SlideShare a Scribd company logo
1 of 15
Angular Distribution of
Cosmic Ray Muons
Investigators: Peter Karn
David Kearsley
Project Advisor: Phillip Dudero
http://mxp.physics.umn.edu/s07/Projects/S07_CosmicRaysDistribution/
Project Relevance & Applications
• Investigation of high-energy astrophysical processes.
• CR Damage to quantum-scale computer components (e.g.
Josephson Junctions) and related devices.
• CR Effects on CCDs (Charge-Coupled Devices) used in
astrophysics.
• CR Effects on telecommunications & spaceflight systems.
Sources of Cosmic Rays
• Short Timescale Solar Activity
– Flares
• Stellar Processes
– Supernova Nucleosynthesis
– Neutron star core collapse
• Gamma Ray Bursts (GRB)
• Galactic Processes
– Active Galactic Nuclei (AGN) jets
Compton Gamma Ray
Observatory (GRO)
Cosmic Ray Shower Processes I
AIRES Cosmic Ray Shower Simulation of 1TeV incident
proton (x = y = 5km, z = 20km), University of Chicago.
Cosmic Ray Shower Products
(CERN).
x
y
z
Cosmic Ray Shower Processes II
• Incident Particles
– Types: p, n, He, heavy nuclei
– Energies: ~GeV → ~100TeV
• Secondary Products
– Types: p, π+
, π−
, π0
, γ
– Energies: ~GeV
• End Products
– Types: µ+
, µ−
, e−
, e+
, ±
νe, ±
νµ
– Energies: ~MeV → ~GeV
Muons (τ0 = 2.2 × 10-6
sec) are
observed to survive at sea-level
due to Lorentz time dilation: )/(1 22
0
0
cv−
==
τ
γττ
Angular Distribution
• 1st Order Approximation:
1. F(0) = F(⊥)
2. F(±π/2) = F(tangential)
• F(θ) = F(0)cos2
(θ)
1. F = particle flux in (N)(sec-1
)(sr-1
).
2. N = Number of events.
3. θ = Incident angle relative to zenith (= 0).
4. Angular area is measured in steradians (sr),
such that, (β×φ) = (1rad)×(1rad).
KAKE Cosmic Ray Telescope I
• (D0) Coincidence
Detector a.k.a.
“PESTILENCE”
• (DM0) Zenith
Measurement
Detector a.k.a.
“FAMINE”
• (DM1) Angular
Distribution
Measurement
Detector a.k.a.
“WAR”
Plastic ScintillatorLight-PipePMT
KAKE Cosmic Ray Telescope II
• 3x Detectors
• 3x 2kV Power
Supplies
• 3x Discriminator
Channels:
– 10ns pulses
• 2x2 Coincidence:
– (DM0+D0)
– (DM1+D0)
• Dual-Counter
• NIM-TTL
Translator
• PCI 6602 DAQC
D0 DSC1
PS4
DM2
DM1
DM0
PS3
PS1
PS2
DSC2
DSC4
DSC3
COUNTER
PMT1
PMT2
PMT3
PMT4
LabWindowsCVI/Excel
NIM-TTL
COINCIDENCE
Detectors in Lab & Deployed
1. D0 with 5mm aluminum electron-shield.
2. DM0 on detector mounting fixture.
3. DM1 on extended mounting fixture.
4. (2x2)+(3x3) coincidence testing.
5. Fully configured telescope deployed on Tate roof.
21
3 4
5
Technical Issues
• Temperature Stability
– PMT Efficiency.
– Power Supply & PC overheating.
• Precipitation
– HV Cable & PMT protection.
• Calibration
– PMT Efficiency “Plateau” 2kV Power Supplies in Cooling Tent
L2R: DISC, COINC, NIM-TTL, 2xCounter
Detector/PMT Response Curve (PESTILENCE), [Source = Cobalt-60]
10.000
100.000
1000.000
10000.000
100000.000
1200 1300 1400 1500 1600 1700 1800
-VDC(PMT)
counts/sec
Experimental Data I
• Random Coincidence
Calculation
– dt = 10-8
sec
∆T = 8.64×104
sec
• NRandom(max) = 8.61×10-5
Events/Bin (theta=75.1deg)
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
bin(t=100sec)
events
events(0)
events(75.1deg)
dt
T
N
N
NN
dt
T
NN
N
Total
Random
Total
Random






∆
=
=






∆
=
2
21
21
Events/Bin (theta=44.6deg)
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
bin(t=100sec)
events
events(0)
events(44.6deg)
Events/Bin (theta=15.1deg)
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
bin(t=100sec)
events
events(0)
events(15.1deg)
Raw Counts for:
θ(WEST) = (15º, 45º, 75º)
Experimental Data II
Plots of F(θ)/F(0) vs θ & cos2
(θ): 24 Hours
Muon Flux Ratio F(θ)/F(0) [24Hours]
0.0666
0.2477
0.5065
0.7470
0.9320
1.0000
0.9320
0.7470
0.5065
0.2477
0.0666
0.083
0.179
0.425
0.705
0.905
1.000
0.829
0.667
0.417
0.198
0.087
0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000
1.100
-90.0 -75.0 -60.0 -45.0 -30.0 -15.0 0.0 15.0 30.0 45.0 60.0 75.0 90.0
theta(deg)
F(theta)/F(0)
cos^2(theta)
F(theta)/F(0)
Poly. (cos^2(theta))
Muon Flux Ratio F(theta)/F(0), [DAY]
0.0666
0.2477
0.5065
0.7470
0.9320
1.0000
0.9320
0.7470
0.5065
0.2477
0.0666
0.087
0.185
0.443
0.724
0.977
1.000
0.856
0.768
0.423
0.199
0.088
0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000
1.100
-90.0 -75.0 -60.0 -45.0 -30.0 -15.0 0.0 15.0 30.0 45.0 60.0 75.0 90.0
theta(deg)
F(theta)/F(0)
cos^2(theta)
F(theta)/F(0)
Poly. (cos^2(theta))
Plots of F(θ)/F(0) vs θ & cos2
(θ): DAY
Experimental Data III
Muon Flux Ratio F(theta)/F(0), [NIGHT]
0.0666
0.2477
0.5065
0.7470
0.9320
1.0000
0.9320
0.7470
0.5065
0.2477
0.06660.080
0.173
0.407
0.642
0.857
1.000
0.814
0.635
0.408
0.196
0.086
0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000
1.100
-90.0 -75.0 -60.0 -45.0 -30.0 -15.0 0.0 15.0 30.0 45.0 60.0 75.0 90.0
theta(deg)
F(theta)/F(0)
cos^2(theta)
F(theta)/F(0)
Poly. (cos^2(theta))
Experimental Data IV
Plots of F(θ)/F(0) vs θ & cos2
(θ): NIGHT
Acknowledgements & References
Dr. Jeremiah Mans, Dr. Michael DuVernois, Kurt Wick, Paul Hinrichs, Dave Lee
References
• Cosmic Rays, T.K.Gaisser, T.Stanev, (Bartol Research Inst, Univ. of Delaware), 2002, Rev. P.V.
Sokolsky (Univ. of Utah), R.E.Streitmatter, 2005.
• Anisotropy of Primary Cosmic Ray Flux in Super-Kamiokande, Y.Oyama (KEK), 2006, IPNS Seminar
(KEK).
• Background Cosmic Ray Flux Measured by Balloon Flight Engineering Model, T.Kamae, GLAST-LAT
Collaboration Meeting at NASA-Goddard, 2002.
• Terrestrial Cosmic Ray Intensities, J.F.Ziegler, IBM Journal of Research and Development, Vol. 42,
#1, 1998.
• Measuring the Lateral Width of Cosmic Ray Particle Showers, G.Beebe, R.Peters, Department of
Physics and Astrophysics, University of Minnesota, May 2006.
• High Energy Astrophysics, Volume #1: Particles, Photons and their Detection, M.Longair, Cambridge
University Press, New York, 1981, 1992.
• Introduction to Elementary Particles, D.J.Griffiths, John Wiley & Sons Inc., 1987.
• Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, 2nd Ed., R.Eisberg, R.Resnick,
John Wiley & Sons, Inc., New York, 1974, 1985.
• Review of Particle Physics: Particle Physics Booklet, Physical Review D-66, K.Hagiwara et al, 2002.
• S.J.Sciutto, AIRES Project, Department of Physics, Universidad Nacional de La Plata, Argentina.

More Related Content

What's hot

BurstCube Poster Final Draft
BurstCube Poster Final DraftBurstCube Poster Final Draft
BurstCube Poster Final Draft
Ykeshia Zamore
 
Jonathan Lefman presents his work on Superresolution chemical microscopy
Jonathan Lefman presents his work on Superresolution chemical microscopyJonathan Lefman presents his work on Superresolution chemical microscopy
Jonathan Lefman presents his work on Superresolution chemical microscopy
Jonathan Lefman
 
IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.ppt
grssieee
 
Space Situational Awareness Forum - GERMAN AEROSPACE CENTRE Presentation
Space Situational Awareness Forum - GERMAN AEROSPACE CENTRE PresentationSpace Situational Awareness Forum - GERMAN AEROSPACE CENTRE Presentation
Space Situational Awareness Forum - GERMAN AEROSPACE CENTRE Presentation
Space_Situational_Awareness
 
CHARACTERISTICSOFASTERGDEMVERSION2.pptx
CHARACTERISTICSOFASTERGDEMVERSION2.pptxCHARACTERISTICSOFASTERGDEMVERSION2.pptx
CHARACTERISTICSOFASTERGDEMVERSION2.pptx
grssieee
 

What's hot (20)

FDL 2017 Lunar Water and Volatiles
FDL 2017 Lunar Water and VolatilesFDL 2017 Lunar Water and Volatiles
FDL 2017 Lunar Water and Volatiles
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
Daniel adrien franco lespinasse - status of magnetron sputtered qwr
Daniel adrien franco lespinasse - status of magnetron sputtered qwrDaniel adrien franco lespinasse - status of magnetron sputtered qwr
Daniel adrien franco lespinasse - status of magnetron sputtered qwr
 
TEAMCD_SDR_Briefing
TEAMCD_SDR_BriefingTEAMCD_SDR_Briefing
TEAMCD_SDR_Briefing
 
BurstCube Poster Final Draft
BurstCube Poster Final DraftBurstCube Poster Final Draft
BurstCube Poster Final Draft
 
Coupling Neural Networks to GCMs
Coupling Neural Networks to GCMsCoupling Neural Networks to GCMs
Coupling Neural Networks to GCMs
 
Goddard-DR-2010
Goddard-DR-2010Goddard-DR-2010
Goddard-DR-2010
 
Fluorescence technique - FAST
Fluorescence technique - FASTFluorescence technique - FAST
Fluorescence technique - FAST
 
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
 
Measuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary DetectorMeasuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary Detector
 
1374 bae[1]
1374 bae[1]1374 bae[1]
1374 bae[1]
 
Slightly fishy - Combining NSOM with SEA TADPOLE
Slightly fishy - Combining NSOM with SEA TADPOLESlightly fishy - Combining NSOM with SEA TADPOLE
Slightly fishy - Combining NSOM with SEA TADPOLE
 
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 
Top quark physics at the LHC
Top quark physics at the LHCTop quark physics at the LHC
Top quark physics at the LHC
 
Simulating X-ray Observations with yt
Simulating X-ray Observations with ytSimulating X-ray Observations with yt
Simulating X-ray Observations with yt
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"
 
Jonathan Lefman presents his work on Superresolution chemical microscopy
Jonathan Lefman presents his work on Superresolution chemical microscopyJonathan Lefman presents his work on Superresolution chemical microscopy
Jonathan Lefman presents his work on Superresolution chemical microscopy
 
IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.ppt
 
Space Situational Awareness Forum - GERMAN AEROSPACE CENTRE Presentation
Space Situational Awareness Forum - GERMAN AEROSPACE CENTRE PresentationSpace Situational Awareness Forum - GERMAN AEROSPACE CENTRE Presentation
Space Situational Awareness Forum - GERMAN AEROSPACE CENTRE Presentation
 
CHARACTERISTICSOFASTERGDEMVERSION2.pptx
CHARACTERISTICSOFASTERGDEMVERSION2.pptxCHARACTERISTICSOFASTERGDEMVERSION2.pptx
CHARACTERISTICSOFASTERGDEMVERSION2.pptx
 

Similar to presentationsample_KAKE_cosmicraytelescope_final-presentation_REVISED_3D_26JUN2015a

Fractal Kinetics Bruyères-le-Châtel
Fractal Kinetics Bruyères-le-ChâtelFractal Kinetics Bruyères-le-Châtel
Fractal Kinetics Bruyères-le-Châtel
David L. Griscom
 
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
grssieee
 
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computationDSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
Deltares
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
aimsnist
 
Final Presentaion 08-4-16 v6 wadej
Final Presentaion 08-4-16 v6 wadejFinal Presentaion 08-4-16 v6 wadej
Final Presentaion 08-4-16 v6 wadej
Jacob Wade
 
Final Presentaion 08-4-16 v6 wadej
Final Presentaion 08-4-16 v6 wadejFinal Presentaion 08-4-16 v6 wadej
Final Presentaion 08-4-16 v6 wadej
Jacob Wade
 
Interstellar explorerjun01
Interstellar explorerjun01Interstellar explorerjun01
Interstellar explorerjun01
Clifford Stone
 
Maria Krutikova Compendium
Maria Krutikova CompendiumMaria Krutikova Compendium
Maria Krutikova Compendium
Maria Krutikova
 
PowerPoint Powerpoint
PowerPoint PowerpointPowerPoint Powerpoint
PowerPoint Powerpoint
webhostingguy
 
PowerPoint Powerpoint
PowerPoint PowerpointPowerPoint Powerpoint
PowerPoint Powerpoint
webhostingguy
 

Similar to presentationsample_KAKE_cosmicraytelescope_final-presentation_REVISED_3D_26JUN2015a (20)

Fractal Kinetics Bruyères-le-Châtel
Fractal Kinetics Bruyères-le-ChâtelFractal Kinetics Bruyères-le-Châtel
Fractal Kinetics Bruyères-le-Châtel
 
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
 
TWEEP2015_SFernandez
TWEEP2015_SFernandezTWEEP2015_SFernandez
TWEEP2015_SFernandez
 
MOCVD半導體製程即時監控系統
MOCVD半導體製程即時監控系統MOCVD半導體製程即時監控系統
MOCVD半導體製程即時監控系統
 
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computationDSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
 
Api009
Api009Api009
Api009
 
Ch3 lecture slides Chenming Hu Device for IC
Ch3 lecture slides Chenming Hu Device for ICCh3 lecture slides Chenming Hu Device for IC
Ch3 lecture slides Chenming Hu Device for IC
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
Final Presentaion 08-4-16 v6 wadej
Final Presentaion 08-4-16 v6 wadejFinal Presentaion 08-4-16 v6 wadej
Final Presentaion 08-4-16 v6 wadej
 
Final Presentaion 08-4-16 v6 wadej
Final Presentaion 08-4-16 v6 wadejFinal Presentaion 08-4-16 v6 wadej
Final Presentaion 08-4-16 v6 wadej
 
Four Hats of Math: CFD
Four Hats of Math: CFDFour Hats of Math: CFD
Four Hats of Math: CFD
 
XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
 
XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
 
Interstellar explorerjun01
Interstellar explorerjun01Interstellar explorerjun01
Interstellar explorerjun01
 
Maria Krutikova Compendium
Maria Krutikova CompendiumMaria Krutikova Compendium
Maria Krutikova Compendium
 
Introduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCDIntroduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCD
 
From JET to ITER and Beyond – Scaling from 1PB in 30 Years to 1PB per day!
From JET to ITER and Beyond – Scaling from 1PB in 30 Years to 1PB per day!From JET to ITER and Beyond – Scaling from 1PB in 30 Years to 1PB per day!
From JET to ITER and Beyond – Scaling from 1PB in 30 Years to 1PB per day!
 
PowerPoint Powerpoint
PowerPoint PowerpointPowerPoint Powerpoint
PowerPoint Powerpoint
 
PowerPoint Powerpoint
PowerPoint PowerpointPowerPoint Powerpoint
PowerPoint Powerpoint
 

presentationsample_KAKE_cosmicraytelescope_final-presentation_REVISED_3D_26JUN2015a

  • 1. Angular Distribution of Cosmic Ray Muons Investigators: Peter Karn David Kearsley Project Advisor: Phillip Dudero http://mxp.physics.umn.edu/s07/Projects/S07_CosmicRaysDistribution/
  • 2. Project Relevance & Applications • Investigation of high-energy astrophysical processes. • CR Damage to quantum-scale computer components (e.g. Josephson Junctions) and related devices. • CR Effects on CCDs (Charge-Coupled Devices) used in astrophysics. • CR Effects on telecommunications & spaceflight systems.
  • 3. Sources of Cosmic Rays • Short Timescale Solar Activity – Flares • Stellar Processes – Supernova Nucleosynthesis – Neutron star core collapse • Gamma Ray Bursts (GRB) • Galactic Processes – Active Galactic Nuclei (AGN) jets Compton Gamma Ray Observatory (GRO)
  • 4. Cosmic Ray Shower Processes I AIRES Cosmic Ray Shower Simulation of 1TeV incident proton (x = y = 5km, z = 20km), University of Chicago. Cosmic Ray Shower Products (CERN). x y z
  • 5. Cosmic Ray Shower Processes II • Incident Particles – Types: p, n, He, heavy nuclei – Energies: ~GeV → ~100TeV • Secondary Products – Types: p, π+ , π− , π0 , γ – Energies: ~GeV • End Products – Types: µ+ , µ− , e− , e+ , ± νe, ± νµ – Energies: ~MeV → ~GeV Muons (τ0 = 2.2 × 10-6 sec) are observed to survive at sea-level due to Lorentz time dilation: )/(1 22 0 0 cv− == τ γττ
  • 6. Angular Distribution • 1st Order Approximation: 1. F(0) = F(⊥) 2. F(±π/2) = F(tangential) • F(θ) = F(0)cos2 (θ) 1. F = particle flux in (N)(sec-1 )(sr-1 ). 2. N = Number of events. 3. θ = Incident angle relative to zenith (= 0). 4. Angular area is measured in steradians (sr), such that, (β×φ) = (1rad)×(1rad).
  • 7. KAKE Cosmic Ray Telescope I • (D0) Coincidence Detector a.k.a. “PESTILENCE” • (DM0) Zenith Measurement Detector a.k.a. “FAMINE” • (DM1) Angular Distribution Measurement Detector a.k.a. “WAR” Plastic ScintillatorLight-PipePMT
  • 8. KAKE Cosmic Ray Telescope II • 3x Detectors • 3x 2kV Power Supplies • 3x Discriminator Channels: – 10ns pulses • 2x2 Coincidence: – (DM0+D0) – (DM1+D0) • Dual-Counter • NIM-TTL Translator • PCI 6602 DAQC D0 DSC1 PS4 DM2 DM1 DM0 PS3 PS1 PS2 DSC2 DSC4 DSC3 COUNTER PMT1 PMT2 PMT3 PMT4 LabWindowsCVI/Excel NIM-TTL COINCIDENCE
  • 9. Detectors in Lab & Deployed 1. D0 with 5mm aluminum electron-shield. 2. DM0 on detector mounting fixture. 3. DM1 on extended mounting fixture. 4. (2x2)+(3x3) coincidence testing. 5. Fully configured telescope deployed on Tate roof. 21 3 4 5
  • 10. Technical Issues • Temperature Stability – PMT Efficiency. – Power Supply & PC overheating. • Precipitation – HV Cable & PMT protection. • Calibration – PMT Efficiency “Plateau” 2kV Power Supplies in Cooling Tent L2R: DISC, COINC, NIM-TTL, 2xCounter Detector/PMT Response Curve (PESTILENCE), [Source = Cobalt-60] 10.000 100.000 1000.000 10000.000 100000.000 1200 1300 1400 1500 1600 1700 1800 -VDC(PMT) counts/sec
  • 11. Experimental Data I • Random Coincidence Calculation – dt = 10-8 sec ∆T = 8.64×104 sec • NRandom(max) = 8.61×10-5 Events/Bin (theta=75.1deg) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 bin(t=100sec) events events(0) events(75.1deg) dt T N N NN dt T NN N Total Random Total Random       ∆ = =       ∆ = 2 21 21 Events/Bin (theta=44.6deg) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 bin(t=100sec) events events(0) events(44.6deg) Events/Bin (theta=15.1deg) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 bin(t=100sec) events events(0) events(15.1deg) Raw Counts for: θ(WEST) = (15º, 45º, 75º)
  • 12. Experimental Data II Plots of F(θ)/F(0) vs θ & cos2 (θ): 24 Hours Muon Flux Ratio F(θ)/F(0) [24Hours] 0.0666 0.2477 0.5065 0.7470 0.9320 1.0000 0.9320 0.7470 0.5065 0.2477 0.0666 0.083 0.179 0.425 0.705 0.905 1.000 0.829 0.667 0.417 0.198 0.087 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100 -90.0 -75.0 -60.0 -45.0 -30.0 -15.0 0.0 15.0 30.0 45.0 60.0 75.0 90.0 theta(deg) F(theta)/F(0) cos^2(theta) F(theta)/F(0) Poly. (cos^2(theta))
  • 13. Muon Flux Ratio F(theta)/F(0), [DAY] 0.0666 0.2477 0.5065 0.7470 0.9320 1.0000 0.9320 0.7470 0.5065 0.2477 0.0666 0.087 0.185 0.443 0.724 0.977 1.000 0.856 0.768 0.423 0.199 0.088 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100 -90.0 -75.0 -60.0 -45.0 -30.0 -15.0 0.0 15.0 30.0 45.0 60.0 75.0 90.0 theta(deg) F(theta)/F(0) cos^2(theta) F(theta)/F(0) Poly. (cos^2(theta)) Plots of F(θ)/F(0) vs θ & cos2 (θ): DAY Experimental Data III
  • 14. Muon Flux Ratio F(theta)/F(0), [NIGHT] 0.0666 0.2477 0.5065 0.7470 0.9320 1.0000 0.9320 0.7470 0.5065 0.2477 0.06660.080 0.173 0.407 0.642 0.857 1.000 0.814 0.635 0.408 0.196 0.086 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100 -90.0 -75.0 -60.0 -45.0 -30.0 -15.0 0.0 15.0 30.0 45.0 60.0 75.0 90.0 theta(deg) F(theta)/F(0) cos^2(theta) F(theta)/F(0) Poly. (cos^2(theta)) Experimental Data IV Plots of F(θ)/F(0) vs θ & cos2 (θ): NIGHT
  • 15. Acknowledgements & References Dr. Jeremiah Mans, Dr. Michael DuVernois, Kurt Wick, Paul Hinrichs, Dave Lee References • Cosmic Rays, T.K.Gaisser, T.Stanev, (Bartol Research Inst, Univ. of Delaware), 2002, Rev. P.V. Sokolsky (Univ. of Utah), R.E.Streitmatter, 2005. • Anisotropy of Primary Cosmic Ray Flux in Super-Kamiokande, Y.Oyama (KEK), 2006, IPNS Seminar (KEK). • Background Cosmic Ray Flux Measured by Balloon Flight Engineering Model, T.Kamae, GLAST-LAT Collaboration Meeting at NASA-Goddard, 2002. • Terrestrial Cosmic Ray Intensities, J.F.Ziegler, IBM Journal of Research and Development, Vol. 42, #1, 1998. • Measuring the Lateral Width of Cosmic Ray Particle Showers, G.Beebe, R.Peters, Department of Physics and Astrophysics, University of Minnesota, May 2006. • High Energy Astrophysics, Volume #1: Particles, Photons and their Detection, M.Longair, Cambridge University Press, New York, 1981, 1992. • Introduction to Elementary Particles, D.J.Griffiths, John Wiley & Sons Inc., 1987. • Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, 2nd Ed., R.Eisberg, R.Resnick, John Wiley & Sons, Inc., New York, 1974, 1985. • Review of Particle Physics: Particle Physics Booklet, Physical Review D-66, K.Hagiwara et al, 2002. • S.J.Sciutto, AIRES Project, Department of Physics, Universidad Nacional de La Plata, Argentina.