SlideShare a Scribd company logo
1 of 32
Download to read offline
Polytechnic University of Milan
Department of Aerospace Engineering
Aerospace Systems
Andre Odu
Student ID : 789645
Professor : Paolo Astori
September 2014
Laboratory N° 1:
Analysis of a Hydraulic Pump
1.Preface
The objective of the lab is to analyze the performance of a hydraulic pump
responsible for the transfer of fluid between two tanks at a constant flow, in
function of its rotational speed.
As the rotations per minute (rpm) vary from 0 to 4000, we are mainly interested in
studying the speed, flow rate and pressures when entering and exiting the pump,
the coefficient of head losses associated with the delivery duct, the required
hydraulic power and the hydraulic power generated.
As the lab progresses, we find ourselves needing to solve the problem of cavitation
that manifests itself it the aspiration duct, and are the asked to calculate the plate
angle of orientation when the cylinders are placed along a circumference with
diameter of 60 mm.
2. Index
1. Preface
2. Index
3. List of Symbols
4. Description of the Problem and Method of Resolution
4.1 Aspiration Duct
4.2 Delivery Duct
4.3 Pressures
4.4 Coefficient of head losses
4.5 Generated and Required Power
4.6 Verifying Cavitation
4.7 Plate Angle of Orientation
5. Given Data
6. Calculations and Results
6.1 Flow Rates
6.2 Speeds
6.3 Pressures
6.4 Coefficient of head losses
6.5 Generated and Required Power
6.6 Verifying Cavitation
6.7 Plate Angle of Orientation
7. Final Considerations
3.List Of Symbols
PA Pressure in tank A [Pa]
PB Pressure in tank B [Pa]
Np Number of pistons in the pump [ ]
Dp Diameter of the pistons in the pump [m]
Cp Stroke of the pistons [m]
ηv Volumetric Efficiency of the pump [ ]
ηm Mechanical Efficiency of the pump [ ]
L0 Length of the Aspiration Duct [m]
D0 Diameter of the Aspiration Duct [m]
L Length of the Delivery Duct [m]
D Diameter of the Delivery Duct [m]
k Coefficient of Minor Losses [ ]
Keq Coefficient of Head Losses [Pa/(m3/s)2]
λ Coefficient of Distributed Losses [ ]
e Average Roughness [m]
ν Cinematic Viscosity of the liquid [St]
ρ Density of the Liquid [Kg/m3]
Pc Vapor Tension of the Liquid [Pa]
V cilindrata [m3]
Qin Flow Rate in the Aspiration Duct [m3/s]
Qout Flow Rate in the Delivery Duct [m3/s]
vin Speed in the Aspiration Duct [m/s]
vout Speed in the Delivery Duct [m/s]
Pin Pressure at the Pump Entrance [Pa]
Pout Pressure at the Pump Exit [Pa]
Ain Section of the Aspiration Duct [m2]
Aout Section of the Delivery Duct [m2]
ein Relative Roughness of the Aspiration Duct [ ]
eout Relative Roughness of the Delivery Duct [ ]
WHyd Hydraulic Power Generated [W]
WMec Mechanical Power Necessary [W]
ΔP Variation of Pressure between pump exit and Tank B [Pa]
ΔPp Variation of Pressure between pump entrance and exit [Pa]
DT Diameter of the Rotating Drum [m]
α Swash Plate Angle of Orientation [rad]
4.Description of the Problemand Method of Resolution
The instructions ask to calculate the following parameters, in function of the range
of values in which the rotational speed of the volumetric pump may vary:
· Speed and Flow Rate in the Aspiration and Delivery Ducts
· Pressure Entering and Exiting the Pump
· Coefficient of Head Loss Associated with the Delivery Duct
· Generated Hydraulic Power and Required Mechanical Power
The instructions also ask to verify the occurrenceof cavitation in the aspiration
duct and to determine the swash plate angle of orientation, knowing that its
diameter is of 60 mm.
4.1 Aspiration Duct
For starters, in order to calculate the Flow Rate in the aspiration duct, I need to
determine the displacement of the pump.
Given the piston diameter, the number of pistons and their stroke, the displacement
of the pump is calculated through the following equation:
V = Np * pi * Cp * ( Dp / 2 )2
Once the displacement of the pump is know, the flow rate of the aspiration duct is
easily obtainable, in function of the rotational speed (n):
Qin = n * V
The final step is finding the fluid's speed in the aspiration duct, which depends on
the section of the aspiration duct:
Ain = pi * (D0 / 2 )2
vin = Qin / Ain
4.2 Delivery Duct
The Flow Rate in the delivery duct depends on the Flow Rate in the aspiration duct
and on the volumetric efficiency of the pump through the following equation:
Qout = ηv * Qin
Having determined the Flow Rate in the delivery duct, the speed is obtainable
through the same procedure used for the aspiration duct
Aout = pi * (D / 2 )2
vout = Qout / Aout
4.3 Pressures
To calculate the pressures at the entrance and exit of the pump we need to
determine the coefficient of distributed losses ( λ ) which varies in function of the
Reynolds numbers of the aspiration and delivery ducts:
Rein = ( d0 * vin ) / v
Reout = ( d * vout ) / v
For Reynolds numbers below 2000, the flow is considered laminar and the
coefficient of distributed losses is approximated as:
λ = 64 / Re
For Reynolds number between 2000 and 4000 the flow is considered transitional,
and above 4000 the flow is considered completely turbulent.
Remembering that the two speeds depend of the rotational speed ( n ) we find that
the coefficient of distributed losses ( λ ) depends on the number of rotations per
minute.
In our case the Reynolds numbers become greater that 2000 in both the aspiration
duct ( at approximately 3000 rpm ) and the delivery duct ( at approximately 3800
rpm) ,while always remaining below the 4000 mark.
The problem now becomes that of a transitional phase with rough ducts, which is
solved by determining the coefficient of distributed losses in function of the
relative roughness of the ducts and their respective Reynolds numbers by
consulting the Moody diagram.
ein = e / D0 = 0.0062
eout = e / D = 0.0080
With these values of relative roughness, and low Reynolds numbers, the coefficient
of distributed losses appears as a curve with equation:
λ = ( 1.8log(Re) - 1.64 )-2
Given the equation for the coefficient of distributed losses, the next step is
calculating the pressures entering and exiting the pump:
λin = ( 1.8log(Rein) - 1.64 )-2
λout = ( 1.8log(Reout) - 1.64)-2
Pin = Pa - ( λin * ( L0 / D0 ) * 0.5 * ρ * vin
2
Pout = Pb + ( k + λout * ( L / D ) * 0.5 * ρ * vout
2
4.4 Coefficient of head losses
When considering the delivery duct, the coefficient of head losses is easily
calculated through the following equation:
Keq = ΔP / Qout
4.5 Generated and Required Power
The generated Hydraulic Power depends strictly on the variation in pressure
between pump entrance and exit, and on the flow rate in the delivery duct( which
also depends on the flow rate in the aspiration duct )
Whyd = ΔP * Qout
The Mechanical Power required to generate this Hydraulic Power depends on both
the Mechanical Efficiency and the Volumetric Efficiency
Wmec = Whyd / ( ηm * ηv)
4.6 Verifying Cavitation
With the numerical data obtained we are now able to prevent cavitation, by
ensuring that the pressures at the entrance and exit of the pump stay above the
vapor tension of the fluid ( Pc ) for every rotation speed taken into consideration.
From the equations obtained for the entrance and exit pressures we notice that
above a certain number or rotations per minute the entrance pressure ( Pin ) falls
below the vapor tension ( Pc ) , compromising the pump.
4.7 Plate Angle of Orientation
The equation which puts in relation the piston stroke with the diameter of the
rotating drum is as follows:
Cp = DT * tan(α )
From this equation the plate angle of orientation is then:
α = tan-1( Cp / DT )
5.Given Data
PA = 0.25 MPa
PB = 0.80 MPa
Np = 9
Dp = 0.5 in
Cp = 22.5 mm
ηv = 96 %
ηm = 88 %
L0 = 1 m
D0 = 13 mm
L = 4 m
D = 10 mm
k = 4
e = 0.08 mm
ν = 80 cSt
ρ = 950 kg/m3
Pc = 15 kPa
n = 0÷4000 rpm
6.CalculationsAnd Results
All the following results and the associated graph were calculated and plotted with
matlab. The required codewill be displayed
6.1 Flow Rates
Vtot = Np * (pi*Cp*(Dp /2)2 (m3)
Vtot_l = Vtot * 1000 (liters)
Qin = n*Vtot_l (liters / minute )
ηv = 0.96
Qout = Qin*ηv (liters / minute )
6.2 Speeds
d0 = 0.013 (m)
Ain = pi * (d0/2)2 (m2)
vin = Qin/(Ain*60000) (m/s)
d = 0.01 (m)
Aout = pi * (d/2)2 (m2)
vout = Qout/(Aout*60000) (m/s)
6.3 Pressures
Rein = (d0 * vin) / v
Reout = (d * vout) / v
lambdain(1:3820) = 64 ./ Rein(1:3820)
lambdain(3821:4000) = ( 1.8 .* log10(Rein(3821:4000)) - 1.64 )-2
lambdaout(1:3061) = 64 ./ Reout(1:3061) ;
lambdaout(3062:4000) = ( 1.8 .* log10(Reout(3062:4000)) - 1.64 )-2
Pin = Pa - (lambdain * (l0 / d0) * 0.5 * rho * (vin)2)
Pout = Pb + (k + lambdaout * (l/d) ) * 0.5 * rho * (vout)2
6.4 Coefficient of head losses
ΔP = Pout - Pb
Keq = ΔP / ( (Qout/60000)2 )
6.5 Generated and Required Power
Whyd = (Pout - Pin) * (Qout/60000)
Wmec = Whyd / (ηm*ηv)
6.6 Solving Cavitation
d1 = 0.015
Ain = pi * (d1/2)2
vin = Qin/(Ain*60000)
Rein = (d1 * vin) / v
lambdain(1:3820) = 64 / Rein(1:3820) ;
lambdain(3821:4000) = ( 1.8 * log10(Rein(3821:4000)) - 1.64 )-2
Pin = Pa - ( lambdain * (l0/d0) * 0.5 * rho * (vin
2 )
6.7 Plate Angle of Orientation
α = atan(Cp / d) * (180/pi) = 20.556
7.Final Considerations
After thoroughly analyzing the pump we can deducethat, becauseof how the plant
was structured , the best parameters are obtained when working at a low number of
rotations per minute. At approximately 3800 rpm the Reynolds number in the
aspiration duct becomes greater than 2000, and in the transition to a turbulent flow
the pressure falls below that of cavitation, compromising the pump. However,
when considering a constant flow rate, the loss of pressure along the ducts depends
exclusively on the width of the duct. Hypothetically speaking, by increasing the
diameter of the aspiration duct by few millimeters one could increase the pressure
enough to avoid cavitation in the entire range of rotation speeds considered. In this
particular case, increasing the diameter to 15 millimeters ( increasing by merely 2
millimeters ) is enough to avoid cavitation.
Laboratorio N° 7:
Comandi di Volo
1. Premessa
L'obbiettivo del laboratorio e' di studiare la funzionalita' dell'attuatore usato per il
comando del timone in un Airbus A320. Nel caso dell'Airbus A320 sono presenti
tre attuatori con doppiaridondanza, ognuno e' quindi progettato per azionare in
modo autonomo la superficie di comando.
Dato il momento della cerniera da contrastare, possiamo ricavare la forza
muscolare necessaria per muovere la superficie di co. mando, possiamo
determinare le dimensioni dell'attuatore che verra' introdotto, e a sua volta ricavare
l'equazioni di funzionamento e stimare il tempo richiesto per completare il
movimento.
2. Indice
1. Premessa
2. Indice
3. Lista dei Simboli Utilizzati
4. Descrizione del Problema e Metodo di Risoluzione
4.1 Stimare l'Entita' della Forza Muscolare Richiesta
4.2 Dimensionare l'Attuatore
4.3 Tracciare i Diagrammi Significativi del Sistema
4.4 Scrivere l'Equazione Dinamica dell'Attuatore
4.5 Stimare il Tempo di Attuazione
5. Dati del Problema
6. Calcoli e Risultati
6.1 Stimare l'Entita' della Forza Muscolare Richiesta
6.2 Dimensionare l'Attuatore
6.3 Disegnare lo Schema Idraulico Completo
6.4 Tracciare i Diagrammi Significativi del Sistema
6.5 Stimare il Tempo di Attuazione
3. Lista Dei Simboli Utilizzati
LC lavoro fatto per ruotare il timone fino alla sua apertura massima [N*m]
LP lavoro fatto per far estendere completamente l'asta di comando [N*m]
M Momento d'Inerzia della cerniera [kg*m2]
J momento d'inerzia del timone [kg*m2]
S Corsadel pedale [m]
b Distanza tra cerniera e punto di attacco dell'attuatore [m]
dS Diametro stelo [m]
AC Area del cilindro [m2]
AS Area dello stelo [m2]
PP Pressione pilota [Pa]
PS Pressione serbatioio [Pa]
a Accellerazione [m/s2]
v Velocita' [m/s]
Q Flusso [m3/s]
4. Descrizione del Problema e Metodo di Risoluzione
Le istruzioni chiedono di studiare il funzionamento di uno dei tre attuatori
indipendenti utilizzati per azionare il timone. In particolare e' richiesto di:
 Stimare l'Entita' della Forza Muscolare necessaria in Assenza di
Potenziamento Idraulico
 Dimensionare l'Attuatore
 Disegnare lo Schema Idraulico Completo del Servocomando (FBW)
 Tracciare i Diagrammi Significativi
 Scrivere l'Equazione Dinamica dell'Attuatore
 Stimare il Tempo di Attuazione

4.1 Stimare la Forza Muscolare Necessaria
Considerando lineare il momento di cerniera, possoricavare il lavoro fatto per
ruotare il timone fino alla sua apertura massima
Considerando poi la forza manuale applicata all'asta, possoricavare il lavoro fatto
per far estendere completamente l'asta di comando collegata alla cerniera
Del bilancio dei due lavori ottengo, in funzione del momento massimo della
cerniera, la forza massima che deve esercitare manualmente il pilota
Mmax * ϑmax = Fmusc * s
Fmusc = ( Mmax * ϑmax ) / s
4.2 Dimensionamento dell'Attuatore
Una volta ricavata la forza muscolare necessaria, e' evidente il bisogno di
utilizzare un attuatore idraulico. Conoscendo la distanza tra la cerniera e il punto di
attacco dell'attuatore si ricava la corsa dell'attuatore e il braccio della forza
esercitata rispetto alla cerniera stessa
h = b * cos(ϑ )
x = b * sin(ϑ )
Siccome corsae braccio dipendono dalla variazione dell'angolo theta, per theta
massimo o minimo otteniamo dei valori significativi
hmin = b * cos(ϑmax )
xmax = b * sin(ϑmax )
Noto il valore minimo assunto dal braccio della forza, e conoscendo il valore
massimo assunto dal momento della cerniera, si ricava la forza massima necessaria
per muovere completamente il timone, ovvero la forza massima che dovra' poter
esercitare l'attuatore
Fmax = Mmax / hmin
Conoscendola forza che deve esercitare l'attuatore, lo si puo' dimensionare in
funzione delle pressioni esterne e dell'impianto. Sovradimensionando del 20%
ottengo una superficie utile dell'attuatore che mi garantisce il funzionamento
corretto
A = 1.2 * Fmax / ΔP
Dalla superficie utile dell'attuatore, avendo gia' scelto il diametro dello stelo ricavo
il diametro del cilindro richiesto
As = pi * ( ds / 2 )2
Ac = A + As
dc = (Ac / pi )0.5 * 2
Quindi ottengo la forza massima che puo' esercitare questo attuatore
sovradimensionato, che deve essere maggiore della forza massima necessaria per
muovere il timone
Fatt = A * ΔP
4.3 Tracciare i Diagrammi Significativi
Al variare dell'angolo theta studio la corsae il braccio tra forza e cerniera
x = b * sin(ϑ )
h = b * cos(ϑ )
Avendo interpolato il grafico del momento della cerniera in funzione dell'angolo
theta, possiamo studiare la forza richiesta per bilanciare il momento al variare
dell'angolo theta
F = M / h
4.4 Scrivere l'Equazione Dinamica dell'Attuatore
Bilanciando forze e pressioni applicate all'attuatore, possoscrivere la sua
equazione dinamica
F = ( P1 - P2 ) * A - F(x )
( m + ( J / b2 ) ) * a = ΔP * A - F(x )
P1 = PP - K * Q2 = PP - K * ( A * v )2
P2 = PR + K * Q2 = PR + K * ( A * v )2
( m + ( J / b2 ) ) * a = ( PP - PR ) * A - 2 * A * K * ( A * v )2 - F(x )
4.5 Stimare il Tempo di Attuazione
Per semplificare anziche' considerare F(x) considero una forza media, e
considerando una velocita media (costante) ipotizzo accelerazione nulla
L'equazione dinamica si riduce quindi a
0 = ( PP - PR ) * A - 2 * K * A3 * ( vmed )2 - Fmed
vmed = ( ( ( PP - PR ) * A - Fmed ) / 2 * K * A3 )0.5
Avendo ricavato la velocita' media, banalmente si ottiene il tempo di attuazione
t = xmax / vmed
5. Dati del Problema
S = 0.2 m
b = 0.1 m
Mmax = 1500 kg*m2
K = 2.1600e+15 Pa/(m3/s)2
PP = 21000000 Pa
PS = 101300 Pa
ϑmax = 25 °
m = 2.5 kg
6 Calcoli e Risultati
Tutti i risultati e i loro grafici sono stati calcolati tramite matlab. Il codiceassociato
ad ogni singola richiesta verra' fornito.
6.1 Stimare l'Entita' della forza muscolare richiesta
ϑmax = 25 * ( pi/180 )
Fmusc = ( Mmax * ϑmax ) / s = 3272.5 (N)
6.2 Dimensionamento dell'Attuatore
hmin = b * cos(ϑmax) = 0.0906 (m)
xmax = b * sin(ϑmax) = 0.0423 (m)
Fmax = Mmax / hmin = 16.551 (kN)
ΔP = PP - PR (Pa)
A = 1.2 * Fmax / ΔP = 9.5034e-04 (m2)
dS = 0.02 (m)
As = pi * ( ds / 2 )2 = 3.1416e-04 (m2)
Ac = A + As = 0.0013 (m2)
dc = (Ac / pi )0.5 * 2 = 0.0401 (m)
Fatt = A * ΔP = 19.861 (kN)
6.4 Disegnare lo Schema Idraulico Completo
Nel caso di un controllo fly-by-wire consistema idraulico, il sistema viene
scematizzato come segue
6.4 Tracciare i Diagrammi Significativi
x = b * sin(ϑ )
h = b * cos(ϑ)
F = M / h = M / ( b * cos(ϑ) )
6.5 Stimare il Tempo di Attuazione
Fmed = sum(abs(F))/ length(F) = 10.025 (kN)
Q = 5/60000 (m3/s)
vmed = ( ( ( PP - PR ) * A - Fmed ) / 2 * K * A3 )0.5 = 0.0515 (m/s)
t = xmax / vmed = 0.8205 (s)

More Related Content

What's hot

Fire model for sizing high consequence areas associated with natural gas pipe...
Fire model for sizing high consequence areas associated with natural gas pipe...Fire model for sizing high consequence areas associated with natural gas pipe...
Fire model for sizing high consequence areas associated with natural gas pipe...Thapa Prakash (TA-1)
 
Metodod kremser liq liq extr
Metodod kremser liq liq extrMetodod kremser liq liq extr
Metodod kremser liq liq extrFlorencio Nuñez
 
Offshore well intermediate
Offshore well intermediateOffshore well intermediate
Offshore well intermediateG.Balachandran
 
Volume flow rate_measurement
Volume flow rate_measurementVolume flow rate_measurement
Volume flow rate_measurementaparna kadam
 
GDJP - Unit 3, 4, 5 qb
GDJP - Unit 3, 4, 5 qbGDJP - Unit 3, 4, 5 qb
GDJP - Unit 3, 4, 5 qbgokulfea
 
Heat and mass transfer model for diseccant solution
Heat and mass transfer model for diseccant solutionHeat and mass transfer model for diseccant solution
Heat and mass transfer model for diseccant solutionAdalberto C
 
Internal combustion engine (ja304) chapter 2
Internal combustion engine (ja304) chapter 2Internal combustion engine (ja304) chapter 2
Internal combustion engine (ja304) chapter 2mechanical86
 
Parte experimental y metodologia pelton
Parte experimental y metodologia peltonParte experimental y metodologia pelton
Parte experimental y metodologia peltonEduardoVargas234
 
Ejercicio 1. Ecuación Darcy W.
Ejercicio 1. Ecuación Darcy W.Ejercicio 1. Ecuación Darcy W.
Ejercicio 1. Ecuación Darcy W.yeisyynojos
 
M E C H A N I C A L E N G I N E E R I N G J N T U M O D E L P A P E R{Www
M E C H A N I C A L  E N G I N E E R I N G  J N T U  M O D E L  P A P E R{WwwM E C H A N I C A L  E N G I N E E R I N G  J N T U  M O D E L  P A P E R{Www
M E C H A N I C A L E N G I N E E R I N G J N T U M O D E L P A P E R{Wwwguest3f9c6b
 

What's hot (20)

Performance parameters
Performance parametersPerformance parameters
Performance parameters
 
Fire model for sizing high consequence areas associated with natural gas pipe...
Fire model for sizing high consequence areas associated with natural gas pipe...Fire model for sizing high consequence areas associated with natural gas pipe...
Fire model for sizing high consequence areas associated with natural gas pipe...
 
Metodod kremser liq liq extr
Metodod kremser liq liq extrMetodod kremser liq liq extr
Metodod kremser liq liq extr
 
Offshore well intermediate
Offshore well intermediateOffshore well intermediate
Offshore well intermediate
 
Mech CE6461 FMM lab_manual
Mech CE6461 FMM lab_manualMech CE6461 FMM lab_manual
Mech CE6461 FMM lab_manual
 
Volume flow rate_measurement
Volume flow rate_measurementVolume flow rate_measurement
Volume flow rate_measurement
 
GDJP - Unit 3, 4, 5 qb
GDJP - Unit 3, 4, 5 qbGDJP - Unit 3, 4, 5 qb
GDJP - Unit 3, 4, 5 qb
 
Mc conkey 12-pb
Mc conkey 12-pbMc conkey 12-pb
Mc conkey 12-pb
 
Heat and mass transfer model for diseccant solution
Heat and mass transfer model for diseccant solutionHeat and mass transfer model for diseccant solution
Heat and mass transfer model for diseccant solution
 
Fluid Mechanics report
Fluid Mechanics reportFluid Mechanics report
Fluid Mechanics report
 
Internal combustion engine (ja304) chapter 2
Internal combustion engine (ja304) chapter 2Internal combustion engine (ja304) chapter 2
Internal combustion engine (ja304) chapter 2
 
Parte experimental y metodologia pelton
Parte experimental y metodologia peltonParte experimental y metodologia pelton
Parte experimental y metodologia pelton
 
Mc conkey 11-pb
Mc conkey 11-pbMc conkey 11-pb
Mc conkey 11-pb
 
Ejercicio 1. Ecuación Darcy W.
Ejercicio 1. Ecuación Darcy W.Ejercicio 1. Ecuación Darcy W.
Ejercicio 1. Ecuación Darcy W.
 
Mc conkey 10-pb
Mc conkey 10-pbMc conkey 10-pb
Mc conkey 10-pb
 
AFD3 Energy Loss due to Friction
AFD3 Energy Loss due to FrictionAFD3 Energy Loss due to Friction
AFD3 Energy Loss due to Friction
 
Presentation 4 ce 801 OCF by Rabindraa ranjan Saha
Presentation 4 ce 801 OCF by Rabindraa ranjan SahaPresentation 4 ce 801 OCF by Rabindraa ranjan Saha
Presentation 4 ce 801 OCF by Rabindraa ranjan Saha
 
Mc conkey 13-pb
Mc conkey 13-pbMc conkey 13-pb
Mc conkey 13-pb
 
M E C H A N I C A L E N G I N E E R I N G J N T U M O D E L P A P E R{Www
M E C H A N I C A L  E N G I N E E R I N G  J N T U  M O D E L  P A P E R{WwwM E C H A N I C A L  E N G I N E E R I N G  J N T U  M O D E L  P A P E R{Www
M E C H A N I C A L E N G I N E E R I N G J N T U M O D E L P A P E R{Www
 
@Pipeflow
@Pipeflow@Pipeflow
@Pipeflow
 

Viewers also liked

Motorcycle Collides With Car
Motorcycle Collides With CarMotorcycle Collides With Car
Motorcycle Collides With Carlisadydx
 
Work, power, and simple machines SECTION A
Work, power, and simple machines SECTION AWork, power, and simple machines SECTION A
Work, power, and simple machines SECTION AMr. Motuk
 
Work, power, and simple machines stem
Work, power, and simple machines stemWork, power, and simple machines stem
Work, power, and simple machines stemMr. Motuk
 
Physics 2012 PUNTLAND NATIONAL EXAMINATION BOARD (PNEB)
Physics  2012 PUNTLAND NATIONAL EXAMINATION BOARD (PNEB)Physics  2012 PUNTLAND NATIONAL EXAMINATION BOARD (PNEB)
Physics 2012 PUNTLAND NATIONAL EXAMINATION BOARD (PNEB)Eng.Abdulahi hajji
 
Design And Analysis of Charge Pump for PLL at 90nm CMOS technology
Design And Analysis of Charge Pump for PLL at 90nm CMOS technologyDesign And Analysis of Charge Pump for PLL at 90nm CMOS technology
Design And Analysis of Charge Pump for PLL at 90nm CMOS technologyRavi Chandra
 
Civil Engineering : Rcc & steel structures, THE GATE ACADEMY
Civil Engineering : Rcc & steel structures, THE GATE ACADEMYCivil Engineering : Rcc & steel structures, THE GATE ACADEMY
Civil Engineering : Rcc & steel structures, THE GATE ACADEMYklirantga
 
Forces unit phy 1
Forces unit phy 1Forces unit phy 1
Forces unit phy 1wpchem81
 
The Physics Of Soccer
The Physics Of SoccerThe Physics Of Soccer
The Physics Of Soccerdodrums
 
My Agile Suitcase at Agile 2013 in Nashville
My Agile Suitcase at Agile 2013 in NashvilleMy Agile Suitcase at Agile 2013 in Nashville
My Agile Suitcase at Agile 2013 in NashvilleMartin Heider
 
CFD Introduction using Ansys Fluent
CFD Introduction using Ansys FluentCFD Introduction using Ansys Fluent
CFD Introduction using Ansys Fluentsavani4611
 
Hydraulic theory
Hydraulic theoryHydraulic theory
Hydraulic theoryCraig Kielb
 
Mechanics Machine
Mechanics MachineMechanics Machine
Mechanics MachineMalaysia
 

Viewers also liked (20)

Motorcycle Collides With Car
Motorcycle Collides With CarMotorcycle Collides With Car
Motorcycle Collides With Car
 
Work, power, and simple machines SECTION A
Work, power, and simple machines SECTION AWork, power, and simple machines SECTION A
Work, power, and simple machines SECTION A
 
RPT
RPTRPT
RPT
 
Work, power, and simple machines stem
Work, power, and simple machines stemWork, power, and simple machines stem
Work, power, and simple machines stem
 
Electrical submersible pump
Electrical submersible pumpElectrical submersible pump
Electrical submersible pump
 
8389 ch06
8389 ch068389 ch06
8389 ch06
 
Physics 2012 PUNTLAND NATIONAL EXAMINATION BOARD (PNEB)
Physics  2012 PUNTLAND NATIONAL EXAMINATION BOARD (PNEB)Physics  2012 PUNTLAND NATIONAL EXAMINATION BOARD (PNEB)
Physics 2012 PUNTLAND NATIONAL EXAMINATION BOARD (PNEB)
 
Design And Analysis of Charge Pump for PLL at 90nm CMOS technology
Design And Analysis of Charge Pump for PLL at 90nm CMOS technologyDesign And Analysis of Charge Pump for PLL at 90nm CMOS technology
Design And Analysis of Charge Pump for PLL at 90nm CMOS technology
 
Flower
FlowerFlower
Flower
 
Elliptical
EllipticalElliptical
Elliptical
 
Rolling friction
Rolling frictionRolling friction
Rolling friction
 
Civil Engineering : Rcc & steel structures, THE GATE ACADEMY
Civil Engineering : Rcc & steel structures, THE GATE ACADEMYCivil Engineering : Rcc & steel structures, THE GATE ACADEMY
Civil Engineering : Rcc & steel structures, THE GATE ACADEMY
 
Forces unit phy 1
Forces unit phy 1Forces unit phy 1
Forces unit phy 1
 
The Physics Of Soccer
The Physics Of SoccerThe Physics Of Soccer
The Physics Of Soccer
 
My Agile Suitcase at Agile 2013 in Nashville
My Agile Suitcase at Agile 2013 in NashvilleMy Agile Suitcase at Agile 2013 in Nashville
My Agile Suitcase at Agile 2013 in Nashville
 
Pump design presentation
Pump design presentationPump design presentation
Pump design presentation
 
CFD Introduction using Ansys Fluent
CFD Introduction using Ansys FluentCFD Introduction using Ansys Fluent
CFD Introduction using Ansys Fluent
 
Hydraulic theory
Hydraulic theoryHydraulic theory
Hydraulic theory
 
Mechanics Machine
Mechanics MachineMechanics Machine
Mechanics Machine
 
Presentasi hidrolik
Presentasi hidrolikPresentasi hidrolik
Presentasi hidrolik
 

Similar to Rudder Control Analysis / Hydraulic Pump Analysis

"Design Criteria of Lift Irrigation Scheme"
"Design Criteria of Lift Irrigation Scheme""Design Criteria of Lift Irrigation Scheme"
"Design Criteria of Lift Irrigation Scheme"IRJET Journal
 
silo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptsilo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptKOSIREDDYASHOKDEVAKU
 
B_B1_G3_CP_HMAFP.pptx
B_B1_G3_CP_HMAFP.pptxB_B1_G3_CP_HMAFP.pptx
B_B1_G3_CP_HMAFP.pptxKhaireSushom
 
thermal project # 2
thermal project # 2thermal project # 2
thermal project # 2James Li
 
Week 3 3_hydraulics_circuit_design
Week 3 3_hydraulics_circuit_designWeek 3 3_hydraulics_circuit_design
Week 3 3_hydraulics_circuit_designakmal ariffin
 
WATS 11 (1-50) Fluid Mechanics and Thermodynamics
WATS 11 (1-50)  Fluid Mechanics and ThermodynamicsWATS 11 (1-50)  Fluid Mechanics and Thermodynamics
WATS 11 (1-50) Fluid Mechanics and ThermodynamicsMark Russell
 
Numerical Analysis of Centrifugal Air Blower
Numerical Analysis of Centrifugal Air BlowerNumerical Analysis of Centrifugal Air Blower
Numerical Analysis of Centrifugal Air BlowerIJSRD
 
1D Simulation of intake manifolds in single-cylinder reciprocating engine
1D Simulation of intake manifolds in single-cylinder reciprocating engine1D Simulation of intake manifolds in single-cylinder reciprocating engine
1D Simulation of intake manifolds in single-cylinder reciprocating engineJuan Manzanero Torrico
 
5 axial flow compressors mod
5 axial flow compressors mod5 axial flow compressors mod
5 axial flow compressors modMetaabAltaher
 
Engine_theory_and_calculations-converted.docx
Engine_theory_and_calculations-converted.docxEngine_theory_and_calculations-converted.docx
Engine_theory_and_calculations-converted.docxPabitraMandal23
 
Reciprocating pump ppt
Reciprocating pump ppt Reciprocating pump ppt
Reciprocating pump ppt Sourav Jana
 
Reciprocating pump(1) (2)
Reciprocating pump(1) (2)Reciprocating pump(1) (2)
Reciprocating pump(1) (2)Sanju Sanjay
 
Fluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdfFluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdfPrAtYuShGauR1
 
Axial fan design
Axial fan designAxial fan design
Axial fan designMert G
 
Fluid mechanics lab manual
Fluid mechanics lab manualFluid mechanics lab manual
Fluid mechanics lab manualDr. Ramesh B
 
Centrifugal pump design rev 2
Centrifugal pump design   rev 2Centrifugal pump design   rev 2
Centrifugal pump design rev 2Junea June
 
Testing of Mixed Flow Vertical Turbine Pump
Testing of Mixed Flow Vertical Turbine PumpTesting of Mixed Flow Vertical Turbine Pump
Testing of Mixed Flow Vertical Turbine PumpIRJET Journal
 
Compressor design
Compressor designCompressor design
Compressor designgauree313
 

Similar to Rudder Control Analysis / Hydraulic Pump Analysis (20)

"Design Criteria of Lift Irrigation Scheme"
"Design Criteria of Lift Irrigation Scheme""Design Criteria of Lift Irrigation Scheme"
"Design Criteria of Lift Irrigation Scheme"
 
silo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptsilo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.ppt
 
B_B1_G3_CP_HMAFP.pptx
B_B1_G3_CP_HMAFP.pptxB_B1_G3_CP_HMAFP.pptx
B_B1_G3_CP_HMAFP.pptx
 
thermal project # 2
thermal project # 2thermal project # 2
thermal project # 2
 
Week 3 3_hydraulics_circuit_design
Week 3 3_hydraulics_circuit_designWeek 3 3_hydraulics_circuit_design
Week 3 3_hydraulics_circuit_design
 
Prilling NP.PPTX
Prilling NP.PPTXPrilling NP.PPTX
Prilling NP.PPTX
 
WATS 11 (1-50) Fluid Mechanics and Thermodynamics
WATS 11 (1-50)  Fluid Mechanics and ThermodynamicsWATS 11 (1-50)  Fluid Mechanics and Thermodynamics
WATS 11 (1-50) Fluid Mechanics and Thermodynamics
 
Numerical Analysis of Centrifugal Air Blower
Numerical Analysis of Centrifugal Air BlowerNumerical Analysis of Centrifugal Air Blower
Numerical Analysis of Centrifugal Air Blower
 
Micro blower design
Micro blower designMicro blower design
Micro blower design
 
1D Simulation of intake manifolds in single-cylinder reciprocating engine
1D Simulation of intake manifolds in single-cylinder reciprocating engine1D Simulation of intake manifolds in single-cylinder reciprocating engine
1D Simulation of intake manifolds in single-cylinder reciprocating engine
 
5 axial flow compressors mod
5 axial flow compressors mod5 axial flow compressors mod
5 axial flow compressors mod
 
Engine_theory_and_calculations-converted.docx
Engine_theory_and_calculations-converted.docxEngine_theory_and_calculations-converted.docx
Engine_theory_and_calculations-converted.docx
 
Reciprocating pump ppt
Reciprocating pump ppt Reciprocating pump ppt
Reciprocating pump ppt
 
Reciprocating pump(1) (2)
Reciprocating pump(1) (2)Reciprocating pump(1) (2)
Reciprocating pump(1) (2)
 
Fluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdfFluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdf
 
Axial fan design
Axial fan designAxial fan design
Axial fan design
 
Fluid mechanics lab manual
Fluid mechanics lab manualFluid mechanics lab manual
Fluid mechanics lab manual
 
Centrifugal pump design rev 2
Centrifugal pump design   rev 2Centrifugal pump design   rev 2
Centrifugal pump design rev 2
 
Testing of Mixed Flow Vertical Turbine Pump
Testing of Mixed Flow Vertical Turbine PumpTesting of Mixed Flow Vertical Turbine Pump
Testing of Mixed Flow Vertical Turbine Pump
 
Compressor design
Compressor designCompressor design
Compressor design
 

Recently uploaded

main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 

Recently uploaded (20)

main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 

Rudder Control Analysis / Hydraulic Pump Analysis

  • 1. Polytechnic University of Milan Department of Aerospace Engineering Aerospace Systems
  • 2. Andre Odu Student ID : 789645 Professor : Paolo Astori September 2014 Laboratory N° 1: Analysis of a Hydraulic Pump
  • 3. 1.Preface The objective of the lab is to analyze the performance of a hydraulic pump responsible for the transfer of fluid between two tanks at a constant flow, in function of its rotational speed. As the rotations per minute (rpm) vary from 0 to 4000, we are mainly interested in studying the speed, flow rate and pressures when entering and exiting the pump, the coefficient of head losses associated with the delivery duct, the required hydraulic power and the hydraulic power generated. As the lab progresses, we find ourselves needing to solve the problem of cavitation that manifests itself it the aspiration duct, and are the asked to calculate the plate angle of orientation when the cylinders are placed along a circumference with diameter of 60 mm.
  • 4. 2. Index 1. Preface 2. Index 3. List of Symbols 4. Description of the Problem and Method of Resolution 4.1 Aspiration Duct 4.2 Delivery Duct 4.3 Pressures 4.4 Coefficient of head losses 4.5 Generated and Required Power 4.6 Verifying Cavitation 4.7 Plate Angle of Orientation 5. Given Data 6. Calculations and Results 6.1 Flow Rates 6.2 Speeds 6.3 Pressures 6.4 Coefficient of head losses 6.5 Generated and Required Power 6.6 Verifying Cavitation 6.7 Plate Angle of Orientation 7. Final Considerations
  • 5. 3.List Of Symbols PA Pressure in tank A [Pa] PB Pressure in tank B [Pa] Np Number of pistons in the pump [ ] Dp Diameter of the pistons in the pump [m] Cp Stroke of the pistons [m] ηv Volumetric Efficiency of the pump [ ] ηm Mechanical Efficiency of the pump [ ] L0 Length of the Aspiration Duct [m] D0 Diameter of the Aspiration Duct [m] L Length of the Delivery Duct [m] D Diameter of the Delivery Duct [m] k Coefficient of Minor Losses [ ] Keq Coefficient of Head Losses [Pa/(m3/s)2] λ Coefficient of Distributed Losses [ ] e Average Roughness [m] ν Cinematic Viscosity of the liquid [St] ρ Density of the Liquid [Kg/m3]
  • 6. Pc Vapor Tension of the Liquid [Pa] V cilindrata [m3] Qin Flow Rate in the Aspiration Duct [m3/s] Qout Flow Rate in the Delivery Duct [m3/s] vin Speed in the Aspiration Duct [m/s] vout Speed in the Delivery Duct [m/s] Pin Pressure at the Pump Entrance [Pa] Pout Pressure at the Pump Exit [Pa] Ain Section of the Aspiration Duct [m2] Aout Section of the Delivery Duct [m2] ein Relative Roughness of the Aspiration Duct [ ] eout Relative Roughness of the Delivery Duct [ ] WHyd Hydraulic Power Generated [W] WMec Mechanical Power Necessary [W] ΔP Variation of Pressure between pump exit and Tank B [Pa] ΔPp Variation of Pressure between pump entrance and exit [Pa] DT Diameter of the Rotating Drum [m] α Swash Plate Angle of Orientation [rad]
  • 7. 4.Description of the Problemand Method of Resolution The instructions ask to calculate the following parameters, in function of the range of values in which the rotational speed of the volumetric pump may vary: · Speed and Flow Rate in the Aspiration and Delivery Ducts · Pressure Entering and Exiting the Pump · Coefficient of Head Loss Associated with the Delivery Duct · Generated Hydraulic Power and Required Mechanical Power The instructions also ask to verify the occurrenceof cavitation in the aspiration duct and to determine the swash plate angle of orientation, knowing that its diameter is of 60 mm. 4.1 Aspiration Duct For starters, in order to calculate the Flow Rate in the aspiration duct, I need to determine the displacement of the pump. Given the piston diameter, the number of pistons and their stroke, the displacement of the pump is calculated through the following equation: V = Np * pi * Cp * ( Dp / 2 )2 Once the displacement of the pump is know, the flow rate of the aspiration duct is easily obtainable, in function of the rotational speed (n): Qin = n * V The final step is finding the fluid's speed in the aspiration duct, which depends on the section of the aspiration duct: Ain = pi * (D0 / 2 )2
  • 8. vin = Qin / Ain 4.2 Delivery Duct The Flow Rate in the delivery duct depends on the Flow Rate in the aspiration duct and on the volumetric efficiency of the pump through the following equation: Qout = ηv * Qin Having determined the Flow Rate in the delivery duct, the speed is obtainable through the same procedure used for the aspiration duct Aout = pi * (D / 2 )2 vout = Qout / Aout 4.3 Pressures To calculate the pressures at the entrance and exit of the pump we need to determine the coefficient of distributed losses ( λ ) which varies in function of the Reynolds numbers of the aspiration and delivery ducts: Rein = ( d0 * vin ) / v Reout = ( d * vout ) / v For Reynolds numbers below 2000, the flow is considered laminar and the coefficient of distributed losses is approximated as: λ = 64 / Re For Reynolds number between 2000 and 4000 the flow is considered transitional, and above 4000 the flow is considered completely turbulent. Remembering that the two speeds depend of the rotational speed ( n ) we find that the coefficient of distributed losses ( λ ) depends on the number of rotations per minute.
  • 9. In our case the Reynolds numbers become greater that 2000 in both the aspiration duct ( at approximately 3000 rpm ) and the delivery duct ( at approximately 3800 rpm) ,while always remaining below the 4000 mark. The problem now becomes that of a transitional phase with rough ducts, which is solved by determining the coefficient of distributed losses in function of the relative roughness of the ducts and their respective Reynolds numbers by consulting the Moody diagram. ein = e / D0 = 0.0062 eout = e / D = 0.0080 With these values of relative roughness, and low Reynolds numbers, the coefficient of distributed losses appears as a curve with equation: λ = ( 1.8log(Re) - 1.64 )-2 Given the equation for the coefficient of distributed losses, the next step is calculating the pressures entering and exiting the pump: λin = ( 1.8log(Rein) - 1.64 )-2 λout = ( 1.8log(Reout) - 1.64)-2 Pin = Pa - ( λin * ( L0 / D0 ) * 0.5 * ρ * vin 2 Pout = Pb + ( k + λout * ( L / D ) * 0.5 * ρ * vout 2 4.4 Coefficient of head losses When considering the delivery duct, the coefficient of head losses is easily calculated through the following equation: Keq = ΔP / Qout
  • 10. 4.5 Generated and Required Power The generated Hydraulic Power depends strictly on the variation in pressure between pump entrance and exit, and on the flow rate in the delivery duct( which also depends on the flow rate in the aspiration duct ) Whyd = ΔP * Qout The Mechanical Power required to generate this Hydraulic Power depends on both the Mechanical Efficiency and the Volumetric Efficiency Wmec = Whyd / ( ηm * ηv) 4.6 Verifying Cavitation With the numerical data obtained we are now able to prevent cavitation, by ensuring that the pressures at the entrance and exit of the pump stay above the vapor tension of the fluid ( Pc ) for every rotation speed taken into consideration. From the equations obtained for the entrance and exit pressures we notice that above a certain number or rotations per minute the entrance pressure ( Pin ) falls below the vapor tension ( Pc ) , compromising the pump. 4.7 Plate Angle of Orientation The equation which puts in relation the piston stroke with the diameter of the rotating drum is as follows: Cp = DT * tan(α ) From this equation the plate angle of orientation is then: α = tan-1( Cp / DT )
  • 11. 5.Given Data PA = 0.25 MPa PB = 0.80 MPa Np = 9 Dp = 0.5 in Cp = 22.5 mm ηv = 96 % ηm = 88 % L0 = 1 m D0 = 13 mm L = 4 m D = 10 mm k = 4 e = 0.08 mm ν = 80 cSt ρ = 950 kg/m3 Pc = 15 kPa n = 0÷4000 rpm
  • 12. 6.CalculationsAnd Results All the following results and the associated graph were calculated and plotted with matlab. The required codewill be displayed 6.1 Flow Rates Vtot = Np * (pi*Cp*(Dp /2)2 (m3) Vtot_l = Vtot * 1000 (liters) Qin = n*Vtot_l (liters / minute ) ηv = 0.96 Qout = Qin*ηv (liters / minute )
  • 13. 6.2 Speeds d0 = 0.013 (m) Ain = pi * (d0/2)2 (m2) vin = Qin/(Ain*60000) (m/s) d = 0.01 (m) Aout = pi * (d/2)2 (m2) vout = Qout/(Aout*60000) (m/s)
  • 14. 6.3 Pressures Rein = (d0 * vin) / v Reout = (d * vout) / v
  • 15. lambdain(1:3820) = 64 ./ Rein(1:3820) lambdain(3821:4000) = ( 1.8 .* log10(Rein(3821:4000)) - 1.64 )-2 lambdaout(1:3061) = 64 ./ Reout(1:3061) ; lambdaout(3062:4000) = ( 1.8 .* log10(Reout(3062:4000)) - 1.64 )-2 Pin = Pa - (lambdain * (l0 / d0) * 0.5 * rho * (vin)2) Pout = Pb + (k + lambdaout * (l/d) ) * 0.5 * rho * (vout)2
  • 16. 6.4 Coefficient of head losses ΔP = Pout - Pb Keq = ΔP / ( (Qout/60000)2 )
  • 17. 6.5 Generated and Required Power Whyd = (Pout - Pin) * (Qout/60000) Wmec = Whyd / (ηm*ηv)
  • 18. 6.6 Solving Cavitation d1 = 0.015 Ain = pi * (d1/2)2 vin = Qin/(Ain*60000) Rein = (d1 * vin) / v lambdain(1:3820) = 64 / Rein(1:3820) ; lambdain(3821:4000) = ( 1.8 * log10(Rein(3821:4000)) - 1.64 )-2
  • 19. Pin = Pa - ( lambdain * (l0/d0) * 0.5 * rho * (vin 2 ) 6.7 Plate Angle of Orientation α = atan(Cp / d) * (180/pi) = 20.556
  • 20. 7.Final Considerations After thoroughly analyzing the pump we can deducethat, becauseof how the plant was structured , the best parameters are obtained when working at a low number of rotations per minute. At approximately 3800 rpm the Reynolds number in the aspiration duct becomes greater than 2000, and in the transition to a turbulent flow the pressure falls below that of cavitation, compromising the pump. However, when considering a constant flow rate, the loss of pressure along the ducts depends exclusively on the width of the duct. Hypothetically speaking, by increasing the diameter of the aspiration duct by few millimeters one could increase the pressure enough to avoid cavitation in the entire range of rotation speeds considered. In this particular case, increasing the diameter to 15 millimeters ( increasing by merely 2 millimeters ) is enough to avoid cavitation.
  • 21. Laboratorio N° 7: Comandi di Volo 1. Premessa L'obbiettivo del laboratorio e' di studiare la funzionalita' dell'attuatore usato per il comando del timone in un Airbus A320. Nel caso dell'Airbus A320 sono presenti tre attuatori con doppiaridondanza, ognuno e' quindi progettato per azionare in modo autonomo la superficie di comando. Dato il momento della cerniera da contrastare, possiamo ricavare la forza muscolare necessaria per muovere la superficie di co. mando, possiamo determinare le dimensioni dell'attuatore che verra' introdotto, e a sua volta ricavare l'equazioni di funzionamento e stimare il tempo richiesto per completare il movimento.
  • 22. 2. Indice 1. Premessa 2. Indice 3. Lista dei Simboli Utilizzati 4. Descrizione del Problema e Metodo di Risoluzione 4.1 Stimare l'Entita' della Forza Muscolare Richiesta 4.2 Dimensionare l'Attuatore 4.3 Tracciare i Diagrammi Significativi del Sistema 4.4 Scrivere l'Equazione Dinamica dell'Attuatore 4.5 Stimare il Tempo di Attuazione 5. Dati del Problema 6. Calcoli e Risultati 6.1 Stimare l'Entita' della Forza Muscolare Richiesta 6.2 Dimensionare l'Attuatore 6.3 Disegnare lo Schema Idraulico Completo 6.4 Tracciare i Diagrammi Significativi del Sistema 6.5 Stimare il Tempo di Attuazione
  • 23. 3. Lista Dei Simboli Utilizzati LC lavoro fatto per ruotare il timone fino alla sua apertura massima [N*m] LP lavoro fatto per far estendere completamente l'asta di comando [N*m] M Momento d'Inerzia della cerniera [kg*m2] J momento d'inerzia del timone [kg*m2] S Corsadel pedale [m] b Distanza tra cerniera e punto di attacco dell'attuatore [m] dS Diametro stelo [m] AC Area del cilindro [m2] AS Area dello stelo [m2] PP Pressione pilota [Pa] PS Pressione serbatioio [Pa] a Accellerazione [m/s2] v Velocita' [m/s] Q Flusso [m3/s]
  • 24. 4. Descrizione del Problema e Metodo di Risoluzione Le istruzioni chiedono di studiare il funzionamento di uno dei tre attuatori indipendenti utilizzati per azionare il timone. In particolare e' richiesto di:  Stimare l'Entita' della Forza Muscolare necessaria in Assenza di Potenziamento Idraulico  Dimensionare l'Attuatore  Disegnare lo Schema Idraulico Completo del Servocomando (FBW)  Tracciare i Diagrammi Significativi  Scrivere l'Equazione Dinamica dell'Attuatore  Stimare il Tempo di Attuazione  4.1 Stimare la Forza Muscolare Necessaria Considerando lineare il momento di cerniera, possoricavare il lavoro fatto per ruotare il timone fino alla sua apertura massima Considerando poi la forza manuale applicata all'asta, possoricavare il lavoro fatto per far estendere completamente l'asta di comando collegata alla cerniera Del bilancio dei due lavori ottengo, in funzione del momento massimo della cerniera, la forza massima che deve esercitare manualmente il pilota Mmax * ϑmax = Fmusc * s Fmusc = ( Mmax * ϑmax ) / s
  • 25. 4.2 Dimensionamento dell'Attuatore Una volta ricavata la forza muscolare necessaria, e' evidente il bisogno di utilizzare un attuatore idraulico. Conoscendo la distanza tra la cerniera e il punto di attacco dell'attuatore si ricava la corsa dell'attuatore e il braccio della forza esercitata rispetto alla cerniera stessa h = b * cos(ϑ ) x = b * sin(ϑ ) Siccome corsae braccio dipendono dalla variazione dell'angolo theta, per theta massimo o minimo otteniamo dei valori significativi hmin = b * cos(ϑmax ) xmax = b * sin(ϑmax ) Noto il valore minimo assunto dal braccio della forza, e conoscendo il valore massimo assunto dal momento della cerniera, si ricava la forza massima necessaria per muovere completamente il timone, ovvero la forza massima che dovra' poter esercitare l'attuatore Fmax = Mmax / hmin Conoscendola forza che deve esercitare l'attuatore, lo si puo' dimensionare in funzione delle pressioni esterne e dell'impianto. Sovradimensionando del 20% ottengo una superficie utile dell'attuatore che mi garantisce il funzionamento corretto A = 1.2 * Fmax / ΔP Dalla superficie utile dell'attuatore, avendo gia' scelto il diametro dello stelo ricavo il diametro del cilindro richiesto As = pi * ( ds / 2 )2 Ac = A + As dc = (Ac / pi )0.5 * 2
  • 26. Quindi ottengo la forza massima che puo' esercitare questo attuatore sovradimensionato, che deve essere maggiore della forza massima necessaria per muovere il timone Fatt = A * ΔP 4.3 Tracciare i Diagrammi Significativi Al variare dell'angolo theta studio la corsae il braccio tra forza e cerniera x = b * sin(ϑ ) h = b * cos(ϑ ) Avendo interpolato il grafico del momento della cerniera in funzione dell'angolo theta, possiamo studiare la forza richiesta per bilanciare il momento al variare dell'angolo theta F = M / h 4.4 Scrivere l'Equazione Dinamica dell'Attuatore Bilanciando forze e pressioni applicate all'attuatore, possoscrivere la sua equazione dinamica F = ( P1 - P2 ) * A - F(x ) ( m + ( J / b2 ) ) * a = ΔP * A - F(x ) P1 = PP - K * Q2 = PP - K * ( A * v )2 P2 = PR + K * Q2 = PR + K * ( A * v )2 ( m + ( J / b2 ) ) * a = ( PP - PR ) * A - 2 * A * K * ( A * v )2 - F(x )
  • 27. 4.5 Stimare il Tempo di Attuazione Per semplificare anziche' considerare F(x) considero una forza media, e considerando una velocita media (costante) ipotizzo accelerazione nulla L'equazione dinamica si riduce quindi a 0 = ( PP - PR ) * A - 2 * K * A3 * ( vmed )2 - Fmed vmed = ( ( ( PP - PR ) * A - Fmed ) / 2 * K * A3 )0.5 Avendo ricavato la velocita' media, banalmente si ottiene il tempo di attuazione t = xmax / vmed 5. Dati del Problema S = 0.2 m b = 0.1 m Mmax = 1500 kg*m2 K = 2.1600e+15 Pa/(m3/s)2 PP = 21000000 Pa PS = 101300 Pa ϑmax = 25 ° m = 2.5 kg
  • 28. 6 Calcoli e Risultati Tutti i risultati e i loro grafici sono stati calcolati tramite matlab. Il codiceassociato ad ogni singola richiesta verra' fornito. 6.1 Stimare l'Entita' della forza muscolare richiesta ϑmax = 25 * ( pi/180 ) Fmusc = ( Mmax * ϑmax ) / s = 3272.5 (N) 6.2 Dimensionamento dell'Attuatore hmin = b * cos(ϑmax) = 0.0906 (m) xmax = b * sin(ϑmax) = 0.0423 (m) Fmax = Mmax / hmin = 16.551 (kN) ΔP = PP - PR (Pa) A = 1.2 * Fmax / ΔP = 9.5034e-04 (m2) dS = 0.02 (m) As = pi * ( ds / 2 )2 = 3.1416e-04 (m2) Ac = A + As = 0.0013 (m2) dc = (Ac / pi )0.5 * 2 = 0.0401 (m) Fatt = A * ΔP = 19.861 (kN)
  • 29. 6.4 Disegnare lo Schema Idraulico Completo Nel caso di un controllo fly-by-wire consistema idraulico, il sistema viene scematizzato come segue
  • 30. 6.4 Tracciare i Diagrammi Significativi x = b * sin(ϑ )
  • 31. h = b * cos(ϑ)
  • 32. F = M / h = M / ( b * cos(ϑ) ) 6.5 Stimare il Tempo di Attuazione Fmed = sum(abs(F))/ length(F) = 10.025 (kN) Q = 5/60000 (m3/s) vmed = ( ( ( PP - PR ) * A - Fmed ) / 2 * K * A3 )0.5 = 0.0515 (m/s) t = xmax / vmed = 0.8205 (s)