SlideShare a Scribd company logo
1 of 15
1
Input-Output Organization
Computer Organization Computer Architectures Lab
• Peripheral Devices
• Input-Output Interface
• Asynchronous Data Transfer
• Modes of Transfer
• Priority Interrupt
• Direct Memory Access
• Input-Output Processor
• Serial Communication
INPUT-OUTPUT ORGANIZATION
2
Input-Output Organization
Computer Organization Computer Architectures Lab
PERIPHERAL DEVICES
Input Devices
• Keyboard
• Optical input devices
- Card Reader
- Paper Tape Reader
- Bar code reader
- Digitizer
- Optical Mark Reader
• Magnetic Input Devices
- Magnetic Stripe Reader
• Screen Input Devices
- Touch Screen
- Light Pen
- Mouse
• Analog Input Devices
Output Devices
• Card Puncher, Paper Tape Puncher
• CRT
• Printer (Impact, Ink Jet,
Laser, Dot Matrix)
• Plotter
• Analog
• Voice
Peripheral Devices
3
Input-Output Organization
Computer Organization Computer Architectures Lab
* Provides a method for transferring information between internal storage
(such as memory and CPU registers) and external I/O devices
* Resolves the differences between the computer and peripheral devices
- Peripherals - Electromechanical Devices
CPU or Memory - Electronic Device
- Data Transfer Rate
Peripherals - Usually slower
CPU or Memory - Usually faster than peripherals
Some kinds of Synchronization mechanism may be needed
- Unit of Information
Peripherals - Byte
CPU or Memory - Word
- Operating Modes
Peripherals - Autonomous, Asynchronous
CPU or Memory - Synchronous
INPUT/OUTPUT INTERFACES
Input/Output Interfaces
4
Input-Output Organization
Computer Organization Computer Architectures Lab
I/O BUS AND INTERFACE MODULES
Each peripheral has an interface module associated with it
Interface
- Decodes the device address (device code)
- Decodes the commands (operation)
- Provides signals for the peripheral controller
- Synchronizes the data flow and supervises
the transfer rate between peripheral and CPU or Memory
Typical I/O instruction
(Command)
Op. code Device address Function code
Input/Output Interfaces
Processor
Interface
Keyboard
and
display
terminal
Magnetic
tape
Printer
Interface Interface Interface
Data
Address
Control
Magnetic
disk
I/O bus
5
Input-Output Organization
Computer Organization Computer Architectures Lab
CONNECTION OF I/O BUS
Connection of I/O Bus to One Interface
Connection of I/O Bus to CPU
Input/Output Interfaces
I/O
bus
Op.
code
Device
address
Function
code
Accumulator
register
Computer
I/O
control
Sense lines
Data lines
Function code lines
Device address lines
CPU
I/O
bus
Device
address
Command
decoder
Function code
Data lines
Buffer register
Peripheral
register
Status
register
Sense lines
Output
peripheral
device
and
controller
AD = 1101 Interface
Logic
6
Input-Output Organization
Computer Organization Computer Architectures Lab
I/O BUS AND MEMORY BUS
* MEMORY BUS is for information transfers between CPU and the MM
* I/O BUS is for information transfers between CPU
and I/O devices through their I/O interface
* Many computers use a common single bus system
for both memory and I/O interface units
- Use one common bus but separate control lines for each function
- Use one common bus with common control lines for both functions
* Some computer systems use two separate buses,
one to communicate with memory and the other with I/O interfaces
- Communication between CPU and all interface units is via a common
I/O Bus
- An interface connected to a peripheral device may have a number of
data registers , a control register, and a status register
- A command is passed to the peripheral by sending
to the appropriate interface register
- Function code and sense lines are not needed (Transfer of data, control,
and status information is always via the common I/O Bus)
Functions of Buses
Physical Organizations
I/O Bus
Input/Output Interfaces
7
Input-Output Organization
Computer Organization Computer Architectures Lab
ISOLATED vs MEMORY MAPPED I/O
- Separate I/O read/write control lines in addition to memory read/write
control lines
- Separate (isolated) memory and I/O address spaces
- Distinct input and output instructions
Isolated I/O
Memory-mapped I/O
- A single set of read/write control lines
(no distinction between memory and I/O transfer)
- Memory and I/O addresses share the common address space
-> reduces memory address range available
- No specific input or output instruction
-> The same memory reference instructions can
be used for I/O transfers
- Considerable flexibility in handling I/O operations
Input/Output Interfaces
8
Input-Output Organization
Computer Organization Computer Architectures Lab
I/O INTERFACE
- Information in each port can be assigned a meaning
depending on the mode of operation of the I/O device
-> Port A = Data; Port B = Command; Port C = Status
- CPU initializes(loads) each port by transferring a byte to the Control Register
-> Allows CPU can define the mode of operation of each port
-> Programmable Port: By changing the bits in the control register, it is
possible to change the interface characteristics
CS RS1 RS0 Register selected
0 x x None - data bus in high-impedence
1 0 0 Port A register
1 0 1 Port B register
1 1 0 Control register
1 1 1 Status register
Programmable Interface
Input/Output Interfaces
Chip select
Register select
Register select
I/O read
I/O write
CS
RS1
RS0
RD
WR
Timing
and
Control
Bus
buffers
Bidirectional
data bus
Port A
register
Port B
register
Control
register
Status
register
I/O data
I/O data
Control
Status
CPU I/O
Device
9
Input-Output Organization
Computer Organization Computer Architectures Lab
ASYNCHRONOUS DATA TRANSFER
Synchronous - All devices derive the timing
information from common clock line
Asynchronous - No common clock
Asynchronous data transfer between two independent units requires that
control signals be transmitted between the communicating units to
indicate the time at which data is being transmitted
Strobe pulse
- A strobe pulse is supplied by one unit to indicate
the other unit when the transfer has to occur
Handshaking
- A control signal is accompanied with each data
being transmitted to indicate the presence of data
- The receiving unit responds with another control
signal to acknowledge receipt of the data
Synchronous and Asynchronous Operations
Asynchronous Data Transfer
Two Asynchronous Data Transfer Methods
Asynchronous Data Transfer
10
Input-Output Organization
Computer Organization Computer Architectures Lab
* Employs a single control line to time each transfer
* The strobe may be activated by either the source or the destination unit
STROBE CONTROL
Source
unit
Destination
unit
Data bus
Strobe
Data
Strobe
Valid data
Block Diagram
Timing Diagram
Source-Initiated Strobe
for Data Transfer
Source
unit
Destination
unit
Data bus
Strobe
Data
Strobe
Valid data
Block Diagram
Asynchronous Data Transfer
Destination-Initiated Strobe
for Data Transfer
Timing Diagram
11
Input-Output Organization
Computer Organization Computer Architectures Lab
HANDSHAKING
Strobe Methods
Source-Initiated
The source unit that initiates the transfer has
no way of knowing whether the destination unit
has actually received data
Destination-Initiated
The destination unit that initiates the transfer
no way of knowing whether the source has
actually placed the data on the bus
To solve this problem, the HANDSHAKE method
introduces a second control signal to provide a Reply
to the unit that initiates the transfer
Asynchronous Data Transfer
12
Input-Output Organization
Computer Organization Computer Architectures Lab
SOURCE-INITIATED TRANSFER USING HANDSHAKE
* Allows arbitrary delays from one state to the next
* Permits each unit to respond at its own data transfer rate
* The rate of transfer is determined by the slower unit
Block Diagram
Timing Diagram
Accept data from bus.
Enable data accepted
Disable data accepted.
Ready to accept data
(initial state).
Sequence of Events
Place data on bus.
Enable data valid.
Source unit Destination unit
Disable data valid.
Invalidate data on bus.
Source
unit
Destination
unit
Data bus
Data accepted
Data bus
Data valid
Valid data
Data valid
Data accepted
Asynchronous Data Transfer
13
Input-Output Organization
Computer Organization Computer Architectures Lab
DESTINATION-INITIATED TRANSFER USING HANDSHAKE
* Handshaking provides a high degree of flexibility and reliability because the
successful completion of a data transfer relies on active participation by both units
* If one unit is faulty, data transfer will not be completed
-> Can be detected by means of a timeout mechanism
Block Diagram
Timing Diagram
Source
unit
Destination
unit
Data bus
Ready for data
Data valid
Sequence of Events
Place data on bus.
Enable data valid.
Source unit Destination unit
Ready to accept data.
Enable ready for data.
Disable data valid.
Invalidate data on bus
(initial state).
Accept data from bus.
Disable ready for data.
Ready for data
Data valid
Data bus
Valid data
Asynchronous Data Transfer
14
Input-Output Organization
Computer Organization Computer Architectures Lab
ASYNCHRONOUS SERIAL TRANSFER
Asynchronous serial transfer
Synchronous serial transfer
Asynchronous parallel transfer
Synchronous parallel transfer
- Employs special bits which are inserted at both
ends of the character code
- Each character consists of three parts; Start bit; Data bits; Stop bits.
A character can be detected by the receiver from the knowledge of 4 rules;
- When data are not being sent, the line is kept in the 1-state (idle state)
- The initiation of a character transmission is detected
by a Start Bit , which is always a 0
- The character bits always follow the Start Bit
- After the last character , a Stop Bit is detected when
the line returns to the 1-state for at least 1 bit time
The receiver knows in advance the transfer rate of the
bits and the number of information bits to expect
Four Different Types of Transfer
Asynchronous Serial Transfer
Start
bit
(1 bit)
Stop
bits
Character bits
1 1 0 0 0 1 0 1
(at least 1 bit)
Asynchronous Data Transfer
15
Input-Output Organization
Computer Organization Computer Architectures Lab
UNIVERSAL ASYNCHRONOUS RECEIVER-TRANSMITTER
- UART -
A typical asynchronous communication interface available as an IC
Transmitter Register
- Accepts a data byte(from CPU) through the data bus
- Transferred to a shift register for serial transmission
Receiver
- Receives serial information into another shift register
- Complete data byte is sent to the receiver register
Status Register Bits
- Used for I/O flags and for recording errors
Control Register Bits
- Define baud rate, no. of bits in each character, whether
to generate and check parity, and no. of stop bits
Chip select
Register select
I/O read
I/O write
CS
RS
RD
WR
Timing
and
Control
Bus
buffers
Bidirectional
data bus
Transmitter
register
Control
register
Status
register
Receiver
register
Shift
register
Transmitter
control
and clock
Receiver
control
and clock
Shift
register
Transmit
data
Transmitter
clock
Receiver
clock
Receive
data
Asynchronous Data Transfer
CS RS Oper. Register selected
0 x x None
1 0 WR Transmitter register
1 1 WR Control register
1 0 RD Receiver register
1 1 RD Status register
Internal
Bus

More Related Content

Similar to Input-Output Organization: Peripherals, Interfaces, Transfer Modes

input output organization.pptx
input output organization.pptxinput output organization.pptx
input output organization.pptxMeenakshiR43
 
INTERFACE UNIT IV.pptx
INTERFACE UNIT IV.pptxINTERFACE UNIT IV.pptx
INTERFACE UNIT IV.pptxNidaKhan232565
 
Input Output Operations
Input Output OperationsInput Output Operations
Input Output Operationskdisthere
 
Input output accessing
Input output accessingInput output accessing
Input output accessingankitraosingh
 
Input output organization
Input output organizationInput output organization
Input output organizationabdulugc
 
ghgfjfhgdjfdhgdhgfdgfdhgdhgfdhgzeka.pptx
ghgfjfhgdjfdhgdhgfdgfdhgdhgfdhgzeka.pptxghgfjfhgdjfdhgdhgfdgfdhgdhgfdhgzeka.pptx
ghgfjfhgdjfdhgdhgfdgfdhgdhgfdhgzeka.pptxEliasPetros
 
Input_Output_Organization.pptx
Input_Output_Organization.pptxInput_Output_Organization.pptx
Input_Output_Organization.pptxSherinRappai
 
Input output in computer Orgranization and architecture
Input output in computer Orgranization and architectureInput output in computer Orgranization and architecture
Input output in computer Orgranization and architecturevikram patel
 
Computer organisation and architecture module 1
Computer organisation and architecture module 1Computer organisation and architecture module 1
Computer organisation and architecture module 1abinrj123
 

Similar to Input-Output Organization: Peripherals, Interfaces, Transfer Modes (20)

Lecture 36
Lecture 36Lecture 36
Lecture 36
 
Unit4_IO_13623_AnilRawat.ppt
Unit4_IO_13623_AnilRawat.pptUnit4_IO_13623_AnilRawat.ppt
Unit4_IO_13623_AnilRawat.ppt
 
input output organization.pptx
input output organization.pptxinput output organization.pptx
input output organization.pptx
 
Unit-4 (IO Interface).pptx
Unit-4 (IO Interface).pptxUnit-4 (IO Interface).pptx
Unit-4 (IO Interface).pptx
 
Ca 2 note mano
Ca 2 note manoCa 2 note mano
Ca 2 note mano
 
Unit 5
Unit 5Unit 5
Unit 5
 
INTERFACE UNIT IV.pptx
INTERFACE UNIT IV.pptxINTERFACE UNIT IV.pptx
INTERFACE UNIT IV.pptx
 
Input Output Operations
Input Output OperationsInput Output Operations
Input Output Operations
 
Input output accessing
Input output accessingInput output accessing
Input output accessing
 
Input output organization
Input output organizationInput output organization
Input output organization
 
ghgfjfhgdjfdhgdhgfdgfdhgdhgfdhgzeka.pptx
ghgfjfhgdjfdhgdhgfdgfdhgdhgfdhgzeka.pptxghgfjfhgdjfdhgdhgfdgfdhgdhgfdhgzeka.pptx
ghgfjfhgdjfdhgdhgfdgfdhgdhgfdhgzeka.pptx
 
I/O Channel IBM 370
I/O Channel IBM 370I/O Channel IBM 370
I/O Channel IBM 370
 
Interface
InterfaceInterface
Interface
 
Input output
Input outputInput output
Input output
 
interface
interfaceinterface
interface
 
Input_Output_Organization.pptx
Input_Output_Organization.pptxInput_Output_Organization.pptx
Input_Output_Organization.pptx
 
Lecture 35
Lecture 35Lecture 35
Lecture 35
 
Input output in computer Orgranization and architecture
Input output in computer Orgranization and architectureInput output in computer Orgranization and architecture
Input output in computer Orgranization and architecture
 
Lecture 34
Lecture 34Lecture 34
Lecture 34
 
Computer organisation and architecture module 1
Computer organisation and architecture module 1Computer organisation and architecture module 1
Computer organisation and architecture module 1
 

More from AshokRachapalli1

17.INTRODUCTION TO SCHEMA REFINEMENT.pptx
17.INTRODUCTION TO SCHEMA REFINEMENT.pptx17.INTRODUCTION TO SCHEMA REFINEMENT.pptx
17.INTRODUCTION TO SCHEMA REFINEMENT.pptxAshokRachapalli1
 
joins in dbms its describes about how joins are important and necessity in d...
joins in dbms  its describes about how joins are important and necessity in d...joins in dbms  its describes about how joins are important and necessity in d...
joins in dbms its describes about how joins are important and necessity in d...AshokRachapalli1
 
6.Database Languages lab-1.pptx
6.Database Languages lab-1.pptx6.Database Languages lab-1.pptx
6.Database Languages lab-1.pptxAshokRachapalli1
 
inputoutputorganization-140722085906-phpapp01.pptx
inputoutputorganization-140722085906-phpapp01.pptxinputoutputorganization-140722085906-phpapp01.pptx
inputoutputorganization-140722085906-phpapp01.pptxAshokRachapalli1
 
arithmeticmicrooperations-180130061637.pptx
arithmeticmicrooperations-180130061637.pptxarithmeticmicrooperations-180130061637.pptx
arithmeticmicrooperations-180130061637.pptxAshokRachapalli1
 
Computer Network Architecture.pptx
Computer Network Architecture.pptxComputer Network Architecture.pptx
Computer Network Architecture.pptxAshokRachapalli1
 
Computer Network Types.pptx
Computer Network Types.pptxComputer Network Types.pptx
Computer Network Types.pptxAshokRachapalli1
 
dataencoding-150701201133-lva1-app6891.pptx
dataencoding-150701201133-lva1-app6891.pptxdataencoding-150701201133-lva1-app6891.pptx
dataencoding-150701201133-lva1-app6891.pptxAshokRachapalli1
 

More from AshokRachapalli1 (20)

17.INTRODUCTION TO SCHEMA REFINEMENT.pptx
17.INTRODUCTION TO SCHEMA REFINEMENT.pptx17.INTRODUCTION TO SCHEMA REFINEMENT.pptx
17.INTRODUCTION TO SCHEMA REFINEMENT.pptx
 
joins in dbms its describes about how joins are important and necessity in d...
joins in dbms  its describes about how joins are important and necessity in d...joins in dbms  its describes about how joins are important and necessity in d...
joins in dbms its describes about how joins are important and necessity in d...
 
6.Database Languages lab-1.pptx
6.Database Languages lab-1.pptx6.Database Languages lab-1.pptx
6.Database Languages lab-1.pptx
 
Chapter5 (1).ppt
Chapter5 (1).pptChapter5 (1).ppt
Chapter5 (1).ppt
 
Cache Memory.pptx
Cache Memory.pptxCache Memory.pptx
Cache Memory.pptx
 
Addressing Modes.pptx
Addressing Modes.pptxAddressing Modes.pptx
Addressing Modes.pptx
 
inputoutputorganization-140722085906-phpapp01.pptx
inputoutputorganization-140722085906-phpapp01.pptxinputoutputorganization-140722085906-phpapp01.pptx
inputoutputorganization-140722085906-phpapp01.pptx
 
NOV11 virtual memory.ppt
NOV11 virtual memory.pptNOV11 virtual memory.ppt
NOV11 virtual memory.ppt
 
lec16-memory.ppt
lec16-memory.pptlec16-memory.ppt
lec16-memory.ppt
 
lecture-17.ppt
lecture-17.pptlecture-17.ppt
lecture-17.ppt
 
arithmeticmicrooperations-180130061637.pptx
arithmeticmicrooperations-180130061637.pptxarithmeticmicrooperations-180130061637.pptx
arithmeticmicrooperations-180130061637.pptx
 
instruction format.pptx
instruction format.pptxinstruction format.pptx
instruction format.pptx
 
Computer Network Architecture.pptx
Computer Network Architecture.pptxComputer Network Architecture.pptx
Computer Network Architecture.pptx
 
Computer Network Types.pptx
Computer Network Types.pptxComputer Network Types.pptx
Computer Network Types.pptx
 
dataencoding-150701201133-lva1-app6891.pptx
dataencoding-150701201133-lva1-app6891.pptxdataencoding-150701201133-lva1-app6891.pptx
dataencoding-150701201133-lva1-app6891.pptx
 
Flow Control.pptx
Flow Control.pptxFlow Control.pptx
Flow Control.pptx
 
Chapter4.ppt
Chapter4.pptChapter4.ppt
Chapter4.ppt
 
intro22.ppt
intro22.pptintro22.ppt
intro22.ppt
 
osi.ppt
osi.pptosi.ppt
osi.ppt
 
switching.pptx
switching.pptxswitching.pptx
switching.pptx
 

Recently uploaded

Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...Call Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Recently uploaded (20)

Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 

Input-Output Organization: Peripherals, Interfaces, Transfer Modes

  • 1. 1 Input-Output Organization Computer Organization Computer Architectures Lab • Peripheral Devices • Input-Output Interface • Asynchronous Data Transfer • Modes of Transfer • Priority Interrupt • Direct Memory Access • Input-Output Processor • Serial Communication INPUT-OUTPUT ORGANIZATION
  • 2. 2 Input-Output Organization Computer Organization Computer Architectures Lab PERIPHERAL DEVICES Input Devices • Keyboard • Optical input devices - Card Reader - Paper Tape Reader - Bar code reader - Digitizer - Optical Mark Reader • Magnetic Input Devices - Magnetic Stripe Reader • Screen Input Devices - Touch Screen - Light Pen - Mouse • Analog Input Devices Output Devices • Card Puncher, Paper Tape Puncher • CRT • Printer (Impact, Ink Jet, Laser, Dot Matrix) • Plotter • Analog • Voice Peripheral Devices
  • 3. 3 Input-Output Organization Computer Organization Computer Architectures Lab * Provides a method for transferring information between internal storage (such as memory and CPU registers) and external I/O devices * Resolves the differences between the computer and peripheral devices - Peripherals - Electromechanical Devices CPU or Memory - Electronic Device - Data Transfer Rate Peripherals - Usually slower CPU or Memory - Usually faster than peripherals Some kinds of Synchronization mechanism may be needed - Unit of Information Peripherals - Byte CPU or Memory - Word - Operating Modes Peripherals - Autonomous, Asynchronous CPU or Memory - Synchronous INPUT/OUTPUT INTERFACES Input/Output Interfaces
  • 4. 4 Input-Output Organization Computer Organization Computer Architectures Lab I/O BUS AND INTERFACE MODULES Each peripheral has an interface module associated with it Interface - Decodes the device address (device code) - Decodes the commands (operation) - Provides signals for the peripheral controller - Synchronizes the data flow and supervises the transfer rate between peripheral and CPU or Memory Typical I/O instruction (Command) Op. code Device address Function code Input/Output Interfaces Processor Interface Keyboard and display terminal Magnetic tape Printer Interface Interface Interface Data Address Control Magnetic disk I/O bus
  • 5. 5 Input-Output Organization Computer Organization Computer Architectures Lab CONNECTION OF I/O BUS Connection of I/O Bus to One Interface Connection of I/O Bus to CPU Input/Output Interfaces I/O bus Op. code Device address Function code Accumulator register Computer I/O control Sense lines Data lines Function code lines Device address lines CPU I/O bus Device address Command decoder Function code Data lines Buffer register Peripheral register Status register Sense lines Output peripheral device and controller AD = 1101 Interface Logic
  • 6. 6 Input-Output Organization Computer Organization Computer Architectures Lab I/O BUS AND MEMORY BUS * MEMORY BUS is for information transfers between CPU and the MM * I/O BUS is for information transfers between CPU and I/O devices through their I/O interface * Many computers use a common single bus system for both memory and I/O interface units - Use one common bus but separate control lines for each function - Use one common bus with common control lines for both functions * Some computer systems use two separate buses, one to communicate with memory and the other with I/O interfaces - Communication between CPU and all interface units is via a common I/O Bus - An interface connected to a peripheral device may have a number of data registers , a control register, and a status register - A command is passed to the peripheral by sending to the appropriate interface register - Function code and sense lines are not needed (Transfer of data, control, and status information is always via the common I/O Bus) Functions of Buses Physical Organizations I/O Bus Input/Output Interfaces
  • 7. 7 Input-Output Organization Computer Organization Computer Architectures Lab ISOLATED vs MEMORY MAPPED I/O - Separate I/O read/write control lines in addition to memory read/write control lines - Separate (isolated) memory and I/O address spaces - Distinct input and output instructions Isolated I/O Memory-mapped I/O - A single set of read/write control lines (no distinction between memory and I/O transfer) - Memory and I/O addresses share the common address space -> reduces memory address range available - No specific input or output instruction -> The same memory reference instructions can be used for I/O transfers - Considerable flexibility in handling I/O operations Input/Output Interfaces
  • 8. 8 Input-Output Organization Computer Organization Computer Architectures Lab I/O INTERFACE - Information in each port can be assigned a meaning depending on the mode of operation of the I/O device -> Port A = Data; Port B = Command; Port C = Status - CPU initializes(loads) each port by transferring a byte to the Control Register -> Allows CPU can define the mode of operation of each port -> Programmable Port: By changing the bits in the control register, it is possible to change the interface characteristics CS RS1 RS0 Register selected 0 x x None - data bus in high-impedence 1 0 0 Port A register 1 0 1 Port B register 1 1 0 Control register 1 1 1 Status register Programmable Interface Input/Output Interfaces Chip select Register select Register select I/O read I/O write CS RS1 RS0 RD WR Timing and Control Bus buffers Bidirectional data bus Port A register Port B register Control register Status register I/O data I/O data Control Status CPU I/O Device
  • 9. 9 Input-Output Organization Computer Organization Computer Architectures Lab ASYNCHRONOUS DATA TRANSFER Synchronous - All devices derive the timing information from common clock line Asynchronous - No common clock Asynchronous data transfer between two independent units requires that control signals be transmitted between the communicating units to indicate the time at which data is being transmitted Strobe pulse - A strobe pulse is supplied by one unit to indicate the other unit when the transfer has to occur Handshaking - A control signal is accompanied with each data being transmitted to indicate the presence of data - The receiving unit responds with another control signal to acknowledge receipt of the data Synchronous and Asynchronous Operations Asynchronous Data Transfer Two Asynchronous Data Transfer Methods Asynchronous Data Transfer
  • 10. 10 Input-Output Organization Computer Organization Computer Architectures Lab * Employs a single control line to time each transfer * The strobe may be activated by either the source or the destination unit STROBE CONTROL Source unit Destination unit Data bus Strobe Data Strobe Valid data Block Diagram Timing Diagram Source-Initiated Strobe for Data Transfer Source unit Destination unit Data bus Strobe Data Strobe Valid data Block Diagram Asynchronous Data Transfer Destination-Initiated Strobe for Data Transfer Timing Diagram
  • 11. 11 Input-Output Organization Computer Organization Computer Architectures Lab HANDSHAKING Strobe Methods Source-Initiated The source unit that initiates the transfer has no way of knowing whether the destination unit has actually received data Destination-Initiated The destination unit that initiates the transfer no way of knowing whether the source has actually placed the data on the bus To solve this problem, the HANDSHAKE method introduces a second control signal to provide a Reply to the unit that initiates the transfer Asynchronous Data Transfer
  • 12. 12 Input-Output Organization Computer Organization Computer Architectures Lab SOURCE-INITIATED TRANSFER USING HANDSHAKE * Allows arbitrary delays from one state to the next * Permits each unit to respond at its own data transfer rate * The rate of transfer is determined by the slower unit Block Diagram Timing Diagram Accept data from bus. Enable data accepted Disable data accepted. Ready to accept data (initial state). Sequence of Events Place data on bus. Enable data valid. Source unit Destination unit Disable data valid. Invalidate data on bus. Source unit Destination unit Data bus Data accepted Data bus Data valid Valid data Data valid Data accepted Asynchronous Data Transfer
  • 13. 13 Input-Output Organization Computer Organization Computer Architectures Lab DESTINATION-INITIATED TRANSFER USING HANDSHAKE * Handshaking provides a high degree of flexibility and reliability because the successful completion of a data transfer relies on active participation by both units * If one unit is faulty, data transfer will not be completed -> Can be detected by means of a timeout mechanism Block Diagram Timing Diagram Source unit Destination unit Data bus Ready for data Data valid Sequence of Events Place data on bus. Enable data valid. Source unit Destination unit Ready to accept data. Enable ready for data. Disable data valid. Invalidate data on bus (initial state). Accept data from bus. Disable ready for data. Ready for data Data valid Data bus Valid data Asynchronous Data Transfer
  • 14. 14 Input-Output Organization Computer Organization Computer Architectures Lab ASYNCHRONOUS SERIAL TRANSFER Asynchronous serial transfer Synchronous serial transfer Asynchronous parallel transfer Synchronous parallel transfer - Employs special bits which are inserted at both ends of the character code - Each character consists of three parts; Start bit; Data bits; Stop bits. A character can be detected by the receiver from the knowledge of 4 rules; - When data are not being sent, the line is kept in the 1-state (idle state) - The initiation of a character transmission is detected by a Start Bit , which is always a 0 - The character bits always follow the Start Bit - After the last character , a Stop Bit is detected when the line returns to the 1-state for at least 1 bit time The receiver knows in advance the transfer rate of the bits and the number of information bits to expect Four Different Types of Transfer Asynchronous Serial Transfer Start bit (1 bit) Stop bits Character bits 1 1 0 0 0 1 0 1 (at least 1 bit) Asynchronous Data Transfer
  • 15. 15 Input-Output Organization Computer Organization Computer Architectures Lab UNIVERSAL ASYNCHRONOUS RECEIVER-TRANSMITTER - UART - A typical asynchronous communication interface available as an IC Transmitter Register - Accepts a data byte(from CPU) through the data bus - Transferred to a shift register for serial transmission Receiver - Receives serial information into another shift register - Complete data byte is sent to the receiver register Status Register Bits - Used for I/O flags and for recording errors Control Register Bits - Define baud rate, no. of bits in each character, whether to generate and check parity, and no. of stop bits Chip select Register select I/O read I/O write CS RS RD WR Timing and Control Bus buffers Bidirectional data bus Transmitter register Control register Status register Receiver register Shift register Transmitter control and clock Receiver control and clock Shift register Transmit data Transmitter clock Receiver clock Receive data Asynchronous Data Transfer CS RS Oper. Register selected 0 x x None 1 0 WR Transmitter register 1 1 WR Control register 1 0 RD Receiver register 1 1 RD Status register Internal Bus