SlideShare a Scribd company logo
1 of 67
Nanopatterning of CoSi binary material
using low energy ion beams
Basanta Kumar Parida
Department of Physics
IIT Ropar
Open Seminar
Patterns
Source (google)2/23/2019 2
Outline
2/23/2019 3
โ€ข Nanopatterning
โ€ข Ion beam nanopatterning
โ€ข Historical overview
โ€ข Single elemental system
โ€ข Binary and compound systems
โ€ข My work
โ€ข Experimental details
โ€ข Instability driven pattern formation
โ€ข Influence of ion species and composition
โ€ข Electrical measurement on higher ordered nanoripples
โ€ข Influence of swinging on morphology evolution
โ€ข Summary
Nanopatterning
2/23/2019 4
Nanopatterning
Approaches
Top-down
Photolithography
e-beam lithography
Writing,
stamping
Bottom-up
Growth
phenomena
Spontaneous
assembling
Rawat J. Phys Conf Ser. (2015) Source(google)
Electron Beam Lithography
UV-Nanoimprint Lithography
Methods to manufacture nanomaterials or pattern materials on a nanometre scale
Ion beam nanopatterning
Advantages
โ€ข Single step process for large area self-
organized nanopatterning
โ€ข Faster and cheaper compared to
conventional lithographic techniques
โ€ข Easily tunable process parameters
โ€ข High spatial selectivity
โ€ข Any ion beam can be put into any matter
โ€ข Maskless process, less time
โ€ข Not require ultra high vacuum
โ€ข Nanoripples and dots
2/23/2019 5
Applications of these nanopatterns
Optoeletronic devices, funcionalized surface,
plasmonic, magnetic applications
Before irradiation
Ar+ 500 eV, 67o,15 minโ†’Si
After irradiation
Our
work
Ion beam nanopatterning
2/23/2019 6
Ion beam
nanopatterning
Single
element
Binary
compound
Pure binary
50-50 %
Impurity assist
to single
element
First observationโ€ฆ (nanoripples and dots)
4 kV Air ๏‚ฎ glass
0o
420 eV Ar+ ๏‚ฎ GaSb
S. Facsko et.al., Science, 285, 1551 (1999)Navez et. al., Compt. Rend. Acad. Sci., 254, 240 (1962)
2/23/2019 7
60o
45o
10o
Observations (Nonconventional ways)
Ozaydyn Appl. Phys. Lett. (2005)
10o 30o
70o 80o
F. Frost et.al., Phys. Rev. Lett., 85, 4117 (2000)
2/23/2019 8
1000 eV Ar+ ๏‚ฎ Si500 eV Ar+ ๏‚ฎ InP
Sample rotation at oblique incidence
(Mo seeded)
Ion beam induced patterns over Si and Ge
Frost Appl. Phys. A 91, 551 (2008)
Important experimental parameters
โ€ข Ion beam energy
โ€ข Angle of incidence (0
o
-85
o
)
โ€ข Erosion time
โ€ข Ion species used Ar, Xe, Kr, Ne,O2,N2
โ€ข Temperature
โ€ข Rotation of sample/swing of sample
2/23/2019 9
Ge
Ge
Ge Ge
Temporal evolution of ripple: Simulation
Youtube (J. M. Garcia)
2/23/2019 10
Theoretical background
Monoelemental system
โ€ข Competition between two processes
โ€ข Roughening due to sputtering
โ€ข Smoothening due to diffusion
Bradley et al. J. Vac. Sci. Technol. A 6, 2390 (1988)
๐๐’‰
๐๐’•
= โˆ’๐’— ๐ŸŽ + ๐œธ ๐œฝ
๐๐’‰
๐๐’™
+ ๐‚ ๐’™
๐ ๐Ÿ
๐’‰
๐๐’™ ๐Ÿ
+ ๐‚ ๐’š
๐ ๐Ÿ
๐’‰
๐๐’š ๐Ÿ
โˆ’ ๐‘ฒ๐œต ๐Ÿ’
๐’‰
Sputter
roughening
Diffusion
smoothing
Local slope
erosion
๐๐’‰
๐๐’•
= โˆ’๐’— ๐ŸŽ + ๐Š๐œต ๐Ÿ’
๐’‰ โˆ’ ๐‘ซ๐œต ๐Ÿ’
๐’‰ +
๐€ ๐ŸŽ
๐Ÿ
๐œต๐’‰ ๐Ÿ
Nonlinear terms (Kuramoto-Sivashinsky KS eq.)
๐€ = ๐Ÿ๐… ๐Ÿ๐‘ซ
๐Š
2/23/2019 11
Bradley-Harper theory
Ion beam induced patterns over III-V semiconductor
Xu JAP 2004
Kumar ASS 2012
Roy PRB 10
500 eV Ar
๏‚ฎ GaSb
50 keV Ar
๏‚ฎ GaAs
500 eV Ar
๏‚ฎ GaSb
Park SCT 2007
Mohanty ASS 2012
Atwani SR 2015
225 eV Ar
๏‚ฎ InP
100 keV Ar
๏‚ฎ InP
5 keV Xe
๏‚ฎ GaP
Atwani APL 2012
Chowdhury ASS 2016
Paramanik JPDAP 2008
1 keV Ar
๏‚ฎ GaAs
1 keV Ar
๏‚ฎ GaSb
3 keV Ar
๏‚ฎ InP
2/23/2019 12
Theory for binary compound
13
Shenoy et.al., Phys. Rev. Lett., 98, 256101 (2007)
A
B
AB binary compound
Coupled equation (50-50) composition
Sputtering yields (Y) and diffusivities (D) are different
๐๐’‰
๐๐’•
= โˆ’๐œด[ ๐‘ญ ๐‘จ + ๐œต. ๐‘ฑ ๐‘จ + (๐‘ญ ๐‘ฉ + ๐œต. ๐‘ฑ ๐‘ฉ)]
โˆ†
๐๐’„ ๐’”
๐๐’•
= ๐œด ๐’„ ๐’ƒ โˆ’ ๐Ÿ ๐‘ญ ๐‘จ + ๐œต. ๐‘ฑ ๐‘จ + ๐’„ ๐’ƒ ๐‘ญ ๐‘ฉ + ๐œต. ๐‘ฑ ๐‘ฉ
โ€ข Height modulation
โ€ข Composition modulation
2/23/2019 13
๐น๐ด = ๐น๐‘Œ๐ด ๐‘ ๐‘ 
๐น๐ต = ๐น๐‘Œ๐ต(1 โˆ’ ๐‘ ๐‘ )
๐น ๐ด
๐น ๐ต
=
๐‘ ๐‘
1โˆ’๐‘ ๐‘
Sign of ๐ท ๐ต ๐‘Œ๐ด โˆ’ ๐ท๐ด ๐‘Œ๐ต
decides the peaks and valleys
๐‘ ๐‘ =
๐‘Œ๐ต ๐‘ ๐‘
๐‘Œ๐ด(1 โˆ’ ๐‘ ๐‘) + ๐‘Œ๐ต ๐‘ ๐‘
If ๐ท๐ด ๐‘Œ๐ต < ๐ท ๐ต ๐‘Œ๐ด peaks will be enriched with A
Differential sputtering yield and diffusivity
Impurity assisted ion beam nanopatterning
Khanbabaee TSF 2013
Fe, Kr
Macko NT 2010
Fe, Kr
Garcia JPCM 2009
2ร—2 ฮผm2 Fe/Mo, Ar
2/23/2019 14
Diverse patterns -varying the ion beam parameters
โ€ข Flux of impurity atoms and ions
โ€ข Ion/impurity ratio is important
โ€ข Varies from place to place from on the substrate
โ€ข Different types impurity addition mechanisms
โ€ข Surfactant sputtering, from the clamps, chamber walls
Nanoholes Nanodots Discontinuous ripples
625ร—625 nm2
Motivation
โ€ข The atoms having energiesโˆผ50 eV essentially are a
part of the surface or near-surface layer having a
penetration depth of sub-nanometer dimension
โ€ข Mixtures containing initially well-mixed species
โ€ข Far from strongest coupling (50-50) composition
โ€ข Sputtering can induce stoichiometric
rearrangements in the bulk which affects the
surface concentration
CoxSi1-x is chosen as the binary material
2/23/2019 15
50 eV Ar ๏‚ฎ Si
50 eV Ar ๏‚ฎ Si
Experimental details
2/23/2019 16
CoxSi1-x deposition (Confocal magnetron sputtering)
Magnetic flux is shunted
No deposition
Modification of sputtering gun
Weak magnetic
material
Central magnet
replaced
Experimental details
โ€ข CoSi binary material deposited on Si(100) with variable
stoichiometries (SEM-EDX)
โ€ข Irradiated with different energies, fluence, angles and swinging
parameters
โ€ข Initial roughness ~ 5 nm
Si(100)
CoxSi1-x
After Ar ion irradiation
at 1200 eV
Unirradiated CoxSi1-x
2/23/2019 17
Energy variation
500-1200 eV
Morphology transitions from lower to higher value of energy
Ar+๏ƒ  Co27Si73 67o
7.5ร—1018 ions/cm2
0
20
40
600
800
1000
Wavelength(nm)
600 800 1000 1200
1
2
3
4
5
Amplitude(nm)
Energy (eV)
600 800 1000 1200
0.00
0.01
0.02
0.03
0.04
Aspectratio(A/L)
Energy (eV)
1
2
3
4
5
Roughness(nm)
As grown 5 nm
Parida et al. Curr. Appl. Phys. 18, 993 (2018 )
2/23/2019 18
Energy variation (Co27Si73)
10
6
10
7
10
8
1E-30
1E-29
1E-28
1E-27
1E-26
1E-25
500 eV
700 eV
10
5
10
6
10
7
1E-28
1E-27
1E-26
1E-25
1E-24
1E-23
PSD(m
3
)
k (m
-1
)
1000 eV
1200 eV
Calculations from KS equation
๐œ•โ„Ž
๐œ•๐‘ก
= โˆ’๐‘ฃ0 + ๐›พ
๐œ•โ„Ž
๐œ•๐‘ฅ
+ ๐œˆ ๐‘ฅ
๐œ•2โ„Ž
๐œ•๐‘ฅ2
+ ๐œˆ ๐‘ฆ
๐œ•2โ„Ž
๐œ•๐‘ฆ2
+
๐œ† ๐‘ฅ
2
๐œ•โ„Ž
๐œ•๐‘ฅ
2
+
๐œ† ๐‘ฆ
2
๐œ•โ„Ž
๐œ•๐‘ฆ
2
โˆ’ ๐พ๐›ป4
โ„Ž โˆ’ ๐ท๐›ป4
โ„Ž+๐œ‚
Makeev et al. NIMB 197, 185 (2002)
In our case ๐œˆ ๐‘ฅ> ๐œˆ ๐‘ฆ and ๐œˆ ๐‘ฆ < 0 hence ripples are aligned along X-direction
2/23/2019 19
Ion induced surface diffusion is the dominant relaxation mechanism
Yi s sputtering yields, D=Diffusivity
Fluence variation (Co16Si84)
Wavelength increment follows power law
700 eV Ar+๏ƒ  Co16Si84 67o
(2.5 - 10)ร—1018 ions/cm2
Parida et al. Curr. Appl. Phys. 18, 993 (2018 )
2/23/2019 20
Compositional variations and MFM study
Topographical changes
Enrichment of cobalt at the peaks
Hierarchical (bug-like) structures
700 eV Ar+๏ƒ  CoxSi1-x 67o 7.5ร—1018 ions/cm2
Parida et al. Curr. Appl. Phys. 18, 993 (2018 )
2/23/2019 21
Silicide confirmation
Confirmation of Silicide formation
Parida et al. Curr. Appl. Phys. 18, 993 (2018 )
Phase diagram
2/23/2019 22
500 600 700 800 900 1000 1100 1200
0
5
10
15
20
25
50
51
52
53
54
55
Distorted Ripples
Pill bug structures
Semi-ellipsoidal structures
Self-organized ripples
Co(%)
Energy (eV)
-10 0 10 20 30 40 50 60 70 80 90
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Roughness(nm)
Angle of incidence (degree)
ion = Ar+
time =45 min
energy =700eV
Effect of angle of incidence variation (Ar ion)
ฮธ=30o
ฮธ=80oฮธ=67o
ฮธ=0o
z=4 nm z=4.4 nm
z=74 nmz=23 nm
700 eV Ar+๏ƒ  Co43Si57
7.5ร—1018 ions/cm2
3D
10
-3
10
-2
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
4
PSD(nm
4
)
Frequency(nm-1)
0 deg
30 deg
67 deg
80 deg
Nanodot formation at grazing incidence
Parida et al. Physica B 545, 34(2018 )
2/23/2019 23
Effect of angle of incidence variation (Xe ion)
Irregular dot structures to triangular structures
10
-3
10
-2
10
-2
10
-1
10
0
10
1
10
2
10
3
PSD(nm
4
)
Frequency(nm-1
)
0 deg
30 deg
50 deg
67 deg
-10 0 10 20 30 40 50 60 70
1.0
1.5
2.0
2.5
3.0
3.5
Roughness(nm)
Angle of incidence (degree)
ion = Xe+
time = 45 min
energy = 500 eV
Parida et al. Physica B 545, 34(2018 )
500 eV Xe+๏ƒ  Co64Si36
7.5ร—1018 ions/cm2
2/23/2019 24
Stoichiometric controlled nanopatterning
0.0 0.5 1.0 1.5 2.0
3.5
4.0
4.5
5.0
5.5
6.0
Roughness(nm)
Co/Si
Nanoripple
evolution
Within a specific composition ripples appear
Preparation
Ar 700 eV, 67o, 7.5ร—1018 ions/cm2
10
7
10
8
Co21.9
Si78.1
Co7.7
Si92.3
Co3.2
Si96.8
Co2.4
Si97.6
Co0
Si100
Co66.9
Si33.1
Co54
Si46
Co41
Si59
Co39.2
Si60.8
Co3.2
Si96.8
Co2.4
Si97.6
PSD(a.u)
k (m
-1
)
k
n
2/23/2019 25
Higher order ripples
0.00 0.25 0.50 0.75 1.00
-3.8
0.0
3.8
7.6
-1.7
0.0
1.7
3.4
-3.3
0.0
3.3
6.6
-1.5
0.0
1.5
3.0
-9
0
9
18
0.00 0.25 0.50 0.75 1.00
60 min
45 min
30 min
15 min
10 min
X (ยตm)
slope
๏Œ
๏ฌ
Height(nm)
Line profiles
๏‚ฎ๏€ ๏€ ๏€ ๏‚ฌh
Higher order ripples
Shadowing causes hillocks
Communicatedโ€ฆ
2/23/2019 26
500 eV Ar+๏ƒ  Co69Si31, 67o
10
7
10
8
10
9
10
-31
10
-30
10
-29
10
-28
10
-27
10
-26
10
-25
10
-24
PSD(m
3
)
k (m
-1
)
10 min
15 min
30 min
45 min
60 min
Along ion beam direction
10
7
10
8
10
9
10
-31
10
-30
10
-29
10
-28
10
-27
10
-26
10
-25
10
-24
10 min
15 min
30 min
45 min
60 min
Across ion beam direction
PSD(m
3
)
k (m
-1
)
Roughness and I-V characteristic study
Drastic change in electrical conductance as grown to patterned surface
Along and across the ion beam direction resistance is different
-20 -15 -10 -5 0 5 10 15 20
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
Current(A)
Voltage (V)
|| to the ion beam direction
๏€ ๏žto the ion beam direction
As-grown
Communicatedโ€ฆ
2/23/2019 27
10 20 30 40 50 60
2
3
4
5
6
Roughness(nm)
Time (min)
10 20 30 40 50 60
33
36
39
42
45
48
51
54
57
(b)
Wavelength(nm)
Time (min)
I-V and resistance study
A trap state ~ ยฑ5 V
Higher resistance for better ordered structures
10 20 30 40 50 60
200
400
600
800
1000
1200
1400
1600
1800
10 20 30 40 50 60
Amplitude(nm)
Time of irradiation (min)
|| to the ion beam direction
๏ž to the ion beam direction
Amplitude
Resistance(ohm)
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
Communicatedโ€ฆ
2/23/2019 28
I-V characteristic Resistance
-20 -15 -10 -5 0 5 10 15 20
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
-20 -15 -10 -5 0 5 10 15 20
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
15 min
30 min
60 min
45 min
10 min
Pristine
Current(A)
Voltage (V)
Parallel to the ion beam direction
Effect of azimuthal swinging
Kim et al. J. Phys.: Cond Matt 30, 274004 (2018) Yoon et al. J. Appl. Phys. 119, 205301 (2016)
Transition b/w erosive and diffusive region
Square-shaped vacancy islands
Ar+ 2 keV 78o, โˆ†ฯ†=144o
Asymmetric wall like structure
Ar+ โ†’HOPG
2 keV ฦŸ=78o
โˆ†ฯ†=144o
2/23/2019 29
Pristine
-200o+200o
Z=50nm
-50o+50o -75o+75o
-150o+150o
-125o+125o -180o+180o
-100o+100o
(a) (b) (c) (d)
(e) (f) (g) (h)
Z=21nm Z=50nm Z=30nmZ=50nm(c)
-75o+75o
Z=45nmZ=35nmZ=24nm Z=40nm
Z
Constant parameters
500 eV, 67o,1.12ร—1018 ions/cm2 7 rpm speed in swinging
Effect of swinging on binary material
๏ƒผ Bi-periodic ion incidence on the swinging surface
๏ƒผ But single period for the rotating surface
๏ƒผ Anisotropic surface modification and the reduced symmetry in the pattern
๏ƒผ Lateral mass transport caused by the swinging substrate
Under preparationโ€ฆ
100 150 200 250 300 350 400
3.5
4.0
4.5
5.0
5.5
6.0
100 150 200 250 300 350 400
3.5
4.0
4.5
5.0
5.5
6.0Linear fit
Roughness(nm)
Angle of total swing (degree)
2/23/2019 30
Cauliflower like structures appear
Constant parameters 500 eV, 67o, 1.12ร—1018 ions/cm2 (-100o - +100o)
โ€ข Roughness decreases towards
higher speed swinging
Swinging speed variation
Under preparationโ€ฆ
2/23/2019 31
Z=40 nm
1 rpm
Z=30 nm
7 rpm
Z=30 nm
15 rpm
0 2 4 6 8 10 12 14 16
4.8
5.0
5.2
5.4
Roughness(nm)
Speed of swinging (rpm)
โ€ข Number density of Cauliflower
like structures grow up
0 10 20 30 40 50 60 70 80 90 100
500
750
1000
1250
500
750
1000
1250
Energy(eV)
Perpendicularmoderipples
(16.7 keV)
~~
Si
~
~
~
~
~
~Ripples
Energy(eV)
Co atomic %
Co
Phase diagram before our work
2/23/2019 32
Ar+ โ†’Co & Si
0 10 20 30 40 50 60 70 80 90 100
500
750
1000
1250
500
750
1000
1250
Co69
Si31
Co27
Si73
*
Ellipsoidal
0
*Distorted Ripples
00
**
Anisotropiv I-V
~
~~
~ 0
0
0
0
Energy(eV)
Perpendicularmoderipples
(16.7 keV)
~~
Si
~
~
~
~
~
~Ripples
Energy(eV)
Co atomic %
Co
0
*
Phase diagram after our work
2/23/2019 33
Ar+ โ†’Co, Si, CoxSi1-x
Summary
โ€ข Morphological transition at higher energies โ€“ nano to micro scale
โ€ข Power law behavior for fluence variations
โ€ข Hierarchical structures for higher Co concentrations
โ€ข Formation of conical bumps at grazing incident angles. Lower angles give
extremely smooth surfaces
โ€ข Higher resistance for better ordered structures
โ€ข Trap barrier ~ ยฑ 5 V for nanorippled surface, amplitude dependent resistance
โ€ข Cauliflower like structures appear due to swinging
โ€ข Enrichment of cobalt at crests
2/23/2019 34
Publications
1. Morphological instabilities in argon ion sputtered CoSi binary mixture
B. K. Parida , M. Ranjan, S. Sarkar; Curr. Appl. Phys 18, 993 (2018)
2. Influence of obliquely incident primary ion species on patterning of CoSi binary
mixtures: An experimental study
B. K. Parida , M. Ranjan, S. Sarkar; Physica B 545, 34 (2018)
I. Anisotropic I-V behaviour from nanoripples of ion eroded CoSi surfaces
B. K. Parida , A. Kundu, K. S. Hazra, S. Sarkar (Communicated)
II. Stoichiometric controlled binary mixture nanopatterning via ion beam sputtering
B. K. Parida , S. Sarkar (Under Preparation)
III. Pattern formation assisted by ion beam sputtering over azimuthally oscillating CoSi
binary substrate
B. K. Parida , S. Sarkar (Under Preparation)
Supervisor - Dr. Subhendu Sarkar
Dr. Mukesh Ranjan, FCIPT, IPR, Gandhinagar
Dr. K. S. Hazra INST, Mohali
CRF, IIT Ropar
MHRD, India
Friends and Family
Acknowledgement
2/23/2019 35
2/23/2019 36
2/23/2019 37
Zhou thesis
0 10 20 30 40 50 60 70
3.5
4.0
4.5
5.0
5.5
6.0
Roughness(nm)
Co% (a.u.)
3 ยตm
Nanoripple
evolution
0.0 0.5 1.0 1.5 2.0
0
4
8
12
16
20
24
28
32
0.0 0.5 1.0 1.5 2.0
Range(nm)
Co/Si
Range
Lateral range
Longitudinal range
Y Co
Y Si
Y Total
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
YTotal(atoms/ion)
(a) (b)
(d)
(c)
(g)
(f)(e)
(i)(h)
Z=30 nm
Z=22 nm
Z=40 nm
Z=35 nm
Z=40 nm
Z=26 nm
Z=30 nm
Z=28 nm
Z=30 nm
Z
Compositional effect
2/23/2019 38
0 10 20 30 40 50 60 70 80 90
X
X
XXX
X XX
XXX
X
Perpendicularripples
Flat stable surface
0
~
~
~
1200
600
~
~
0
~400
800
200
1000
Paralel mode
Ripples
~
Energy(eV)
incidence angle (deg)
~ ~~
~
~
~
~
~
~
~ ~ ~
~~ ~ ~
X
X
X
XXX
Phase diagram before our work
2/23/2019 39
With Ar โ†’Si
Phase diagram before our work
2/23/2019 40
0 10 20 30 40 50 60 70 80 90
0.0
0.4
0.8
1.2
16
18
20
0.0
0.4
0.8
1.2
16
18
20
Perpendicularmoderipples
No report
~
Energy(keV)
Incidence angle (deg)
~
With Ar โ†’Co
0 10 20 30 40 50 60 70
Anisotropic I-V
behavior
Co69
Si31
~~
Co22
Si78
Distorted ripples
0
Co16
Si84
~
Ellipsoidal
0
Co27
Si73
~
700
1000
500
1200
00
0
0
0
0
0
Ripples
~~
Energy(eV)
Co atomic %
700
1000
500
1200
Phase diagram of patterns formed
2/23/2019 41
With Arโ†’CoXSi1-x
0 10 20 30 40 50 60 70 80 90 100
500
750
1000
1250
500
750
1000
1250
Energy(eV)
Perpendicularmoderipples
(16.7 keV)
~~
RipplesonSi
~
~
~
~
~
~Ripples
Energy(eV)
Co atomic %
Phase diagram after our work
2/23/2019 42
With Arโ†’CoXSi1-x
0 10 20 30 40 50 60 70 80 90 100
Anisotropic I-V
behavior
Co69
Si31
~
Co22
Si78
Distorted ripples
0
Co16
Si84
~
Ellipsoidal
0
Co27
Si73
~
700
1000
500
1200
00
0
0
0
0
0
Ripples
~~
Energy(eV)
Co atomic %
700
1000
500
1200
Phase diagram after our work
2/23/2019 43
With Arโ†’CoXSi1-x
0 10 20 30 40 50 60 70 80 90 100
Anisotropic I-V
behavior
Co69
Si31
~
Co22
Si78
Distorted ripples
0
Co16
Si84
~
Ellipsoidal
0
Co27
Si73
~
700
1000
500
1200
00
0
0
0
0
0
Ripples
~~
Energy(eV)
Co atomic %
700
1000
500
1200
Phase diagram after our work
2/23/2019 44
With Arโ†’CoXSi1-x
I-V characteristic study
-20 -15 -10 -5 0 5 10 15 20
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
-20 -15 -10 -5 0 5 10 15 20
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
15 min
30 min
60 min
45 min
10 min
Pristine
Current(A)
Voltage (V)
Parallel to the ion beam direction
Higher resistance for better ordered structures
A trap state ~ ยฑ5 V
60 min
0.0 0.2 0.4 0.6 0.8 1.0
-10
0
10
20
0.0 0.2 0.4 0.6 0.8 1.0
-10
0
10
20
slope
Height(nm)
X (ยตm)
๏Œ
๏ฌ
๏‚ฎ๏€ ๏€ ๏€ ๏‚ฌ
Shadowing
10 20 30 40 50 60
200
400
600
800
1000
1200
1400
1600
1800
10 20 30 40 50 60
Amplitude(nm)
Time of irradiation (min)
|| to the ion beam direction
๏ž to the ion beam direction
AmplitudeResistance(ohm)
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
Communicatedโ€ฆ
2/23/2019 45
Ion beam nanopatterning
Advantages
โ€ข Single step process for large area nanopatterning
โ€ข Faster and cheaper compared to conventional lithographic techniques
โ€ข Easily tunable process parameters
โ€ข High spatial selectivity
โ€ข Any ion beam can be put into any matter
โ€ข Maskless process
โ€ข Nanoripples and dots
Ion source
Sample holder
2/23/2019 46
Applications of these nanopatterns
โ€ข Quantum dots in optoeletronic devices
โ€ข Nanoripples for optical interference grating
โ€ข Ripple for alignment of carbon nanotubes
โ€ข Templates for functionalized surfaces e.g. plasmonic application
2/23/2019 47
plasma
N S N
Target
substrate
fluxflux flux
N S N
Ferromagnetic target
substrate
fluxflux flux
Impurity assisted ion beam nanopatterning
Hofsass APA 2008
1ร—1 ฮผm2
Vayalil JAP 2015
Ozadyn APL 2005
Mo, Ar
Khanbabaee TSF 2013
Fe, Kr
Macko NJP 2012
Fe, Kr
Cornejo ASS 2011
Fe, Kr
Macko NT 2010
Fe, Kr
Garcia JPCM 2009
2ร—2 ฮผm2
Fe/Mo, ArAu, Xe
Fe, Ar
Cubero NT 2016
Mo, Xe
Gago NT 2014
Mo, Fe, Ar
Engler NT 2014
Ag, Pd, Pb, Ir, Fe, C, Ar
2/23/2019 48
Theory (binary compound)
Shipman et.al., Phys. Rev. B 84, 085420 (2011)
2/23/2019 49
I-V characteristic study
5 10 15 20 25 30 35 40 45 50 55 60 65
300
600
900
1200
1500
1800
300
600
900
1200
1500
1800
Resistance(Ohm)
Time (min)
|| to the ion beam
๏ž to the ion beam
(d)
-20 -15 -10 -5 0 5 10 15 20
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
-20 -15 -10 -5 0 5 10 15 20
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
15 min
30 min
60 min
45 min
10 min
Pristine
Current(A)
Voltage (V)
Parallel to the ion beam direction
Higher resistance for better ordered structures
10 min 45 min
30 min
60 min15 min
0.0 0.2 0.4 0.6 0.8 1.0
-10
0
10
20
0.0 0.2 0.4 0.6 0.8 1.0
-10
0
10
20
slope
Height(nm)
X (ยตm)
๏Œ
๏ฌ
๏‚ฎ๏€ ๏€ ๏€ ๏‚ฌ
Shadowing
Ar+ ๏ƒ  Co69Si31 500 eV, 67o,1ร—1018 ions/cm2
Communicated
2/23/2019 50
2/23/2019 51
Why CoSi is important
โ€ข Especially true when a metal film is deposited and annealed to high temperatures to form the
silicide, e.g., in the self-aligned-silicide, or โ€œsalicide,โ€ process
โ€ข Difficult to apply when very thin layers are desired, because the films exhibit grooving at grain
boundaries and the continuous him breaks up into islands in an attempt to further reduce free
energy
โ€ข Cobalt disilicide films have aroused considerable interest in the semiconductor industry because
of their low resistivity, thermal stability and good epitaxial alignment with a Si substrate
โ€ข Sputter deposition of Co thin films is difficult as it is a ferromagnetic material
โ€ข The dc magnetic field transmitted through a ferromagnetic material from one side to another is called the
pass-through flux ~PTF!.
โ€ข Considerable portion of magnetic flux from the system is shunted by the target itself
โ€ข High purity and extremely low roughness, wide availability
โ€ข Polycrystallinity
โ€ข Alloys of cobalt and rare earth (RE) metals generally possess a strong magnetocrystalline anisotropy and
usually a high Curie temperature.
Zhang cobalt sputter target
Why Co is less sputtered
2/23/2019 52
Surfactant sputtering
S. Macko et. al., Nanotech.
21, 085301(2010)
2 keV Kr+ ๏‚ฎ Si, 300 K
Metal
2/23/2019 53
Constant parameters Ar+ ion
500 eV, 67o, 1.12ร—1018 ions/cm2 7 rpm speed during Swinging
Effect of swinging on CoxSi1-x
-7
0
7
0 1000 2000 3000
-6
0
6
-18
-9
0
9
-5
0
5
-12
-6
0
6
-8
0
8
16
-7
0
7
14
0 1000 2000 3000
-8
0
8
16
A
Height(nm)
As-grown
d
-50
o
+50
o
-75
o
+75
o
-100
o
+100
o
cauli flower like
-125
o
+125
o
cauli flower like
-150
o
+150
o
-180
o
+180
o
X (nm)
-200
o
+200
o
Cauliflower like structures appear
80 120 160 200 240 280 320 360 400
3.5
4.0
4.5
5.0
5.5
6.0
80 120 160 200 240 280 320 360 400
3.5
4.0
4.5
5.0
5.5
6.0Linear fit
Roughness(nm)
Angle of total swing (degree)
-200o+200o
-50o+50o
-150o+150o-125o+125o -180o+180o
-100o+100o-75o+75o
(a) (b) (c) (d)
(h)(g)(f)(e)
As-grown
Z
Under preparationโ€ฆ
2/23/2019 54
Bradley-Harper theory(contdโ€ฆ)
๐๐’‰
๐๐’•
= โˆ’๐’— ๐ŸŽ + ๐œธ(๐œฝ)
๐๐’‰
๐๐’™
+ ๐‚ ๐’™
๐ ๐Ÿ ๐’‰
๐๐’™ ๐Ÿ + ๐‚ ๐’š
๐ ๐Ÿ ๐’‰
๐๐’š ๐Ÿ โˆ’ ๐‘ฒ๐œต ๐Ÿ’
๐’‰
๐€ = ๐Ÿ๐…
๐’Œ = ๐Ÿ๐…
๐Ÿ๐‘ฒ
๐‚(๐’™,๐’š)
~(๐’‡๐‘ป)
๐Ÿ
๐Ÿ ๐’†
โˆ’โˆ†๐‘ฌ
๐’Œ ๐‘ฉ ๐‘ป
5 keV Xe+ ๏‚ฎ HOPG
Small ๏ฑ: ๏ฎx< ๏ฎy<0
Large ๏ฑ: ๏ฎy< ๏ฎx and ๏ฎy <0
Habenicht et. al., PRB, 60, R2200 (1999)
2/23/2019 55
Binary alloy systems (contdโ€ฆ)
โ€ข Height modulation
๐œ•โ„Ž
๐œ•๐‘ก
= โˆ’๐›บ[ ๐น๐ด + ๐›ป. ๐ฝ ๐ด + (๐น๐ต + ๐›ป. ๐ฝ ๐ต)]
โ€ข Composition modulation
โˆ†
๐œ•๐‘ ๐‘ 
๐œ•๐‘ก
= ฮฉ ๐‘ ๐‘ โˆ’ 1 ๐น๐ด + ๐›ป. ๐ฝ ๐ด + ๐‘ ๐‘ ๐น๐ต + ๐›ป. ๐ฝ ๐ต
โ€ข Erosion rate
๐‘ฃ0 = ฮฉ(๐น๐ด + ๐น๐ต)๐‘ƒ0
โ€ข Surface atomic current
๐‘ฑ๐’Š = โˆ’๐‘ซ๐’Š ๐’ ๐’” ๐œต๐‘ ๐‘  ๐’Š
+
๐‘ซ๐’Š ๐‘ ๐‘  ๐’Š ๐’๐œด๐œธ
๐’Œ ๐‘ฉ ๐‘ป
๐œต๐œต ๐Ÿ ๐ก โˆ’ ๐๐’Š ๐œต๐’‰ ๐ข = ๐€, ๐
โ€ข Power deposited per unit area
๐‘ƒ = ๐‘ƒ0 + ๐›ผ๐›ป2 ๐‘ข + ๐›ฝ(๐›ป๐‘ข)2
Shipman, Bradley, Phys. Rev. B , 84, 085420 (2011)
2/23/2019 56
Binary mixture
Gago JPCM (2018)2/23/2019 57
Parida et al. Physica B 545, 34(2018 )
2/23/2019 58
Binary alloy systems
โ€ข Coupling between topography and altered composition
โ€ข For A-B (50-50) alloy sputtering yield and composition
โ€ข Preferential sputtering
๐น๐ด = ๐น๐‘Œ๐ด ๐‘ ๐‘  , ๐น๐ต = ๐น๐‘Œ๐ต(1 โˆ’ ๐‘ ๐‘ )
โ€ข For steady state bulk composition
๐น ๐ด
๐น ๐ต
=
๐‘ ๐‘
1โˆ’๐‘ ๐‘
๐‘ ๐‘ =
๐‘Œ๐ต ๐‘ ๐‘
๐‘Œ๐ด(1 โˆ’ ๐‘ ๐‘) + ๐‘Œ๐ต ๐‘ ๐‘
โ€ข Normal incidence over a binary compound leads arrays of nanodots
Shenoy et.al., Phys. Rev. Lett., 98, 256101 (2007)
Preferential sputtering and diffusivity
2/23/2019 59
Nanopatterning using ion beam
Advantages
โ€ข Single step Faster and cheaper process for large area patterning
โ€ข Nanoripples, dots, holes etc.
โ€ข Easy to tune the parameters(ion energy, angle, flux,)
Applications
โ€ข Quantum dots in optoeletronic devices
โ€ข Nanoripples for optical interference grating, plasmonic applications
โ€ข Templates for functionalized surfaces
S. Facsko et.al., Science, 285, 1551
(1999)
CoSi
500 eV, 67o,45 min
GaSb
500 eV, 0o,400Sec
Ar ion flux IPR
Our Work
2/23/2019 60
Binary alloy sputtering(contdโ€ฆ)
โ€ข Power deposited per unit area
๐‘ƒ = ๐‘ƒ0 + ๐›ผ๐›ป2
๐‘ข + ๐›ฝ(๐›ป๐‘ข)2
โ€ข Mass conservation
๐œ•โ„Ž
๐œ•๐‘ก
= โˆ’ฮฉ[ ๐น๐ด + ๐›ป. ๐ฝ ๐ด + (๐น๐ต + ๐›ป. ๐ฝ ๐ต)]
โ€ข Rate of change of surface concentration
โˆ†
๐œ•๐‘ ๐‘ 
๐œ•๐‘ก
= ฮฉ ๐‘ ๐‘ โˆ’ 1 ๐น๐ด + ๐›ป. ๐ฝ ๐ด + ๐‘ ๐‘ ๐น๐ต + ๐›ป. ๐ฝ ๐ต
โ€ข Erosion rate
๐‘ฃ0 = ฮฉ(๐น๐ด + ๐น๐ต)๐‘ƒ0
โ€ข Surface atomic current
๐‘ฑ๐’Š = โˆ’๐‘ซ๐’Š ๐’ ๐’” ๐œต๐‘ ๐‘  ๐’Š
+
๐‘ซ๐’Š ๐‘ ๐‘  ๐’Š
๐’๐œด๐œธ
๐’Œ ๐‘ฉ ๐‘ป
๐œต๐œต ๐Ÿ
๐ก โˆ’ ๐๐’Š ๐œต๐’‰ , ๐ข = ๐€, ๐
โ€ข Instability
๐›ผ ๐น๐ด + ๐น๐ต > ๐œ‡ ๐ด + ๐œ‡ ๐ต
Shipman ,Bradley Phys. Rev. B ,84,085420(2011)
2/23/2019 61
Beyond BH model (contdโ€ฆ)
โ€ข Nanodots
โ€ข Normal incidence โ€“ sample fixed
โ€ข Oblique incidence โ€“ sample rotation
โ€ข Instability due to local curvature
โ€ข Erosion rate < addition rate to surface
โ€ข Coarsening due to nonlinear terms
Surface
tension
Surface diffusion Lateral
growth
White
noise
Nonlinear Kuramoto-Sivashinsky equation
๐๐’‰
๐๐’•
= โˆ’๐œˆ๐›ป2โ„Ž โˆ’ ๐พ๐›ป4โ„Ž โˆ’ ๐ท๐›ป4โ„Ž + ๐›พ1 ๐›ปโ„Ž 2 + ๐›พ2 ๐›ป2 ๐›ปโ„Ž 2 + ๐œ‚
Coarsening
term
2/23/2019 62
Binary alloy systems (contdโ€ฆ)
โ€ข Height modulation
๐œ•โ„Ž
๐œ•๐‘ก
= โˆ’ฮฉ[ ๐น๐ด + ๐›ป. ๐ฝ ๐ด + (๐น๐ต + ๐›ป. ๐ฝ ๐ต)]
โ€ข Composition modulation
โˆ†
๐œ•๐‘ ๐‘ 
๐œ•๐‘ก
= ฮฉ ๐‘ ๐‘ โˆ’ 1 ๐น๐ด + ๐›ป. ๐ฝ ๐ด + ๐‘ ๐‘ ๐น๐ต + ๐›ป. ๐ฝ ๐ต
โ€ข Erosion rate
๐‘ฃ0 = ฮฉ(๐น๐ด + ๐น๐ต)๐‘ƒ0
โ€ข Surface atomic current
๐‘ฑ๐’Š = โˆ’๐‘ซ๐’Š ๐’ ๐’” ๐œต๐‘ ๐‘  ๐’Š
+
๐‘ซ๐’Š ๐‘ ๐‘  ๐’Š ๐’๐œด๐œธ
๐’Œ ๐‘ฉ ๐‘ป
๐œต๐œต ๐Ÿ ๐ก โˆ’ ๐๐’Š ๐œต๐’‰ , ๐ข = ๐€, ๐
โ€ข Power deposited per unit area
๐‘ƒ = ๐‘ƒ0 + ๐›ผ๐›ป2 ๐‘ข + ๐›ฝ(๐›ป๐‘ข)2
Shipman, Bradley, Phys. Rev. B , 84, 085420 (2011)
2/23/2019 63
I-V characteristic study
Manuscript submittedโ€ฆ
๏ƒผ Diode like behaviour for patterned surfaces
๏ƒผ Macro roughness effect dominates for higher fluence
๏ƒผ Resistance -more along parallel direction
๏ƒผ Amplitude of nanoripples play measure role for conductivity
10 20 30 40 50 60
200
400
600
800
1000
1200
1400
1600
1800
10 20 30 40 50 60
Amplitude(nm)
Time of irradiation (min)
|| to the ion beam direction
๏ž to the ion beam direction
Amplitude
Resistance(ohm)
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2/23/2019 64
Ion beam nanopatterning
Ion source
Sample holder
โ€ข Single step process for large area
nanopatterning (upto few cm2 area)
โ€ข Faster and cheaper compared to
conventional lithographic techniques
Before irradiation
Ar+ 500 eV, 67o,15 minโ†’Si
After irradiation
2/23/2019 65
Nanopatterns on elementary and binary compounds
Binary compound
โ€ข Nanoripple โ€ข Nanodots
https://www.hzdr.de/db/Cms?pOid=24344&pNid=2707
S. Facsko et.al., Science, 285, 1551 (1999)
Frost et.al. Phys. Rev. Lett. 85, 4116 (2000)
Arโ†’Si
500 eV, 30 min, 67o
Oblique Incidence
Normal Incidence
Oblique Incidence with
rotation
Arโ†’InP
500 eV, 2 min, 10o
Monoelemental
Without impurity With impurity to
elemental surface
Arโ†’GaSb
500 eV, 30 min, 0o
2/23/2019 66
โ€ข Differential sputtering yield and Differential
diffusivity
โ€ข Results altered topography and
composition
A
B
Theoretical background
๐๐’‰
๐๐’•
= โˆ’๐’— ๐ŸŽ + ๐œธ ๐œฝ
๐๐’‰
๐๐’™
+ ๐‚ ๐’™
๐ ๐Ÿ
๐’‰
๐๐’™ ๐Ÿ
+ ๐‚ ๐’š
๐ ๐Ÿ
๐’‰
๐๐’š ๐Ÿ
โˆ’ ๐‘ฒ๐œต ๐Ÿ’
๐’‰ + โ‹ฏ .
Sputter
roughening
Diffusion
smoothing
Bradley-Harper Model
Monoelemental system
Shenoy et.al., Phys. Rev. Lett., 98, 256101 (2007)
โ€ข Competition between two processes
โ€ข Roughening due to sputtering
โ€ข Smoothening due to diffusion
AB compound
๐œ•โ„Ž
๐œ•๐‘ก
= โˆ’ฮฉ[ ๐น๐ด + ๐›ป. ๐ฝ ๐ด + (๐น๐ต + ๐›ป. ๐ฝ ๐ต)]
โˆ†
๐œ•๐‘ ๐‘ 
๐œ•๐‘ก
= ๐›บ ๐‘ ๐‘ โˆ’ 1 ๐น๐ด + ๐›ป. ๐ฝ ๐ด + ๐‘ ๐‘ ๐น๐ต + ๐›ป. ๐ฝ ๐ต
Binary compound system
Bradley et al. J. Vac. Sci. Technol. A 6, 2390 (1988)
2/23/2019 67

More Related Content

What's hot

Why nano is important
Why nano is importantWhy nano is important
Why nano is importantAshish Goel
ย 
HPC_UMD_poster_foss
HPC_UMD_poster_fossHPC_UMD_poster_foss
HPC_UMD_poster_fosscjfoss
ย 
Optical properties materials_studio_55
Optical properties materials_studio_55Optical properties materials_studio_55
Optical properties materials_studio_55BIOVIA
ย 
Molecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram codeMolecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram codeTakeshi Nishimatsu
ย 
Ion beam nanostructuring of CoSi surfaces
Ion beam nanostructuring of CoSi surfaces Ion beam nanostructuring of CoSi surfaces
Ion beam nanostructuring of CoSi surfaces Dr. Basanta Kumar Parida
ย 
Foss_BW_Symp_2015
Foss_BW_Symp_2015Foss_BW_Symp_2015
Foss_BW_Symp_2015cjfoss
ย 
Final Presentation
Final PresentationFinal Presentation
Final PresentationRobert Schurz
ย 
Heterogeneous Combustion Wave as an X-Ray Source
Heterogeneous Combustion Wave as an X-Ray SourceHeterogeneous Combustion Wave as an X-Ray Source
Heterogeneous Combustion Wave as an X-Ray Sourceinventionjournals
ย 
Research Poster 2 Dongwei Liu
Research Poster 2 Dongwei LiuResearch Poster 2 Dongwei Liu
Research Poster 2 Dongwei LiuDongwei (Jackie) Liu
ย 
APS march meeting 2015
APS march meeting 2015APS march meeting 2015
APS march meeting 2015Po-Chun Yeh
ย 
Research issues in graphene field effect transistor
Research issues in graphene field effect transistorResearch issues in graphene field effect transistor
Research issues in graphene field effect transistorDaljeet Motton
ย 
The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...Alexander Decker
ย 
Muong-2BeamStorageMagnetBFieldShaping
Muong-2BeamStorageMagnetBFieldShapingMuong-2BeamStorageMagnetBFieldShaping
Muong-2BeamStorageMagnetBFieldShapingGeorge Ressinger
ย 
Ugrad conf foss_2015
Ugrad conf foss_2015Ugrad conf foss_2015
Ugrad conf foss_2015cjfoss
ย 
NDiwakar_Northeast Robotics Colloq_Poster
NDiwakar_Northeast Robotics Colloq_PosterNDiwakar_Northeast Robotics Colloq_Poster
NDiwakar_Northeast Robotics Colloq_PosterNidhi Diwakar
ย 
Graphene presentation
Graphene presentationGraphene presentation
Graphene presentationPollypo
ย 
Graphene Transistor By Shital Badaik
Graphene Transistor By Shital BadaikGraphene Transistor By Shital Badaik
Graphene Transistor By Shital BadaikShital Badaik
ย 
Electron Diffusion and Phonon Drag Thermopower in Silicon Nanowires
Electron Diffusion and Phonon Drag Thermopower in Silicon NanowiresElectron Diffusion and Phonon Drag Thermopower in Silicon Nanowires
Electron Diffusion and Phonon Drag Thermopower in Silicon NanowiresAI Publications
ย 

What's hot (20)

Why nano is important
Why nano is importantWhy nano is important
Why nano is important
ย 
HPC_UMD_poster_foss
HPC_UMD_poster_fossHPC_UMD_poster_foss
HPC_UMD_poster_foss
ย 
Optical properties materials_studio_55
Optical properties materials_studio_55Optical properties materials_studio_55
Optical properties materials_studio_55
ย 
Molecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram codeMolecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram code
ย 
Ion beam nanostructuring of CoSi surfaces
Ion beam nanostructuring of CoSi surfaces Ion beam nanostructuring of CoSi surfaces
Ion beam nanostructuring of CoSi surfaces
ย 
Foss_BW_Symp_2015
Foss_BW_Symp_2015Foss_BW_Symp_2015
Foss_BW_Symp_2015
ย 
Final Presentation
Final PresentationFinal Presentation
Final Presentation
ย 
Heterogeneous Combustion Wave as an X-Ray Source
Heterogeneous Combustion Wave as an X-Ray SourceHeterogeneous Combustion Wave as an X-Ray Source
Heterogeneous Combustion Wave as an X-Ray Source
ย 
Research Poster 2 Dongwei Liu
Research Poster 2 Dongwei LiuResearch Poster 2 Dongwei Liu
Research Poster 2 Dongwei Liu
ย 
APS march meeting 2015
APS march meeting 2015APS march meeting 2015
APS march meeting 2015
ย 
Research issues in graphene field effect transistor
Research issues in graphene field effect transistorResearch issues in graphene field effect transistor
Research issues in graphene field effect transistor
ย 
The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...
ย 
Muong-2BeamStorageMagnetBFieldShaping
Muong-2BeamStorageMagnetBFieldShapingMuong-2BeamStorageMagnetBFieldShaping
Muong-2BeamStorageMagnetBFieldShaping
ย 
Ugrad conf foss_2015
Ugrad conf foss_2015Ugrad conf foss_2015
Ugrad conf foss_2015
ย 
NDiwakar_Northeast Robotics Colloq_Poster
NDiwakar_Northeast Robotics Colloq_PosterNDiwakar_Northeast Robotics Colloq_Poster
NDiwakar_Northeast Robotics Colloq_Poster
ย 
Graphene presentation
Graphene presentationGraphene presentation
Graphene presentation
ย 
Graphene Transistor By Shital Badaik
Graphene Transistor By Shital BadaikGraphene Transistor By Shital Badaik
Graphene Transistor By Shital Badaik
ย 
Surfaces of Metal Oxides.
Surfaces of Metal Oxides.Surfaces of Metal Oxides.
Surfaces of Metal Oxides.
ย 
Electron Diffusion and Phonon Drag Thermopower in Silicon Nanowires
Electron Diffusion and Phonon Drag Thermopower in Silicon NanowiresElectron Diffusion and Phonon Drag Thermopower in Silicon Nanowires
Electron Diffusion and Phonon Drag Thermopower in Silicon Nanowires
ย 
Balasubramanian, Prabhu - 2013 RNC Symposium (R)
Balasubramanian, Prabhu - 2013 RNC Symposium (R)Balasubramanian, Prabhu - 2013 RNC Symposium (R)
Balasubramanian, Prabhu - 2013 RNC Symposium (R)
ย 

Similar to Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces

ion induced nanopatterning of binary compound
ion induced nanopatterning of binary compoundion induced nanopatterning of binary compound
ion induced nanopatterning of binary compoundDr. Basanta Kumar Parida
ย 
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...Dr. Basanta Kumar Parida
ย 
Ion beam sputtered morphology of binary compound system
Ion beam sputtered morphology of binary compound systemIon beam sputtered morphology of binary compound system
Ion beam sputtered morphology of binary compound systemDr. Basanta Kumar Parida
ย 
Ion beam nanopatterning of binary alloy
Ion beam nanopatterning of binary alloyIon beam nanopatterning of binary alloy
Ion beam nanopatterning of binary alloyDr. Basanta Kumar Parida
ย 
Binary alloy nanopatterning using low energy ion beams
Binary alloy nanopatterning using low energy ion beams Binary alloy nanopatterning using low energy ion beams
Binary alloy nanopatterning using low energy ion beams Dr. Basanta Kumar Parida
ย 
EFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRES
EFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRESEFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRES
EFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRESijoejournal
ย 
Effect of Synthesis Conditions on Yttrium Iron Garnet (YIG) Nanocrystalline P...
Effect of Synthesis Conditions on Yttrium Iron Garnet (YIG) Nanocrystalline P...Effect of Synthesis Conditions on Yttrium Iron Garnet (YIG) Nanocrystalline P...
Effect of Synthesis Conditions on Yttrium Iron Garnet (YIG) Nanocrystalline P...IRJET Journal
ย 
Physical Models of LENR Processes Using the BSM-SG Atomic Models
Physical Models of LENR Processes Using the BSM-SG Atomic ModelsPhysical Models of LENR Processes Using the BSM-SG Atomic Models
Physical Models of LENR Processes Using the BSM-SG Atomic ModelsStoyan Sarg Sargoytchev
ย 
Electrical properties of Ni0.4Mg0.6Fe2O4 ferrites
Electrical properties of Ni0.4Mg0.6Fe2O4 ferritesElectrical properties of Ni0.4Mg0.6Fe2O4 ferrites
Electrical properties of Ni0.4Mg0.6Fe2O4 ferritesIJERA Editor
ย 
PhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_final
PhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_finalPhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_final
PhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_finalRadu Andrei Negrila
ย 
IRJET - Photoluminescence Study of Rare Earth Doped ZnO Nanoparticles
IRJET - Photoluminescence Study of Rare Earth Doped ZnO NanoparticlesIRJET - Photoluminescence Study of Rare Earth Doped ZnO Nanoparticles
IRJET - Photoluminescence Study of Rare Earth Doped ZnO NanoparticlesIRJET Journal
ย 
Cation distribution of Ni2+ and Mg2+ ions improve structure and Magnetic Prop...
Cation distribution of Ni2+ and Mg2+ ions improve structure and Magnetic Prop...Cation distribution of Ni2+ and Mg2+ ions improve structure and Magnetic Prop...
Cation distribution of Ni2+ and Mg2+ ions improve structure and Magnetic Prop...AI Publications
ย 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discoveryAnubhav Jain
ย 
Mechanistic Investigation of FeO/MnO/ZnO Nanocomposites for UV Light Driven P...
Mechanistic Investigation of FeO/MnO/ZnO Nanocomposites for UV Light Driven P...Mechanistic Investigation of FeO/MnO/ZnO Nanocomposites for UV Light Driven P...
Mechanistic Investigation of FeO/MnO/ZnO Nanocomposites for UV Light Driven P...IRJET Journal
ย 
Bismuth Ferrite Nano particles
Bismuth Ferrite Nano particlesBismuth Ferrite Nano particles
Bismuth Ferrite Nano particlesAshish Goel
ย 
Synthesis, Growth and Characterization of Nonlinear Optical Semi Organic Pota...
Synthesis, Growth and Characterization of Nonlinear Optical Semi Organic Pota...Synthesis, Growth and Characterization of Nonlinear Optical Semi Organic Pota...
Synthesis, Growth and Characterization of Nonlinear Optical Semi Organic Pota...IRJET Journal
ย 

Similar to Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces (20)

ion induced nanopatterning of binary compound
ion induced nanopatterning of binary compoundion induced nanopatterning of binary compound
ion induced nanopatterning of binary compound
ย 
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
ย 
Ion beam sputtered morphology of binary compound system
Ion beam sputtered morphology of binary compound systemIon beam sputtered morphology of binary compound system
Ion beam sputtered morphology of binary compound system
ย 
Ion beam nanopatterning of binary alloy
Ion beam nanopatterning of binary alloyIon beam nanopatterning of binary alloy
Ion beam nanopatterning of binary alloy
ย 
Binary alloy nanopatterning using low energy ion beams
Binary alloy nanopatterning using low energy ion beams Binary alloy nanopatterning using low energy ion beams
Binary alloy nanopatterning using low energy ion beams
ย 
EFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRES
EFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRESEFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRES
EFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRES
ย 
Effect of Synthesis Conditions on Yttrium Iron Garnet (YIG) Nanocrystalline P...
Effect of Synthesis Conditions on Yttrium Iron Garnet (YIG) Nanocrystalline P...Effect of Synthesis Conditions on Yttrium Iron Garnet (YIG) Nanocrystalline P...
Effect of Synthesis Conditions on Yttrium Iron Garnet (YIG) Nanocrystalline P...
ย 
Physical Models of LENR Processes Using the BSM-SG Atomic Models
Physical Models of LENR Processes Using the BSM-SG Atomic ModelsPhysical Models of LENR Processes Using the BSM-SG Atomic Models
Physical Models of LENR Processes Using the BSM-SG Atomic Models
ย 
Electrical properties of Ni0.4Mg0.6Fe2O4 ferrites
Electrical properties of Ni0.4Mg0.6Fe2O4 ferritesElectrical properties of Ni0.4Mg0.6Fe2O4 ferrites
Electrical properties of Ni0.4Mg0.6Fe2O4 ferrites
ย 
PhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_final
PhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_finalPhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_final
PhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_final
ย 
IRJET - Photoluminescence Study of Rare Earth Doped ZnO Nanoparticles
IRJET - Photoluminescence Study of Rare Earth Doped ZnO NanoparticlesIRJET - Photoluminescence Study of Rare Earth Doped ZnO Nanoparticles
IRJET - Photoluminescence Study of Rare Earth Doped ZnO Nanoparticles
ย 
GOMD_2016_mayurtalk
GOMD_2016_mayurtalkGOMD_2016_mayurtalk
GOMD_2016_mayurtalk
ย 
Cation distribution of Ni2+ and Mg2+ ions improve structure and Magnetic Prop...
Cation distribution of Ni2+ and Mg2+ ions improve structure and Magnetic Prop...Cation distribution of Ni2+ and Mg2+ ions improve structure and Magnetic Prop...
Cation distribution of Ni2+ and Mg2+ ions improve structure and Magnetic Prop...
ย 
PPT-PIEAS.pptx
PPT-PIEAS.pptxPPT-PIEAS.pptx
PPT-PIEAS.pptx
ย 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
ย 
Mechanistic Investigation of FeO/MnO/ZnO Nanocomposites for UV Light Driven P...
Mechanistic Investigation of FeO/MnO/ZnO Nanocomposites for UV Light Driven P...Mechanistic Investigation of FeO/MnO/ZnO Nanocomposites for UV Light Driven P...
Mechanistic Investigation of FeO/MnO/ZnO Nanocomposites for UV Light Driven P...
ย 
Bismuth Ferrite Nano particles
Bismuth Ferrite Nano particlesBismuth Ferrite Nano particles
Bismuth Ferrite Nano particles
ย 
gaafar2009.pdf
gaafar2009.pdfgaafar2009.pdf
gaafar2009.pdf
ย 
Synthesis, Growth and Characterization of Nonlinear Optical Semi Organic Pota...
Synthesis, Growth and Characterization of Nonlinear Optical Semi Organic Pota...Synthesis, Growth and Characterization of Nonlinear Optical Semi Organic Pota...
Synthesis, Growth and Characterization of Nonlinear Optical Semi Organic Pota...
ย 
Analysis of structural differences of Ag nanoparticles generated using Therma...
Analysis of structural differences of Ag nanoparticles generated using Therma...Analysis of structural differences of Ag nanoparticles generated using Therma...
Analysis of structural differences of Ag nanoparticles generated using Therma...
ย 

More from Dr. Basanta Kumar Parida

Ion induced nanopatterning of CoSI binary alloy surfaces
Ion induced nanopatterning of CoSI binary alloy surfacesIon induced nanopatterning of CoSI binary alloy surfaces
Ion induced nanopatterning of CoSI binary alloy surfacesDr. Basanta Kumar Parida
ย 
plasma in ion source and sputtering systems
plasma in ion source and sputtering systemsplasma in ion source and sputtering systems
plasma in ion source and sputtering systemsDr. Basanta Kumar Parida
ย 
magnetron sputtering deposition system
magnetron sputtering deposition systemmagnetron sputtering deposition system
magnetron sputtering deposition systemDr. Basanta Kumar Parida
ย 
Nanoripples for anisotropic electrical conduction
Nanoripples for anisotropic electrical conductionNanoripples for anisotropic electrical conduction
Nanoripples for anisotropic electrical conductionDr. Basanta Kumar Parida
ย 
Aluminium smelter vedanta jharsuguda
Aluminium smelter  vedanta jharsugudaAluminium smelter  vedanta jharsuguda
Aluminium smelter vedanta jharsugudaDr. Basanta Kumar Parida
ย 

More from Dr. Basanta Kumar Parida (20)

Ion induced nanopatterning of CoSI binary alloy surfaces
Ion induced nanopatterning of CoSI binary alloy surfacesIon induced nanopatterning of CoSI binary alloy surfaces
Ion induced nanopatterning of CoSI binary alloy surfaces
ย 
plasma in ion source and sputtering systems
plasma in ion source and sputtering systemsplasma in ion source and sputtering systems
plasma in ion source and sputtering systems
ย 
magnetron sputtering deposition system
magnetron sputtering deposition systemmagnetron sputtering deposition system
magnetron sputtering deposition system
ย 
Odishara debaadebi
Odishara debaadebiOdishara debaadebi
Odishara debaadebi
ย 
Atoms and molecules
Atoms and moleculesAtoms and molecules
Atoms and molecules
ย 
what is science
what is sciencewhat is science
what is science
ย 
Nanoripples for anisotropic electrical conduction
Nanoripples for anisotropic electrical conductionNanoripples for anisotropic electrical conduction
Nanoripples for anisotropic electrical conduction
ย 
Strangeness in particle physics
Strangeness in particle physicsStrangeness in particle physics
Strangeness in particle physics
ย 
Aluminium smelter
Aluminium smelterAluminium smelter
Aluminium smelter
ย 
Aluminium smelter vedanta jharsuguda
Aluminium smelter  vedanta jharsugudaAluminium smelter  vedanta jharsuguda
Aluminium smelter vedanta jharsuguda
ย 
English_odia dictionary
English_odia dictionaryEnglish_odia dictionary
English_odia dictionary
ย 
Odia bhagabata13
Odia bhagabata13Odia bhagabata13
Odia bhagabata13
ย 
Odia bhagabata11
Odia bhagabata11Odia bhagabata11
Odia bhagabata11
ย 
Odia bhagabata9
Odia bhagabata9Odia bhagabata9
Odia bhagabata9
ย 
Odia bhagabata8
Odia bhagabata8Odia bhagabata8
Odia bhagabata8
ย 
Odia bhagabata7
Odia bhagabata7Odia bhagabata7
Odia bhagabata7
ย 
Odia bhagabata6
Odia bhagabata6Odia bhagabata6
Odia bhagabata6
ย 
Odia bhagabata5
Odia bhagabata5Odia bhagabata5
Odia bhagabata5
ย 
Odia bhagabata4
Odia bhagabata4Odia bhagabata4
Odia bhagabata4
ย 
Odia bhagabata3
Odia bhagabata3Odia bhagabata3
Odia bhagabata3
ย 

Recently uploaded

Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
ย 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
ย 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
ย 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
ย 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
ย 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
ย 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
ย 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
ย 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
ย 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
ย 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
ย 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
ย 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
ย 

Recently uploaded (20)

Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
ย 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
ย 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
ย 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
ย 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
ย 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
ย 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
ย 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
ย 
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
ย 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
ย 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
ย 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
ย 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
ย 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
ย 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
ย 

Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces

  • 1. Nanopatterning of CoSi binary material using low energy ion beams Basanta Kumar Parida Department of Physics IIT Ropar Open Seminar
  • 3. Outline 2/23/2019 3 โ€ข Nanopatterning โ€ข Ion beam nanopatterning โ€ข Historical overview โ€ข Single elemental system โ€ข Binary and compound systems โ€ข My work โ€ข Experimental details โ€ข Instability driven pattern formation โ€ข Influence of ion species and composition โ€ข Electrical measurement on higher ordered nanoripples โ€ข Influence of swinging on morphology evolution โ€ข Summary
  • 4. Nanopatterning 2/23/2019 4 Nanopatterning Approaches Top-down Photolithography e-beam lithography Writing, stamping Bottom-up Growth phenomena Spontaneous assembling Rawat J. Phys Conf Ser. (2015) Source(google) Electron Beam Lithography UV-Nanoimprint Lithography Methods to manufacture nanomaterials or pattern materials on a nanometre scale
  • 5. Ion beam nanopatterning Advantages โ€ข Single step process for large area self- organized nanopatterning โ€ข Faster and cheaper compared to conventional lithographic techniques โ€ข Easily tunable process parameters โ€ข High spatial selectivity โ€ข Any ion beam can be put into any matter โ€ข Maskless process, less time โ€ข Not require ultra high vacuum โ€ข Nanoripples and dots 2/23/2019 5 Applications of these nanopatterns Optoeletronic devices, funcionalized surface, plasmonic, magnetic applications Before irradiation Ar+ 500 eV, 67o,15 minโ†’Si After irradiation
  • 6. Our work Ion beam nanopatterning 2/23/2019 6 Ion beam nanopatterning Single element Binary compound Pure binary 50-50 % Impurity assist to single element
  • 7. First observationโ€ฆ (nanoripples and dots) 4 kV Air ๏‚ฎ glass 0o 420 eV Ar+ ๏‚ฎ GaSb S. Facsko et.al., Science, 285, 1551 (1999)Navez et. al., Compt. Rend. Acad. Sci., 254, 240 (1962) 2/23/2019 7 60o 45o 10o
  • 8. Observations (Nonconventional ways) Ozaydyn Appl. Phys. Lett. (2005) 10o 30o 70o 80o F. Frost et.al., Phys. Rev. Lett., 85, 4117 (2000) 2/23/2019 8 1000 eV Ar+ ๏‚ฎ Si500 eV Ar+ ๏‚ฎ InP Sample rotation at oblique incidence (Mo seeded)
  • 9. Ion beam induced patterns over Si and Ge Frost Appl. Phys. A 91, 551 (2008) Important experimental parameters โ€ข Ion beam energy โ€ข Angle of incidence (0 o -85 o ) โ€ข Erosion time โ€ข Ion species used Ar, Xe, Kr, Ne,O2,N2 โ€ข Temperature โ€ข Rotation of sample/swing of sample 2/23/2019 9 Ge Ge Ge Ge
  • 10. Temporal evolution of ripple: Simulation Youtube (J. M. Garcia) 2/23/2019 10
  • 11. Theoretical background Monoelemental system โ€ข Competition between two processes โ€ข Roughening due to sputtering โ€ข Smoothening due to diffusion Bradley et al. J. Vac. Sci. Technol. A 6, 2390 (1988) ๐๐’‰ ๐๐’• = โˆ’๐’— ๐ŸŽ + ๐œธ ๐œฝ ๐๐’‰ ๐๐’™ + ๐‚ ๐’™ ๐ ๐Ÿ ๐’‰ ๐๐’™ ๐Ÿ + ๐‚ ๐’š ๐ ๐Ÿ ๐’‰ ๐๐’š ๐Ÿ โˆ’ ๐‘ฒ๐œต ๐Ÿ’ ๐’‰ Sputter roughening Diffusion smoothing Local slope erosion ๐๐’‰ ๐๐’• = โˆ’๐’— ๐ŸŽ + ๐Š๐œต ๐Ÿ’ ๐’‰ โˆ’ ๐‘ซ๐œต ๐Ÿ’ ๐’‰ + ๐€ ๐ŸŽ ๐Ÿ ๐œต๐’‰ ๐Ÿ Nonlinear terms (Kuramoto-Sivashinsky KS eq.) ๐€ = ๐Ÿ๐… ๐Ÿ๐‘ซ ๐Š 2/23/2019 11 Bradley-Harper theory
  • 12. Ion beam induced patterns over III-V semiconductor Xu JAP 2004 Kumar ASS 2012 Roy PRB 10 500 eV Ar ๏‚ฎ GaSb 50 keV Ar ๏‚ฎ GaAs 500 eV Ar ๏‚ฎ GaSb Park SCT 2007 Mohanty ASS 2012 Atwani SR 2015 225 eV Ar ๏‚ฎ InP 100 keV Ar ๏‚ฎ InP 5 keV Xe ๏‚ฎ GaP Atwani APL 2012 Chowdhury ASS 2016 Paramanik JPDAP 2008 1 keV Ar ๏‚ฎ GaAs 1 keV Ar ๏‚ฎ GaSb 3 keV Ar ๏‚ฎ InP 2/23/2019 12
  • 13. Theory for binary compound 13 Shenoy et.al., Phys. Rev. Lett., 98, 256101 (2007) A B AB binary compound Coupled equation (50-50) composition Sputtering yields (Y) and diffusivities (D) are different ๐๐’‰ ๐๐’• = โˆ’๐œด[ ๐‘ญ ๐‘จ + ๐œต. ๐‘ฑ ๐‘จ + (๐‘ญ ๐‘ฉ + ๐œต. ๐‘ฑ ๐‘ฉ)] โˆ† ๐๐’„ ๐’” ๐๐’• = ๐œด ๐’„ ๐’ƒ โˆ’ ๐Ÿ ๐‘ญ ๐‘จ + ๐œต. ๐‘ฑ ๐‘จ + ๐’„ ๐’ƒ ๐‘ญ ๐‘ฉ + ๐œต. ๐‘ฑ ๐‘ฉ โ€ข Height modulation โ€ข Composition modulation 2/23/2019 13 ๐น๐ด = ๐น๐‘Œ๐ด ๐‘ ๐‘  ๐น๐ต = ๐น๐‘Œ๐ต(1 โˆ’ ๐‘ ๐‘ ) ๐น ๐ด ๐น ๐ต = ๐‘ ๐‘ 1โˆ’๐‘ ๐‘ Sign of ๐ท ๐ต ๐‘Œ๐ด โˆ’ ๐ท๐ด ๐‘Œ๐ต decides the peaks and valleys ๐‘ ๐‘ = ๐‘Œ๐ต ๐‘ ๐‘ ๐‘Œ๐ด(1 โˆ’ ๐‘ ๐‘) + ๐‘Œ๐ต ๐‘ ๐‘ If ๐ท๐ด ๐‘Œ๐ต < ๐ท ๐ต ๐‘Œ๐ด peaks will be enriched with A Differential sputtering yield and diffusivity
  • 14. Impurity assisted ion beam nanopatterning Khanbabaee TSF 2013 Fe, Kr Macko NT 2010 Fe, Kr Garcia JPCM 2009 2ร—2 ฮผm2 Fe/Mo, Ar 2/23/2019 14 Diverse patterns -varying the ion beam parameters โ€ข Flux of impurity atoms and ions โ€ข Ion/impurity ratio is important โ€ข Varies from place to place from on the substrate โ€ข Different types impurity addition mechanisms โ€ข Surfactant sputtering, from the clamps, chamber walls Nanoholes Nanodots Discontinuous ripples 625ร—625 nm2
  • 15. Motivation โ€ข The atoms having energiesโˆผ50 eV essentially are a part of the surface or near-surface layer having a penetration depth of sub-nanometer dimension โ€ข Mixtures containing initially well-mixed species โ€ข Far from strongest coupling (50-50) composition โ€ข Sputtering can induce stoichiometric rearrangements in the bulk which affects the surface concentration CoxSi1-x is chosen as the binary material 2/23/2019 15 50 eV Ar ๏‚ฎ Si 50 eV Ar ๏‚ฎ Si
  • 16. Experimental details 2/23/2019 16 CoxSi1-x deposition (Confocal magnetron sputtering) Magnetic flux is shunted No deposition Modification of sputtering gun Weak magnetic material Central magnet replaced
  • 17. Experimental details โ€ข CoSi binary material deposited on Si(100) with variable stoichiometries (SEM-EDX) โ€ข Irradiated with different energies, fluence, angles and swinging parameters โ€ข Initial roughness ~ 5 nm Si(100) CoxSi1-x After Ar ion irradiation at 1200 eV Unirradiated CoxSi1-x 2/23/2019 17
  • 18. Energy variation 500-1200 eV Morphology transitions from lower to higher value of energy Ar+๏ƒ  Co27Si73 67o 7.5ร—1018 ions/cm2 0 20 40 600 800 1000 Wavelength(nm) 600 800 1000 1200 1 2 3 4 5 Amplitude(nm) Energy (eV) 600 800 1000 1200 0.00 0.01 0.02 0.03 0.04 Aspectratio(A/L) Energy (eV) 1 2 3 4 5 Roughness(nm) As grown 5 nm Parida et al. Curr. Appl. Phys. 18, 993 (2018 ) 2/23/2019 18
  • 19. Energy variation (Co27Si73) 10 6 10 7 10 8 1E-30 1E-29 1E-28 1E-27 1E-26 1E-25 500 eV 700 eV 10 5 10 6 10 7 1E-28 1E-27 1E-26 1E-25 1E-24 1E-23 PSD(m 3 ) k (m -1 ) 1000 eV 1200 eV Calculations from KS equation ๐œ•โ„Ž ๐œ•๐‘ก = โˆ’๐‘ฃ0 + ๐›พ ๐œ•โ„Ž ๐œ•๐‘ฅ + ๐œˆ ๐‘ฅ ๐œ•2โ„Ž ๐œ•๐‘ฅ2 + ๐œˆ ๐‘ฆ ๐œ•2โ„Ž ๐œ•๐‘ฆ2 + ๐œ† ๐‘ฅ 2 ๐œ•โ„Ž ๐œ•๐‘ฅ 2 + ๐œ† ๐‘ฆ 2 ๐œ•โ„Ž ๐œ•๐‘ฆ 2 โˆ’ ๐พ๐›ป4 โ„Ž โˆ’ ๐ท๐›ป4 โ„Ž+๐œ‚ Makeev et al. NIMB 197, 185 (2002) In our case ๐œˆ ๐‘ฅ> ๐œˆ ๐‘ฆ and ๐œˆ ๐‘ฆ < 0 hence ripples are aligned along X-direction 2/23/2019 19 Ion induced surface diffusion is the dominant relaxation mechanism Yi s sputtering yields, D=Diffusivity
  • 20. Fluence variation (Co16Si84) Wavelength increment follows power law 700 eV Ar+๏ƒ  Co16Si84 67o (2.5 - 10)ร—1018 ions/cm2 Parida et al. Curr. Appl. Phys. 18, 993 (2018 ) 2/23/2019 20
  • 21. Compositional variations and MFM study Topographical changes Enrichment of cobalt at the peaks Hierarchical (bug-like) structures 700 eV Ar+๏ƒ  CoxSi1-x 67o 7.5ร—1018 ions/cm2 Parida et al. Curr. Appl. Phys. 18, 993 (2018 ) 2/23/2019 21
  • 22. Silicide confirmation Confirmation of Silicide formation Parida et al. Curr. Appl. Phys. 18, 993 (2018 ) Phase diagram 2/23/2019 22 500 600 700 800 900 1000 1100 1200 0 5 10 15 20 25 50 51 52 53 54 55 Distorted Ripples Pill bug structures Semi-ellipsoidal structures Self-organized ripples Co(%) Energy (eV)
  • 23. -10 0 10 20 30 40 50 60 70 80 90 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Roughness(nm) Angle of incidence (degree) ion = Ar+ time =45 min energy =700eV Effect of angle of incidence variation (Ar ion) ฮธ=30o ฮธ=80oฮธ=67o ฮธ=0o z=4 nm z=4.4 nm z=74 nmz=23 nm 700 eV Ar+๏ƒ  Co43Si57 7.5ร—1018 ions/cm2 3D 10 -3 10 -2 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 PSD(nm 4 ) Frequency(nm-1) 0 deg 30 deg 67 deg 80 deg Nanodot formation at grazing incidence Parida et al. Physica B 545, 34(2018 ) 2/23/2019 23
  • 24. Effect of angle of incidence variation (Xe ion) Irregular dot structures to triangular structures 10 -3 10 -2 10 -2 10 -1 10 0 10 1 10 2 10 3 PSD(nm 4 ) Frequency(nm-1 ) 0 deg 30 deg 50 deg 67 deg -10 0 10 20 30 40 50 60 70 1.0 1.5 2.0 2.5 3.0 3.5 Roughness(nm) Angle of incidence (degree) ion = Xe+ time = 45 min energy = 500 eV Parida et al. Physica B 545, 34(2018 ) 500 eV Xe+๏ƒ  Co64Si36 7.5ร—1018 ions/cm2 2/23/2019 24
  • 25. Stoichiometric controlled nanopatterning 0.0 0.5 1.0 1.5 2.0 3.5 4.0 4.5 5.0 5.5 6.0 Roughness(nm) Co/Si Nanoripple evolution Within a specific composition ripples appear Preparation Ar 700 eV, 67o, 7.5ร—1018 ions/cm2 10 7 10 8 Co21.9 Si78.1 Co7.7 Si92.3 Co3.2 Si96.8 Co2.4 Si97.6 Co0 Si100 Co66.9 Si33.1 Co54 Si46 Co41 Si59 Co39.2 Si60.8 Co3.2 Si96.8 Co2.4 Si97.6 PSD(a.u) k (m -1 ) k n 2/23/2019 25
  • 26. Higher order ripples 0.00 0.25 0.50 0.75 1.00 -3.8 0.0 3.8 7.6 -1.7 0.0 1.7 3.4 -3.3 0.0 3.3 6.6 -1.5 0.0 1.5 3.0 -9 0 9 18 0.00 0.25 0.50 0.75 1.00 60 min 45 min 30 min 15 min 10 min X (ยตm) slope ๏Œ ๏ฌ Height(nm) Line profiles ๏‚ฎ๏€ ๏€ ๏€ ๏‚ฌh Higher order ripples Shadowing causes hillocks Communicatedโ€ฆ 2/23/2019 26 500 eV Ar+๏ƒ  Co69Si31, 67o 10 7 10 8 10 9 10 -31 10 -30 10 -29 10 -28 10 -27 10 -26 10 -25 10 -24 PSD(m 3 ) k (m -1 ) 10 min 15 min 30 min 45 min 60 min Along ion beam direction 10 7 10 8 10 9 10 -31 10 -30 10 -29 10 -28 10 -27 10 -26 10 -25 10 -24 10 min 15 min 30 min 45 min 60 min Across ion beam direction PSD(m 3 ) k (m -1 )
  • 27. Roughness and I-V characteristic study Drastic change in electrical conductance as grown to patterned surface Along and across the ion beam direction resistance is different -20 -15 -10 -5 0 5 10 15 20 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 Current(A) Voltage (V) || to the ion beam direction ๏€ ๏žto the ion beam direction As-grown Communicatedโ€ฆ 2/23/2019 27 10 20 30 40 50 60 2 3 4 5 6 Roughness(nm) Time (min) 10 20 30 40 50 60 33 36 39 42 45 48 51 54 57 (b) Wavelength(nm) Time (min)
  • 28. I-V and resistance study A trap state ~ ยฑ5 V Higher resistance for better ordered structures 10 20 30 40 50 60 200 400 600 800 1000 1200 1400 1600 1800 10 20 30 40 50 60 Amplitude(nm) Time of irradiation (min) || to the ion beam direction ๏ž to the ion beam direction Amplitude Resistance(ohm) 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Communicatedโ€ฆ 2/23/2019 28 I-V characteristic Resistance -20 -15 -10 -5 0 5 10 15 20 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -20 -15 -10 -5 0 5 10 15 20 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 15 min 30 min 60 min 45 min 10 min Pristine Current(A) Voltage (V) Parallel to the ion beam direction
  • 29. Effect of azimuthal swinging Kim et al. J. Phys.: Cond Matt 30, 274004 (2018) Yoon et al. J. Appl. Phys. 119, 205301 (2016) Transition b/w erosive and diffusive region Square-shaped vacancy islands Ar+ 2 keV 78o, โˆ†ฯ†=144o Asymmetric wall like structure Ar+ โ†’HOPG 2 keV ฦŸ=78o โˆ†ฯ†=144o 2/23/2019 29
  • 30. Pristine -200o+200o Z=50nm -50o+50o -75o+75o -150o+150o -125o+125o -180o+180o -100o+100o (a) (b) (c) (d) (e) (f) (g) (h) Z=21nm Z=50nm Z=30nmZ=50nm(c) -75o+75o Z=45nmZ=35nmZ=24nm Z=40nm Z Constant parameters 500 eV, 67o,1.12ร—1018 ions/cm2 7 rpm speed in swinging Effect of swinging on binary material ๏ƒผ Bi-periodic ion incidence on the swinging surface ๏ƒผ But single period for the rotating surface ๏ƒผ Anisotropic surface modification and the reduced symmetry in the pattern ๏ƒผ Lateral mass transport caused by the swinging substrate Under preparationโ€ฆ 100 150 200 250 300 350 400 3.5 4.0 4.5 5.0 5.5 6.0 100 150 200 250 300 350 400 3.5 4.0 4.5 5.0 5.5 6.0Linear fit Roughness(nm) Angle of total swing (degree) 2/23/2019 30 Cauliflower like structures appear
  • 31. Constant parameters 500 eV, 67o, 1.12ร—1018 ions/cm2 (-100o - +100o) โ€ข Roughness decreases towards higher speed swinging Swinging speed variation Under preparationโ€ฆ 2/23/2019 31 Z=40 nm 1 rpm Z=30 nm 7 rpm Z=30 nm 15 rpm 0 2 4 6 8 10 12 14 16 4.8 5.0 5.2 5.4 Roughness(nm) Speed of swinging (rpm) โ€ข Number density of Cauliflower like structures grow up
  • 32. 0 10 20 30 40 50 60 70 80 90 100 500 750 1000 1250 500 750 1000 1250 Energy(eV) Perpendicularmoderipples (16.7 keV) ~~ Si ~ ~ ~ ~ ~ ~Ripples Energy(eV) Co atomic % Co Phase diagram before our work 2/23/2019 32 Ar+ โ†’Co & Si
  • 33. 0 10 20 30 40 50 60 70 80 90 100 500 750 1000 1250 500 750 1000 1250 Co69 Si31 Co27 Si73 * Ellipsoidal 0 *Distorted Ripples 00 ** Anisotropiv I-V ~ ~~ ~ 0 0 0 0 Energy(eV) Perpendicularmoderipples (16.7 keV) ~~ Si ~ ~ ~ ~ ~ ~Ripples Energy(eV) Co atomic % Co 0 * Phase diagram after our work 2/23/2019 33 Ar+ โ†’Co, Si, CoxSi1-x
  • 34. Summary โ€ข Morphological transition at higher energies โ€“ nano to micro scale โ€ข Power law behavior for fluence variations โ€ข Hierarchical structures for higher Co concentrations โ€ข Formation of conical bumps at grazing incident angles. Lower angles give extremely smooth surfaces โ€ข Higher resistance for better ordered structures โ€ข Trap barrier ~ ยฑ 5 V for nanorippled surface, amplitude dependent resistance โ€ข Cauliflower like structures appear due to swinging โ€ข Enrichment of cobalt at crests 2/23/2019 34
  • 35. Publications 1. Morphological instabilities in argon ion sputtered CoSi binary mixture B. K. Parida , M. Ranjan, S. Sarkar; Curr. Appl. Phys 18, 993 (2018) 2. Influence of obliquely incident primary ion species on patterning of CoSi binary mixtures: An experimental study B. K. Parida , M. Ranjan, S. Sarkar; Physica B 545, 34 (2018) I. Anisotropic I-V behaviour from nanoripples of ion eroded CoSi surfaces B. K. Parida , A. Kundu, K. S. Hazra, S. Sarkar (Communicated) II. Stoichiometric controlled binary mixture nanopatterning via ion beam sputtering B. K. Parida , S. Sarkar (Under Preparation) III. Pattern formation assisted by ion beam sputtering over azimuthally oscillating CoSi binary substrate B. K. Parida , S. Sarkar (Under Preparation) Supervisor - Dr. Subhendu Sarkar Dr. Mukesh Ranjan, FCIPT, IPR, Gandhinagar Dr. K. S. Hazra INST, Mohali CRF, IIT Ropar MHRD, India Friends and Family Acknowledgement 2/23/2019 35
  • 38. 0 10 20 30 40 50 60 70 3.5 4.0 4.5 5.0 5.5 6.0 Roughness(nm) Co% (a.u.) 3 ยตm Nanoripple evolution 0.0 0.5 1.0 1.5 2.0 0 4 8 12 16 20 24 28 32 0.0 0.5 1.0 1.5 2.0 Range(nm) Co/Si Range Lateral range Longitudinal range Y Co Y Si Y Total 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 YTotal(atoms/ion) (a) (b) (d) (c) (g) (f)(e) (i)(h) Z=30 nm Z=22 nm Z=40 nm Z=35 nm Z=40 nm Z=26 nm Z=30 nm Z=28 nm Z=30 nm Z Compositional effect 2/23/2019 38
  • 39. 0 10 20 30 40 50 60 70 80 90 X X XXX X XX XXX X Perpendicularripples Flat stable surface 0 ~ ~ ~ 1200 600 ~ ~ 0 ~400 800 200 1000 Paralel mode Ripples ~ Energy(eV) incidence angle (deg) ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ X X X XXX Phase diagram before our work 2/23/2019 39 With Ar โ†’Si
  • 40. Phase diagram before our work 2/23/2019 40 0 10 20 30 40 50 60 70 80 90 0.0 0.4 0.8 1.2 16 18 20 0.0 0.4 0.8 1.2 16 18 20 Perpendicularmoderipples No report ~ Energy(keV) Incidence angle (deg) ~ With Ar โ†’Co
  • 41. 0 10 20 30 40 50 60 70 Anisotropic I-V behavior Co69 Si31 ~~ Co22 Si78 Distorted ripples 0 Co16 Si84 ~ Ellipsoidal 0 Co27 Si73 ~ 700 1000 500 1200 00 0 0 0 0 0 Ripples ~~ Energy(eV) Co atomic % 700 1000 500 1200 Phase diagram of patterns formed 2/23/2019 41 With Arโ†’CoXSi1-x
  • 42. 0 10 20 30 40 50 60 70 80 90 100 500 750 1000 1250 500 750 1000 1250 Energy(eV) Perpendicularmoderipples (16.7 keV) ~~ RipplesonSi ~ ~ ~ ~ ~ ~Ripples Energy(eV) Co atomic % Phase diagram after our work 2/23/2019 42 With Arโ†’CoXSi1-x
  • 43. 0 10 20 30 40 50 60 70 80 90 100 Anisotropic I-V behavior Co69 Si31 ~ Co22 Si78 Distorted ripples 0 Co16 Si84 ~ Ellipsoidal 0 Co27 Si73 ~ 700 1000 500 1200 00 0 0 0 0 0 Ripples ~~ Energy(eV) Co atomic % 700 1000 500 1200 Phase diagram after our work 2/23/2019 43 With Arโ†’CoXSi1-x
  • 44. 0 10 20 30 40 50 60 70 80 90 100 Anisotropic I-V behavior Co69 Si31 ~ Co22 Si78 Distorted ripples 0 Co16 Si84 ~ Ellipsoidal 0 Co27 Si73 ~ 700 1000 500 1200 00 0 0 0 0 0 Ripples ~~ Energy(eV) Co atomic % 700 1000 500 1200 Phase diagram after our work 2/23/2019 44 With Arโ†’CoXSi1-x
  • 45. I-V characteristic study -20 -15 -10 -5 0 5 10 15 20 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -20 -15 -10 -5 0 5 10 15 20 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 15 min 30 min 60 min 45 min 10 min Pristine Current(A) Voltage (V) Parallel to the ion beam direction Higher resistance for better ordered structures A trap state ~ ยฑ5 V 60 min 0.0 0.2 0.4 0.6 0.8 1.0 -10 0 10 20 0.0 0.2 0.4 0.6 0.8 1.0 -10 0 10 20 slope Height(nm) X (ยตm) ๏Œ ๏ฌ ๏‚ฎ๏€ ๏€ ๏€ ๏‚ฌ Shadowing 10 20 30 40 50 60 200 400 600 800 1000 1200 1400 1600 1800 10 20 30 40 50 60 Amplitude(nm) Time of irradiation (min) || to the ion beam direction ๏ž to the ion beam direction AmplitudeResistance(ohm) 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Communicatedโ€ฆ 2/23/2019 45
  • 46. Ion beam nanopatterning Advantages โ€ข Single step process for large area nanopatterning โ€ข Faster and cheaper compared to conventional lithographic techniques โ€ข Easily tunable process parameters โ€ข High spatial selectivity โ€ข Any ion beam can be put into any matter โ€ข Maskless process โ€ข Nanoripples and dots Ion source Sample holder 2/23/2019 46 Applications of these nanopatterns โ€ข Quantum dots in optoeletronic devices โ€ข Nanoripples for optical interference grating โ€ข Ripple for alignment of carbon nanotubes โ€ข Templates for functionalized surfaces e.g. plasmonic application
  • 47. 2/23/2019 47 plasma N S N Target substrate fluxflux flux N S N Ferromagnetic target substrate fluxflux flux
  • 48. Impurity assisted ion beam nanopatterning Hofsass APA 2008 1ร—1 ฮผm2 Vayalil JAP 2015 Ozadyn APL 2005 Mo, Ar Khanbabaee TSF 2013 Fe, Kr Macko NJP 2012 Fe, Kr Cornejo ASS 2011 Fe, Kr Macko NT 2010 Fe, Kr Garcia JPCM 2009 2ร—2 ฮผm2 Fe/Mo, ArAu, Xe Fe, Ar Cubero NT 2016 Mo, Xe Gago NT 2014 Mo, Fe, Ar Engler NT 2014 Ag, Pd, Pb, Ir, Fe, C, Ar 2/23/2019 48
  • 49. Theory (binary compound) Shipman et.al., Phys. Rev. B 84, 085420 (2011) 2/23/2019 49
  • 50. I-V characteristic study 5 10 15 20 25 30 35 40 45 50 55 60 65 300 600 900 1200 1500 1800 300 600 900 1200 1500 1800 Resistance(Ohm) Time (min) || to the ion beam ๏ž to the ion beam (d) -20 -15 -10 -5 0 5 10 15 20 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -20 -15 -10 -5 0 5 10 15 20 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 15 min 30 min 60 min 45 min 10 min Pristine Current(A) Voltage (V) Parallel to the ion beam direction Higher resistance for better ordered structures 10 min 45 min 30 min 60 min15 min 0.0 0.2 0.4 0.6 0.8 1.0 -10 0 10 20 0.0 0.2 0.4 0.6 0.8 1.0 -10 0 10 20 slope Height(nm) X (ยตm) ๏Œ ๏ฌ ๏‚ฎ๏€ ๏€ ๏€ ๏‚ฌ Shadowing Ar+ ๏ƒ  Co69Si31 500 eV, 67o,1ร—1018 ions/cm2 Communicated 2/23/2019 50
  • 52. Why CoSi is important โ€ข Especially true when a metal film is deposited and annealed to high temperatures to form the silicide, e.g., in the self-aligned-silicide, or โ€œsalicide,โ€ process โ€ข Difficult to apply when very thin layers are desired, because the films exhibit grooving at grain boundaries and the continuous him breaks up into islands in an attempt to further reduce free energy โ€ข Cobalt disilicide films have aroused considerable interest in the semiconductor industry because of their low resistivity, thermal stability and good epitaxial alignment with a Si substrate โ€ข Sputter deposition of Co thin films is difficult as it is a ferromagnetic material โ€ข The dc magnetic field transmitted through a ferromagnetic material from one side to another is called the pass-through flux ~PTF!. โ€ข Considerable portion of magnetic flux from the system is shunted by the target itself โ€ข High purity and extremely low roughness, wide availability โ€ข Polycrystallinity โ€ข Alloys of cobalt and rare earth (RE) metals generally possess a strong magnetocrystalline anisotropy and usually a high Curie temperature. Zhang cobalt sputter target Why Co is less sputtered 2/23/2019 52
  • 53. Surfactant sputtering S. Macko et. al., Nanotech. 21, 085301(2010) 2 keV Kr+ ๏‚ฎ Si, 300 K Metal 2/23/2019 53
  • 54. Constant parameters Ar+ ion 500 eV, 67o, 1.12ร—1018 ions/cm2 7 rpm speed during Swinging Effect of swinging on CoxSi1-x -7 0 7 0 1000 2000 3000 -6 0 6 -18 -9 0 9 -5 0 5 -12 -6 0 6 -8 0 8 16 -7 0 7 14 0 1000 2000 3000 -8 0 8 16 A Height(nm) As-grown d -50 o +50 o -75 o +75 o -100 o +100 o cauli flower like -125 o +125 o cauli flower like -150 o +150 o -180 o +180 o X (nm) -200 o +200 o Cauliflower like structures appear 80 120 160 200 240 280 320 360 400 3.5 4.0 4.5 5.0 5.5 6.0 80 120 160 200 240 280 320 360 400 3.5 4.0 4.5 5.0 5.5 6.0Linear fit Roughness(nm) Angle of total swing (degree) -200o+200o -50o+50o -150o+150o-125o+125o -180o+180o -100o+100o-75o+75o (a) (b) (c) (d) (h)(g)(f)(e) As-grown Z Under preparationโ€ฆ 2/23/2019 54
  • 55. Bradley-Harper theory(contdโ€ฆ) ๐๐’‰ ๐๐’• = โˆ’๐’— ๐ŸŽ + ๐œธ(๐œฝ) ๐๐’‰ ๐๐’™ + ๐‚ ๐’™ ๐ ๐Ÿ ๐’‰ ๐๐’™ ๐Ÿ + ๐‚ ๐’š ๐ ๐Ÿ ๐’‰ ๐๐’š ๐Ÿ โˆ’ ๐‘ฒ๐œต ๐Ÿ’ ๐’‰ ๐€ = ๐Ÿ๐… ๐’Œ = ๐Ÿ๐… ๐Ÿ๐‘ฒ ๐‚(๐’™,๐’š) ~(๐’‡๐‘ป) ๐Ÿ ๐Ÿ ๐’† โˆ’โˆ†๐‘ฌ ๐’Œ ๐‘ฉ ๐‘ป 5 keV Xe+ ๏‚ฎ HOPG Small ๏ฑ: ๏ฎx< ๏ฎy<0 Large ๏ฑ: ๏ฎy< ๏ฎx and ๏ฎy <0 Habenicht et. al., PRB, 60, R2200 (1999) 2/23/2019 55
  • 56. Binary alloy systems (contdโ€ฆ) โ€ข Height modulation ๐œ•โ„Ž ๐œ•๐‘ก = โˆ’๐›บ[ ๐น๐ด + ๐›ป. ๐ฝ ๐ด + (๐น๐ต + ๐›ป. ๐ฝ ๐ต)] โ€ข Composition modulation โˆ† ๐œ•๐‘ ๐‘  ๐œ•๐‘ก = ฮฉ ๐‘ ๐‘ โˆ’ 1 ๐น๐ด + ๐›ป. ๐ฝ ๐ด + ๐‘ ๐‘ ๐น๐ต + ๐›ป. ๐ฝ ๐ต โ€ข Erosion rate ๐‘ฃ0 = ฮฉ(๐น๐ด + ๐น๐ต)๐‘ƒ0 โ€ข Surface atomic current ๐‘ฑ๐’Š = โˆ’๐‘ซ๐’Š ๐’ ๐’” ๐œต๐‘ ๐‘  ๐’Š + ๐‘ซ๐’Š ๐‘ ๐‘  ๐’Š ๐’๐œด๐œธ ๐’Œ ๐‘ฉ ๐‘ป ๐œต๐œต ๐Ÿ ๐ก โˆ’ ๐๐’Š ๐œต๐’‰ ๐ข = ๐€, ๐ โ€ข Power deposited per unit area ๐‘ƒ = ๐‘ƒ0 + ๐›ผ๐›ป2 ๐‘ข + ๐›ฝ(๐›ป๐‘ข)2 Shipman, Bradley, Phys. Rev. B , 84, 085420 (2011) 2/23/2019 56
  • 57. Binary mixture Gago JPCM (2018)2/23/2019 57
  • 58. Parida et al. Physica B 545, 34(2018 ) 2/23/2019 58
  • 59. Binary alloy systems โ€ข Coupling between topography and altered composition โ€ข For A-B (50-50) alloy sputtering yield and composition โ€ข Preferential sputtering ๐น๐ด = ๐น๐‘Œ๐ด ๐‘ ๐‘  , ๐น๐ต = ๐น๐‘Œ๐ต(1 โˆ’ ๐‘ ๐‘ ) โ€ข For steady state bulk composition ๐น ๐ด ๐น ๐ต = ๐‘ ๐‘ 1โˆ’๐‘ ๐‘ ๐‘ ๐‘ = ๐‘Œ๐ต ๐‘ ๐‘ ๐‘Œ๐ด(1 โˆ’ ๐‘ ๐‘) + ๐‘Œ๐ต ๐‘ ๐‘ โ€ข Normal incidence over a binary compound leads arrays of nanodots Shenoy et.al., Phys. Rev. Lett., 98, 256101 (2007) Preferential sputtering and diffusivity 2/23/2019 59
  • 60. Nanopatterning using ion beam Advantages โ€ข Single step Faster and cheaper process for large area patterning โ€ข Nanoripples, dots, holes etc. โ€ข Easy to tune the parameters(ion energy, angle, flux,) Applications โ€ข Quantum dots in optoeletronic devices โ€ข Nanoripples for optical interference grating, plasmonic applications โ€ข Templates for functionalized surfaces S. Facsko et.al., Science, 285, 1551 (1999) CoSi 500 eV, 67o,45 min GaSb 500 eV, 0o,400Sec Ar ion flux IPR Our Work 2/23/2019 60
  • 61. Binary alloy sputtering(contdโ€ฆ) โ€ข Power deposited per unit area ๐‘ƒ = ๐‘ƒ0 + ๐›ผ๐›ป2 ๐‘ข + ๐›ฝ(๐›ป๐‘ข)2 โ€ข Mass conservation ๐œ•โ„Ž ๐œ•๐‘ก = โˆ’ฮฉ[ ๐น๐ด + ๐›ป. ๐ฝ ๐ด + (๐น๐ต + ๐›ป. ๐ฝ ๐ต)] โ€ข Rate of change of surface concentration โˆ† ๐œ•๐‘ ๐‘  ๐œ•๐‘ก = ฮฉ ๐‘ ๐‘ โˆ’ 1 ๐น๐ด + ๐›ป. ๐ฝ ๐ด + ๐‘ ๐‘ ๐น๐ต + ๐›ป. ๐ฝ ๐ต โ€ข Erosion rate ๐‘ฃ0 = ฮฉ(๐น๐ด + ๐น๐ต)๐‘ƒ0 โ€ข Surface atomic current ๐‘ฑ๐’Š = โˆ’๐‘ซ๐’Š ๐’ ๐’” ๐œต๐‘ ๐‘  ๐’Š + ๐‘ซ๐’Š ๐‘ ๐‘  ๐’Š ๐’๐œด๐œธ ๐’Œ ๐‘ฉ ๐‘ป ๐œต๐œต ๐Ÿ ๐ก โˆ’ ๐๐’Š ๐œต๐’‰ , ๐ข = ๐€, ๐ โ€ข Instability ๐›ผ ๐น๐ด + ๐น๐ต > ๐œ‡ ๐ด + ๐œ‡ ๐ต Shipman ,Bradley Phys. Rev. B ,84,085420(2011) 2/23/2019 61
  • 62. Beyond BH model (contdโ€ฆ) โ€ข Nanodots โ€ข Normal incidence โ€“ sample fixed โ€ข Oblique incidence โ€“ sample rotation โ€ข Instability due to local curvature โ€ข Erosion rate < addition rate to surface โ€ข Coarsening due to nonlinear terms Surface tension Surface diffusion Lateral growth White noise Nonlinear Kuramoto-Sivashinsky equation ๐๐’‰ ๐๐’• = โˆ’๐œˆ๐›ป2โ„Ž โˆ’ ๐พ๐›ป4โ„Ž โˆ’ ๐ท๐›ป4โ„Ž + ๐›พ1 ๐›ปโ„Ž 2 + ๐›พ2 ๐›ป2 ๐›ปโ„Ž 2 + ๐œ‚ Coarsening term 2/23/2019 62
  • 63. Binary alloy systems (contdโ€ฆ) โ€ข Height modulation ๐œ•โ„Ž ๐œ•๐‘ก = โˆ’ฮฉ[ ๐น๐ด + ๐›ป. ๐ฝ ๐ด + (๐น๐ต + ๐›ป. ๐ฝ ๐ต)] โ€ข Composition modulation โˆ† ๐œ•๐‘ ๐‘  ๐œ•๐‘ก = ฮฉ ๐‘ ๐‘ โˆ’ 1 ๐น๐ด + ๐›ป. ๐ฝ ๐ด + ๐‘ ๐‘ ๐น๐ต + ๐›ป. ๐ฝ ๐ต โ€ข Erosion rate ๐‘ฃ0 = ฮฉ(๐น๐ด + ๐น๐ต)๐‘ƒ0 โ€ข Surface atomic current ๐‘ฑ๐’Š = โˆ’๐‘ซ๐’Š ๐’ ๐’” ๐œต๐‘ ๐‘  ๐’Š + ๐‘ซ๐’Š ๐‘ ๐‘  ๐’Š ๐’๐œด๐œธ ๐’Œ ๐‘ฉ ๐‘ป ๐œต๐œต ๐Ÿ ๐ก โˆ’ ๐๐’Š ๐œต๐’‰ , ๐ข = ๐€, ๐ โ€ข Power deposited per unit area ๐‘ƒ = ๐‘ƒ0 + ๐›ผ๐›ป2 ๐‘ข + ๐›ฝ(๐›ป๐‘ข)2 Shipman, Bradley, Phys. Rev. B , 84, 085420 (2011) 2/23/2019 63
  • 64. I-V characteristic study Manuscript submittedโ€ฆ ๏ƒผ Diode like behaviour for patterned surfaces ๏ƒผ Macro roughness effect dominates for higher fluence ๏ƒผ Resistance -more along parallel direction ๏ƒผ Amplitude of nanoripples play measure role for conductivity 10 20 30 40 50 60 200 400 600 800 1000 1200 1400 1600 1800 10 20 30 40 50 60 Amplitude(nm) Time of irradiation (min) || to the ion beam direction ๏ž to the ion beam direction Amplitude Resistance(ohm) 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2/23/2019 64
  • 65. Ion beam nanopatterning Ion source Sample holder โ€ข Single step process for large area nanopatterning (upto few cm2 area) โ€ข Faster and cheaper compared to conventional lithographic techniques Before irradiation Ar+ 500 eV, 67o,15 minโ†’Si After irradiation 2/23/2019 65
  • 66. Nanopatterns on elementary and binary compounds Binary compound โ€ข Nanoripple โ€ข Nanodots https://www.hzdr.de/db/Cms?pOid=24344&pNid=2707 S. Facsko et.al., Science, 285, 1551 (1999) Frost et.al. Phys. Rev. Lett. 85, 4116 (2000) Arโ†’Si 500 eV, 30 min, 67o Oblique Incidence Normal Incidence Oblique Incidence with rotation Arโ†’InP 500 eV, 2 min, 10o Monoelemental Without impurity With impurity to elemental surface Arโ†’GaSb 500 eV, 30 min, 0o 2/23/2019 66
  • 67. โ€ข Differential sputtering yield and Differential diffusivity โ€ข Results altered topography and composition A B Theoretical background ๐๐’‰ ๐๐’• = โˆ’๐’— ๐ŸŽ + ๐œธ ๐œฝ ๐๐’‰ ๐๐’™ + ๐‚ ๐’™ ๐ ๐Ÿ ๐’‰ ๐๐’™ ๐Ÿ + ๐‚ ๐’š ๐ ๐Ÿ ๐’‰ ๐๐’š ๐Ÿ โˆ’ ๐‘ฒ๐œต ๐Ÿ’ ๐’‰ + โ‹ฏ . Sputter roughening Diffusion smoothing Bradley-Harper Model Monoelemental system Shenoy et.al., Phys. Rev. Lett., 98, 256101 (2007) โ€ข Competition between two processes โ€ข Roughening due to sputtering โ€ข Smoothening due to diffusion AB compound ๐œ•โ„Ž ๐œ•๐‘ก = โˆ’ฮฉ[ ๐น๐ด + ๐›ป. ๐ฝ ๐ด + (๐น๐ต + ๐›ป. ๐ฝ ๐ต)] โˆ† ๐œ•๐‘ ๐‘  ๐œ•๐‘ก = ๐›บ ๐‘ ๐‘ โˆ’ 1 ๐น๐ด + ๐›ป. ๐ฝ ๐ด + ๐‘ ๐‘ ๐น๐ต + ๐›ป. ๐ฝ ๐ต Binary compound system Bradley et al. J. Vac. Sci. Technol. A 6, 2390 (1988) 2/23/2019 67

Editor's Notes

  1. Outlook Expected outcome and future plan, ease and reproducibility
  2. Optical. E-beam, UVIL โ€“ atomic layer dep, sol gel fabrication, vapor phase synthesis Method of preparing of nanoscale features Top down fabrication can be likened to sculpting from a block of stone. A piece of the base material is gradually eroded until the desired shape is achieved. That is, you start at the top of the blank piece and work your way down removing material from where it is not required. Nanotechnology techniques for top down fabrication vary but can be split into mechanical and chemical fabrication techniques. The current load to miniaturization demand for low cost and large scale compactible Reproducible and controllable features. Great interest, optoelectronics, large scale production, simultaneous control purity, uniformity, crystallinity chemical etching, x-ray lithography or electron beam techniques (top down) dimension of devices continues to shrink Bottom up fabrication can be likened to building a brick house. Instead of placing bricks one at a time to produce a house, bottom up fabrication techniques place atoms or molecules one at a time to build the desired nanostructure. Such processes are time consuming and so self assembly techniques are employed where the atoms arrange themselves as required.
  3. Give a schematic of the process
  4. Azam ion gun, air, 4 keV ๏‚ฎ Glass, 6 hours Really boosted/interest was initiated observation of nanodots
  5. Substrate rotation, additional Mo seeding from the clamps/clips
  6. Ultras smooth, mesh like trough, hexagonally ordered dots, highly ordered ripples, dot+ripple coexistence, square ordered dots, curved ripples
  7. As energetic ion enters into the substance there forms a disturbed region inside the substance called Collison cascade. Few atoms get sufficient energy to come out of the surface due to these which can be explained by an instability theory of Bradley and Harper. The irregularities over the surface(like crests or trough) lead to instability due to which trough erodes faster than the crest. Hence the instability creates roughening of the surface which competes with the thermal surface diffusion where matters flow to the crests to the tough leads to the smoothening. Hence Formation of nanopattern are due to the competition between two processes. One is the roughening due to the surface curvature and other smoothening due to thermal diffusion. Both effect combinely result nanoripples.
  8. Xu jap 04 nanoisland 500 eV Ar GaSb 2.nanograss, naopillar 180-225 eV InP 4. paramanik jpdap 08 3 keV Ar InP nanodots 4. Roy PRB 10 tilted nanopillars 500 Ar GaSB 45 deg 5. mohanty ass 12 nanodots 100 kev ar InP 6. atwani apl 12 nanodots 1000eV Ar GaSb 7. kumar ass 12 nanodots 50 kev GaAs 8. atwani sr 15 nanoripple Xe 5keV GaP 9. Chowdhury ass 16 nannoripple 1 keV Ar GaAs
  9. SS: 50-50 stoichiometry
  10. Garcia jpcm 2009 nanohole 1keV Ar(Fe/Mo) (4) Macko nt 10 2 kev Kr stainless steel (7) khanababee tsf 13
  11. Will you write the last line? BKP: may change SS: Discuss 50 ev first. SS: Not necessary to stress metal-semiconductor system. May specify at the end with why we chose that.
  12. Considerable portion of magnetic flux from the system is shunted by the target itself Magnetic field transmitted through a ferromagnetic material from one side to another is called the pass-through flux Replace โ€œcast ironโ€ with โ€œnon-magnetic materialโ€ so that net flux through will come out to create plasma. NdFeB or Co4Sm
  13. SS: Say how did you check variable stoichiometryโ€ฆ. SS: Delete stoichiometry
  14. These are AFM images for the Ar ion irradiated Co27Si73 surfaces with different energies. There is morphology change, has been observed from 500 -1200 eV energy. Nanoscale ripples for 500 eV case. Peculiar semi-ellipsoidal structures have been observed for 1000 and 1200 eV cases. Variations like roughness, wavelength, amplitudes, aspect ratio are depicted in the diagrams. the energy deposition in the near-surface region increases, leading to an enhancement of the curvature-dependent sputtering
  15. SS: You have to explain delicately why you chose this single element model BKP: yes
  16. Nonlinear terms helps in exponential growth of ripples, for initial studied regime SS: How are you claiming the above? BKP: this is not the feature of BH theory rather nonlinear terms. nonlinear extension 1l/2(dh)2 is attributed to the change of the sputtering yield with varying local tilt angles, i.e., a quadratic increase with increasing local tilt angles BKP: In theory, the exponential roughness growth for low fluence regime has been explained, so I expect. Which was removed from manuscript_1_v1
  17. These are our results which confirms the compositional changes. Left side indicates the AFM images of various x values where we found linear dependence of roughness with cobalt /silicon composition. And pill bug like structures for higher cobalt stoichiometries. 2- Right side refers to the MFM images of the topographical images (left) and the cobalt enriched part in the MFM phase images which confirms the compositional change as in theory.
  18. The native oxide layer would be eroded upon ion irradiation thereby leading to the formation of silicides SS: Where is the silicide best formed? BKP: Higher fluence 1E19 regime and for 7.5E18 one is suppressed other is grew up. At 700 eV also count of CoSi_2(200) is more than others.
  19. The nature of these curves exhibit a deviation from self-affine behaviour similar to those found in other surface topographies. This could be due to the broad humps on these surfaces effectively acting as overlayers on a smooth substrate as modelled in the above studies
  20. SS: Correlate roughness and PSD data Momentum transfer
  21. 15 minutes of irradiation, these nanoripples have uniform height distribution across the surface hillocks can be explained through shadowing of the ion beam by the surface structure tan(pi/2-h)>=2.pi.h/L The primary nonlocal effect is the shadowing effect where taller surface features block incoming flux from reaching lower-lying areas of the surface. The shadowing effect is active bcz the incoming flux has an angular distribution.
  22. isotropically distributed mound-like structures are present all over the sample surface, whereas the irradiated surfaces show formation of well oriented ripple patterns in particular direction
  23. Diffusion of adatoms are so fast that the pattern formation-diffusive regime D (Pd)<D (Au) Swinging helps in transition from erosive to diffusive regime , 2-d-like momentum transfer from the ion beam to the adatoms Bi periodic mass transport gives rise to anisotropic pattern formation and reduce symmetry
  24. Nanoscale surface ripples generated by oblique-incidence ion bombardment of a solid are generally full of defects, and this has prevented the widespread adoption of ion bombardment as a nanofabrication tool. We advance a theory that predicts that remarkably defect-free ripples can be produced by ion bombardment of a binary material if the ion species, energy and angle of incidence are appropriately chosen. This high degree of order results from the coupling between the surface height and composition, and cannot be achieved by bombarding an elemental material. surface ripples with an exceptionally low density of defects have already been generated by OIIB of silicon (ziberi jpcm 09)
  25. The primary nonlocal effect is the shadowing effect where taller surface features block incoming flux from reaching lower-lying areas of the surface. The shadowing effect is active bcz the incoming flux has an angular distribution. This allows taller surface features to grow at the expense of shorter ones, leading to a competition between different surface features for particle flux. This competition ultimately leads to a mounded surface as shorter surface features receive little or no particle flux and โ€œdie outโ€. Shadowing is an inherently nonlocal process because the shadowing of a surface feature depends on the heights of all other surface features, not just close, or local, ones
  26. Give a schematic of the process
  27. Ozadyn apl 05, Mo Ar 1keV (2) Hofsass apa 08 Xe (5keV+Au) (3) Garcia jpcm 2009 nanohole 1keV Ar(Fe/Mo) (4) Macko nt 10 2 kev Kr stainless steel (5) Cornejo ass 2011 (6) macko njp 12 (7) khanababee tsf 13 (8) gago nt 14 (9) Engler nt 14 (10) vayalil jap 15 (11) cubero nt 16
  28. Diffusive surface current Ji u is a slowly varying function Alpha= is positive leading to surface instability beta term=slope dependence sputtering yield Del- is a characteristic length order of penetration depth
  29. Over the past few decades, techniques to produce submicron and nanoscale features on surfaces have emerged. Recent innovations in the area of micro- and nanofabrication have created a unique opportunity for patterning surfaces with features with lateral dimensions over the nano- to millimeter range. The microelectronics industry and need for smaller and faster computing systems have pushed this development during the last two decades. Nanopatterns are nothing but patterns at nanoscale, which are used in various applications. The important part here is to discuss a cheaper way of creation of nanopattern, which is ion beam sputtering(IBS). Irradiating or bombarding the solid surface using the ion beam can create long range ordered nanopatterns(nanoripples, nanodots-few nanometer ) within a few second to few minute of irradiation. The main importance of this process is we can pattern upto few cm^2 area using this technique by suitably adjusting the ion beam parameters(like ion energy, incident angle, ion fluence means total ions/cm2). Easily tunable parameters are the main advantage of this method. Other importance of this method are any type of ion beam can be used for any type of material over (semiconductors, insulators, metals). Also space selectivity the main advantage-we can choose space where to be patterned according to our own way. It is a maskless process unlike the case of photolithography and other patterning techniques. Applications Quantum dots in optoeletronic devices, Nanoripples for optical interference grating, Templates for functionalized surfaces, also these surfaces can be used for plasmonics application which I will come later . In optical grating and other application these nm-scale patterns are useful.
  30. Diffusive surface current Ji u is a slowly varying function Alpha= is positive leading to surface instability beta term=slope dependence sputtering yield Del- is a characteristic length order of penetration depth
  31. gamma1,2-disorder the pattern, interrupt the coarsening process.
  32. Diffusive surface current Ji u is a slowly varying function Alpha= is positive leading to surface instability beta term=slope dependence sputtering yield Del- is a characteristic length order of penetration depth
  33. Presented the correlation between morphology and local electrical conductivity for ripple structures formed
  34. Typical patterns formed as I have explained earlier are nanoripples and dots. For monoelemental surfaces like Si, Ge and metals etc, IBS at oblique incidence create nanoripples, where as for binary compound cases like III-V semiconductors (GaSb, GaAs, InP etc) there is the formation of hexagonally ordered nanodots which are mostly crystalline nature for few minutes of sputtering. As referred in the fig. The two cases are normal incidence or oblique incidence ion beam with rotating substrate can create these nanodots. (1)Arโ†’Si 500 eV, 67o (2)Arโ†’GaSb 500 eV, 67o both for 30 min (3)Arโ†’InP 500 eV, 2 min, 10o Representative patterns for different cases
  35. As energetic ion enters into the substance there forms a disturbed region inside the substance called Collison cascade. Few atoms get sufficient energy to come out of the surface due to these which can be explained by an instability theory of Bradley and Harper. The irregularities over the surface(like crests or trough) lead to instability due to which trough erodes faster than the crest. Hence the instability creates roughening of the surface which competes with the thermal surface diffusion where matters flow to the crests to the tough leads to the smoothening. Hence Formation of nanopattern are due to the competition between two processes. One is the roughening due to the surface curvature and other smoothening due to thermal diffusion. Both effect combinely result nanoripples. Our group basically works on binary compound which isโ€ฆ.