SlideShare a Scribd company logo
1 of 11
Download to read offline
PPh2
PPh2
PPh2
PPh2
O
CH3 OCH3
O RuCl2[(R)-BINAP] (0.05 mol %)
OH
OH
OH
CH3 OCH3
O
(S)-(–)-BINAP
OCH3
CH3
O
HO
H2
[(R)-BINAP]RuCl(CH3O)(CH3OH)2
2 CH3OH
CH3OH
CH3
O O
OCH3
CH3 CH3
[(R)-BINAP]RuHCl(CH3OH)2
[(R)-BINAP]RuCl2(CH3OH)2
O
O
CH3
OCH3
[(R)-BINAP](CH3OH)ClRu
RuCl2[(R)-BINAP]–Ru
H2 (100 atm)
CH3OH, 23 °C
H2
HCl
2 CH3OH
CH3
OH O
OCH3
CH3 CH3
CH3
OCH3
O
O
O
O
CH3
OCH3
[(R)-BINAP]HClRu
CH3OH
2 CH3OH
Chem 115
The Noyori Asymmetric Hydrogenation Reaction
Myers
Reviews:
Noyori, R. Angew. Chem. Int. Ed. 2013, 52, 79–92.
Kitamura, M.; Nakatsuka, H. Chem. Commun. 2011, 47, 842–846.
Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40, 40–73.
Original Report by the Noyori Group:
H2 (100 atm)
CH3OH, 36 h, 100 °C
96%, >99% ee
Noyori, R., Okhuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akuragawa, S.
J. Am. Chem. Soc. 1987, 109, 5856–5858.
Mechanism:
(±)-1,1'-Bi-2-naphthol (R)-(+)-BINAP
20%
20%
Takaya, H.; Akutagawa, S.; Noyori, R. Org. Synth. 1989, 67, 20–32.
• Catalytic cycle:
1/n {[(R)-BINAP]RuCl2}n
Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons: New York, 1993,
pp. 56–82.
Andrew Haidle
• Both enantiomers of BINAP are commercially available. Alternatively, both enantiomers can be
+
prepared from the relatively inexpensive (±)-1,1'-bi-2-naphthol.
99%, 96% ee
The reduction of methyl 2,2-dimethyl-3-oxobutanoate proceeds in high yield and with high
enantioselectivity, providing evidence that the reduction proceeds through the keto form of the !-keto
ester. However, pathways that involve hydrogenation of the enol form of other !-keto esters cannot be
ruled out.
Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345–350.
•
Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029–3069.
1
Ru
Cl
H
O O
P
P
OCH3
CH3
Ru
Cl
H
O O
P
P
CH3
CH3O
CH3 OCH3
O
OH
CH3 OCH3
O
OH
(R) !-hydroxy ester
(S) !-hydroxy ester
• Of the two possible diastereomeric transition states for complexes with (R)-BINAP shown
below, the one leading to the (R) !-hydroxy ester allows the approach of the ketone at an
unhindered quadrant (as represented by the light lower left quadrant of the circle).
(R)-BINAP
(R)-BINAP
Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 36–56.
Reaction Conditions:
• Noyori has published conditions to prepare the active Ru-BINAP catalyst in one step from
commercially available [RuCl2(benzene)]2, and it can be used without a purification step.
Also, the reaction can be run at 4 atm/100 °C or 100 atm/23 °C.
Kitamura, M.; Tokunaga, M.; Okhuma, T; Noyori, R. Org. Synth. 1993, 71, 1–13.
Andrew Haidle, Fan Liu
P Ru P
• A crystal structure of Ru(OCOCH3)2[(S)-BINAP] revealed that the rigid BINAP backbone forces
the phenyl rings attached to phosphorous to adopt the conformation depicted here (the napthyl
rings are omitted for clarity).
• The two protruding equatorial P-phenyl groups allow a coordinating ligand access to only two
quadrants on the accessible face of Ru (the other face is blocked by BINAP's napthyl rings).
This situation is represented by a circle with two black quadrants where no coordination can occur.
Ohta, T.; Takaya, H.; Noyori, R. Inorg. Chem. 1988, 27, 566–569.
Ru(OCOCH3)2[(S)-BINAP]
O
O
OCH3
O
O
NHAc
D
O
O
OCH3
O
OH
NHAc
D
CH2Cl2
RuBr2[(R)-BINAP]
H2 (100 atm)
• The use of a deuterated substrate provides further evidence that the reduction proceeds
through the keto tautomer. Enolization is rapid, so the deuterium is lost quickly. However,
when the reaction was stopped at 1.3% conversion, the hydroxy ester product retained
80% of the deuterium at C-2, and no deuterium was incorporated at C-3.
Noyori, R.; Ikeda, T.; Okhuma, T.; Widhalm, M.; Kitamura, M.; Takaya, H.; Akutagawa, S.;
Sayo, N.; Saito, T.; Taketomi, T.; Kumobayashi, H. J. Am. Chem. Soc. 1989, 111, 9134–9135.
axial
equatorial
The Noyori Asymmetric Hydrogenation Reaction
Myers Chem 115
1/2 [RuCl2(benzene)]2 + (R)-BINAP
DMF, 100 ºC
(R)-BINAP-Ru(II)
2
• These conditions have been improved on even further, with milder reaction conditions and
lower catalyst loadings.
• The authors present kinetic data to show the dramatic increase in reaction rate that occurs
in the presence of a catalytic amount of strong acid, and they suggest that failed reactions
may be a result of low levels of basic impurities. Note that the acid-sensitive t-Bu ester is
King, S. A.; Thompson, A. S.; King, A. O.; Verhoeven, T. R. J. Org. Chem. 1992, 57,
6689–6691.
CH3 Ot-Bu
O O
CH3 Ot-Bu
OH O
H2 (50 psi), HCl (0.1 mol%)
Ru–(R)-BINAP (0.05 mol %)
CH3OH, 40 °C, 8 h
97%, >97% ee
not cleaved under these conditions.
Andrew Haidle, Fan Liu
O O
OEt
BnO
OH O
OEt
BnO
H2 (4 atm), (R)-BINAP
[C6H6RuCl]2 (0.05 mol %)
EtOH, 100 °C, 6 h
96%, 97–98% ee
• The procedure involving in situ catalyst generation was found to be much more reliable. Also,
reactions with this catalyst were more enantioselective and required less catalyst. The
following reaction was done on a 10-kg scale. Note the benzyl group is not removed.
Beck, G.; Jendralla, H.; Kesseler, K. Synthesis 1995, 1014–1018.
• A simplified, milder set of conditions that also features a catalyst available in one step from
commercially available BINAP and RuCl2•cyclooctadiene has been published. The reaction
proceeds at a sufficiently low H2 pressure (50 psi) to avoid reduction of trisubstituted olefins,
but not terminal olefins.
O O
OCH3
OH O
OCH3
CH3 CH3
N
CH3
CH3
H
H2 (50 psi)
Ru–(S)-BINAP (0.2 mol %)
CH3OH, 80 °C, 6 h
90%, 98% ee
(–)-Indolizidine 223AB
Taber, D. F.; Silverberg, L. J. Tetrahedron Lett. 1991, 32, 4227–4230.
Taber, D. F.; Deker, P. B.; Silverberg, L. J. J. Org. Chem. 1992, 57, 5990–5994.
• Reduction of !-keto esters has been achieved at 1 atm of hydrogen using a catalyst
prepared in situ from BINAP, (COD)Ru(2-methylallyl)2, and HBr, all of which are
commercially available. No special reaction apparatus is necessary for this procedure;
however, the catalyst loading is unusually high.
OCH3
O O
CH3 OCH3
OH O
CH3
H2 (1 atm)
Ru–(S)-BINAP (2 mol %)
acetone, 50 °C, 3.5 h
100%, 99% ee
Genet, J. P.; Ratovelomanana-Vidal, V.; Caño de Andrade, M. C.; Pfister, X.; Guerreiro, P.;
Lenoir, J. Y. Tetrahedron Lett. 1995, 36, 4801–4804.
The Noyori Asymmetric Hydrogenation Reaction
Myers Chem 115
(10.0 kg) (9.7 kg)
3
CH3
O
O
OEt
RuCl2[(S)-BINAP] (0.1 mol%)
O
O
H3C
1. H2 (100 atm)
EtOH, 30 °C, 100 h
2. AcOH, toluene, reflux
94%, 99.5% ee
• Example:
Okhuma, T.; Kitamura, M.; Noyori, R. Tetrahedron Lett. 1990, 31, 5509–5512.
• Chiral substrates:
OEt
O O
NHBoc
OEt
OH O
NHBoc
OEt
OH O
NHBoc
RuBr2[BINAP] (0.18 mol %)
Ph
Ph
Ph
syn
anti
H2 (100 atm)
EtOH, 23 °C, 145 h
configuration of BINAP % yield syn : anti
S
98
96
>99:1
9:91
• The (R)-BINAP case represents a stereochemically
substrate:
matched case, while the (S)-BINAP catalyzed case
has to override the inherent syn selectivity of the
• Analysis of the results show that for this substrate, catalyst control is >32:1, while the
substrate control is only 3:1.
Nishi, T.; Kitamura, M.; Okhuma, T.; Noyori, R. Tetrahedron Lett. 1988, 29, 6327–6330.
Substrates:
• !-Keto esters are typically the best substrates. However, nearly any substrate that has an
ether or amine separated from a ketone by 1–3 carbons will be reduced to the corresponding
R
O
X
H2 H2
(S)-BINAP–Ru
(R)-BINAP–Ru
X = OR, NR2
secondary alcohol with high yields and high enantioselectivities.
• The authors propose that the heteroatom is necessary because the substrate must function as a
bidentate ligand for Ru.
Kitamura, M.; Ohkuma, T.; Inoue, S.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Ohta, T.;
Takaya, H.; Noyori, R. J. Am. Chem. Soc. 1988, 110, 629–631.
Andrew Haidle, Fan Liu
proposed T.S.
R
The Noyori Asymmetric Hydrogenation Reaction
Myers Chem 115
R
O
R
O
X
X
R
OH
X
R
OH
R
OH
X
X
R
OH
X
R
OH
R
OH
X
X
O
O OCH3
H
Ru
H
P
P
X
Bn NHBoc
H
4
Dynamic Kinetic Resolution:
• Kinetic resolution of enantiomers occurs when the chiral catalyst reacts with one enantiomer much
more rapidly than the other.
CH3
HO
O
EtOH
CH3
HO
OH
CH3
HO
O
H2 (100 atm)
RuCl2[(R)-BINAP]
50.5%, 92% ee 49.5%, 92% ee
kS/kR = 64
• An inherent drawback to kinetic resolution is the fact that the maximum yield is 50% of
enantiopure material.
Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons: New York, 1993,
pp. 56–82.
Epimerizing systems can give rise to a dynamic kinetic resolution, where the maximum theoretical
yield is 100%.
CH3 OCH3
O O
NHAc
CH3 OCH3
O O
NHAc
CH3 OCH3
OH O
NHAc
CH3 OCH3
OH O
NHAc
RuBr2[(R)-BINAP] (0.4 mol %)
H2 (100 atm)
CH2Cl2, 15 °C, 50 h
99%, 98% ee
1%, >90% ee
RuBr2[(R)-BINAP] (0.4 mol %)
H2 (100 atm)
CH2Cl2, 15 °C, 50 h
kinv
kinv
kS,R
kR,R
• To achieve yields approaching 100%, isomerization must be rapid relative to reduction
(kinv > kS,R and kR,R).
Noyori, R.; Ikeda, T.; Okhuma, T.; Widhalm, M.; Kitamura, M.; Takaya, H.; Akutagawa, S.;
Sayo, N.; Saito, T.; Taketomi, T.; Kumobayashi, H. J. Am. Chem. Soc. 1989, 111, 9134–9135.
Andrew Haidle
• The stereochemistry of the secondary alcohol is determined by the choice of catalyst, but
the stereochemistry at the !-position is substrate dependent.
CH3 OCH3
O O
CH3
CH3 OCH3
OH O
CH3
CH3 OCH3
OH O
CH3
O
OCH3
O HO
OCH3
O HO
OCH3
O
H
H
RuBr2[(R)-BINAP]
H2 (100 atm)
H2 (100 atm)
[RuCl(PhH)((R)-BINAP)]Cl
(0.09 mol %)
1 : 1
99 : 1
O
O OCH3
H
Ru
H
P
P
O
CH3
O O
N
Ru
H
P
P H3C
H
O
CH3
H
• The preference for one diastereomer over the other can be rationalized by examining the likely
transition states for carbonyl reduction. If the reduction of the !-amino compound, below right, is
carried out in methanol instead of dichloromethane, the diastereoselectivity drops from
99 : 1 to 82 : 18.
P,P = (R)-BINAP
P,P = (R)-BINAP
Noyori, R.; Ikeda, T.; Okhuma, T.; Widhalm, M.; Kitamura, M.; Takaya, H.; Akutagawa, S.;
Sayo, N.; Saito, T.; Taketomi, T.; Kumobayashi, H. J. Am. Chem. Soc. 1989, 111, 9134–9135.
• A detailed mathematical model of the dynamic kinetic resolution process has been
published.
Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1993, 115, 144–152.
The Noyori Asymmetric Hydrogenation Reaction
Myers Chem 115
•
X X
5
Cl
Cl
Ar2
P
P
Ar2
Ru
H2
N
N
H2
OCH3
OCH3
H
i-Pr
CH3 OCH3
O
O
CH3 OCH3
O
O
Bu4NI (5 mol %)
CH3 OCH3
O
OH
P P
i-Pr
i-Pr
i-Pr
i-Pr
CH3 OCH3
O
OH
PPh2
PPh2
O
N
CH3
O
O
N
CH3
CH3
O
N
CH3
H
CF3
OH
N
CH3
CH3
OH
N
CH3
O
Other Ligands:
• Burk's 1,2-bis(trans-2,5-diisopropylphospholano)ethane (i-Pr-BPE) is a useful ligand for the
reduction of many !-keto esters, and the reaction conditions are milder than those originally
reported by Noyori.
(R,R)-i-Pr-BPE =
(R,R)-i-Pr-BPE-RuBr2 (0.2 mol %)
H2 (60 psi)
CH3OH : H2O (9 : 1), 35 ºC
100%, 99.3% ee
Burk, M. J.; Harper, T. G. P.; Kalberg, C. S. J. Am. Chem. Soc. 1995, 117, 4423–4424.
(S)-[2.2]-PHANEPHOS =
H2 (50 psi)
CH3OH : H2O, –5 °C, 18 h
100%, 96% ee
(S)-[2.2]-PHANEPHOS-Ru(TFA)2 (0.6 mol %)
Pye, P. J.; Rossen, K.; Reamer, R. A.; Volante, R. P.; Reider, P. J. Tetrahedron Lett. 1998,
39, 4441–4444.
• Using the [2.2]-PHANEPHOS ligand, mild, neutral conditions for the reduction of !-keto esters have
been developed.
Andrew Haidle
Ohkuma, T.; Ishii, D.; Takeno, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 6510–6511.
• Noyori has discovered a Ru–based catalyst, trans-RuCl2[(R)-xylbinap][(R)-diapen], that efficiently
reduces "-, !-, and #-amino ketones in a highly enantioselective fashion under mild conditions.
trans-RuCl2[(R)-xylbinap][(R)-diapen] =
(R, R)-Ru catalyst (0.05 mol %)
t-BuOK (0.8 mol %)
H2 (8 atm)
i-PrOH, 25 °C
96 %, 99.8 % ee
• The mechanism of this reduction differs from the Ru-BINAP catalyst in that the adjacent nitrogen
is believed not to ligate to the Ru center.
• This method allows for a practical synthesis of the antidepressent (R)-fluoxetine without the need
for any chromatographic separations.
(S,S)-Ru catalyst (0.01 mol %)
t-BuOK (0.1 mol %)
H2 (8 atm)
i-PrOH, 25 °C, 5 h
96 %, 97.5 % ee
• HCl
The Noyori Asymmetric Hydrogenation Reaction
Myers Chem 115
Ar = 3,5-(CH3)2-C6H3
6
Other Ligands and Other Substrates:
Joseph Tucker
The Noyori Asymmetric Hydrogenation Reaction
Myers Chem 115
Johnson, N. B.; Lennon, I. C.; Moran, P. H.; Ramsden, J. A. Acc. Chem. Res. 2007, 40, 1291–1299.
• Ru catalysts have been applied to asymmetric reduction of acrylate derivatives.
• Production of 3-furoic acid using (S,S)-i-Pr-DuPhos:
O
O
OH
O
O
OH
H
(R)-3-furoic acid
>98% ee
P
P
i-Pr
i-Pr
i-Pr
i-Pr
[(S,S)-iPr-DuPhos Ru(TFA)2] (0.02 mol%)
H2 (150 psi), MeOH
(S,S)-iPr-DuPhos =
N
CO2H
N
Boc
Ru(COD)(CF2CO2)2 (0.1 mol%)
(R)-[2.2]-PHANEPHOS
H2 (10 bar), 40 ºC
N
CO2H
N
Boc
A reduction of an !,"-unsaturated cabroxylic acid using (R)-[2.2]-PHANEPHOS enabled the large-
scale synthesis of the integrin inhibitor JNJ-26076713:
Kinney, W. A.; Teleha, C. A.; Thompson, A. S.; Newport, M.; Hansen, K.; Ballentine, S.; Ghosh, S.;
Mahan, A. Grasa, G.; Zanotti-Gerosa, A.; Dinegen, J.; Schubert, C.; Zhou, Y.; Leo, G. C.;
McComsey, D. F.; Santulli, R. J.; Maryanoff, B. E. J. Org. Chem. 2008, 73, 2302–2310.
•
86% ee, >99% conversion
1.
2. precipitation from toluene
71%, >99% ee
Seminal reports on the use of ruthenium based catalysts for the asymmetric reduction of ketones
focused on the use of a chiral diamine in combination with BINAP derived bis-phosphine ligands.
(R)-Xyl-BINAP
P(Xyl)2
P(Xyl)2
NH2
OMe
MeO
(R)-diapen
O
O
F
F O
N
S
F3C CF3
OMOM
O
O
F
F
N
S
F3C CF3
OMOM
OH
Ru[(R)-Xyl-BINAP][(R)-diapen]Cl2
(0.1 mol%)
K2CO3, i-PrOH, THF
99% ee
O
O
F
F
N
S
F3C CF3
OMOM
N
O
Chen, C.-Y.; Reamer, R. A.; Chilenski, J. R.; McWilliams, C. J. Org. Lett. 2003, 5, 5039–5042.
•
Application to the synthesis of a PDE-IV inhibitor:
•
NH2
i-Pr
A similar system was used in the production of the antidepressant, (S)-duloxetine.
S
O
N
CO2Et
CH3
S
N
CO2Et
CH3
OH
S
NHCH3•HCl
O
(S)-duloxetine
NH2
NH2
Ph
Ph
(S)-PhanePhos (R,R)-DPEN
Ru[(S)-PhanePhos][(R,R)-DPEN]
KOtBu, H2 (150 psi)
i-PrOH, 40 ºC
93.4% ee
•
PPh2
PPh2
Hems, W.; Rossen, K.; Reichert, D.; Kohler, K.; Perea, J. J. US Patent 0272390, 2005
7
OH OH OH
O
CH3
CH3
O OH
CH3
OH OH
HO
CH3
HO
H
H
O
CH3
O
OH
H2 (50 psi)
Ru–(S)-BINAP (0.2 mol %)
CH3OH, 80 °C, 6 h
84%, 98% ee
(+)-Brefeldin A
Ot-Bu
O
O
BnO
OCH3
O O
CH3
CH3
OCH3
OH O
CH3
CH3
Ot-Bu
O
OH
BnO
O O
OCH3
CH3
O O
OEt
[RuCl(PhH)((R)-BINAP)]Cl (0.09 mol %)
RuCl2[(S)-BINAP] (0.1 mol %)
O O CH3
O
O
N
S
CH3
CH3
N(CH3)2
H2N
CH3
CH3
O
O
O
CH3
CH3
CH3
CH3
CH3
N
CH3
OH O
OEt
HO O
OCH3
H
H2 (200 psi)
Dowex-50 resin
EtOH, 130 °C, 10 h
94%, 94% ee
Pateamine A
Romo, D.; Rzasa, R. M.; Shea, H. A.; Park, K.; Langenhan, J. M.; Sun, L.; Akhiezer, A.;
Liu, J. O. J. Am. Chem. Soc. 1998, 120, 12237–12254.
H2 (1500 psi)
CH2Cl2, 50 °C, 70 h
99%, 93% ee
Heathcock, C. H.; Kath, J. C.; Ruggeri, R. B. J. Org. Chem. 1995, 60, 1120–1130. Andrew Haidle
(–)-Roxaticin
[RuCl2((S)-BINAP)]2•Et3N (0.2 mol %)
H2 (110 atm)
CH3OH, 45 °C, 24 h
76%, 96% ee
• In all of the examples, the carbonyl carbon that is initally reduced is circled in the final product.
Rychnovsky, S. D.; Hoye, R. C. J. Am. Chem. Soc. 1994, 116, 1753–1765.
Taber, D. F.; Silverberg, L. J.; Robinson, E. D. J. Am. Chem. Soc. 1991, 113, 6639–6645.
(+)-Codaphniphylline
Examples in Total Synthesis:
The Noyori Asymmetric Hydrogenation Reaction
Myers Chem 115
8
SnPh3
(1.8 equiv)
(4:1 trans:cis)
O
H
O
I
PMBO
OCH3
O
O
PMBO
OCH3
O
OH
PMBO
O O
O
O
O
N
CH3
CH3
OCH3
OH
H
H
OH
H
CH3O
CH3O
CH3
O
H3C
OH
CH3
EtO
O
O
Li
R
H
BF3•OEt (1.1 equiv)
OCH3
O
OH
PMBO
OH
O
I
PMBO
CH3
OCH3
O
OH
PMBO
Andrew Haidle, Danica Rankic
Ru2Cl4[(S)-BINAP]•Et3N (1 mol %)
H2 (100 atm)
CH3OH, 23 °C, 70 h
90%, >95% ee
Nakatsuka, M.; Ragan, J. A.; Sammakia, T.; Smith, D. B.; Uehling, D. E.; Schreiber, S. L. J. Am.
Chem. Soc. 1990, 112, 5583–5601.
LDA (2.5 equiv)
allyl bromide (3.5 equiv)
THF, –78 °C ! 0 °C, 4 h
90 %
X–R'
CH2Cl2, –78 °C, 100 min
54%, >97% dr
(5:1 diastereomeric mixture)
(67% maximum yield for major diastereomer)
• Although the chirality of the "-hydroxy ester is lost in the final product, it is used to set two other
stereocenters.
• Chelation control and steric shielding explain the
high diastereoselectivity of the allylation reaction.
Fráter, G.; Müller, U.; Günther, W. Tetrahedron 1984, 40, 1269–1277.
Seebach, D.; Aebi, J.; Wasmuth, D. Org. Synth. 1984, 63, 109–120.
H
CH3
FK506
The Noyori Asymmetric Hydrogenation Reaction
Myers Chem 115
[Rh(cod)(R,R-dipamp)]BF4
H3CO
OAc
CO2H
AcNH
H3CO
OAc
CO2H
AcNH
P
P
H3CO
(R,R)-DiPAMP
L-DOPA: First Industrial Application of Asymmetric Hydrogenation
HO
OH
CO2H
NH2
This is the first successful industrial application of a homogeneous catalytic asymmetric
hydrogenation.
• (S)-3',4'-dihydroxyphenylalanine (L-DOPA) is used in the treatment of Parkinson's disease.
William Knowles had developed the Rh-catalyzed enantioselective hydrogenation using (R,R)-
DiPAMP as a chiral ligand while working at Monsanto in the late 1970s.
• Knowles was awarded the 2002 Nobel Prize in Chemistry for this discovery.
Knowles, W. S. Angew. Chem. Int. Ed. 2002, 41, 1998–2007.
Knowles, W. S. Adv. Synth. Catal. 2003, 345, 3–13.
H3CO
L-DOPA
•
•
9
Danica Rankic
The Noyori Asymmetric Hydrogenation Reaction
Myers Chem 115
Mechanism:
P
P
Rh
Sol
Sol
*
solvate complex
P
P
Rh
X
*
catalyst-substrate
complex
P
H
Rh
X
*
dihydride
complex
P
H
P
P
Rh
X
*
Sol
H
H
Rh-alkyl monohydride
P
P
Rh
Sol
X
*
H
X
substrate with
chelating group X
migratory
insertion
H2 oxidative addition
reductive
elimination
X
H
H
product
Rh-catalyzed Hydrogenation
(unsaturated mechanism)
A
A
A
A
A
Evidence suggests that Rh-catalyzed hydrogenations operate through a mechanism by which
substrate chelation occurs prior to hydrogen oxidative addition, although recently, studies with bulky
diphosphines have shown that oxidative addition can occur prior to substrate association.
Gridnev, I. D.; Imamoto, T. Acc. Chem. Res. 2004, 37, 633.
Curtin-Hammett kinetics is operating under the reaction conditions: the minor diastereomer of the
catalyst-substrate complex undergoes hydrogenation to afford the major enantiomer of product.
•
The solvate complex, catalyst-substrate complex, and Rh-alkyl monohydride complexes have all
been observed and characterized.
Enantioselectivity is highly dependent on temperature and H2 pressure.
Halpern, J. Science 1982, 217, 401–407.
•
•
•
MeOH, i-PrOH
O
ONa
CH3
O O
Ph H2 (4 bar), 25 oC
Rh(cod)OTf (0.1 mol%)
(S,S)-Et-DuPhos
(R)-warfarin
>98%, 88% ee
(R)-Warfarin synthesis:
O
ONa
CH3
O O
Ph
An asymmetric hydrogenation was employed in the synthesis of (R)-warfarin, one of the most
commonly prescribed oral anticoagulant drugs in North America.
Enantiomeric excess could be improved from 88% to 98% ee by recrystallization.
Robinson, A.; Li, H.-Y.; Feaster, J. Tetrahedron Lett. 1996, 37, 8321–8324.
Application in Industry
•
•
•
Sitagliptin:
NH2
N
O
N
N
N
CF3
F
F
F
NH2
N
O
N
N
N
CF3
F
F
F
[RhCl(cod)]2 (0.15 mol%)
(S,R)-tBu-JOSIPHOS
(0.155 mol%)
H2 (17 bar), NH4Cl
MeOH, 50 oC 98%, 95% ee
(>99.9% ee after recrystalization)
Sitagliptin (Januvia!) is a potent and selective DPP IV inhibitor for the treatment of type 2 diabetes
mellitus.
Desai, A. A. Angew. Chem. Int. Ed. 2011, 50, 1974–1976.
Hansen, K. B.; Hsiao, Y.; Xu, F.; Rivera, N.; Clausen, A.; Kubryk, M.; Krska, S.; Rosner, T.;
Simmons, B.; Balsells, J.; Ikemoto, N.; Sun, Y.; Spindler, F.; Malan, C.; Grabowski, E. J. J.;
Armstrong, J. D. J. Am. Chem. Soc. 2009, 131, 8798–8804.
•
The second-generation process route involves the hydrogenation of an unprotected "-
(amino)acrylamide.
A catalytic amount of NH4Cl is required for high ee and turnover numbers.
Hydrogenation occurs through the imine tautomer.
•
•
•
•
H
10
Danica Rankic
The Noyori Asymmetric Hydrogenation Reaction
Myers Chem 115
CN
i-Pr
[Rh(cod)((S)-TCFP)]BF4
(0.0037 mol%)
H2 (3.5 bar)
MeOH, 25 oC
CN
i-Pr
CO2
– CO2
–
98%, 98% ee
i-Pr
CO2H
Lyrica!
NH2
P
P
H3C
t-Bu
t-Bu
t-Bu
(S)-TCFP
Pregabalin:
Pregabalin (Lyrica!) is an anti-convulsive agent marketed for the treatment of a number of nervous
system disorders, including epilepsy, neuropathic pain, anxiety and social phobia.
• Rh-catalyzed asymmetric hydrogenation replaced an enzymatic resolution
(lower cost of reagents, waste reduction and higher throughput)
• Trichickenfootphos (TCFP) is a P-chiral phosphine designed and
developed at Pfizer that allowed for high turnover numbers (> 27000) and
high ee.
Hoge, G.; Wu, H.-P.; Kissel, W. S.; Pflum, D. A.; Greene, D. J.; Bao, J. J. Am. Chem. Soc. 2004,
126, 5966–5967.
•
N
O
CO2CH3
NHCbz
BnO
Anti-tumor antibiotic L-azatyrosine:
[Rh(cod)((R,R)-Et-DUPHOS)]BF4
(5 mol%)
H2 (3 bar), MeOH, 48 oC, 80%
N
O
CO2CH3
NHCbz
BnO
83% ee
(>96% ee after recrystalization)
L-azatyrosine
Zn, aq. NH4Cl
THF, 92%
N CO2CH3
NHCbz
BnO
1. LiOH, THF, H2O N CO2H
NH2
HO
Adamczyk, M.; Akireddy, S. R.; Reddy, R. E. Org. Lett. 2001, 3, 3157–3159.
An N-oxide was found to be necessary to prevent catalyst inhibition through pyridine coordination.
•
•
•
2. H2, Pd/C
aq. HCl, MeOH
82%
H3N t-Bu H3N t-Bu
11

More Related Content

Similar to 18-noyori_asymmetric_hydrogenation_reaction.pdf

Htos Presentation
Htos PresentationHtos Presentation
Htos Presentationbenmz101
 
One Pot Copper Catalyzed Conversion of Oximes to
One Pot Copper Catalyzed Conversion of Oximes toOne Pot Copper Catalyzed Conversion of Oximes to
One Pot Copper Catalyzed Conversion of Oximes toPaulami Bose
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyPatrick Françoisse
 
synthetic reagents and applications
 synthetic reagents and applications   synthetic reagents and applications
synthetic reagents and applications KAKARLAPAKEERAIAH
 
ASYMMETRIC ORGANOCATALYSIS
ASYMMETRIC ORGANOCATALYSISASYMMETRIC ORGANOCATALYSIS
ASYMMETRIC ORGANOCATALYSISBasudeb Mondal
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52Dinesh Barawkar
 
Reduction reactions
Reduction reactionsReduction reactions
Reduction reactionsZamir Shekh
 
Macro receptors for TcO4- detection
Macro receptors for TcO4- detectionMacro receptors for TcO4- detection
Macro receptors for TcO4- detectionKonstantin German
 
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...Keiji Takamoto
 
Regioselective 1H-1,2,4 Triazole alkylation
Regioselective 1H-1,2,4 Triazole alkylationRegioselective 1H-1,2,4 Triazole alkylation
Regioselective 1H-1,2,4 Triazole alkylationParth Shah
 
Chapter 2. Organomettalic compounds.pptx
Chapter 2. Organomettalic compounds.pptxChapter 2. Organomettalic compounds.pptx
Chapter 2. Organomettalic compounds.pptxalhajaj33
 
Sdarticle (2)
Sdarticle (2)Sdarticle (2)
Sdarticle (2)52900339
 
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...52900339
 
Protection and deprotection of carboxylic acid
Protection and deprotection of carboxylic acidProtection and deprotection of carboxylic acid
Protection and deprotection of carboxylic acidShivam Sharma
 
Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...
Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...
Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...Eleazar Maximo Escamilla
 

Similar to 18-noyori_asymmetric_hydrogenation_reaction.pdf (20)

Nutrient Removal
Nutrient RemovalNutrient Removal
Nutrient Removal
 
Alcohol, phenol & ether
Alcohol, phenol & etherAlcohol, phenol & ether
Alcohol, phenol & ether
 
Htos Presentation
Htos PresentationHtos Presentation
Htos Presentation
 
One Pot Copper Catalyzed Conversion of Oximes to
One Pot Copper Catalyzed Conversion of Oximes toOne Pot Copper Catalyzed Conversion of Oximes to
One Pot Copper Catalyzed Conversion of Oximes to
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic Study
 
synthetic reagents and applications
 synthetic reagents and applications   synthetic reagents and applications
synthetic reagents and applications
 
ASYMMETRIC ORGANOCATALYSIS
ASYMMETRIC ORGANOCATALYSISASYMMETRIC ORGANOCATALYSIS
ASYMMETRIC ORGANOCATALYSIS
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52
 
Reduction reactions
Reduction reactionsReduction reactions
Reduction reactions
 
Macro receptors for TcO4- detection
Macro receptors for TcO4- detectionMacro receptors for TcO4- detection
Macro receptors for TcO4- detection
 
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
 
Regioselective 1H-1,2,4 Triazole alkylation
Regioselective 1H-1,2,4 Triazole alkylationRegioselective 1H-1,2,4 Triazole alkylation
Regioselective 1H-1,2,4 Triazole alkylation
 
Refrigerant
RefrigerantRefrigerant
Refrigerant
 
Refrigerant
RefrigerantRefrigerant
Refrigerant
 
Chapter 2. Organomettalic compounds.pptx
Chapter 2. Organomettalic compounds.pptxChapter 2. Organomettalic compounds.pptx
Chapter 2. Organomettalic compounds.pptx
 
Sdarticle (2)
Sdarticle (2)Sdarticle (2)
Sdarticle (2)
 
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
 
Protection and deprotection of carboxylic acid
Protection and deprotection of carboxylic acidProtection and deprotection of carboxylic acid
Protection and deprotection of carboxylic acid
 
Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...
Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...
Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...
 

Recently uploaded

Technical english Technical english.pptx
Technical english Technical english.pptxTechnical english Technical english.pptx
Technical english Technical english.pptxyoussefboujtat3
 
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdfFORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdfSuchita Rawat
 
MSCII_ FCT UNIT 5 TOXICOLOGY.pdf
MSCII_              FCT UNIT 5 TOXICOLOGY.pdfMSCII_              FCT UNIT 5 TOXICOLOGY.pdf
MSCII_ FCT UNIT 5 TOXICOLOGY.pdfSuchita Rawat
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsSérgio Sacani
 
TEST BANK for Organic Chemistry 6th Edition.pdf
TEST BANK for Organic Chemistry 6th Edition.pdfTEST BANK for Organic Chemistry 6th Edition.pdf
TEST BANK for Organic Chemistry 6th Edition.pdfmarcuskenyatta275
 
Micropropagation of Madagascar periwinkle (Catharanthus roseus)
Micropropagation of Madagascar periwinkle (Catharanthus roseus)Micropropagation of Madagascar periwinkle (Catharanthus roseus)
Micropropagation of Madagascar periwinkle (Catharanthus roseus)adityawani683
 
Factor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary GlandFactor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary GlandRcvets
 
Costs to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of UgandaCosts to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of UgandaTimothyOkuna
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationAreesha Ahmad
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Ansari Aashif Raza Mohd Imtiyaz
 
Taphonomy and Quality of the Fossil Record
Taphonomy and Quality of the  Fossil RecordTaphonomy and Quality of the  Fossil Record
Taphonomy and Quality of the Fossil RecordSangram Sahoo
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...Sérgio Sacani
 
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed RahimoonVital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed RahimoonAftabAhmedRahimoon
 
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...NoorulainMehmood1
 
Polyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptxPolyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptxMuhammadRazzaq31
 
Introduction and significance of Symbiotic algae
Introduction and significance of  Symbiotic algaeIntroduction and significance of  Symbiotic algae
Introduction and significance of Symbiotic algaekushbuR
 
RACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptxRACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptxArunLakshmiMeenakshi
 
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxNanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxssusera4ec7b
 

Recently uploaded (20)

Technical english Technical english.pptx
Technical english Technical english.pptxTechnical english Technical english.pptx
Technical english Technical english.pptx
 
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdfFORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
 
MSCII_ FCT UNIT 5 TOXICOLOGY.pdf
MSCII_              FCT UNIT 5 TOXICOLOGY.pdfMSCII_              FCT UNIT 5 TOXICOLOGY.pdf
MSCII_ FCT UNIT 5 TOXICOLOGY.pdf
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
TEST BANK for Organic Chemistry 6th Edition.pdf
TEST BANK for Organic Chemistry 6th Edition.pdfTEST BANK for Organic Chemistry 6th Edition.pdf
TEST BANK for Organic Chemistry 6th Edition.pdf
 
Micropropagation of Madagascar periwinkle (Catharanthus roseus)
Micropropagation of Madagascar periwinkle (Catharanthus roseus)Micropropagation of Madagascar periwinkle (Catharanthus roseus)
Micropropagation of Madagascar periwinkle (Catharanthus roseus)
 
Factor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary GlandFactor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary Gland
 
Costs to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of UgandaCosts to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of Uganda
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolation
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
 
Taphonomy and Quality of the Fossil Record
Taphonomy and Quality of the  Fossil RecordTaphonomy and Quality of the  Fossil Record
Taphonomy and Quality of the Fossil Record
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
 
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed RahimoonVital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoon
 
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...
 
Polyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptxPolyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptx
 
HIV AND INFULENZA VIRUS PPT HIV PPT INFULENZA VIRUS PPT
HIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPTHIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPT
HIV AND INFULENZA VIRUS PPT HIV PPT INFULENZA VIRUS PPT
 
Introduction and significance of Symbiotic algae
Introduction and significance of  Symbiotic algaeIntroduction and significance of  Symbiotic algae
Introduction and significance of Symbiotic algae
 
RACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptxRACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptx
 
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxNanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
 

18-noyori_asymmetric_hydrogenation_reaction.pdf

  • 1. PPh2 PPh2 PPh2 PPh2 O CH3 OCH3 O RuCl2[(R)-BINAP] (0.05 mol %) OH OH OH CH3 OCH3 O (S)-(–)-BINAP OCH3 CH3 O HO H2 [(R)-BINAP]RuCl(CH3O)(CH3OH)2 2 CH3OH CH3OH CH3 O O OCH3 CH3 CH3 [(R)-BINAP]RuHCl(CH3OH)2 [(R)-BINAP]RuCl2(CH3OH)2 O O CH3 OCH3 [(R)-BINAP](CH3OH)ClRu RuCl2[(R)-BINAP]–Ru H2 (100 atm) CH3OH, 23 °C H2 HCl 2 CH3OH CH3 OH O OCH3 CH3 CH3 CH3 OCH3 O O O O CH3 OCH3 [(R)-BINAP]HClRu CH3OH 2 CH3OH Chem 115 The Noyori Asymmetric Hydrogenation Reaction Myers Reviews: Noyori, R. Angew. Chem. Int. Ed. 2013, 52, 79–92. Kitamura, M.; Nakatsuka, H. Chem. Commun. 2011, 47, 842–846. Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40, 40–73. Original Report by the Noyori Group: H2 (100 atm) CH3OH, 36 h, 100 °C 96%, >99% ee Noyori, R., Okhuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akuragawa, S. J. Am. Chem. Soc. 1987, 109, 5856–5858. Mechanism: (±)-1,1'-Bi-2-naphthol (R)-(+)-BINAP 20% 20% Takaya, H.; Akutagawa, S.; Noyori, R. Org. Synth. 1989, 67, 20–32. • Catalytic cycle: 1/n {[(R)-BINAP]RuCl2}n Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons: New York, 1993, pp. 56–82. Andrew Haidle • Both enantiomers of BINAP are commercially available. Alternatively, both enantiomers can be + prepared from the relatively inexpensive (±)-1,1'-bi-2-naphthol. 99%, 96% ee The reduction of methyl 2,2-dimethyl-3-oxobutanoate proceeds in high yield and with high enantioselectivity, providing evidence that the reduction proceeds through the keto form of the !-keto ester. However, pathways that involve hydrogenation of the enol form of other !-keto esters cannot be ruled out. Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345–350. • Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029–3069. 1
  • 2. Ru Cl H O O P P OCH3 CH3 Ru Cl H O O P P CH3 CH3O CH3 OCH3 O OH CH3 OCH3 O OH (R) !-hydroxy ester (S) !-hydroxy ester • Of the two possible diastereomeric transition states for complexes with (R)-BINAP shown below, the one leading to the (R) !-hydroxy ester allows the approach of the ketone at an unhindered quadrant (as represented by the light lower left quadrant of the circle). (R)-BINAP (R)-BINAP Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 36–56. Reaction Conditions: • Noyori has published conditions to prepare the active Ru-BINAP catalyst in one step from commercially available [RuCl2(benzene)]2, and it can be used without a purification step. Also, the reaction can be run at 4 atm/100 °C or 100 atm/23 °C. Kitamura, M.; Tokunaga, M.; Okhuma, T; Noyori, R. Org. Synth. 1993, 71, 1–13. Andrew Haidle, Fan Liu P Ru P • A crystal structure of Ru(OCOCH3)2[(S)-BINAP] revealed that the rigid BINAP backbone forces the phenyl rings attached to phosphorous to adopt the conformation depicted here (the napthyl rings are omitted for clarity). • The two protruding equatorial P-phenyl groups allow a coordinating ligand access to only two quadrants on the accessible face of Ru (the other face is blocked by BINAP's napthyl rings). This situation is represented by a circle with two black quadrants where no coordination can occur. Ohta, T.; Takaya, H.; Noyori, R. Inorg. Chem. 1988, 27, 566–569. Ru(OCOCH3)2[(S)-BINAP] O O OCH3 O O NHAc D O O OCH3 O OH NHAc D CH2Cl2 RuBr2[(R)-BINAP] H2 (100 atm) • The use of a deuterated substrate provides further evidence that the reduction proceeds through the keto tautomer. Enolization is rapid, so the deuterium is lost quickly. However, when the reaction was stopped at 1.3% conversion, the hydroxy ester product retained 80% of the deuterium at C-2, and no deuterium was incorporated at C-3. Noyori, R.; Ikeda, T.; Okhuma, T.; Widhalm, M.; Kitamura, M.; Takaya, H.; Akutagawa, S.; Sayo, N.; Saito, T.; Taketomi, T.; Kumobayashi, H. J. Am. Chem. Soc. 1989, 111, 9134–9135. axial equatorial The Noyori Asymmetric Hydrogenation Reaction Myers Chem 115 1/2 [RuCl2(benzene)]2 + (R)-BINAP DMF, 100 ºC (R)-BINAP-Ru(II) 2
  • 3. • These conditions have been improved on even further, with milder reaction conditions and lower catalyst loadings. • The authors present kinetic data to show the dramatic increase in reaction rate that occurs in the presence of a catalytic amount of strong acid, and they suggest that failed reactions may be a result of low levels of basic impurities. Note that the acid-sensitive t-Bu ester is King, S. A.; Thompson, A. S.; King, A. O.; Verhoeven, T. R. J. Org. Chem. 1992, 57, 6689–6691. CH3 Ot-Bu O O CH3 Ot-Bu OH O H2 (50 psi), HCl (0.1 mol%) Ru–(R)-BINAP (0.05 mol %) CH3OH, 40 °C, 8 h 97%, >97% ee not cleaved under these conditions. Andrew Haidle, Fan Liu O O OEt BnO OH O OEt BnO H2 (4 atm), (R)-BINAP [C6H6RuCl]2 (0.05 mol %) EtOH, 100 °C, 6 h 96%, 97–98% ee • The procedure involving in situ catalyst generation was found to be much more reliable. Also, reactions with this catalyst were more enantioselective and required less catalyst. The following reaction was done on a 10-kg scale. Note the benzyl group is not removed. Beck, G.; Jendralla, H.; Kesseler, K. Synthesis 1995, 1014–1018. • A simplified, milder set of conditions that also features a catalyst available in one step from commercially available BINAP and RuCl2•cyclooctadiene has been published. The reaction proceeds at a sufficiently low H2 pressure (50 psi) to avoid reduction of trisubstituted olefins, but not terminal olefins. O O OCH3 OH O OCH3 CH3 CH3 N CH3 CH3 H H2 (50 psi) Ru–(S)-BINAP (0.2 mol %) CH3OH, 80 °C, 6 h 90%, 98% ee (–)-Indolizidine 223AB Taber, D. F.; Silverberg, L. J. Tetrahedron Lett. 1991, 32, 4227–4230. Taber, D. F.; Deker, P. B.; Silverberg, L. J. J. Org. Chem. 1992, 57, 5990–5994. • Reduction of !-keto esters has been achieved at 1 atm of hydrogen using a catalyst prepared in situ from BINAP, (COD)Ru(2-methylallyl)2, and HBr, all of which are commercially available. No special reaction apparatus is necessary for this procedure; however, the catalyst loading is unusually high. OCH3 O O CH3 OCH3 OH O CH3 H2 (1 atm) Ru–(S)-BINAP (2 mol %) acetone, 50 °C, 3.5 h 100%, 99% ee Genet, J. P.; Ratovelomanana-Vidal, V.; Caño de Andrade, M. C.; Pfister, X.; Guerreiro, P.; Lenoir, J. Y. Tetrahedron Lett. 1995, 36, 4801–4804. The Noyori Asymmetric Hydrogenation Reaction Myers Chem 115 (10.0 kg) (9.7 kg) 3
  • 4. CH3 O O OEt RuCl2[(S)-BINAP] (0.1 mol%) O O H3C 1. H2 (100 atm) EtOH, 30 °C, 100 h 2. AcOH, toluene, reflux 94%, 99.5% ee • Example: Okhuma, T.; Kitamura, M.; Noyori, R. Tetrahedron Lett. 1990, 31, 5509–5512. • Chiral substrates: OEt O O NHBoc OEt OH O NHBoc OEt OH O NHBoc RuBr2[BINAP] (0.18 mol %) Ph Ph Ph syn anti H2 (100 atm) EtOH, 23 °C, 145 h configuration of BINAP % yield syn : anti S 98 96 >99:1 9:91 • The (R)-BINAP case represents a stereochemically substrate: matched case, while the (S)-BINAP catalyzed case has to override the inherent syn selectivity of the • Analysis of the results show that for this substrate, catalyst control is >32:1, while the substrate control is only 3:1. Nishi, T.; Kitamura, M.; Okhuma, T.; Noyori, R. Tetrahedron Lett. 1988, 29, 6327–6330. Substrates: • !-Keto esters are typically the best substrates. However, nearly any substrate that has an ether or amine separated from a ketone by 1–3 carbons will be reduced to the corresponding R O X H2 H2 (S)-BINAP–Ru (R)-BINAP–Ru X = OR, NR2 secondary alcohol with high yields and high enantioselectivities. • The authors propose that the heteroatom is necessary because the substrate must function as a bidentate ligand for Ru. Kitamura, M.; Ohkuma, T.; Inoue, S.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Ohta, T.; Takaya, H.; Noyori, R. J. Am. Chem. Soc. 1988, 110, 629–631. Andrew Haidle, Fan Liu proposed T.S. R The Noyori Asymmetric Hydrogenation Reaction Myers Chem 115 R O R O X X R OH X R OH R OH X X R OH X R OH R OH X X O O OCH3 H Ru H P P X Bn NHBoc H 4
  • 5. Dynamic Kinetic Resolution: • Kinetic resolution of enantiomers occurs when the chiral catalyst reacts with one enantiomer much more rapidly than the other. CH3 HO O EtOH CH3 HO OH CH3 HO O H2 (100 atm) RuCl2[(R)-BINAP] 50.5%, 92% ee 49.5%, 92% ee kS/kR = 64 • An inherent drawback to kinetic resolution is the fact that the maximum yield is 50% of enantiopure material. Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons: New York, 1993, pp. 56–82. Epimerizing systems can give rise to a dynamic kinetic resolution, where the maximum theoretical yield is 100%. CH3 OCH3 O O NHAc CH3 OCH3 O O NHAc CH3 OCH3 OH O NHAc CH3 OCH3 OH O NHAc RuBr2[(R)-BINAP] (0.4 mol %) H2 (100 atm) CH2Cl2, 15 °C, 50 h 99%, 98% ee 1%, >90% ee RuBr2[(R)-BINAP] (0.4 mol %) H2 (100 atm) CH2Cl2, 15 °C, 50 h kinv kinv kS,R kR,R • To achieve yields approaching 100%, isomerization must be rapid relative to reduction (kinv > kS,R and kR,R). Noyori, R.; Ikeda, T.; Okhuma, T.; Widhalm, M.; Kitamura, M.; Takaya, H.; Akutagawa, S.; Sayo, N.; Saito, T.; Taketomi, T.; Kumobayashi, H. J. Am. Chem. Soc. 1989, 111, 9134–9135. Andrew Haidle • The stereochemistry of the secondary alcohol is determined by the choice of catalyst, but the stereochemistry at the !-position is substrate dependent. CH3 OCH3 O O CH3 CH3 OCH3 OH O CH3 CH3 OCH3 OH O CH3 O OCH3 O HO OCH3 O HO OCH3 O H H RuBr2[(R)-BINAP] H2 (100 atm) H2 (100 atm) [RuCl(PhH)((R)-BINAP)]Cl (0.09 mol %) 1 : 1 99 : 1 O O OCH3 H Ru H P P O CH3 O O N Ru H P P H3C H O CH3 H • The preference for one diastereomer over the other can be rationalized by examining the likely transition states for carbonyl reduction. If the reduction of the !-amino compound, below right, is carried out in methanol instead of dichloromethane, the diastereoselectivity drops from 99 : 1 to 82 : 18. P,P = (R)-BINAP P,P = (R)-BINAP Noyori, R.; Ikeda, T.; Okhuma, T.; Widhalm, M.; Kitamura, M.; Takaya, H.; Akutagawa, S.; Sayo, N.; Saito, T.; Taketomi, T.; Kumobayashi, H. J. Am. Chem. Soc. 1989, 111, 9134–9135. • A detailed mathematical model of the dynamic kinetic resolution process has been published. Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1993, 115, 144–152. The Noyori Asymmetric Hydrogenation Reaction Myers Chem 115 • X X 5
  • 6. Cl Cl Ar2 P P Ar2 Ru H2 N N H2 OCH3 OCH3 H i-Pr CH3 OCH3 O O CH3 OCH3 O O Bu4NI (5 mol %) CH3 OCH3 O OH P P i-Pr i-Pr i-Pr i-Pr CH3 OCH3 O OH PPh2 PPh2 O N CH3 O O N CH3 CH3 O N CH3 H CF3 OH N CH3 CH3 OH N CH3 O Other Ligands: • Burk's 1,2-bis(trans-2,5-diisopropylphospholano)ethane (i-Pr-BPE) is a useful ligand for the reduction of many !-keto esters, and the reaction conditions are milder than those originally reported by Noyori. (R,R)-i-Pr-BPE = (R,R)-i-Pr-BPE-RuBr2 (0.2 mol %) H2 (60 psi) CH3OH : H2O (9 : 1), 35 ºC 100%, 99.3% ee Burk, M. J.; Harper, T. G. P.; Kalberg, C. S. J. Am. Chem. Soc. 1995, 117, 4423–4424. (S)-[2.2]-PHANEPHOS = H2 (50 psi) CH3OH : H2O, –5 °C, 18 h 100%, 96% ee (S)-[2.2]-PHANEPHOS-Ru(TFA)2 (0.6 mol %) Pye, P. J.; Rossen, K.; Reamer, R. A.; Volante, R. P.; Reider, P. J. Tetrahedron Lett. 1998, 39, 4441–4444. • Using the [2.2]-PHANEPHOS ligand, mild, neutral conditions for the reduction of !-keto esters have been developed. Andrew Haidle Ohkuma, T.; Ishii, D.; Takeno, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 6510–6511. • Noyori has discovered a Ru–based catalyst, trans-RuCl2[(R)-xylbinap][(R)-diapen], that efficiently reduces "-, !-, and #-amino ketones in a highly enantioselective fashion under mild conditions. trans-RuCl2[(R)-xylbinap][(R)-diapen] = (R, R)-Ru catalyst (0.05 mol %) t-BuOK (0.8 mol %) H2 (8 atm) i-PrOH, 25 °C 96 %, 99.8 % ee • The mechanism of this reduction differs from the Ru-BINAP catalyst in that the adjacent nitrogen is believed not to ligate to the Ru center. • This method allows for a practical synthesis of the antidepressent (R)-fluoxetine without the need for any chromatographic separations. (S,S)-Ru catalyst (0.01 mol %) t-BuOK (0.1 mol %) H2 (8 atm) i-PrOH, 25 °C, 5 h 96 %, 97.5 % ee • HCl The Noyori Asymmetric Hydrogenation Reaction Myers Chem 115 Ar = 3,5-(CH3)2-C6H3 6
  • 7. Other Ligands and Other Substrates: Joseph Tucker The Noyori Asymmetric Hydrogenation Reaction Myers Chem 115 Johnson, N. B.; Lennon, I. C.; Moran, P. H.; Ramsden, J. A. Acc. Chem. Res. 2007, 40, 1291–1299. • Ru catalysts have been applied to asymmetric reduction of acrylate derivatives. • Production of 3-furoic acid using (S,S)-i-Pr-DuPhos: O O OH O O OH H (R)-3-furoic acid >98% ee P P i-Pr i-Pr i-Pr i-Pr [(S,S)-iPr-DuPhos Ru(TFA)2] (0.02 mol%) H2 (150 psi), MeOH (S,S)-iPr-DuPhos = N CO2H N Boc Ru(COD)(CF2CO2)2 (0.1 mol%) (R)-[2.2]-PHANEPHOS H2 (10 bar), 40 ºC N CO2H N Boc A reduction of an !,"-unsaturated cabroxylic acid using (R)-[2.2]-PHANEPHOS enabled the large- scale synthesis of the integrin inhibitor JNJ-26076713: Kinney, W. A.; Teleha, C. A.; Thompson, A. S.; Newport, M.; Hansen, K.; Ballentine, S.; Ghosh, S.; Mahan, A. Grasa, G.; Zanotti-Gerosa, A.; Dinegen, J.; Schubert, C.; Zhou, Y.; Leo, G. C.; McComsey, D. F.; Santulli, R. J.; Maryanoff, B. E. J. Org. Chem. 2008, 73, 2302–2310. • 86% ee, >99% conversion 1. 2. precipitation from toluene 71%, >99% ee Seminal reports on the use of ruthenium based catalysts for the asymmetric reduction of ketones focused on the use of a chiral diamine in combination with BINAP derived bis-phosphine ligands. (R)-Xyl-BINAP P(Xyl)2 P(Xyl)2 NH2 OMe MeO (R)-diapen O O F F O N S F3C CF3 OMOM O O F F N S F3C CF3 OMOM OH Ru[(R)-Xyl-BINAP][(R)-diapen]Cl2 (0.1 mol%) K2CO3, i-PrOH, THF 99% ee O O F F N S F3C CF3 OMOM N O Chen, C.-Y.; Reamer, R. A.; Chilenski, J. R.; McWilliams, C. J. Org. Lett. 2003, 5, 5039–5042. • Application to the synthesis of a PDE-IV inhibitor: • NH2 i-Pr A similar system was used in the production of the antidepressant, (S)-duloxetine. S O N CO2Et CH3 S N CO2Et CH3 OH S NHCH3•HCl O (S)-duloxetine NH2 NH2 Ph Ph (S)-PhanePhos (R,R)-DPEN Ru[(S)-PhanePhos][(R,R)-DPEN] KOtBu, H2 (150 psi) i-PrOH, 40 ºC 93.4% ee • PPh2 PPh2 Hems, W.; Rossen, K.; Reichert, D.; Kohler, K.; Perea, J. J. US Patent 0272390, 2005 7
  • 8. OH OH OH O CH3 CH3 O OH CH3 OH OH HO CH3 HO H H O CH3 O OH H2 (50 psi) Ru–(S)-BINAP (0.2 mol %) CH3OH, 80 °C, 6 h 84%, 98% ee (+)-Brefeldin A Ot-Bu O O BnO OCH3 O O CH3 CH3 OCH3 OH O CH3 CH3 Ot-Bu O OH BnO O O OCH3 CH3 O O OEt [RuCl(PhH)((R)-BINAP)]Cl (0.09 mol %) RuCl2[(S)-BINAP] (0.1 mol %) O O CH3 O O N S CH3 CH3 N(CH3)2 H2N CH3 CH3 O O O CH3 CH3 CH3 CH3 CH3 N CH3 OH O OEt HO O OCH3 H H2 (200 psi) Dowex-50 resin EtOH, 130 °C, 10 h 94%, 94% ee Pateamine A Romo, D.; Rzasa, R. M.; Shea, H. A.; Park, K.; Langenhan, J. M.; Sun, L.; Akhiezer, A.; Liu, J. O. J. Am. Chem. Soc. 1998, 120, 12237–12254. H2 (1500 psi) CH2Cl2, 50 °C, 70 h 99%, 93% ee Heathcock, C. H.; Kath, J. C.; Ruggeri, R. B. J. Org. Chem. 1995, 60, 1120–1130. Andrew Haidle (–)-Roxaticin [RuCl2((S)-BINAP)]2•Et3N (0.2 mol %) H2 (110 atm) CH3OH, 45 °C, 24 h 76%, 96% ee • In all of the examples, the carbonyl carbon that is initally reduced is circled in the final product. Rychnovsky, S. D.; Hoye, R. C. J. Am. Chem. Soc. 1994, 116, 1753–1765. Taber, D. F.; Silverberg, L. J.; Robinson, E. D. J. Am. Chem. Soc. 1991, 113, 6639–6645. (+)-Codaphniphylline Examples in Total Synthesis: The Noyori Asymmetric Hydrogenation Reaction Myers Chem 115 8
  • 9. SnPh3 (1.8 equiv) (4:1 trans:cis) O H O I PMBO OCH3 O O PMBO OCH3 O OH PMBO O O O O O N CH3 CH3 OCH3 OH H H OH H CH3O CH3O CH3 O H3C OH CH3 EtO O O Li R H BF3•OEt (1.1 equiv) OCH3 O OH PMBO OH O I PMBO CH3 OCH3 O OH PMBO Andrew Haidle, Danica Rankic Ru2Cl4[(S)-BINAP]•Et3N (1 mol %) H2 (100 atm) CH3OH, 23 °C, 70 h 90%, >95% ee Nakatsuka, M.; Ragan, J. A.; Sammakia, T.; Smith, D. B.; Uehling, D. E.; Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 5583–5601. LDA (2.5 equiv) allyl bromide (3.5 equiv) THF, –78 °C ! 0 °C, 4 h 90 % X–R' CH2Cl2, –78 °C, 100 min 54%, >97% dr (5:1 diastereomeric mixture) (67% maximum yield for major diastereomer) • Although the chirality of the "-hydroxy ester is lost in the final product, it is used to set two other stereocenters. • Chelation control and steric shielding explain the high diastereoselectivity of the allylation reaction. Fráter, G.; Müller, U.; Günther, W. Tetrahedron 1984, 40, 1269–1277. Seebach, D.; Aebi, J.; Wasmuth, D. Org. Synth. 1984, 63, 109–120. H CH3 FK506 The Noyori Asymmetric Hydrogenation Reaction Myers Chem 115 [Rh(cod)(R,R-dipamp)]BF4 H3CO OAc CO2H AcNH H3CO OAc CO2H AcNH P P H3CO (R,R)-DiPAMP L-DOPA: First Industrial Application of Asymmetric Hydrogenation HO OH CO2H NH2 This is the first successful industrial application of a homogeneous catalytic asymmetric hydrogenation. • (S)-3',4'-dihydroxyphenylalanine (L-DOPA) is used in the treatment of Parkinson's disease. William Knowles had developed the Rh-catalyzed enantioselective hydrogenation using (R,R)- DiPAMP as a chiral ligand while working at Monsanto in the late 1970s. • Knowles was awarded the 2002 Nobel Prize in Chemistry for this discovery. Knowles, W. S. Angew. Chem. Int. Ed. 2002, 41, 1998–2007. Knowles, W. S. Adv. Synth. Catal. 2003, 345, 3–13. H3CO L-DOPA • • 9
  • 10. Danica Rankic The Noyori Asymmetric Hydrogenation Reaction Myers Chem 115 Mechanism: P P Rh Sol Sol * solvate complex P P Rh X * catalyst-substrate complex P H Rh X * dihydride complex P H P P Rh X * Sol H H Rh-alkyl monohydride P P Rh Sol X * H X substrate with chelating group X migratory insertion H2 oxidative addition reductive elimination X H H product Rh-catalyzed Hydrogenation (unsaturated mechanism) A A A A A Evidence suggests that Rh-catalyzed hydrogenations operate through a mechanism by which substrate chelation occurs prior to hydrogen oxidative addition, although recently, studies with bulky diphosphines have shown that oxidative addition can occur prior to substrate association. Gridnev, I. D.; Imamoto, T. Acc. Chem. Res. 2004, 37, 633. Curtin-Hammett kinetics is operating under the reaction conditions: the minor diastereomer of the catalyst-substrate complex undergoes hydrogenation to afford the major enantiomer of product. • The solvate complex, catalyst-substrate complex, and Rh-alkyl monohydride complexes have all been observed and characterized. Enantioselectivity is highly dependent on temperature and H2 pressure. Halpern, J. Science 1982, 217, 401–407. • • • MeOH, i-PrOH O ONa CH3 O O Ph H2 (4 bar), 25 oC Rh(cod)OTf (0.1 mol%) (S,S)-Et-DuPhos (R)-warfarin >98%, 88% ee (R)-Warfarin synthesis: O ONa CH3 O O Ph An asymmetric hydrogenation was employed in the synthesis of (R)-warfarin, one of the most commonly prescribed oral anticoagulant drugs in North America. Enantiomeric excess could be improved from 88% to 98% ee by recrystallization. Robinson, A.; Li, H.-Y.; Feaster, J. Tetrahedron Lett. 1996, 37, 8321–8324. Application in Industry • • • Sitagliptin: NH2 N O N N N CF3 F F F NH2 N O N N N CF3 F F F [RhCl(cod)]2 (0.15 mol%) (S,R)-tBu-JOSIPHOS (0.155 mol%) H2 (17 bar), NH4Cl MeOH, 50 oC 98%, 95% ee (>99.9% ee after recrystalization) Sitagliptin (Januvia!) is a potent and selective DPP IV inhibitor for the treatment of type 2 diabetes mellitus. Desai, A. A. Angew. Chem. Int. Ed. 2011, 50, 1974–1976. Hansen, K. B.; Hsiao, Y.; Xu, F.; Rivera, N.; Clausen, A.; Kubryk, M.; Krska, S.; Rosner, T.; Simmons, B.; Balsells, J.; Ikemoto, N.; Sun, Y.; Spindler, F.; Malan, C.; Grabowski, E. J. J.; Armstrong, J. D. J. Am. Chem. Soc. 2009, 131, 8798–8804. • The second-generation process route involves the hydrogenation of an unprotected "- (amino)acrylamide. A catalytic amount of NH4Cl is required for high ee and turnover numbers. Hydrogenation occurs through the imine tautomer. • • • • H 10
  • 11. Danica Rankic The Noyori Asymmetric Hydrogenation Reaction Myers Chem 115 CN i-Pr [Rh(cod)((S)-TCFP)]BF4 (0.0037 mol%) H2 (3.5 bar) MeOH, 25 oC CN i-Pr CO2 – CO2 – 98%, 98% ee i-Pr CO2H Lyrica! NH2 P P H3C t-Bu t-Bu t-Bu (S)-TCFP Pregabalin: Pregabalin (Lyrica!) is an anti-convulsive agent marketed for the treatment of a number of nervous system disorders, including epilepsy, neuropathic pain, anxiety and social phobia. • Rh-catalyzed asymmetric hydrogenation replaced an enzymatic resolution (lower cost of reagents, waste reduction and higher throughput) • Trichickenfootphos (TCFP) is a P-chiral phosphine designed and developed at Pfizer that allowed for high turnover numbers (> 27000) and high ee. Hoge, G.; Wu, H.-P.; Kissel, W. S.; Pflum, D. A.; Greene, D. J.; Bao, J. J. Am. Chem. Soc. 2004, 126, 5966–5967. • N O CO2CH3 NHCbz BnO Anti-tumor antibiotic L-azatyrosine: [Rh(cod)((R,R)-Et-DUPHOS)]BF4 (5 mol%) H2 (3 bar), MeOH, 48 oC, 80% N O CO2CH3 NHCbz BnO 83% ee (>96% ee after recrystalization) L-azatyrosine Zn, aq. NH4Cl THF, 92% N CO2CH3 NHCbz BnO 1. LiOH, THF, H2O N CO2H NH2 HO Adamczyk, M.; Akireddy, S. R.; Reddy, R. E. Org. Lett. 2001, 3, 3157–3159. An N-oxide was found to be necessary to prevent catalyst inhibition through pyridine coordination. • • • 2. H2, Pd/C aq. HCl, MeOH 82% H3N t-Bu H3N t-Bu 11