SlideShare a Scribd company logo
1 of 16
FLUID MECHANICS-II
LEC #3: LAMINAR FLOW IN
PIPES
Dr. M.
Mubashir
Qureshi
INTRODUCTION
Piping systems are encountered
in almost every engineering
design and thus have been
studied extensively.
There is a small amount of
theory plus a large amount of
experimentation.
The basic piping problem is this:
Given the pipe geometry and its
added components (such as
fittings, valves, bends, and
diffusers) plus the desired flow
rate and fluid properties, what
pressure drop is needed to drive
the flow.
LAMINAR FLOW
• Incompressible Fluids. p = constant
• Velocity and laminar flow
• Velocity is not the only factor that determines whether
the flow is laminar or turbulent
The three regimes of flow: (a) laminar flow at low Re;
(b) transition at intermediate Re; (c) turbulent flow at
CRITICAL REYNOLDS NUMBER
• R value is normally about 4,000, but
laminar flow in circular pipes has been
maintained up to values of R as high as
50,000.
• It is practically impossible for turbulent
flow in a straight pipe to persist at values
of R much below 2,000.
• Hence this lower value of R = 2000 will be
defined as the true critical Reynolds
number.
HYDRAULIC RADIUS
• For conduits having noncircular cross
sections, some value other than the
diameter must be used for the linear
dimension in the Reynolds number.
• Such a characteristic is the hydraulic
radius, defined as Rh = A / P. Where A
is the cross-sectional area of the
flowing fluid, and P is the wetted
perimeter
• Rh = D/4 for circular pipes so D = 4Rh
is used in equation of Reynold
number.
𝑅 =
𝑉𝐷𝜌
𝜇
GENERAL EQUATION FOR
CONDUIT FRICTION
• The following discussion applies to either laminar or turbulent flow
and to any shape of cross section..
GENERAL EQUATION FOR
CONDUIT FRICTION
GENERAL EQUATION FOR
CONDUIT FRICTION
Dimensional Analysis for Smooth
Conduits
PIPES OF CIRCULAR CROSS
SECTION
Equation above known as the equation of
pipe friction, and is also commonly referred
to as the Darcy-Weisbach equation.
LAMINAR FLOW IN PIPES
LAMINAR FLOW IN PIPES
The striking feature of this equation is that it involves no empirical
coefficients or experimental factors of any kind, except for the physical
properties of the fluid such as viscosity and density (or specific weight).
From this it would appear that in laminar flow the friction is independent
of the roughness of the pipe wall.
LAMINAR FLOW IN PIPES
ENTRANCE CONDITIONS IN
LAMINAR FLOW
https://www.youtube.com/watch?v=kmjFdBxbV08

More Related Content

What's hot (20)

Experiment 4 friction factor
Experiment 4 friction factorExperiment 4 friction factor
Experiment 4 friction factor
 
Open channal flow
Open channal flowOpen channal flow
Open channal flow
 
Hydraulics of structures
Hydraulics of structuresHydraulics of structures
Hydraulics of structures
 
flow through open channel
flow through open channelflow through open channel
flow through open channel
 
Flow through pipes ppt
Flow through pipes pptFlow through pipes ppt
Flow through pipes ppt
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
 
Darcy weisbach formula
Darcy weisbach formulaDarcy weisbach formula
Darcy weisbach formula
 
Fm ppt
Fm pptFm ppt
Fm ppt
 
Parshall flume by ali hossain rafi
Parshall flume by ali hossain rafiParshall flume by ali hossain rafi
Parshall flume by ali hossain rafi
 
Parshall Flume and Discharge Measurement Accessories
Parshall Flume and Discharge Measurement AccessoriesParshall Flume and Discharge Measurement Accessories
Parshall Flume and Discharge Measurement Accessories
 
Water hammer in pipe_AMIT
Water hammer in pipe_AMITWater hammer in pipe_AMIT
Water hammer in pipe_AMIT
 
Fluid flow by ankita yagnik
Fluid flow by ankita yagnikFluid flow by ankita yagnik
Fluid flow by ankita yagnik
 
Dynamics of Fluid Flow
Dynamics of Fluid FlowDynamics of Fluid Flow
Dynamics of Fluid Flow
 
Notches and weir
Notches and weirNotches and weir
Notches and weir
 
Module 4
Module 4Module 4
Module 4
 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
 
Open channel flow equation
Open channel flow equationOpen channel flow equation
Open channel flow equation
 
Presentation on notches and weirs
Presentation on notches and weirsPresentation on notches and weirs
Presentation on notches and weirs
 
final friction in pipes
final friction in pipesfinal friction in pipes
final friction in pipes
 
Flow measurement
Flow measurementFlow measurement
Flow measurement
 

Similar to FM-II Lec 3

Lwce 301 fluid mechanics
Lwce 301 fluid mechanicsLwce 301 fluid mechanics
Lwce 301 fluid mechanicsPMAS-AAUR
 
Friction losses in turbulent flow (Fanning Equation).pdf
Friction losses in turbulent flow (Fanning Equation).pdfFriction losses in turbulent flow (Fanning Equation).pdf
Friction losses in turbulent flow (Fanning Equation).pdfSharpmark256
 
Piping Design_Unit 1.pptx
Piping Design_Unit 1.pptxPiping Design_Unit 1.pptx
Piping Design_Unit 1.pptxAbhay Rajput
 
Week 1 3_pascal_bernoulli
Week 1 3_pascal_bernoulliWeek 1 3_pascal_bernoulli
Week 1 3_pascal_bernoulliakmal ariffin
 
Flow of viscous fluid through circular pipe
Flow of viscous fluid through circular pipeFlow of viscous fluid through circular pipe
Flow of viscous fluid through circular pipevaibhav tailor
 
2. sistemas de produccion 2 reservorios
2. sistemas de produccion 2 reservorios2. sistemas de produccion 2 reservorios
2. sistemas de produccion 2 reservoriosGeorge Jim
 
FE CP PPT-2.pptx
FE CP PPT-2.pptxFE CP PPT-2.pptx
FE CP PPT-2.pptxmavkwgfte
 
9-Viscous flow in ducts.pptx
9-Viscous flow in ducts.pptx9-Viscous flow in ducts.pptx
9-Viscous flow in ducts.pptxDaniel678511
 
Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.shivam gautam
 
Frictional Drag Reduction in Pipelines using High Density Polymers
Frictional Drag Reduction in Pipelines using High Density PolymersFrictional Drag Reduction in Pipelines using High Density Polymers
Frictional Drag Reduction in Pipelines using High Density Polymerspawankumar9275
 
Fluid Flow inside and outside of the pipe
Fluid Flow inside and outside of the pipeFluid Flow inside and outside of the pipe
Fluid Flow inside and outside of the pipeAmin394100
 
Chapter 2S2.pptx
Chapter 2S2.pptxChapter 2S2.pptx
Chapter 2S2.pptxTirusew1
 
Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx
   Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx   Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx
Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docxjoyjonna282
 

Similar to FM-II Lec 3 (20)

Lwce 301 fluid mechanics
Lwce 301 fluid mechanicsLwce 301 fluid mechanics
Lwce 301 fluid mechanics
 
Friction losses in turbulent flow (Fanning Equation).pdf
Friction losses in turbulent flow (Fanning Equation).pdfFriction losses in turbulent flow (Fanning Equation).pdf
Friction losses in turbulent flow (Fanning Equation).pdf
 
Piping Design_Unit 1.pptx
Piping Design_Unit 1.pptxPiping Design_Unit 1.pptx
Piping Design_Unit 1.pptx
 
Week 1 3_pascal_bernoulli
Week 1 3_pascal_bernoulliWeek 1 3_pascal_bernoulli
Week 1 3_pascal_bernoulli
 
Flow of viscous fluid through circular pipe
Flow of viscous fluid through circular pipeFlow of viscous fluid through circular pipe
Flow of viscous fluid through circular pipe
 
Steady Flow through Pipes
Steady Flow through PipesSteady Flow through Pipes
Steady Flow through Pipes
 
2. sistemas de produccion 2 reservorios
2. sistemas de produccion 2 reservorios2. sistemas de produccion 2 reservorios
2. sistemas de produccion 2 reservorios
 
FE CP PPT-2.pptx
FE CP PPT-2.pptxFE CP PPT-2.pptx
FE CP PPT-2.pptx
 
9-Viscous flow in ducts.pptx
9-Viscous flow in ducts.pptx9-Viscous flow in ducts.pptx
9-Viscous flow in ducts.pptx
 
FM-II Lec 5
FM-II Lec 5FM-II Lec 5
FM-II Lec 5
 
Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.
 
Frictional Drag Reduction in Pipelines using High Density Polymers
Frictional Drag Reduction in Pipelines using High Density PolymersFrictional Drag Reduction in Pipelines using High Density Polymers
Frictional Drag Reduction in Pipelines using High Density Polymers
 
Fluid Flow inside and outside of the pipe
Fluid Flow inside and outside of the pipeFluid Flow inside and outside of the pipe
Fluid Flow inside and outside of the pipe
 
Chapter 2S2.pptx
Chapter 2S2.pptxChapter 2S2.pptx
Chapter 2S2.pptx
 
Presentation Pipes
Presentation PipesPresentation Pipes
Presentation Pipes
 
Closed conduct flow
Closed conduct flowClosed conduct flow
Closed conduct flow
 
Closed conduct flow
Closed conduct flowClosed conduct flow
Closed conduct flow
 
mel705-27.ppt
mel705-27.pptmel705-27.ppt
mel705-27.ppt
 
Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx
   Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx   Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx
Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx
 
Present buk
Present bukPresent buk
Present buk
 

More from Civil Zone

Vertical alignment of highway (transportation engineering)
Vertical alignment of highway (transportation engineering)Vertical alignment of highway (transportation engineering)
Vertical alignment of highway (transportation engineering)Civil Zone
 
Traffic studies (transportation engineering)
Traffic studies (transportation engineering)Traffic studies (transportation engineering)
Traffic studies (transportation engineering)Civil Zone
 
Level of service (los) multilane hwys 02 (transportation engineering)
Level of service (los) multilane hwys 02 (transportation engineering)Level of service (los) multilane hwys 02 (transportation engineering)
Level of service (los) multilane hwys 02 (transportation engineering)Civil Zone
 
Introduction to transportation engineering
Introduction to transportation engineeringIntroduction to transportation engineering
Introduction to transportation engineeringCivil Zone
 
Highway materials (transportation engineering)
Highway materials (transportation engineering)Highway materials (transportation engineering)
Highway materials (transportation engineering)Civil Zone
 
Capacity & level of service (transportation engineering)
Capacity & level of service (transportation engineering)Capacity & level of service (transportation engineering)
Capacity & level of service (transportation engineering)Civil Zone
 
Alighnment & horizontal alignment of highway (transportation engineering)
Alighnment & horizontal alignment of highway (transportation engineering)Alighnment & horizontal alignment of highway (transportation engineering)
Alighnment & horizontal alignment of highway (transportation engineering)Civil Zone
 
Introduction to Hydraulics engineering
 Introduction to Hydraulics engineering Introduction to Hydraulics engineering
Introduction to Hydraulics engineeringCivil Zone
 
Hydropower engineering -Hydraulics
Hydropower engineering -HydraulicsHydropower engineering -Hydraulics
Hydropower engineering -HydraulicsCivil Zone
 
Dams and Reservoirs -Hydraulics engineering
Dams and Reservoirs -Hydraulics engineeringDams and Reservoirs -Hydraulics engineering
Dams and Reservoirs -Hydraulics engineeringCivil Zone
 
Similitude and Dimensional Analysis -Hydraulics engineering
Similitude and Dimensional Analysis -Hydraulics engineering Similitude and Dimensional Analysis -Hydraulics engineering
Similitude and Dimensional Analysis -Hydraulics engineering Civil Zone
 
Steel strucure lec # (21)
Steel strucure lec #  (21)Steel strucure lec #  (21)
Steel strucure lec # (21)Civil Zone
 
Steel strucure lec # (20)
Steel strucure lec #  (20)Steel strucure lec #  (20)
Steel strucure lec # (20)Civil Zone
 
Steel strucure lec # (19)
Steel strucure lec #  (19)Steel strucure lec #  (19)
Steel strucure lec # (19)Civil Zone
 
Steel strucure lec # (18)
Steel strucure lec #  (18)Steel strucure lec #  (18)
Steel strucure lec # (18)Civil Zone
 
Steel strucure lec # (17)
Steel strucure lec #  (17)Steel strucure lec #  (17)
Steel strucure lec # (17)Civil Zone
 
Steel strucure lec # (16)
Steel strucure lec #  (16)Steel strucure lec #  (16)
Steel strucure lec # (16)Civil Zone
 
Steel strucure lec # (15)
Steel strucure lec #  (15)Steel strucure lec #  (15)
Steel strucure lec # (15)Civil Zone
 
Steel strucure lec # (14)
Steel strucure lec #  (14)Steel strucure lec #  (14)
Steel strucure lec # (14)Civil Zone
 
Steel strucure lec # (13)
Steel strucure lec #  (13)Steel strucure lec #  (13)
Steel strucure lec # (13)Civil Zone
 

More from Civil Zone (20)

Vertical alignment of highway (transportation engineering)
Vertical alignment of highway (transportation engineering)Vertical alignment of highway (transportation engineering)
Vertical alignment of highway (transportation engineering)
 
Traffic studies (transportation engineering)
Traffic studies (transportation engineering)Traffic studies (transportation engineering)
Traffic studies (transportation engineering)
 
Level of service (los) multilane hwys 02 (transportation engineering)
Level of service (los) multilane hwys 02 (transportation engineering)Level of service (los) multilane hwys 02 (transportation engineering)
Level of service (los) multilane hwys 02 (transportation engineering)
 
Introduction to transportation engineering
Introduction to transportation engineeringIntroduction to transportation engineering
Introduction to transportation engineering
 
Highway materials (transportation engineering)
Highway materials (transportation engineering)Highway materials (transportation engineering)
Highway materials (transportation engineering)
 
Capacity & level of service (transportation engineering)
Capacity & level of service (transportation engineering)Capacity & level of service (transportation engineering)
Capacity & level of service (transportation engineering)
 
Alighnment & horizontal alignment of highway (transportation engineering)
Alighnment & horizontal alignment of highway (transportation engineering)Alighnment & horizontal alignment of highway (transportation engineering)
Alighnment & horizontal alignment of highway (transportation engineering)
 
Introduction to Hydraulics engineering
 Introduction to Hydraulics engineering Introduction to Hydraulics engineering
Introduction to Hydraulics engineering
 
Hydropower engineering -Hydraulics
Hydropower engineering -HydraulicsHydropower engineering -Hydraulics
Hydropower engineering -Hydraulics
 
Dams and Reservoirs -Hydraulics engineering
Dams and Reservoirs -Hydraulics engineeringDams and Reservoirs -Hydraulics engineering
Dams and Reservoirs -Hydraulics engineering
 
Similitude and Dimensional Analysis -Hydraulics engineering
Similitude and Dimensional Analysis -Hydraulics engineering Similitude and Dimensional Analysis -Hydraulics engineering
Similitude and Dimensional Analysis -Hydraulics engineering
 
Steel strucure lec # (21)
Steel strucure lec #  (21)Steel strucure lec #  (21)
Steel strucure lec # (21)
 
Steel strucure lec # (20)
Steel strucure lec #  (20)Steel strucure lec #  (20)
Steel strucure lec # (20)
 
Steel strucure lec # (19)
Steel strucure lec #  (19)Steel strucure lec #  (19)
Steel strucure lec # (19)
 
Steel strucure lec # (18)
Steel strucure lec #  (18)Steel strucure lec #  (18)
Steel strucure lec # (18)
 
Steel strucure lec # (17)
Steel strucure lec #  (17)Steel strucure lec #  (17)
Steel strucure lec # (17)
 
Steel strucure lec # (16)
Steel strucure lec #  (16)Steel strucure lec #  (16)
Steel strucure lec # (16)
 
Steel strucure lec # (15)
Steel strucure lec #  (15)Steel strucure lec #  (15)
Steel strucure lec # (15)
 
Steel strucure lec # (14)
Steel strucure lec #  (14)Steel strucure lec #  (14)
Steel strucure lec # (14)
 
Steel strucure lec # (13)
Steel strucure lec #  (13)Steel strucure lec #  (13)
Steel strucure lec # (13)
 

Recently uploaded

Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 

Recently uploaded (20)

Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 

FM-II Lec 3

  • 1. FLUID MECHANICS-II LEC #3: LAMINAR FLOW IN PIPES Dr. M. Mubashir Qureshi
  • 2. INTRODUCTION Piping systems are encountered in almost every engineering design and thus have been studied extensively. There is a small amount of theory plus a large amount of experimentation. The basic piping problem is this: Given the pipe geometry and its added components (such as fittings, valves, bends, and diffusers) plus the desired flow rate and fluid properties, what pressure drop is needed to drive the flow.
  • 3. LAMINAR FLOW • Incompressible Fluids. p = constant • Velocity and laminar flow • Velocity is not the only factor that determines whether the flow is laminar or turbulent The three regimes of flow: (a) laminar flow at low Re; (b) transition at intermediate Re; (c) turbulent flow at
  • 4. CRITICAL REYNOLDS NUMBER • R value is normally about 4,000, but laminar flow in circular pipes has been maintained up to values of R as high as 50,000. • It is practically impossible for turbulent flow in a straight pipe to persist at values of R much below 2,000. • Hence this lower value of R = 2000 will be defined as the true critical Reynolds number.
  • 5. HYDRAULIC RADIUS • For conduits having noncircular cross sections, some value other than the diameter must be used for the linear dimension in the Reynolds number. • Such a characteristic is the hydraulic radius, defined as Rh = A / P. Where A is the cross-sectional area of the flowing fluid, and P is the wetted perimeter • Rh = D/4 for circular pipes so D = 4Rh is used in equation of Reynold number. 𝑅 = 𝑉𝐷𝜌 𝜇
  • 6.
  • 7. GENERAL EQUATION FOR CONDUIT FRICTION • The following discussion applies to either laminar or turbulent flow and to any shape of cross section..
  • 9. GENERAL EQUATION FOR CONDUIT FRICTION Dimensional Analysis for Smooth Conduits
  • 10. PIPES OF CIRCULAR CROSS SECTION Equation above known as the equation of pipe friction, and is also commonly referred to as the Darcy-Weisbach equation.
  • 12. LAMINAR FLOW IN PIPES The striking feature of this equation is that it involves no empirical coefficients or experimental factors of any kind, except for the physical properties of the fluid such as viscosity and density (or specific weight). From this it would appear that in laminar flow the friction is independent of the roughness of the pipe wall.
  • 15.