2D + 1.6W + 0.5L
• 1.2D ± 1.0E + 0.5L
• 0.9D ± (1.6W or 1.0E)
D = dead load
L = live load
W = wind load
E = earthquake load
8
Deflection Load Combinations
for ASD and LRFD
• 1.0D + 1.0L
• 1.0D + 1.0L + 1.0W
• 1.0D + 1.0L + 1.0E
D = dead load
L = live load
W = wind load
E = earthquake load
9
Forces and Stresses
• ASD = actual stress values are
compared to the AISC
allowable stress values
• LRFD = actual forces and moments
are compared to the AISC
limiting forces and moments
capacity
10
ASTM Steel Grade
• Comparison is between Table 1 of the AISC ASD 9th Edition on
Page 1-7 versus Table 2-1 of the AISC LRFD 3rd Edition on
Page 2-24
• A529 Gr. 42 of ASD, not available in LRFD
• A529 Gr. 50 and 55 are new in LRFD
• A441 not available in LRFD
• A572 Gr. 55 is new in LRFD
• A618 Gr. I, II, & III are new in LRFD
• A913 Gr. 50, 60, 65, & 70 are new in LRFD
• A992 (Fy = 50, Fu = 65) is new in LRFD (new standard)
• A847 is new in LRFD
11
Slenderness Ratio
• Compression
KL/r ≤ 200
• Tension
L/r ≤ 300
12
Tension Members
• Check L/r ratio
• Check Tensile Strength based on the cross-
section’s Gross Area
• Check Tensile Strength based on the cross-
section’s Net Area
13
Tension Members
ASD
ft = FX/Ag ≤ Ft Gross Area
ft = FX/Ae ≤ Ft Net Area
LRFD
Pu = FX ≤ ϕt Pn = ϕt Ag Fy ϕt = 0.9 for Gross Area
Pu = FX ≤ ϕt Pn = ϕt Ae Fu ϕt = 0.75 for Net Area
14
Tension Members
ASD (ASD Section D1)
Gross Area Ft = 0.6Fy
Net Area Ft = 0.5Fu
LRFD (LRFD Section D1)
Gross Area ϕt Pn = ϕt Fy Ag ϕt = 0.9
Net Area ϕt Pn = ϕt Fu Ae ϕt = 0.75
15
Compare ASD to LRFD
ASD 1.0D + 1.0L
LRFD 1.2D + 1.6L
0.6Fy (ASD) × (1.5) = 0.9Fy (LRFD)
0.5Fu (ASD) × (1.5) = 0.75Fu (LRFD)
ASD × (1.5) = LRFD
16
Tension Members
X
Y
Z
FIXED JOINT
-400.
o
17
Tension Members
• Member is 15 feet long
• Fixed at the top of the member and free at the bottom
• Loadings are:
• Self weight
• 400 kips tension force at the free end
• Load combinations based on the ASD and LRFD
codes
• Steel grade is A992
• Design based on the ASD and LRFD codes
18
Tension Members
ASD
W18x46 Actual/Allowable Ratio = 0.989
LRFD
W10x49 Actual/Limiting Ratio = 0.989
19
Tension Members
ASD
W18x46 Area = 13.5 in.2
FX = 400.688 kips Ratio = 0.989
LRFD
W10x49 Area = 14.4 in.2
FX = 640.881 kips Ratio = 0.989
20
Tension Members
Load Factor difference between LRFD and ASD
640.881 / 400.688 = 1.599
Equation Factor difference between LRFD and ASD
LRFD = (1.5) × ASD
Estimate required cross-sectional area for LRFD
LRFD W10x49 Area = 14.4 in.2
A r e a f o r L R F D = × × × =
1 3 5
6 4 0 8 8 1
4 0 0 6 8 8
1 0
1 5
0 9 8 9
0 9 8 9
1 4 3 9 5
.
.
.
.
.
.
.
.
21
Tension Members
Code Check based on the ASD9 and using W10x49
FX = 400.734 kips Ratio = 0.928
Load Factor difference between LRFD and ASD
640.881 / 400.734 = 1.599
LRFD W10x49 Ratio = 0.989
L R F D R a t i o c o m p u t e d f r o m A S D = × × =
0 9 2 8
6 4 0 8 8 1
4 0 0 7 3 4
1 0
1 5
0 9 8 9
.
.
.
.
.
.
22
Tension Members
ASD
Example # 1
Live Load = 400 kips
W18x46 Actual/Allowable Ratio = 0.989
LRFD
Example # 1
Live Load = 400 kips
W10x49 Actual/Limiting Ratio = 0.989
Example # 2
Dead Load = 200 kips
Live Load = 200 kips
W14x43 Actual/Limiting Ratio = 0.989
Code check W14x43 based on the ASD9
W14x43 Actual/Allowable Ratio = 1.06
23
Compression Members
• Check KL/r ratio
• Compute Flexural-Torsional Buckling and
Equivalent (KL/r)e
• Find Maximum of KL/r and (KL/r)e
• Compute Qs and Qa based on the b/t and h/tw
ratios
• Based on the KL/r ratio, compute allowable
stress in ASD or limiting force in LRFD
24
Compression Members
ASD
fa = FX/Ag ≤ Fa
LRFD
Pu = FX ≤ ϕc Pn = ϕc Ag Fcr
Where ϕc = 0.85
25
Limiting Width-Thickness Ratios
for Compression Elements
ASD
b/t = h/tw =
LRFD
b/t = h/tw =
9 5 / F y
0 5 6
. /
E F y
2 5 3 / F y
1 4 9
. /
E F y
26
Limiting Width-Thickness Ratios
for Compression Elements
Assume E = 29000 ksi
ASD
b/t = h/tw =
LRFD
b/t = h/tw =
9 5 / F y
9 5 3 6
. / F y
2 5 3 / F y
2 5 3 7 4
. / F y
27
Compression Members
ASD KL/r ≤ C′c (ASD E2-1 or A-B5-11)
LRFD (LRFD A-E3-2)
( )
( ) ( )
F
Q
K L r
C
F
K L r
C
K L r
C
a
c
y
c c
=
−
′








+
′
−
′
1
2
5
3
3
8 8
2
2
3
3
/
/ /
( )
F Q F
c r
Q
y
c
= 0 6 5 8
2
. λ
W h e r e ′ =
C
E
Q F
c
y
2 2
π
W h e r e λ
π
c
y
K L
r
F
E
=
λ c Q ≤ 1 5
.
28
Compression Members
ASD KL/r > C′c (ASD E2-2)
LRFD (LRFD A-E3-3)
( )
F
E
K L r
a =
1 2
2 3
2
2
π
/
W h e r e ′ =
C
E
Q F
c
y
2 2
π
λ c Q > 1 5
.
F F
c r
c
y
=






0 8 7 7
2
.
λ
W h e r e λ
π
c
y
K L
r
F
E
=
29
Compression Members
LRFD
F F
c r
c
y
=






0 8 7 7
2
.
λ
W h e r e λ
π
c
y
K L
r
F
E
=
F
K L
r
F
E
F
c r
y
y
=
























0 8 7 7
2
.
π
( )
F
E
K L r
c r =
0 8 7 7 2
2
.
/
π
( )
F
E
K L r
c r =
2 0 1 7 1
2 3
2
2
.
/
π
30
Compression Members
ASD LRFD
Fcr / Fa = 1.681
LRFD Fcr = ASD Fa × 1.681
( )
F
E
K L r
a =
1 2
2 3
2
2
π
/ ( )
F
E
K L r
c r =
2 0 1 7 1
2 3
2
2
.
/
π
31
Compression Members
ASD
(ASD C-E2-2)
LRFD
λc = Maximum of ( λcy , λcz , λe )
K L r
K L
r
K L
r
K L
r
y Y
y
z z
z e
/ , ,
=














W h e r e
K L
r
E
F
e e





 = π
32
Compression Members
LRFD
Where:
λ
π
c y
y y
y
y
K L
r
F
E
=
λ
π
c z
z z
z
y
K L
r
F
E
=
λ e
y
e
F
F
=
33
Compression Members
Flexural-Torsional Buckling
( )
F
E C
K L
G J
I I
e
w
x x y z
= +







 +
π 2
2
1 0
.
34
Qs Computation
ASD
LRFD
W h e n 9 5 1 9 5
/ / / / /
F k b t F k
y c y c
< <
Q b t F k
s y c
= −
1 2 9 3 0 0 0 3 0 9
. . ( / ) /
W h e n 0 5 6 1 0 3
. / / . /
E F b t E F
y y
< <
Q b t F E
s y
= −
1 4 1 5 0 7 4
. . ( / ) /
( )
k
h t
h t k
c c
= > =
4 0 5
7 0 1 0
0 .4 6
.
/
/ , .
i f o t h e r w i s e
35
Qs Computation
Assume E = 29000 ksi
ASD
LRFD
W h e n 9 5 1 9 5
/ / / / /
F k b t F k
y c y c
< <
Q b t F k
s y c
= −
1 2 9 3 0 0 0 3 0 9
. . ( / ) /
W h e n 9 5 3 6 1 7 5 4
. / / . /
F b t F
y y
< <
Q b t F
s y
= −
1 4 1 5 0 0 0 4 3 4 5
. . ( / )
36
Qs Computation
ASD
LRFD
W h e n b t F k
y c
/ / /
≥ 1 9 5
( )
[ ]
Q k F b t
s c y
= 2 6 2 0 0
2
/ /
W h e n b t E F y
/ . /
≥ 1 0 3
( )
[ ]
Q E F b t
s y
= 0 6 9
2
. / /
37
Qs Computation
Assume E = 29000 ksi
ASD
LRFD
W h e n b t F k
y c
/ / /
≥ 1 9 5
( )
[ ]
Q k F b t
s c y
= 2 6 2 0 0
2
/ /
W h e n b t F y
/ . /
≥ 1 7 5 4
( )
[ ]
Q F b t
s y
= 2 0 0 1 0
2
/ /
38
Qa Computation
ASD
LRFD
b
t
f b t f
b
e = −








≤
2 5 3
1
4 4 3
.
( / )
b t
E
f b t
E
f
b
e = −





 ≤
1 9 1 1
0 3 4
.
.
( / )
A ssu m e k si
E b
t
f b t f
e
= = −








2 9 0 0 0
3 2 5 2 6
1
5 7 9
,
. .
( / )
39
Compression Members
X
Y
Z FIXED JOINT
-100.
o
40
Compression Members
• Member is 15 feet long
• Fixed at the bottom of the column and free at the top
• Loadings are:
• Self weight
• 100 kips compression force at the free end
• Load combinations based on the ASD and LRFD
codes
• Steel grade is A992
• Design based on the ASD and LRFD codes
41
Compression Members
ASD
W10x49 Actual/Allowable Ratio = 0.941
LRFD
W10x54 Actual/Limiting Ratio = 0.944
42
Compression Members
ASD
W10x49 Area = 14.4 in.2
FX = 100.734 kips Ratio = 0.941
LRFD
W10x54 Area = 15.8 in.2
FX = 160.967 kips Ratio = 0.944
43
Compression Members
Load Factor difference between LRFD and ASD
160.967 / 100.734 = 1.598
Equation Factor difference between LRFD and ASD
LRFD Fcr = (1.681) × ASD Fa
Estimate required cross-sectional area for LRFD
LRFD W10x54 Area = 15.8 inch
A r e a f o r L R F D = × × × × =
1 4 4
1 6 0 9 6 7
1 0 0 7 3 4
1 0
1 6 8 1
1 0
0 8 5
0 9 4 1
0 9 4 4
1 6 0 5
.
.
.
.
.
.
.
.
.
.
44
Compression Members
Code Check based on the ASD9 and use W10x54
FX = 100.806 kips Ratio = 0.845
Load Factor difference between LRFD and ASD
160.967 / 100.806 = 1.597
LRFD W10x54 Ratio = 0.944
L R F D R a t i o c o m p u t e d f r o m A S D = × × × =
0 8 4 5
1 6 0 9 6 7
1 0 0 8 0 6
1 0
1 6 8 1
1 0
0 8 5
0 9 4 4
.
.
.
.
.
.
.
.
45
Compression Members
ASD
Example # 1
Live Load = 100 kips
W10x49 Actual/Allowable Ratio = 0.941
LRFD
Example # 1
Live Load = 100 kips
W10x54 Actual/Limiting Ratio = 0.944
Example # 2
Dead Load = 50 kips
Live Load = 50 kips
W10x49 Actual/Limiting Ratio = 0.921
Code check W10x49 based on the ASD9
W10x49 Actual/Allowable Ratio = 0.941
46
Flexural Members
• Based on the b/t and h/tw ratios determine the compactness of
the cross-section
• Classify flexural members as Compact, Noncompact, or Slender
• When noncompact section in ASD, allowable stress Fb is
computed based on the l/rt ratio. l is the laterally unbraced
length of the compression flange. Also, Cb has to be computed
• When noncompact or slender section in LRFD, LTB, FLB, and
WLB are checked
• LTB for noncompact or slender sections is computed using Lb
and Cb. Lb is the laterally unbraced length of the compression
flange
47
Flexural Members
ASD
fb = MZ/SZ ≤ Fb
LRFD
Mu = MZ ≤ ϕb Mn
Where ϕb = 0.9
48
Limiting Width-Thickness Ratios
for Compression Elements
ASD
LRFD
Assume E = 29000 ksi
d t F
w y
/ /
≤ 6 4 0
b t E F y
/ . /
≤ 0 3 8 h t E F
w y
/ . /
≤ 3 7 6
b t F y
/ /
≤ 6 5
b t F y
/ . /
≤ 6 4 7 h t F
w y
/ . /
≤ 6 4 0 3
49
Flexural Members
Compact Section
ASD (ASD F1-1)
Fb = 0.66Fy
LRFD (LRFD A-F1-1)
ϕb Mn = ϕb Mp = ϕb Fy ZZ ≤ 1.5Fy SZ
Where ϕb = 0.9
50
Flexural Members
Compact Section
X
Y
Z
FIXED JOINT
-15.00
-15.00
o
o
FIXED JOINT
Braced at 1/3 Points
51
Flexural Members
Compact Section
• Member is 12 feet long
• Fixed at both ends of the member
• Loadings are:
• Self weight
• 15 kips/ft uniform load
• Load combinations based on the ASD and LRFD
codes
• Steel grade is A992
• Braced at the 1/3 Points
• Design based on the ASD and LRFD codes
52
Flexural Members
Compact Section
ASD
W18x40 Actual/Allowable Ratio = 0.959
LRFD
W18x40 Actual/Limiting Ratio = 0.982
53
Flexural Members
Compact Section
ASD
W18x40 Sz = 68.4 in.3
MZ = 2165.777 inch-kips Ratio = 0.959
LRFD
W18x40 Zz = 78.4 in.3
MZ = 3462.933 inch-kips Ratio = 0.982
54
Flexural Members
Compact Section
Load Factor difference between LRFD and ASD
3462.933 / 2165.777 = 1.5989
Equation Factor difference between LRFD and ASD
LRFD = (0.66Sz)(1.5989) / (0.9Zz) × ASD
Zz
LRFD W18x40 Zz = 78.4 in.3
f o r L R F D = × × × =
6 8 4
3 4 6 2 9 3 3
2 1 6 5 7 7 7
0 6 6
0 9
0 9 5 9
0 9 8 2
7 8 3
.
.
.
.
.
.
.
.
55
Flexural Members
Compact Section
Code Check based on the ASD9, Profile W18x40
MZ = 2165.777 inch-kips Ratio = 0.959
Load Factor difference between LRFD and ASD
3462.933 / 2165.777 = 1.5989
LRFD W18x40 Ratio = 0.982
L R F D R a t i o c o m p u t e d f r o m A S D = × × × =
0 9 5 9
3 4 6 2 9 3 3
2 1 6 5 7 7 7
0 6 6
0 9
6 8 4
7 8 4
0 9 8 1
.
.
.
.
.
.
.
.
56
Flexural Members
Compact Section
ASD
Example # 1
Live Load = 15 kips/ft
W18x40 Actual/Allowable Ratio = 0.959
LRFD
Example # 1
Live Load = 15 kips/ft
W18x40 Actual/Limiting Ratio = 0.982
Example # 2
Dead Load = 7.5 kips/ft
Live Load = 7.5 kips/ft
W18x40 Actual/Limiting Ratio = 0.859
Code check W18x40 based on the ASD9
W18x40 Actual/Allowable Ratio = 0.959
57
Flexural Members
Noncompact Section
ASD
• Based on b/t, d/tw and h/tw determine if the section is
noncompact
• Compute Cb
• Compute Qs
• Based on the l/rt ratio, compute allowable stress Fb
• Laterally unbraced length of the compression flange (l)
has a direct effect on the equations of the noncompact
section
58
Flexural Members
Noncompact Section
ASD
fb = MZ/SZ ≤ Fb
LRFD
Mu = MZ ≤ ϕb Mn
Where ϕb = 0.9
59
Limiting Width-Thickness Ratios
for Compression Elements
ASD
LRFD
6 5 9 5
F b t F
y y
< ≤
d t F
w y
> 6 4 0
0 3 8 0 8 3
. / .
E F b t E F
y L
< ≤
3 7 6 5 7
. .
E F h t E F
y w y
< ≤
h t F
w b
≤ 7 6 0
60
Limiting Width-Thickness Ratios
for Compression Elements
Assume E = 29000 ksi
ASD
LRFD
6 5 9 5
F b t F
y y
< ≤
d t F
w y
> 6 4 0
6 4 7 1 4 1 3
. / / . /
F b t F
y L
< ≤
6 4 0 3 9 7 0 7
. / . /
F h t F
y w y
< ≤
h t F
w b
≤ 7 6 0
61
Flexural Members
Noncompact Section
ASD
(ASD F1-3)
(ASD F1-2)
ASD Equations F1-6, F1-7, and F1-8 must to be checked.
F F
b
t
F
b y
f
f
y
= −








0 7 9 0 0 0 2
2
. .
( )
I f m i n i m u m o r
L L
b
F d A F
b c
f
y f y
> =








7 6 2 0 0 0 0
62
Flexural Members
Noncompact Section
ASD
When
(ASD F1-6)
1 0 2 1 0 5 1 0 1 0
3 3
×
≤ ≤
×
C
F
l
r
C
F
b
y T
b
y
( )
F
F l r
C
F F Q
b
y T
b
y y s
= −
×








≤
2
3 1 5 3 0 1 0
0 6
2
3
/
.
63
Flexural Members
Noncompact Section
ASD
When
(ASD F1-7)
l
r
C
F
T
b
y
≥
×
5 1 0 1 0 3
( )
F
C
l r
F Q
b
b
T
y s
=
×
≤
1 7 0 1 0
0 6
3
2
/
.
64
Flexural Members
Noncompact Section
ASD
For any value of l/rT
(ASD F1-8)
F
C
l d A
F Q
b
b
f
y s
=
×
≤
1 2 1 0
0 6
3
/
.
65
Flexural Members
Noncompact Section
LRFD
1. LTB, Lateral-Torsional Buckling
2. FLB, Flange Local Buckling
3. WLB, Web Local Buckling
66
Flexural Members
Noncompact Section
LRFD
– LTB
• Compute Cb
• Based on the Lb, compute limiting moment capacity. Lb is
the lateral unbraced length of the compression flange,
λ = Lb/ry
• Lb has a direct effect on the LTB equations for noncompact
and slender sections
– FLB
• Compute limiting moment capacity based on the b/t ratio of
the flange, λ = b/t
– WLB
• Compute limiting moment capacity based on the h/tw ratio
of the web, λ = h/tw
67
Flexural Members
Noncompact Section
LRFD LTB (Table A-F1.1)
For λp < λ ≤ λr
(LRFD A-F1-2)
Where:
Mp = Fy Zz ≤ 1.5Fy Sz
Mr = FLSz FL = Smaller of (Fyf − Fr) or Fyw
λ = Lb/ry
λp =
( )
M C M M M M
n b p p r
p
r p
p
= − −
−
−
















≤
λ λ
λ λ
1 7 6
. E F y f
68
Flexural Members
Noncompact Section
LRFD LTB (Table A-F1.1)
Where:
λr =
X1 =
X2 =
X
F
X F
L
L
1
2
2
1 1
+ +
π
S
E G J A
z 2
4
2
C
I
S
G J
w
y
z






69
Flexural Members
Noncompact Section
LRFD FLB (Table A-F1.1)
For λp < λ ≤ λr
(LRFD A-F1-3)
Where:
Mp = Fy Zz ≤ 1.5Fy Sz
Mr = FLSz FL = Smaller of (Fyf − Fr) or Fyw
λ = b/t
λp =
λr =
( )
M M M M
n p p r
p
r p
= − −
−
−
















λ λ
λ λ
0 3 8
. E F y
0 8 3
. E F L
70
Flexural Members
Noncompact Section
LRFD WLB (Table A-F1.1)
For λp < λ ≤ λr
(LRFD A-F1-3)
Where:
Mp = Fy Zz ≤ 1.5Fy Sz
Mr = Re Fy Sz
Re = 1.0 for non-hybrid girder
( )
M M M M
n p p r
p
r p
= − −
−
−
















λ λ
λ λ
71
Flexural Members
Noncompact Section
LRFD WLB (Table A-F1.1)
λ = h/tw
λp =
λr =
3 7 6
. E F y
5 7
. E F y
72
Flexural Members
Noncompact Section
ASD
LRFD
( ) ( )
C M M M M
M M
M M M C
b
b
= + + ≤
<
=
1 7 5 1 0 5 0 3 2 3
1 0
1 2 1 2
2
1 2
1 2
. . . .
, .
m a x
I f b e t w e e n a n d
C
M
M M M M
M
M
M
b
A B C
A
B
C
=
+ + +
=
=
= −
1 2 5
2 5 3 4 3
.
.
m a x
m a x
a b s o l u t e v a l u e o f m o m e n t a t q u a r t e r p o i n t
a b s o l u t e v a l u e o f m o m e n t a t c e n t e r l i n e
a b s o l u t e v a l u e o f m o m e n t a t t h r e e q u a r t e r p o i n t
73
Flexural Members
Noncompact Section
X
Y
Z
Roller
-12.00
-12.00
o
o
Pin
74
Flexural Members
Noncompact Section
• Member is 12 feet long
• Pin at the start of the member
• Roller at the end of the member
• Cross-section is W12x65
• Loadings are:
• Self weight
• 12 kips/ft uniform load
• Load combinations based on the ASD and LRFD codes
• Steel grade is A992
• Check code based on the ASD and LRFD codes
75
Flexural Members
Noncompact Section
ASD
W12x65 Cb = 1.0
Actual/Allowable Ratio = 0.988
LRFD
W12x65 Cb = 1.136
Actual/Limiting Ratio = 0.971
Code check is controlled by FLB.
Cb = 1.0 Actual/Limiting Ratio = 0.973
76
Flexural Members
Noncompact Section
ASD
Example # 1
Live Load = 12 kips/ft
W12x65 Actual/Allowable Ratio = 0.988
LRFD
Example # 1
Live Load = 12 kips/ft
W12x65 Actual/Limiting Ratio = 0.971
Example # 2
Dead Load = 6 kips/ft
Live Load = 6 kips/ft
W12x65 Actual/Limiting Ratio = 0.85
Code check W12x65 based on the ASD9
W12x65 Actual/Allowable Ratio = 0.988
77
Design for Shear
ASD
fv = FY/Aw ≤ Fv = 0.4Fy (ASD F4-1)
LRFD
Vu = FY ≤ ϕvVn = ϕv0.6Fyw Aw (LRFD F2-1)
Where ϕv = 0.9
h t F
w y
/ ≤ 3 8 0
h t E F
w y w
/ . /
≤ 2 4 5
78
Design for Shear
Assume E = 29000 ksi
ASD
fv = FY/Aw ≤ Fv = 0.4Fy (ASD F4-1)
LRFD
Vu = FY ≤ ϕvVn = ϕv0.6Fyw Aw (LRFD F2-1)
Where ϕv = 0.9
h t F
w y
/ ≤ 3 8 0
h t F
w y w
/ . /
≤ 4 1 7 2
79
Design for Shear
ASD
fv = FY/Ay ≤ (ASD F4-2)
LRFD
Vu = FY ≤ ϕvVn = ϕv (LRFD F2-2)
Where ϕv = 0.9
h t F
w y
/ > 3 8 0
2 4 5 3 0 7
. / / . /
E F h t E F
y w w y w
< ≤
( )
F
F
C F
v
y
v y
= ≤
2 8 9
0 4
.
.
0 6
2 4 5
.
. /
/
F A
E F
h t
y w w
y w
w








80
Design for Shear
LRFD
Vu = FY ≤ ϕvVn = ϕv (LRFD F2-3)
Where ϕv = 0.9
3 0 7 2 6 0
. / /
E F h t
y w w
< ≤
( )
A
E
h t
w
w
4 5 2
2
.
/








81
Design for Shear
X
Y
Z
FIXED JOINT
-15.00
-15.00
o
o
FIXED JOINT
Braced at 1/3 Points
82
Design for Shear
• Same as example # 3 which is used for design of flexural
member with compact section
• Member is 12 feet long
• Fixed at both ends of the member
• Loadings are:
• Self weight
• 15 kips/ft uniform load
• Load combinations based on the ASD and LRFD codes
• Steel grade is A992
• Braced at the 1/3 Points
• Design based on the ASD and LRFD codes
83
Design for Shear
ASD (Check shear at the end of the member, equation “F4-1 Y”)
W18x40 Actual/Allowable Ratio = 0.8
LRFD (Check shear at the end of the member, equation “A-F2-1 Y”)
W18x40 Actual/Limiting Ratio = 0.948
84
Design for Shear
ASD
W18x40 Ay = 5.638 in.2
FY = 90.241 kips Ratio = 0.8
LRFD
W18x40 Ay = 5.638 in.2
FY = 144.289 kips Ratio = 0.948
85
Design for Shear
Code Check based on the ASD9, Profile W18x40
FY = 90.241 kips Ratio = 0.8
Load Factor difference between LRFD and ASD
144.289 / 90.241 = 1.5989
Equation Factor difference between LRFD and ASD
LRFD = (0.4)(1.5989) /(0.6)(0.9) × ASD
LRFD W18x40 Ratio = 0.948
L R F D R a t i o c o m p u t e d f r o m A S D = × × × =
0 8
1 4 4 2 8 9
9 0 2 4 1
0 4
0 6
1 0
0 9
0 9 4 8
.
.
.
.
.
.
.
.
86
Design for Shear
ASD
Example # 1
Live Load = 15 kips/ft
W18x40 Actual/Allowable Ratio = 0.8
LRFD
Example # 1
Live Load = 15 kips/ft
W18x40 Actual/Limiting Ratio = 0.948
Example # 2
Dead Load = 7.5 kips/ft
Live Load = 7.5 kips/ft
W18x40 Actual/Limiting Ratio = 0.83
Code check W18x40 based on the ASD9
W18x40 Actual/Allowable Ratio = 0.8
87
Combined Forces
ASD fa /Fa > 0.15
(ASD H1-1)
(ASD H1-2)
LRFD Pu /ϕPn ≥ 0.2
(LRFD H1-1a)
f
F
C f
f
F
F
C f
f
F
a
a
m y b y
a
e y
b y
m z b z
a
e z
+
−








+
−






≤
1 1
1 0
.
f
F
f
F
f
F
a
y
b y
b y
b z
b z
0 6
1 0
.
.
+ + ≤
P
P
M
M
M
M
u
n
u y
b n y
u z
b n z
φ φ φ
+ +







 ≤
8
9
1 0
.
88
Combined Forces
ASD fa /Fa ≤ 0.15
(ASD H1-1)
LRFD Pu /ϕPn < 0.2
(LRFD H1-1a)
f
F
f
F
f
F
a
a
b y
b y
b z
b z
+ + ≤ 1 0
.
P
P
M
M
M
M
u
n
u y
b n y
u z
b n z
2
1 0
φ φ φ
+ +







 ≤ .
89
Combined Forces
X
Y
Z
90
Combined Forces
• 3D Simple Frame
• 3 Bays in X direction 3 @ 15 ft
• 2 Bays in Z direction 2 @ 30 ft
• 2 Floors in Y direction 2 @ 15 ft
• Loadings
• Self weight of the Steel
• Self weight of the Slab 62.5 psf
• Other dead loads 15.0 psf
• Live load on second floor 50.0 psf
• Live load on roof 20.0 psf
• Wind load in the X direction 20.0 psf
• Wind load in the Z direction 20.0 psf
91
Combined Forces
ASD
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< Active Units Weight Unit = KIP Length Unit = INCH >
< >
< Steel Take Off Itemize Based on the PROFILE >
< Total Length, Volume, Weight, and Number of Members >
< >
< Profile Names Total Length Total Volume Total Weight # of Members >
< W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 >
< W12x58 1.4400E+03 2.4480E+04 6.9352E+00 4 >
< W12x65 1.4400E+03 2.7504E+04 7.7919E+00 4 >
< W12x72 2.1600E+03 4.5576E+04 1.2912E+01 12 >
< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 >
< W8x40 1.4400E+03 1.6848E+04 4.7730E+00 4 >
< W8x48 1.4400E+03 2.0304E+04 5.7521E+00 4 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< ACTIVE UNITS WEIGHT KIP LENGTH INCH >
< >
< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >
< >
< LENGTH = 1.3320E+04 WEIGHT = 4.6566E+01 VOLUME = 1.6437E+05 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
92
Combined Forces
LRFD
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< Active Units Weight Unit = KIP Length Unit = INCH >
< >
< Steel Take Off Itemize Based on the PROFILE >
< Total Length, Volume, Weight, and Number of Members >
< >
< Profile Names Total Length Total Volume Total Weight # of Members >
< W10x33 3.6000E+03 3.4956E+04 9.9030E+00 16 >
< W10x39 1.4400E+03 1.6560E+04 4.6914E+00 4 >
< W10x49 7.2000E+02 1.0368E+04 2.9373E+00 4 >
< W12x45 1.4400E+03 1.9008E+04 5.3850E+00 4 >
< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 >
< W8x31 1.4400E+03 1.3147E+04 3.7246E+00 4 >
< W8x40 1.4400E+03 1.6848E+04 4.7730E+00 8 >
< >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< ACTIVE UNITS WEIGHT KIP LENGTH INCH >
< >
< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >
< >
< LENGTH = 1.3320E+04 WEIGHT = 3.3874E+01 VOLUME = 1.1957E+05 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
93
Combined Forces
ASD
WEIGHT = 46.566 kips
LRFD
WEIGHT = 33.874 kips
94
Deflection Design
ASD
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< Active Units Weight Unit = KIP Length Unit = INCH >
< >
< Steel Take Off Itemize Based on the PROFILE >
< Total Length, Volume, Weight, and Number of Members >
< >
< Profile Names Total Length Total Volume Total Weight # of Members >
< W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 >
< W12x58 1.4400E+03 2.4480E+04 6.9352E+00 4 >
< W12x65 1.4400E+03 2.7504E+04 7.7919E+00 4 >
< W12x72 2.1600E+03 4.5576E+04 1.2912E+01 12 >
< W14x43 1.4400E+03 1.8144E+04 5.1402E+00 4 >
< W14x48 1.4400E+03 2.0304E+04 5.7521E+00 4 >
< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< ACTIVE UNITS WEIGHT KIP LENGTH INCH >
< >
< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >
< >
< LENGTH = 1.3320E+04 WEIGHT = 4.6933E+01 VOLUME = 1.6566E+05 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
95
Deflection Design
LRFD
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< Active Units Weight Unit = KIP Length Unit = INCH >
< >
< Steel Take Off Itemize Based on the PROFILE >
< Total Length, Volume, Weight, and Number of Members >
< >
< Profile Names Total Length Total Volume Total Weight # of Members >
< W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 >
< W10x49 1.4400E+03 2.0736E+04 5.8745E+00 8 >
< W10x54 7.2000E+02 1.1376E+04 3.2228E+00 4 >
< W12x40 1.4400E+03 1.6992E+04 4.8138E+00 4 >
< W14x43 2.8800E+03 3.6288E+04 1.0280E+01 8 >
< W14x48 1.4400E+03 2.0304E+04 5.7521E+00 4 >
< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< ACTIVE UNITS WEIGHT KIP LENGTH INCH >
< >
< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >
< >
< LENGTH = 1.3320E+04 WEIGHT = 3.8345E+01 VOLUME = 1.3535E+05 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
96
Deflection Design
ASD
WEIGHT = 46.933 kips
LRFD
WEIGHT = 38.345 kips
97
Compare Design without and with
Deflection Design
ASD
Without Deflection Design WEIGHT = 46.566 kips
With Deflection Design WEIGHT = 46.933 kips
LRFD
Without Deflection Design WEIGHT = 33.874 kips
With Deflection Design WEIGHT = 38.345 kips
98
Design same example based on
Cb = 1.0
Code and deflection design with Cb = 1.0
ASD
Compute Cb WEIGHT = 46.933 kips
Specify Cb = 1.0 WEIGHT = 51.752 kips
LRFD
Compute Cb WEIGHT = 38.345 kips
Specify Cb = 1.0 WEIGHT = 48.421 kips
99
Design Similar example based on
Cb = 1.0 and LL×5
• Code and deflection design with Cb = 1.0 and increase the live
load by a factor of 5.
• Area loads are distributed using two way option instead of one
way
• Also change the 2 bays in the Z direction from 30 ft to 15 ft.
ASD WEIGHT = 25.677 kips
LRFD WEIGHT = 22.636 kips
Difference = 3.041 kips
100
Design Similar example based on
Cb = 1.0 and LL×10
• Code and deflection design with Cb = 1.0 and increase the live
load by a factor of 10.
• Area loads are distributed using two way option instead of one
way
• Also change the 2 bays in the Z direction from 30 ft to 15 ft.
ASD WEIGHT = 31.022 kips
LRFD WEIGHT = 29.051 kips
Difference = 1.971 kips
101
Stiffness Analysis
versus
Nonlinear Analysis
• Stiffness Analysis – Load Combinations or Form
Loads can be used.
• Nonlinear Analysis – Form Loads must be used. Load
Combinations are not valid.
• Nonlinear Analysis – Specify type of Nonlinearity.
• Nonlinear Analysis – Specify Maximum Number of
Cycles.
• Nonlinear Analysis – Specify Convergence Tolerance.
102
Nonlinear Analysis
Commands
• NONLINEAR EFFECT
• TENSION ONLY
• COMPRESSION ONLY
• GEOMETRY AXIAL
• MAXIMUM NUMBER OF CYCLES
• CONVERGENCE TOLERANCE
• NONLINEAR ANALYSIS
103
Design using Nonlinear Analysis
Input File # 1
1. Geometry, Material Type, Properties,
2. Loading ‘SW’, ‘LL’, and ‘WL’
3. FORM LOAD ‘A’ FROM ‘SW’ 1.4
4. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.6
5. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.5
6. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.6
7. DEFINE PHYSICAL MEMBERS
8. PARAMETERS
9. MEMBER CONSTRAINTS
10. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’ $ Activate only the FORM loads
11. STIFFNESS ANALYSIS
12. SAVE
104
Design using Nonlinear Analysis
Input File # 2
1. RESTORE
2. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’
3. SELECT MEMBERS
4. SMOOTH PHYSICAL MEMBERS
5. DELETE LOADINGS ‘A’ ‘B’ ‘C’ ‘D’
6. SELF WEIGHT LOADING RECOMPUTE
7. FORM LOAD ‘A’ FROM ‘SW’ 1.4
8. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.6
9. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.5
10. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.6
11. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’
12. STIFFNESS ANALYSIS
13. CHECK MEMBERS
14. STEEL TAKE OFF
15. SAVE
105
Design using Nonlinear Analysis
Input File # 3
1. RESTORE
2. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’
3. SELECT MEMBERS
4. SMOOTH PHYSICAL MEMBERS
5. DELETE LOADINGS ‘A’ ‘B’ ‘C’ ‘D’
6. SELF WEIGHT LOADING RECOMPUTE
7. FORM LOAD ‘A’ FROM ‘SW’ 1.4
8. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.6
9. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.5
10. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.6
106
Design using Nonlinear Analysis
Input File # 3 (continue)
1. NONLINEAR EFFECT
2. GEOMETRY ALL MEMBERS
3. MAXIMUM NUMBER OF CYCLES
4. CONVERGENCE TOLERANCE DISPLACEMENT
5. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’
6. NONLINEAR ANALYSIS
7. CHECK MEMBERS
8. STEEL TAKE OFF
9. SAVE
107
General Comparison between AISC
LRFD and ASD
Questions

More Related Content

What's hot

Menghitung berat-bangunan-dengan-etabs-v-9-0-7
Menghitung berat-bangunan-dengan-etabs-v-9-0-7Menghitung berat-bangunan-dengan-etabs-v-9-0-7
Menghitung berat-bangunan-dengan-etabs-v-9-0-7Avhat Civil
 
Plaxis Advanced Course, New Delhi, India, (2014).pdf
Plaxis Advanced Course, New Delhi, India, (2014).pdfPlaxis Advanced Course, New Delhi, India, (2014).pdf
Plaxis Advanced Course, New Delhi, India, (2014).pdfJaimeAlbertTairoPime1
 
Basement wall design
Basement wall designBasement wall design
Basement wall designCETCBIM
 
Etabs concrete-design
Etabs concrete-designEtabs concrete-design
Etabs concrete-designmamilli
 
Tugas Besar Pondasi II
Tugas Besar Pondasi IITugas Besar Pondasi II
Tugas Besar Pondasi IIRendi Fahreza
 
Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shellneikrof
 
Plaxis 2d tutorial manual
Plaxis 2d tutorial manualPlaxis 2d tutorial manual
Plaxis 2d tutorial manualSusie Ye, MA
 
Desain dinding geser beton bertulang menggunakan software ETABS
Desain dinding geser beton bertulang menggunakan software ETABSDesain dinding geser beton bertulang menggunakan software ETABS
Desain dinding geser beton bertulang menggunakan software ETABSAfret Nobel
 
Afes foundation design
Afes foundation designAfes foundation design
Afes foundation designHengkimhab
 
TEGANGAN%20DALAM%20MASSA%20TANAH-2.pptx
TEGANGAN%20DALAM%20MASSA%20TANAH-2.pptxTEGANGAN%20DALAM%20MASSA%20TANAH-2.pptx
TEGANGAN%20DALAM%20MASSA%20TANAH-2.pptxDanaGunaSatrio
 
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...Rahul Leslie
 
Bab iii analisis geser
Bab iii analisis geserBab iii analisis geser
Bab iii analisis geserKetut Swandana
 
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxDESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxsubhashini214160
 
Perhitungan struktur
Perhitungan strukturPerhitungan struktur
Perhitungan strukturRiski Nugroho
 
konfigurasi pondasi cerucuk
konfigurasi pondasi cerucukkonfigurasi pondasi cerucuk
konfigurasi pondasi cerucukNurhadi Akbar
 

What's hot (20)

Menghitung berat-bangunan-dengan-etabs-v-9-0-7
Menghitung berat-bangunan-dengan-etabs-v-9-0-7Menghitung berat-bangunan-dengan-etabs-v-9-0-7
Menghitung berat-bangunan-dengan-etabs-v-9-0-7
 
Plaxis Advanced Course, New Delhi, India, (2014).pdf
Plaxis Advanced Course, New Delhi, India, (2014).pdfPlaxis Advanced Course, New Delhi, India, (2014).pdf
Plaxis Advanced Course, New Delhi, India, (2014).pdf
 
Comparison between different code
Comparison between different codeComparison between different code
Comparison between different code
 
Basement wall design
Basement wall designBasement wall design
Basement wall design
 
Etabs concrete-design
Etabs concrete-designEtabs concrete-design
Etabs concrete-design
 
Tugas Besar Pondasi II
Tugas Besar Pondasi IITugas Besar Pondasi II
Tugas Besar Pondasi II
 
Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shell
 
Plaxis 2d tutorial manual
Plaxis 2d tutorial manualPlaxis 2d tutorial manual
Plaxis 2d tutorial manual
 
Desain dinding geser beton bertulang menggunakan software ETABS
Desain dinding geser beton bertulang menggunakan software ETABSDesain dinding geser beton bertulang menggunakan software ETABS
Desain dinding geser beton bertulang menggunakan software ETABS
 
Perencanaan Kolom
Perencanaan KolomPerencanaan Kolom
Perencanaan Kolom
 
Afes foundation design
Afes foundation designAfes foundation design
Afes foundation design
 
TEGANGAN%20DALAM%20MASSA%20TANAH-2.pptx
TEGANGAN%20DALAM%20MASSA%20TANAH-2.pptxTEGANGAN%20DALAM%20MASSA%20TANAH-2.pptx
TEGANGAN%20DALAM%20MASSA%20TANAH-2.pptx
 
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...
 
Etabs (atkins)
Etabs (atkins)Etabs (atkins)
Etabs (atkins)
 
Bab iii analisis geser
Bab iii analisis geserBab iii analisis geser
Bab iii analisis geser
 
Teknik Perkerasan Jalan
Teknik Perkerasan JalanTeknik Perkerasan Jalan
Teknik Perkerasan Jalan
 
Bab 1 sondir
Bab 1 sondirBab 1 sondir
Bab 1 sondir
 
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxDESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
 
Perhitungan struktur
Perhitungan strukturPerhitungan struktur
Perhitungan struktur
 
konfigurasi pondasi cerucuk
konfigurasi pondasi cerucukkonfigurasi pondasi cerucuk
konfigurasi pondasi cerucuk
 

Similar to [123doc] - tai-lieu-general-comparison-between-aisc-lrfd-and-asd-doc.pdf

ASD vs LRFD_ForWebSite.ppt
ASD vs LRFD_ForWebSite.pptASD vs LRFD_ForWebSite.ppt
ASD vs LRFD_ForWebSite.pptssuser523d4d
 
Lecture 5 Well Tubulars Casing String 2015.ppt
Lecture 5 Well Tubulars Casing String 2015.pptLecture 5 Well Tubulars Casing String 2015.ppt
Lecture 5 Well Tubulars Casing String 2015.pptVikramKumar158086
 
The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalAlan Elbanhawy
 
Example D.1 W-shape tension member
Example D.1 W-shape tension memberExample D.1 W-shape tension member
Example D.1 W-shape tension memberSDC Verifier
 
F z94 l-_pioneer__tuner__arp2134
F z94 l-_pioneer__tuner__arp2134F z94 l-_pioneer__tuner__arp2134
F z94 l-_pioneer__tuner__arp2134Peru Electronics
 
1) USING ELASTIC DESIGN , SELECT ANADEQUATE WIDE FLANGE FOR .docx
1) USING ELASTIC DESIGN , SELECT ANADEQUATE WIDE FLANGE FOR .docx1) USING ELASTIC DESIGN , SELECT ANADEQUATE WIDE FLANGE FOR .docx
1) USING ELASTIC DESIGN , SELECT ANADEQUATE WIDE FLANGE FOR .docxSONU61709
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog Latifs Chile
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog Latifs Chile
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office andMasroor Alam
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office andMasroor Alam
 
Original MOSFET N-CHANNEL STF5NK52ZD 5NK52ZD 5NK52 5A 520V New
Original MOSFET N-CHANNEL STF5NK52ZD 5NK52ZD 5NK52 5A 520V NewOriginal MOSFET N-CHANNEL STF5NK52ZD 5NK52ZD 5NK52 5A 520V New
Original MOSFET N-CHANNEL STF5NK52ZD 5NK52ZD 5NK52 5A 520V NewAUTHELECTRONIC
 
Comparison of Various Pressure Vessel Codes
Comparison of Various Pressure Vessel CodesComparison of Various Pressure Vessel Codes
Comparison of Various Pressure Vessel CodesStatic Equipment Design
 
pv_elite_webinar_ppt.pdf
pv_elite_webinar_ppt.pdfpv_elite_webinar_ppt.pdf
pv_elite_webinar_ppt.pdfAli Abdoulaye
 
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docxreference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docxdebishakespeare
 
EE301 Lesson 06 Series Parallel Circuits.ppt
EE301 Lesson 06 Series Parallel Circuits.pptEE301 Lesson 06 Series Parallel Circuits.ppt
EE301 Lesson 06 Series Parallel Circuits.pptMICHELLETIMBOL
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepErdi Karaçal
 

Similar to [123doc] - tai-lieu-general-comparison-between-aisc-lrfd-and-asd-doc.pdf (20)

ASD vs LRFD_ForWebSite.ppt
ASD vs LRFD_ForWebSite.pptASD vs LRFD_ForWebSite.ppt
ASD vs LRFD_ForWebSite.ppt
 
Lecture 5 Well Tubulars Casing String 2015.ppt
Lecture 5 Well Tubulars Casing String 2015.pptLecture 5 Well Tubulars Casing String 2015.ppt
Lecture 5 Well Tubulars Casing String 2015.ppt
 
The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET Final
 
PORTIQUE VERIF
PORTIQUE VERIFPORTIQUE VERIF
PORTIQUE VERIF
 
Capítulo 08 parafusos
Capítulo 08   parafusosCapítulo 08   parafusos
Capítulo 08 parafusos
 
Example D.1 W-shape tension member
Example D.1 W-shape tension memberExample D.1 W-shape tension member
Example D.1 W-shape tension member
 
Sn5414 7414
Sn5414 7414Sn5414 7414
Sn5414 7414
 
F z94 l-_pioneer__tuner__arp2134
F z94 l-_pioneer__tuner__arp2134F z94 l-_pioneer__tuner__arp2134
F z94 l-_pioneer__tuner__arp2134
 
1) USING ELASTIC DESIGN , SELECT ANADEQUATE WIDE FLANGE FOR .docx
1) USING ELASTIC DESIGN , SELECT ANADEQUATE WIDE FLANGE FOR .docx1) USING ELASTIC DESIGN , SELECT ANADEQUATE WIDE FLANGE FOR .docx
1) USING ELASTIC DESIGN , SELECT ANADEQUATE WIDE FLANGE FOR .docx
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office and
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office and
 
Original MOSFET N-CHANNEL STF5NK52ZD 5NK52ZD 5NK52 5A 520V New
Original MOSFET N-CHANNEL STF5NK52ZD 5NK52ZD 5NK52 5A 520V NewOriginal MOSFET N-CHANNEL STF5NK52ZD 5NK52ZD 5NK52 5A 520V New
Original MOSFET N-CHANNEL STF5NK52ZD 5NK52ZD 5NK52 5A 520V New
 
PORTIQUE CMU
PORTIQUE CMUPORTIQUE CMU
PORTIQUE CMU
 
Comparison of Various Pressure Vessel Codes
Comparison of Various Pressure Vessel CodesComparison of Various Pressure Vessel Codes
Comparison of Various Pressure Vessel Codes
 
pv_elite_webinar_ppt.pdf
pv_elite_webinar_ppt.pdfpv_elite_webinar_ppt.pdf
pv_elite_webinar_ppt.pdf
 
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docxreference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
 
EE301 Lesson 06 Series Parallel Circuits.ppt
EE301 Lesson 06 Series Parallel Circuits.pptEE301 Lesson 06 Series Parallel Circuits.ppt
EE301 Lesson 06 Series Parallel Circuits.ppt
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
 

Recently uploaded

IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 

Recently uploaded (20)

IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 

[123doc] - tai-lieu-general-comparison-between-aisc-lrfd-and-asd-doc.pdf

  • 1. 1 General Comparison between AISC LRFD and ASD Hamid Zand GT STRUDL Users Group Las Vegas, Nevada June 22-25, 2005
  • 2. 2 AISC ASD and LRFD • AISC = American Institute of Steel Construction • ASD = Allowable Stress Design AISC Ninth Edition • LRFD = Load and Resistance Factor Design AISC Third Edition
  • 3. 3 AISC Steel Design Manuals • 1963 AISC ASD 6th Edition • 1969 AISC ASD 7th Edition • 1978 AISC ASD 8th Edition • 1989 AISC ASD 9th Edition • 1986 AISC LRFD 1st Edition • 1993 AISC LRFD 2nd Edition • 1999 AISC LRFD 3rd Edition
  • 4. 4 ASD and LRFD Major Differences • Load Combinations and load factors • ASD results are based on the stresses and LRFD results are based on the forces and moments capacity • Static analysis is acceptable for ASD but nonlinear geometric analysis is required for LRFD • Beams and flexural members • Cb computation
  • 5. 5 ASD Load Combinations • 1.0D + 1.0L • 0.75D + 0.75L + 0.75W • 0.75D + 0.75L + 0.75E D = dead load L = live load W = wind load E = earthquake load
  • 6. 6 ASD Load Combinations Or you can use following load combinations with the parameter ALSTRINC to account for the 1/3 allowable increase for the wind and seismic load 1. 1.0D + 1.0L 2. 1.0D + 1.0L + 1.0W 3. 1.0D + 1.0L + 1.0E • PARAMETER$ ALSTRINC based on the % increase • ALSTRINC 33.333 LOADINGS 2 3
  • 7. 7 LRFD Load Combinations • 1.4D • 1.2D + 1.6L • 1.2D + 1.6W + 0.5L • 1.2D ± 1.0E + 0.5L • 0.9D ± (1.6W or 1.0E) D = dead load L = live load W = wind load E = earthquake load
  • 8. 8 Deflection Load Combinations for ASD and LRFD • 1.0D + 1.0L • 1.0D + 1.0L + 1.0W • 1.0D + 1.0L + 1.0E D = dead load L = live load W = wind load E = earthquake load
  • 9. 9 Forces and Stresses • ASD = actual stress values are compared to the AISC allowable stress values • LRFD = actual forces and moments are compared to the AISC limiting forces and moments capacity
  • 10. 10 ASTM Steel Grade • Comparison is between Table 1 of the AISC ASD 9th Edition on Page 1-7 versus Table 2-1 of the AISC LRFD 3rd Edition on Page 2-24 • A529 Gr. 42 of ASD, not available in LRFD • A529 Gr. 50 and 55 are new in LRFD • A441 not available in LRFD • A572 Gr. 55 is new in LRFD • A618 Gr. I, II, & III are new in LRFD • A913 Gr. 50, 60, 65, & 70 are new in LRFD • A992 (Fy = 50, Fu = 65) is new in LRFD (new standard) • A847 is new in LRFD
  • 11. 11 Slenderness Ratio • Compression KL/r ≤ 200 • Tension L/r ≤ 300
  • 12. 12 Tension Members • Check L/r ratio • Check Tensile Strength based on the cross- section’s Gross Area • Check Tensile Strength based on the cross- section’s Net Area
  • 13. 13 Tension Members ASD ft = FX/Ag ≤ Ft Gross Area ft = FX/Ae ≤ Ft Net Area LRFD Pu = FX ≤ ϕt Pn = ϕt Ag Fy ϕt = 0.9 for Gross Area Pu = FX ≤ ϕt Pn = ϕt Ae Fu ϕt = 0.75 for Net Area
  • 14. 14 Tension Members ASD (ASD Section D1) Gross Area Ft = 0.6Fy Net Area Ft = 0.5Fu LRFD (LRFD Section D1) Gross Area ϕt Pn = ϕt Fy Ag ϕt = 0.9 Net Area ϕt Pn = ϕt Fu Ae ϕt = 0.75
  • 15. 15 Compare ASD to LRFD ASD 1.0D + 1.0L LRFD 1.2D + 1.6L 0.6Fy (ASD) × (1.5) = 0.9Fy (LRFD) 0.5Fu (ASD) × (1.5) = 0.75Fu (LRFD) ASD × (1.5) = LRFD
  • 17. 17 Tension Members • Member is 15 feet long • Fixed at the top of the member and free at the bottom • Loadings are: • Self weight • 400 kips tension force at the free end • Load combinations based on the ASD and LRFD codes • Steel grade is A992 • Design based on the ASD and LRFD codes
  • 18. 18 Tension Members ASD W18x46 Actual/Allowable Ratio = 0.989 LRFD W10x49 Actual/Limiting Ratio = 0.989
  • 19. 19 Tension Members ASD W18x46 Area = 13.5 in.2 FX = 400.688 kips Ratio = 0.989 LRFD W10x49 Area = 14.4 in.2 FX = 640.881 kips Ratio = 0.989
  • 20. 20 Tension Members Load Factor difference between LRFD and ASD 640.881 / 400.688 = 1.599 Equation Factor difference between LRFD and ASD LRFD = (1.5) × ASD Estimate required cross-sectional area for LRFD LRFD W10x49 Area = 14.4 in.2 A r e a f o r L R F D = × × × = 1 3 5 6 4 0 8 8 1 4 0 0 6 8 8 1 0 1 5 0 9 8 9 0 9 8 9 1 4 3 9 5 . . . . . . . .
  • 21. 21 Tension Members Code Check based on the ASD9 and using W10x49 FX = 400.734 kips Ratio = 0.928 Load Factor difference between LRFD and ASD 640.881 / 400.734 = 1.599 LRFD W10x49 Ratio = 0.989 L R F D R a t i o c o m p u t e d f r o m A S D = × × = 0 9 2 8 6 4 0 8 8 1 4 0 0 7 3 4 1 0 1 5 0 9 8 9 . . . . . .
  • 22. 22 Tension Members ASD Example # 1 Live Load = 400 kips W18x46 Actual/Allowable Ratio = 0.989 LRFD Example # 1 Live Load = 400 kips W10x49 Actual/Limiting Ratio = 0.989 Example # 2 Dead Load = 200 kips Live Load = 200 kips W14x43 Actual/Limiting Ratio = 0.989 Code check W14x43 based on the ASD9 W14x43 Actual/Allowable Ratio = 1.06
  • 23. 23 Compression Members • Check KL/r ratio • Compute Flexural-Torsional Buckling and Equivalent (KL/r)e • Find Maximum of KL/r and (KL/r)e • Compute Qs and Qa based on the b/t and h/tw ratios • Based on the KL/r ratio, compute allowable stress in ASD or limiting force in LRFD
  • 24. 24 Compression Members ASD fa = FX/Ag ≤ Fa LRFD Pu = FX ≤ ϕc Pn = ϕc Ag Fcr Where ϕc = 0.85
  • 25. 25 Limiting Width-Thickness Ratios for Compression Elements ASD b/t = h/tw = LRFD b/t = h/tw = 9 5 / F y 0 5 6 . / E F y 2 5 3 / F y 1 4 9 . / E F y
  • 26. 26 Limiting Width-Thickness Ratios for Compression Elements Assume E = 29000 ksi ASD b/t = h/tw = LRFD b/t = h/tw = 9 5 / F y 9 5 3 6 . / F y 2 5 3 / F y 2 5 3 7 4 . / F y
  • 27. 27 Compression Members ASD KL/r ≤ C′c (ASD E2-1 or A-B5-11) LRFD (LRFD A-E3-2) ( ) ( ) ( ) F Q K L r C F K L r C K L r C a c y c c = − ′         + ′ − ′ 1 2 5 3 3 8 8 2 2 3 3 / / / ( ) F Q F c r Q y c = 0 6 5 8 2 . λ W h e r e ′ = C E Q F c y 2 2 π W h e r e λ π c y K L r F E = λ c Q ≤ 1 5 .
  • 28. 28 Compression Members ASD KL/r > C′c (ASD E2-2) LRFD (LRFD A-E3-3) ( ) F E K L r a = 1 2 2 3 2 2 π / W h e r e ′ = C E Q F c y 2 2 π λ c Q > 1 5 . F F c r c y =       0 8 7 7 2 . λ W h e r e λ π c y K L r F E =
  • 29. 29 Compression Members LRFD F F c r c y =       0 8 7 7 2 . λ W h e r e λ π c y K L r F E = F K L r F E F c r y y =                         0 8 7 7 2 . π ( ) F E K L r c r = 0 8 7 7 2 2 . / π ( ) F E K L r c r = 2 0 1 7 1 2 3 2 2 . / π
  • 30. 30 Compression Members ASD LRFD Fcr / Fa = 1.681 LRFD Fcr = ASD Fa × 1.681 ( ) F E K L r a = 1 2 2 3 2 2 π / ( ) F E K L r c r = 2 0 1 7 1 2 3 2 2 . / π
  • 31. 31 Compression Members ASD (ASD C-E2-2) LRFD λc = Maximum of ( λcy , λcz , λe ) K L r K L r K L r K L r y Y y z z z e / , , =               W h e r e K L r E F e e       = π
  • 32. 32 Compression Members LRFD Where: λ π c y y y y y K L r F E = λ π c z z z z y K L r F E = λ e y e F F =
  • 33. 33 Compression Members Flexural-Torsional Buckling ( ) F E C K L G J I I e w x x y z = +         + π 2 2 1 0 .
  • 34. 34 Qs Computation ASD LRFD W h e n 9 5 1 9 5 / / / / / F k b t F k y c y c < < Q b t F k s y c = − 1 2 9 3 0 0 0 3 0 9 . . ( / ) / W h e n 0 5 6 1 0 3 . / / . / E F b t E F y y < < Q b t F E s y = − 1 4 1 5 0 7 4 . . ( / ) / ( ) k h t h t k c c = > = 4 0 5 7 0 1 0 0 .4 6 . / / , . i f o t h e r w i s e
  • 35. 35 Qs Computation Assume E = 29000 ksi ASD LRFD W h e n 9 5 1 9 5 / / / / / F k b t F k y c y c < < Q b t F k s y c = − 1 2 9 3 0 0 0 3 0 9 . . ( / ) / W h e n 9 5 3 6 1 7 5 4 . / / . / F b t F y y < < Q b t F s y = − 1 4 1 5 0 0 0 4 3 4 5 . . ( / )
  • 36. 36 Qs Computation ASD LRFD W h e n b t F k y c / / / ≥ 1 9 5 ( ) [ ] Q k F b t s c y = 2 6 2 0 0 2 / / W h e n b t E F y / . / ≥ 1 0 3 ( ) [ ] Q E F b t s y = 0 6 9 2 . / /
  • 37. 37 Qs Computation Assume E = 29000 ksi ASD LRFD W h e n b t F k y c / / / ≥ 1 9 5 ( ) [ ] Q k F b t s c y = 2 6 2 0 0 2 / / W h e n b t F y / . / ≥ 1 7 5 4 ( ) [ ] Q F b t s y = 2 0 0 1 0 2 / /
  • 38. 38 Qa Computation ASD LRFD b t f b t f b e = −         ≤ 2 5 3 1 4 4 3 . ( / ) b t E f b t E f b e = −       ≤ 1 9 1 1 0 3 4 . . ( / ) A ssu m e k si E b t f b t f e = = −         2 9 0 0 0 3 2 5 2 6 1 5 7 9 , . . ( / )
  • 40. 40 Compression Members • Member is 15 feet long • Fixed at the bottom of the column and free at the top • Loadings are: • Self weight • 100 kips compression force at the free end • Load combinations based on the ASD and LRFD codes • Steel grade is A992 • Design based on the ASD and LRFD codes
  • 41. 41 Compression Members ASD W10x49 Actual/Allowable Ratio = 0.941 LRFD W10x54 Actual/Limiting Ratio = 0.944
  • 42. 42 Compression Members ASD W10x49 Area = 14.4 in.2 FX = 100.734 kips Ratio = 0.941 LRFD W10x54 Area = 15.8 in.2 FX = 160.967 kips Ratio = 0.944
  • 43. 43 Compression Members Load Factor difference between LRFD and ASD 160.967 / 100.734 = 1.598 Equation Factor difference between LRFD and ASD LRFD Fcr = (1.681) × ASD Fa Estimate required cross-sectional area for LRFD LRFD W10x54 Area = 15.8 inch A r e a f o r L R F D = × × × × = 1 4 4 1 6 0 9 6 7 1 0 0 7 3 4 1 0 1 6 8 1 1 0 0 8 5 0 9 4 1 0 9 4 4 1 6 0 5 . . . . . . . . . .
  • 44. 44 Compression Members Code Check based on the ASD9 and use W10x54 FX = 100.806 kips Ratio = 0.845 Load Factor difference between LRFD and ASD 160.967 / 100.806 = 1.597 LRFD W10x54 Ratio = 0.944 L R F D R a t i o c o m p u t e d f r o m A S D = × × × = 0 8 4 5 1 6 0 9 6 7 1 0 0 8 0 6 1 0 1 6 8 1 1 0 0 8 5 0 9 4 4 . . . . . . . .
  • 45. 45 Compression Members ASD Example # 1 Live Load = 100 kips W10x49 Actual/Allowable Ratio = 0.941 LRFD Example # 1 Live Load = 100 kips W10x54 Actual/Limiting Ratio = 0.944 Example # 2 Dead Load = 50 kips Live Load = 50 kips W10x49 Actual/Limiting Ratio = 0.921 Code check W10x49 based on the ASD9 W10x49 Actual/Allowable Ratio = 0.941
  • 46. 46 Flexural Members • Based on the b/t and h/tw ratios determine the compactness of the cross-section • Classify flexural members as Compact, Noncompact, or Slender • When noncompact section in ASD, allowable stress Fb is computed based on the l/rt ratio. l is the laterally unbraced length of the compression flange. Also, Cb has to be computed • When noncompact or slender section in LRFD, LTB, FLB, and WLB are checked • LTB for noncompact or slender sections is computed using Lb and Cb. Lb is the laterally unbraced length of the compression flange
  • 47. 47 Flexural Members ASD fb = MZ/SZ ≤ Fb LRFD Mu = MZ ≤ ϕb Mn Where ϕb = 0.9
  • 48. 48 Limiting Width-Thickness Ratios for Compression Elements ASD LRFD Assume E = 29000 ksi d t F w y / / ≤ 6 4 0 b t E F y / . / ≤ 0 3 8 h t E F w y / . / ≤ 3 7 6 b t F y / / ≤ 6 5 b t F y / . / ≤ 6 4 7 h t F w y / . / ≤ 6 4 0 3
  • 49. 49 Flexural Members Compact Section ASD (ASD F1-1) Fb = 0.66Fy LRFD (LRFD A-F1-1) ϕb Mn = ϕb Mp = ϕb Fy ZZ ≤ 1.5Fy SZ Where ϕb = 0.9
  • 50. 50 Flexural Members Compact Section X Y Z FIXED JOINT -15.00 -15.00 o o FIXED JOINT Braced at 1/3 Points
  • 51. 51 Flexural Members Compact Section • Member is 12 feet long • Fixed at both ends of the member • Loadings are: • Self weight • 15 kips/ft uniform load • Load combinations based on the ASD and LRFD codes • Steel grade is A992 • Braced at the 1/3 Points • Design based on the ASD and LRFD codes
  • 52. 52 Flexural Members Compact Section ASD W18x40 Actual/Allowable Ratio = 0.959 LRFD W18x40 Actual/Limiting Ratio = 0.982
  • 53. 53 Flexural Members Compact Section ASD W18x40 Sz = 68.4 in.3 MZ = 2165.777 inch-kips Ratio = 0.959 LRFD W18x40 Zz = 78.4 in.3 MZ = 3462.933 inch-kips Ratio = 0.982
  • 54. 54 Flexural Members Compact Section Load Factor difference between LRFD and ASD 3462.933 / 2165.777 = 1.5989 Equation Factor difference between LRFD and ASD LRFD = (0.66Sz)(1.5989) / (0.9Zz) × ASD Zz LRFD W18x40 Zz = 78.4 in.3 f o r L R F D = × × × = 6 8 4 3 4 6 2 9 3 3 2 1 6 5 7 7 7 0 6 6 0 9 0 9 5 9 0 9 8 2 7 8 3 . . . . . . . .
  • 55. 55 Flexural Members Compact Section Code Check based on the ASD9, Profile W18x40 MZ = 2165.777 inch-kips Ratio = 0.959 Load Factor difference between LRFD and ASD 3462.933 / 2165.777 = 1.5989 LRFD W18x40 Ratio = 0.982 L R F D R a t i o c o m p u t e d f r o m A S D = × × × = 0 9 5 9 3 4 6 2 9 3 3 2 1 6 5 7 7 7 0 6 6 0 9 6 8 4 7 8 4 0 9 8 1 . . . . . . . .
  • 56. 56 Flexural Members Compact Section ASD Example # 1 Live Load = 15 kips/ft W18x40 Actual/Allowable Ratio = 0.959 LRFD Example # 1 Live Load = 15 kips/ft W18x40 Actual/Limiting Ratio = 0.982 Example # 2 Dead Load = 7.5 kips/ft Live Load = 7.5 kips/ft W18x40 Actual/Limiting Ratio = 0.859 Code check W18x40 based on the ASD9 W18x40 Actual/Allowable Ratio = 0.959
  • 57. 57 Flexural Members Noncompact Section ASD • Based on b/t, d/tw and h/tw determine if the section is noncompact • Compute Cb • Compute Qs • Based on the l/rt ratio, compute allowable stress Fb • Laterally unbraced length of the compression flange (l) has a direct effect on the equations of the noncompact section
  • 58. 58 Flexural Members Noncompact Section ASD fb = MZ/SZ ≤ Fb LRFD Mu = MZ ≤ ϕb Mn Where ϕb = 0.9
  • 59. 59 Limiting Width-Thickness Ratios for Compression Elements ASD LRFD 6 5 9 5 F b t F y y < ≤ d t F w y > 6 4 0 0 3 8 0 8 3 . / . E F b t E F y L < ≤ 3 7 6 5 7 . . E F h t E F y w y < ≤ h t F w b ≤ 7 6 0
  • 60. 60 Limiting Width-Thickness Ratios for Compression Elements Assume E = 29000 ksi ASD LRFD 6 5 9 5 F b t F y y < ≤ d t F w y > 6 4 0 6 4 7 1 4 1 3 . / / . / F b t F y L < ≤ 6 4 0 3 9 7 0 7 . / . / F h t F y w y < ≤ h t F w b ≤ 7 6 0
  • 61. 61 Flexural Members Noncompact Section ASD (ASD F1-3) (ASD F1-2) ASD Equations F1-6, F1-7, and F1-8 must to be checked. F F b t F b y f f y = −         0 7 9 0 0 0 2 2 . . ( ) I f m i n i m u m o r L L b F d A F b c f y f y > =         7 6 2 0 0 0 0
  • 62. 62 Flexural Members Noncompact Section ASD When (ASD F1-6) 1 0 2 1 0 5 1 0 1 0 3 3 × ≤ ≤ × C F l r C F b y T b y ( ) F F l r C F F Q b y T b y y s = − ×         ≤ 2 3 1 5 3 0 1 0 0 6 2 3 / .
  • 63. 63 Flexural Members Noncompact Section ASD When (ASD F1-7) l r C F T b y ≥ × 5 1 0 1 0 3 ( ) F C l r F Q b b T y s = × ≤ 1 7 0 1 0 0 6 3 2 / .
  • 64. 64 Flexural Members Noncompact Section ASD For any value of l/rT (ASD F1-8) F C l d A F Q b b f y s = × ≤ 1 2 1 0 0 6 3 / .
  • 65. 65 Flexural Members Noncompact Section LRFD 1. LTB, Lateral-Torsional Buckling 2. FLB, Flange Local Buckling 3. WLB, Web Local Buckling
  • 66. 66 Flexural Members Noncompact Section LRFD – LTB • Compute Cb • Based on the Lb, compute limiting moment capacity. Lb is the lateral unbraced length of the compression flange, λ = Lb/ry • Lb has a direct effect on the LTB equations for noncompact and slender sections – FLB • Compute limiting moment capacity based on the b/t ratio of the flange, λ = b/t – WLB • Compute limiting moment capacity based on the h/tw ratio of the web, λ = h/tw
  • 67. 67 Flexural Members Noncompact Section LRFD LTB (Table A-F1.1) For λp < λ ≤ λr (LRFD A-F1-2) Where: Mp = Fy Zz ≤ 1.5Fy Sz Mr = FLSz FL = Smaller of (Fyf − Fr) or Fyw λ = Lb/ry λp = ( ) M C M M M M n b p p r p r p p = − − − −                 ≤ λ λ λ λ 1 7 6 . E F y f
  • 68. 68 Flexural Members Noncompact Section LRFD LTB (Table A-F1.1) Where: λr = X1 = X2 = X F X F L L 1 2 2 1 1 + + π S E G J A z 2 4 2 C I S G J w y z      
  • 69. 69 Flexural Members Noncompact Section LRFD FLB (Table A-F1.1) For λp < λ ≤ λr (LRFD A-F1-3) Where: Mp = Fy Zz ≤ 1.5Fy Sz Mr = FLSz FL = Smaller of (Fyf − Fr) or Fyw λ = b/t λp = λr = ( ) M M M M n p p r p r p = − − − −                 λ λ λ λ 0 3 8 . E F y 0 8 3 . E F L
  • 70. 70 Flexural Members Noncompact Section LRFD WLB (Table A-F1.1) For λp < λ ≤ λr (LRFD A-F1-3) Where: Mp = Fy Zz ≤ 1.5Fy Sz Mr = Re Fy Sz Re = 1.0 for non-hybrid girder ( ) M M M M n p p r p r p = − − − −                 λ λ λ λ
  • 71. 71 Flexural Members Noncompact Section LRFD WLB (Table A-F1.1) λ = h/tw λp = λr = 3 7 6 . E F y 5 7 . E F y
  • 72. 72 Flexural Members Noncompact Section ASD LRFD ( ) ( ) C M M M M M M M M M C b b = + + ≤ < = 1 7 5 1 0 5 0 3 2 3 1 0 1 2 1 2 2 1 2 1 2 . . . . , . m a x I f b e t w e e n a n d C M M M M M M M M b A B C A B C = + + + = = = − 1 2 5 2 5 3 4 3 . . m a x m a x a b s o l u t e v a l u e o f m o m e n t a t q u a r t e r p o i n t a b s o l u t e v a l u e o f m o m e n t a t c e n t e r l i n e a b s o l u t e v a l u e o f m o m e n t a t t h r e e q u a r t e r p o i n t
  • 74. 74 Flexural Members Noncompact Section • Member is 12 feet long • Pin at the start of the member • Roller at the end of the member • Cross-section is W12x65 • Loadings are: • Self weight • 12 kips/ft uniform load • Load combinations based on the ASD and LRFD codes • Steel grade is A992 • Check code based on the ASD and LRFD codes
  • 75. 75 Flexural Members Noncompact Section ASD W12x65 Cb = 1.0 Actual/Allowable Ratio = 0.988 LRFD W12x65 Cb = 1.136 Actual/Limiting Ratio = 0.971 Code check is controlled by FLB. Cb = 1.0 Actual/Limiting Ratio = 0.973
  • 76. 76 Flexural Members Noncompact Section ASD Example # 1 Live Load = 12 kips/ft W12x65 Actual/Allowable Ratio = 0.988 LRFD Example # 1 Live Load = 12 kips/ft W12x65 Actual/Limiting Ratio = 0.971 Example # 2 Dead Load = 6 kips/ft Live Load = 6 kips/ft W12x65 Actual/Limiting Ratio = 0.85 Code check W12x65 based on the ASD9 W12x65 Actual/Allowable Ratio = 0.988
  • 77. 77 Design for Shear ASD fv = FY/Aw ≤ Fv = 0.4Fy (ASD F4-1) LRFD Vu = FY ≤ ϕvVn = ϕv0.6Fyw Aw (LRFD F2-1) Where ϕv = 0.9 h t F w y / ≤ 3 8 0 h t E F w y w / . / ≤ 2 4 5
  • 78. 78 Design for Shear Assume E = 29000 ksi ASD fv = FY/Aw ≤ Fv = 0.4Fy (ASD F4-1) LRFD Vu = FY ≤ ϕvVn = ϕv0.6Fyw Aw (LRFD F2-1) Where ϕv = 0.9 h t F w y / ≤ 3 8 0 h t F w y w / . / ≤ 4 1 7 2
  • 79. 79 Design for Shear ASD fv = FY/Ay ≤ (ASD F4-2) LRFD Vu = FY ≤ ϕvVn = ϕv (LRFD F2-2) Where ϕv = 0.9 h t F w y / > 3 8 0 2 4 5 3 0 7 . / / . / E F h t E F y w w y w < ≤ ( ) F F C F v y v y = ≤ 2 8 9 0 4 . . 0 6 2 4 5 . . / / F A E F h t y w w y w w        
  • 80. 80 Design for Shear LRFD Vu = FY ≤ ϕvVn = ϕv (LRFD F2-3) Where ϕv = 0.9 3 0 7 2 6 0 . / / E F h t y w w < ≤ ( ) A E h t w w 4 5 2 2 . /        
  • 81. 81 Design for Shear X Y Z FIXED JOINT -15.00 -15.00 o o FIXED JOINT Braced at 1/3 Points
  • 82. 82 Design for Shear • Same as example # 3 which is used for design of flexural member with compact section • Member is 12 feet long • Fixed at both ends of the member • Loadings are: • Self weight • 15 kips/ft uniform load • Load combinations based on the ASD and LRFD codes • Steel grade is A992 • Braced at the 1/3 Points • Design based on the ASD and LRFD codes
  • 83. 83 Design for Shear ASD (Check shear at the end of the member, equation “F4-1 Y”) W18x40 Actual/Allowable Ratio = 0.8 LRFD (Check shear at the end of the member, equation “A-F2-1 Y”) W18x40 Actual/Limiting Ratio = 0.948
  • 84. 84 Design for Shear ASD W18x40 Ay = 5.638 in.2 FY = 90.241 kips Ratio = 0.8 LRFD W18x40 Ay = 5.638 in.2 FY = 144.289 kips Ratio = 0.948
  • 85. 85 Design for Shear Code Check based on the ASD9, Profile W18x40 FY = 90.241 kips Ratio = 0.8 Load Factor difference between LRFD and ASD 144.289 / 90.241 = 1.5989 Equation Factor difference between LRFD and ASD LRFD = (0.4)(1.5989) /(0.6)(0.9) × ASD LRFD W18x40 Ratio = 0.948 L R F D R a t i o c o m p u t e d f r o m A S D = × × × = 0 8 1 4 4 2 8 9 9 0 2 4 1 0 4 0 6 1 0 0 9 0 9 4 8 . . . . . . . .
  • 86. 86 Design for Shear ASD Example # 1 Live Load = 15 kips/ft W18x40 Actual/Allowable Ratio = 0.8 LRFD Example # 1 Live Load = 15 kips/ft W18x40 Actual/Limiting Ratio = 0.948 Example # 2 Dead Load = 7.5 kips/ft Live Load = 7.5 kips/ft W18x40 Actual/Limiting Ratio = 0.83 Code check W18x40 based on the ASD9 W18x40 Actual/Allowable Ratio = 0.8
  • 87. 87 Combined Forces ASD fa /Fa > 0.15 (ASD H1-1) (ASD H1-2) LRFD Pu /ϕPn ≥ 0.2 (LRFD H1-1a) f F C f f F F C f f F a a m y b y a e y b y m z b z a e z + −         + −       ≤ 1 1 1 0 . f F f F f F a y b y b y b z b z 0 6 1 0 . . + + ≤ P P M M M M u n u y b n y u z b n z φ φ φ + +         ≤ 8 9 1 0 .
  • 88. 88 Combined Forces ASD fa /Fa ≤ 0.15 (ASD H1-1) LRFD Pu /ϕPn < 0.2 (LRFD H1-1a) f F f F f F a a b y b y b z b z + + ≤ 1 0 . P P M M M M u n u y b n y u z b n z 2 1 0 φ φ φ + +         ≤ .
  • 90. 90 Combined Forces • 3D Simple Frame • 3 Bays in X direction 3 @ 15 ft • 2 Bays in Z direction 2 @ 30 ft • 2 Floors in Y direction 2 @ 15 ft • Loadings • Self weight of the Steel • Self weight of the Slab 62.5 psf • Other dead loads 15.0 psf • Live load on second floor 50.0 psf • Live load on roof 20.0 psf • Wind load in the X direction 20.0 psf • Wind load in the Z direction 20.0 psf
  • 91. 91 Combined Forces ASD <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < Active Units Weight Unit = KIP Length Unit = INCH > < > < Steel Take Off Itemize Based on the PROFILE > < Total Length, Volume, Weight, and Number of Members > < > < Profile Names Total Length Total Volume Total Weight # of Members > < W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 > < W12x58 1.4400E+03 2.4480E+04 6.9352E+00 4 > < W12x65 1.4400E+03 2.7504E+04 7.7919E+00 4 > < W12x72 2.1600E+03 4.5576E+04 1.2912E+01 12 > < W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 > < W8x40 1.4400E+03 1.6848E+04 4.7730E+00 4 > < W8x48 1.4400E+03 2.0304E+04 5.7521E+00 4 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < ACTIVE UNITS WEIGHT KIP LENGTH INCH > < > < TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS > < > < LENGTH = 1.3320E+04 WEIGHT = 4.6566E+01 VOLUME = 1.6437E+05 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  • 92. 92 Combined Forces LRFD <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < Active Units Weight Unit = KIP Length Unit = INCH > < > < Steel Take Off Itemize Based on the PROFILE > < Total Length, Volume, Weight, and Number of Members > < > < Profile Names Total Length Total Volume Total Weight # of Members > < W10x33 3.6000E+03 3.4956E+04 9.9030E+00 16 > < W10x39 1.4400E+03 1.6560E+04 4.6914E+00 4 > < W10x49 7.2000E+02 1.0368E+04 2.9373E+00 4 > < W12x45 1.4400E+03 1.9008E+04 5.3850E+00 4 > < W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 > < W8x31 1.4400E+03 1.3147E+04 3.7246E+00 4 > < W8x40 1.4400E+03 1.6848E+04 4.7730E+00 8 > < > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < ACTIVE UNITS WEIGHT KIP LENGTH INCH > < > < TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS > < > < LENGTH = 1.3320E+04 WEIGHT = 3.3874E+01 VOLUME = 1.1957E+05 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  • 93. 93 Combined Forces ASD WEIGHT = 46.566 kips LRFD WEIGHT = 33.874 kips
  • 94. 94 Deflection Design ASD <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < Active Units Weight Unit = KIP Length Unit = INCH > < > < Steel Take Off Itemize Based on the PROFILE > < Total Length, Volume, Weight, and Number of Members > < > < Profile Names Total Length Total Volume Total Weight # of Members > < W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 > < W12x58 1.4400E+03 2.4480E+04 6.9352E+00 4 > < W12x65 1.4400E+03 2.7504E+04 7.7919E+00 4 > < W12x72 2.1600E+03 4.5576E+04 1.2912E+01 12 > < W14x43 1.4400E+03 1.8144E+04 5.1402E+00 4 > < W14x48 1.4400E+03 2.0304E+04 5.7521E+00 4 > < W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < ACTIVE UNITS WEIGHT KIP LENGTH INCH > < > < TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS > < > < LENGTH = 1.3320E+04 WEIGHT = 4.6933E+01 VOLUME = 1.6566E+05 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  • 95. 95 Deflection Design LRFD <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < Active Units Weight Unit = KIP Length Unit = INCH > < > < Steel Take Off Itemize Based on the PROFILE > < Total Length, Volume, Weight, and Number of Members > < > < Profile Names Total Length Total Volume Total Weight # of Members > < W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 > < W10x49 1.4400E+03 2.0736E+04 5.8745E+00 8 > < W10x54 7.2000E+02 1.1376E+04 3.2228E+00 4 > < W12x40 1.4400E+03 1.6992E+04 4.8138E+00 4 > < W14x43 2.8800E+03 3.6288E+04 1.0280E+01 8 > < W14x48 1.4400E+03 2.0304E+04 5.7521E+00 4 > < W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < ACTIVE UNITS WEIGHT KIP LENGTH INCH > < > < TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS > < > < LENGTH = 1.3320E+04 WEIGHT = 3.8345E+01 VOLUME = 1.3535E+05 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  • 96. 96 Deflection Design ASD WEIGHT = 46.933 kips LRFD WEIGHT = 38.345 kips
  • 97. 97 Compare Design without and with Deflection Design ASD Without Deflection Design WEIGHT = 46.566 kips With Deflection Design WEIGHT = 46.933 kips LRFD Without Deflection Design WEIGHT = 33.874 kips With Deflection Design WEIGHT = 38.345 kips
  • 98. 98 Design same example based on Cb = 1.0 Code and deflection design with Cb = 1.0 ASD Compute Cb WEIGHT = 46.933 kips Specify Cb = 1.0 WEIGHT = 51.752 kips LRFD Compute Cb WEIGHT = 38.345 kips Specify Cb = 1.0 WEIGHT = 48.421 kips
  • 99. 99 Design Similar example based on Cb = 1.0 and LL×5 • Code and deflection design with Cb = 1.0 and increase the live load by a factor of 5. • Area loads are distributed using two way option instead of one way • Also change the 2 bays in the Z direction from 30 ft to 15 ft. ASD WEIGHT = 25.677 kips LRFD WEIGHT = 22.636 kips Difference = 3.041 kips
  • 100. 100 Design Similar example based on Cb = 1.0 and LL×10 • Code and deflection design with Cb = 1.0 and increase the live load by a factor of 10. • Area loads are distributed using two way option instead of one way • Also change the 2 bays in the Z direction from 30 ft to 15 ft. ASD WEIGHT = 31.022 kips LRFD WEIGHT = 29.051 kips Difference = 1.971 kips
  • 101. 101 Stiffness Analysis versus Nonlinear Analysis • Stiffness Analysis – Load Combinations or Form Loads can be used. • Nonlinear Analysis – Form Loads must be used. Load Combinations are not valid. • Nonlinear Analysis – Specify type of Nonlinearity. • Nonlinear Analysis – Specify Maximum Number of Cycles. • Nonlinear Analysis – Specify Convergence Tolerance.
  • 102. 102 Nonlinear Analysis Commands • NONLINEAR EFFECT • TENSION ONLY • COMPRESSION ONLY • GEOMETRY AXIAL • MAXIMUM NUMBER OF CYCLES • CONVERGENCE TOLERANCE • NONLINEAR ANALYSIS
  • 103. 103 Design using Nonlinear Analysis Input File # 1 1. Geometry, Material Type, Properties, 2. Loading ‘SW’, ‘LL’, and ‘WL’ 3. FORM LOAD ‘A’ FROM ‘SW’ 1.4 4. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.6 5. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.5 6. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.6 7. DEFINE PHYSICAL MEMBERS 8. PARAMETERS 9. MEMBER CONSTRAINTS 10. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’ $ Activate only the FORM loads 11. STIFFNESS ANALYSIS 12. SAVE
  • 104. 104 Design using Nonlinear Analysis Input File # 2 1. RESTORE 2. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’ 3. SELECT MEMBERS 4. SMOOTH PHYSICAL MEMBERS 5. DELETE LOADINGS ‘A’ ‘B’ ‘C’ ‘D’ 6. SELF WEIGHT LOADING RECOMPUTE 7. FORM LOAD ‘A’ FROM ‘SW’ 1.4 8. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.6 9. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.5 10. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.6 11. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’ 12. STIFFNESS ANALYSIS 13. CHECK MEMBERS 14. STEEL TAKE OFF 15. SAVE
  • 105. 105 Design using Nonlinear Analysis Input File # 3 1. RESTORE 2. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’ 3. SELECT MEMBERS 4. SMOOTH PHYSICAL MEMBERS 5. DELETE LOADINGS ‘A’ ‘B’ ‘C’ ‘D’ 6. SELF WEIGHT LOADING RECOMPUTE 7. FORM LOAD ‘A’ FROM ‘SW’ 1.4 8. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.6 9. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.5 10. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.6
  • 106. 106 Design using Nonlinear Analysis Input File # 3 (continue) 1. NONLINEAR EFFECT 2. GEOMETRY ALL MEMBERS 3. MAXIMUM NUMBER OF CYCLES 4. CONVERGENCE TOLERANCE DISPLACEMENT 5. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’ 6. NONLINEAR ANALYSIS 7. CHECK MEMBERS 8. STEEL TAKE OFF 9. SAVE
  • 107. 107 General Comparison between AISC LRFD and ASD Questions