SlideShare a Scribd company logo
1 of 210
Red Laterite
Yellow
Laterite
Saprolite
zone
Bedrock pinnacle
1. Overview of Nickel and its deposits
2. What are nickel laterites
3. Description of a laterite profile
4. Chemical weathering of ultramafic rocks
5. Factors that influence laterite formation
6. Role of various elements during laterisation
7. Minerals associated with ultramafics and laterites
8. Physical and chemical properties of nickel laterites
relevant to their exploitation
9. Processing of Nickel Laterites
10. Exploration strategy and Management of Nickel Laterite
 Nickel was first discovered in 1751
 Derived from German “kupfernickel”  false copper
 Major uses of nickel:
 Stainless steel 65%
 Specialty alloys 12%
 Plating 8%
 Other uses 15%
 Addition of nickel imparts corrosion resistance, and ability
to withstand high temperatures and pressures
 Primary nickel supply comes from newly mined ores
 Secondary nickel supply comes from recycling scrap
 Major Nickel producing companies:
1. Norilsk 243,000 t (19%)
2. CVRD Inco 221,000 t (17%)
3. BHP-Billiton 146,000 t (11%)
4. Falconbridge 114,000 t (9%) [Now Exstrata]
5. Jinchuan 93,000 t (7%)
6. Eramet 59,000 t (5%)
7. Sumitomo 51,000 t (4%)
 Major Nickel producing countries:
1. Russia (Norilsk Nickel group)
2. Canada (CVRD Inco, Falconbridge, Sheritt)
3. Australia (BHP-B, Minara, Cawse, LionOre)
 Sulphide nickel deposits
 Nickel as nickel sulphide  pentlandite, millerite
 Nickel ores processed through milling and smelting
 Laterite nickel deposits
 Oxide Ni deposits: Ni as hydroxide in the ferruginous zone
 Clay silicate deposits: Ni as clay silicate
 Hydrous silicate deposits: Ni as hydrous-silicate in
saprolite
 Nickel ores processed through pyro-metallurgy (smelting)
or hydro-metallurgy (leaching)
Mt
Ore
%
Ni
Contained
Nickel
Mt
Relative
%
SULPHIDES 10,594 0.58 62 31%
LATERITES 10,382 1.32 140 69%
TOTAL 20,976 0.96 202 100%
Excluding sea-based manganese nodules
PRIMARY Ni PRODUCTION WORLD Ni RESOURCES
SULPHIDE
SULPHIDE
LATERITE
LATERITE
60%
40% 30%
70%
Cuba Dominican
Republic
Brazil
Columbia
Guatemala
Albania
Greece
Philippines
Indonesia
PNG
New
Caledonia
Australia
Venezuela
Burma
India
Madagascar
Producing Countries
Non Producing Countries
Ivory Coast
Zimbabwe
Ethiopia
Burundi
CUBA
INDONESIA
AUSTRALIA
LATERITES SULPHIDES
NEW CALEDONIA
PHILIPPINES
Mt Resource %Ni Mt Ni %
Caribbean 2785 1.26 35.0 25
New Caledonia 1890 1.52 28.7 20
Indonesia 1401 1.63 22.8 16
Philippines 1162 1.30 15.1 11
Australia 1144 0.95 10.9 8
Africa 800 1.33 10.7 8
C. & S. America 661 1.60 10.6 8
Other 539 1.08 5.8 4
Total 10382 1.34 140 100
Caribbean
25%
New
Caledonia
20%
Indonesia
16%
Philippines
11%
Australia
8%
Africa
8%
C. & S.
America
8%
Other
4%
 Buchanan Hamilton introduced the term for the “brick
stones” used by people in South India that hardened on
exposure to the sun (Latin word “later” means brick)
 Current use of the term “laterite” does not require this
hardening characteristic
 Nickel laterites are:
 Residual soils
 Rich in sesquioxides of iron with some nickel enrichment
 Have developed over mafic/ultramafic rocks
 Through processes of chemical weathering and supergene
enrichment
 Under tropical climatic conditions
 A soil is a naturally occurring body made up of
layers which differ from the parent material in
their physical, chemical, mineralogical,
biological and textural characteristics.
 Soils are formed through several processes that
include:
 Addition through transportation
 Removal at the top of the profile through erosion
 Removal from the soil profile through leaching
 Migration of elements through the soil profile
(through leaching)
TEMPERATURE
HUMIDITY / RAINFALL
TUNDRA
Gray
Desert
and Sierozem
Brown
Chestnut
Degraded
Chernozem
Brunizem
PODZOL
Brown Podzolic
Gray-Brown Podzolic
Red Desert
Redd
ish
Bro
wn
Reddish
Chestnut Reddish
Prairie
Red-Yellow Podzolic
LATERITE
Reddish brown Latosolic
Yellowish brown Latosolic
TUNDRA
PODZOL
Red
Desert
Degraded
Chermozem
Brunizem
Brown Podzolic
Gray-Brown
Podzolic
Reddish
Prairie
Red-Yellow
Podzolic
Yellow-brown
Latsolic
Reddish-brown
Latsolic
LATERITE
Gray
Desert
&
Sierozem
Brown
Chestnut
Chemozem
Reddish
Brown
Reddish
Chestnut
Dry
Dry
Wet
Wet
Cold Cold
Hot Hot
GREAT SOIL GROUPS OF THE WORLD
 In stratigraphy, laterites represent
unconformities (break in stratigraphic sequence)
 Laterites make poor soils for agriculture
 Laterites are source of metals:
 Ni, Co, Cr, Fe (from laterites derived from ultramafic
rocks)
 Al (from laterites derived from aluminous rocks)
P.T. INCO
Development of weathering crust on
a peridotite boulder (Sorowako)
Red Laterite
Yellow Laterite
Saprolite zone
Bedrock pinnacle
Red Laterite
Yellow Laterite
Saprolite zone
Bedrock
Hematite zone
Limonite zone
Zone of altered bedrock
(clayey matrix + boulders)
Fresh bedrock Ferruginous
Zone
Intermediate zone
Red Laterite
Yellow Laterite
Saprolite zone
Bedrock
• Fresh bedrock
• Joints and fractures opening up as
hydrostatic pressure is removed
• Percolating rain water circulating along
joint and fracture surfaces
• Signs of incipient weathering
• Original rock composition and texture
fully preserved
Red Laterite
Yellow Laterite
Saprolite zone
Bedrock
• Rock fragments + saprolised boulders +
precipitated silica + garnierite
• Chemical weathering proceeding actively
along joints and fractures
• Silica and magnesia being leached out
• Rock porosity increasing with time
• Bulk density decreasing with time
• Zone still not collapsed
• Original rock texture still preserved
• Upper part more ferruginous than lower
part
• High SiO2 and MgO contents
• Low Fe content
• Zone of supergene Ni enrichment
Red Laterite
Yellow Laterite
Saprolite zone
Bedrock
• Soft smectite clays + silica
• Chemical weathering (silica & magnesia
leaching) extremely advanced
• Rock porosity at its maximum
• Bulk density at its lowest
• Zone is ready to collapse
• Moisture content at its highest
• Original rock texture barely discernible
• Upper part more ferruginous than lower
part
• Often the preferred location for Mn and
Co enrichment
Red Laterite
Yellow Laterite
Saprolite zone
Bedrock
• Zone rich in hydrated Fe oxides +
• Chemical weathering near complete
• Silica and magnesia fully leached out
• Residual concentrations of other
elements at near maximum
• Rock porosity decreasing with time
• Bulk density increasing with time
• Zone is collapsed
• Original rock texture obliterated
Red Laterite
Yellow Laterite
Saprolite zone
Bedrock
• Zone rich in hematite and less hydrated
Fe oxides (goethite)
• Chemical weathering complete
• Silica and magnesia fully leached out
• Residual concentrations of other
elements at maximum
• Rock porosity decreasing with time
• Bulk density increasing with time
• Zone is completely collapsed
• Original rock texture obliterated
• Further changes include formation of
duricrust (ferricrete or silcrete)
0
5
10
15
20
DEPTH (m)
WEST BLOCK
UNSERPENTINISED
EAST BLOCK
SERPENTINISED
Limonite
Overburden
Iron cap
Limonite ore
Saprolite Ore
Bedrock
0
20
40
DEPTH (m)
SILICATE
(eg New Caledonia)
CLAY
(eg Murrin Murrin)
OXIDE
(eg Moa Bay)
Cuirasse
Red
limonite
Yellow
limonite
Earthy
ore
Ore with
boulders
Rocky
ore
Bedrock
Bedrock
Saprolite
(Serpentine,
chlorite,
smectite)
Smectite
zone
Ferruginous
zone
Colluvium
Bedrock
Saprolite
Limonite
Limonite
overburden
Iron cap
Ferricrete
Limonite
Nontronite
Saprolite
%Ni
.2 -.5
.6-1.4
1.2
.4
%Co
.02
.1-.2
.08
.02
%Mg
.6
1-2
3.5
12.0
%Fe
35+
45
18
9
Ferricrete
Limonite
Nontronite
Saprolite
Altered Peridotite
WA
Laterite
Profile
Dryer Climate
(Western Australia)
Humid Climate
(Indonesia hills)
%Ni
.2 -.5
1.2-1.7
1.5 -3
%Co
.02
.1-.2
.05-.1
%Mg
.6
1-2
10-20
%Fe
35+
45
10-25
%Ni
.2 -.5
1.2-17
1.5-3
%Co
.02
.1-.2
.05-.1
%Mg
.6
1 -4
10-30
%Fe
35+
45
10-20
Humid Climate
(Goro Plateau)
BEDROCK
SAPROLITE
Supergene
Nickel
enrichment
Supergene
Cobalt
enrichment
TERMINOLOGY
 Rich in mafic (ferro-magnesian) minerals
 Generally contain less than 45% SiO2 (except pyroxenite)
 Colour indices of more than 70
 Generally lack any feldspar
 No exact counterpart among lavas (extrusive rocks)
 The density of ultramafic magma is too high to rise through the sialic
portion of the crust
FORMATION
 Crystal settling (by gravity) in a magma chamber (layered intrusions)
 Intrusion of hot, semi-solid, crystalline mass (dykes, lenses, stocks)
 Through obduction of oceanic crust upon continental landmass in
orogenic belts
DUNITE
 Monomineralic rock composed entirely of olivine. Originally seen at Dun
Mountain in New Zealand
PYROXENITE
 Monomineralic rock composed entirely of pyroxene
 Orthopyroxenites: Bronzitites
 Clinopyroxenites: Diopsidites; diallagites
HORNBLENDITES
 Monomineralic rocks composed entirely of hornblende
SERPENTINITE
 Monomineralic rock composed entirely of serpentine
PERIDOTITE
 Ultramafic rocks containing olivine and other mafic minerals
 Pyroxene peridotite / Hornblende peridotite / Mica peridotite
OLIVINE
PYROXENE HORNBLENDE
Dunite
Peridotites
Pyroxenites
Hornblendites
Harzburgite
Lherzolite
Wehrlite
Orthopyroxenite
Websterite
Clinopyroxenite
90% OL.
40% OL.
Classification
In terms of
Oliv.-Pyrox.-Hnde
OLIVINE
ORTHO-
PYROXENE
CLINO-
PYROXENE
Dunite
Clino-
Pyroxenite
Ortho-
Pyroxenite
Olivine
Websterites
OL+OPX+CP
Websterites
Wehrlite
Harzburgite
Olivine
Orthopyroxenite
Olivine
Clinopyroxenite
40% OL
Classification
In terms of
Olivine-Opx-Cpx
Lherzolite
OL+OPX+CP
 Ni in ultramafic rocks is primarily in mafic minerals
 High in olivines (0.2 – 0.3% Ni)
 Low in orthopyroxenes (0.05 – 0.1% Ni)
 Very low in clinopyroxenes (< 0.05% Ni)
 Thus, decrease in the olivine content of the ultramafic
reduces the overall nickel content of the rock:
 Highest Ni grades in dunites
 Lower Ni grades in peridotites
 Lowest Ni grades in pyroxenites
 Ni in mafic minerals is largely as a replacement of Mg
 Ni in mafic minerals falls with the order of crystallisation
 Some Ni may exist as replacement of the larger Fe atoms
 Primary chromite and magnetite may contain minor Ni
Four major processes under which rocks change their physical or chemical
properties:
 Melting (at very high temperatures)
 Metamorphism (high temperatures / pressure / addition)
 Hydrothermal alteration (through high-temperature fluids)
 Weathering (at ordinary temperatures and pressure)
Types of weathering:
 Physical (mechanical breakdown of rocks)
▪ erosion, thermal expansion/contraction, action of plants
 Chemical (breakdown of rocks through chemical processes)
▪ contact with water, oxygen, carbon dioxide, etc.
Unserpentinised
Ultramafic
Rocks
Serpentinised
UM Rocks
Chemical
weathering
under
tropical
conditions
Nickel
Laterites
“The process in which rocks react to atmospheric, hydrospheric and biologic agencies to
produce mineral phases that are more stable”
1. Hydrolysis
Oxygen, carbon dioxide, ground water, dissolved acids attack the minerals in
the rock
2. Oxidation
Elements released by chemical weathering are oxidised
3. Hydration
Reaction with water adds the hydroxyl ion to newly formed minerals
4. Solution
The more soluble products of weathering are dissolved and removed
And the cycle continues .....
RAIN AND THUNDER STORMS
Nitrous oxides, CO2
HUMOUS (Organic) LAYER
WATER TABLE
ZONE OF OXIDATION
(Reducing conditions)
(Reducing conditions)
Acidic
Rain
Acidic
Rain
 The sum of negative and positive charges are equal
within a crystal (Pauling’s Rule)
 However, exposed atoms and ions on crystal surfaces
possess unsaturated valencies and are thus charged
 Water molecules are attracted to the charged surfaces
 Attractive forces cause polarisation of water into H+
and OH- ions
 Hydroxyl (OH)- ions then bond to exposed cations
 Hydrogen ions (H)+ bond to exposed oxygen and other
negative ions
 In the case of silicates, H+ attacks the Si-O-Si bonds
and releases silica as orthosilicic acid (H4SiO4)
 Common oxidising agent in the soil is oxygen dissolved in ground water
 Much of ferrous ions in the weathering profile are converted to ferric
state under highly oxidising conditions.
 Oxidising conditions exist only above the water table
 Below the water table, conditions are generally reducing
 Organic matter at the very top may also create reducing conditions
 Hot, well-drained environment favours oxidation through the
destruction of organic matter and lowering of water table
 Cool, poorly-drained environment promotes accumulation of organic
matter and reducing conditions
 In the presence of Hydroxyl ion (OH)-, freshly created oxides are converted to
hydroxides
 The more common hydroxides found in lateritic soils include:
 Hydrated iron oxides: Goethite / Limonite
 Hydrated Aluminum oxides:Boehmite / Bauxite / Gibbsite
 Hydrated manganese oxides: Pyrochroite / Manganite /
Psilomelane
 Many new secondary mafic minerals are formed due to hydration:
 Serpentine /Talc / Chlorite
 Hydration also results in the formation of clay minerals:
 Kaolinite; Halloysite; Illite; Smectites; Saponite
 For chemical weathering to continue, broken down constituents
must be removed
 Solution of broken down constituents exposes new surfaces
 Dissolved constituents are removed by percolating ground waters
 Ground waters generally travel from top to bottom in a
weathering profile
 Dissolved constituents are eventually drained out to rivers, lakes
and the ocean
 The relative proportions of dissolved constituents in ground water
confirm the relative solubilities of various oxides in the laboratory
 Dissolved CO2 in ground water is a very strong leaching agent
 Solubilities of some minerals:
 Halite (NaCl): 3005 g/litre
 Gypsum (CaSO4.2H2O): 1.8 g/litre
 Silica gel: 0.12 g/litre
 Quartz (SiO2): 0.007 g/litre
 Relative solubilities of some minerals (Paul Golightly):
 Forsterite
 Enstatite
 Serpentine
 Talc
 Amorphous silica
 NickelTalc (Kerolite)
 Gibbsite
 Goethite
Highly soluble
Highly insoluble
 Polynov’s estimate of elemental mobilities:
 Hudson’s estimate of elemental mobilities
Cl > SO4 > Na > Ca > Mg > K > Si > Fe+++ > Al
 Berger’s estimate of hydroxide mobilities:
Cl SO4 Ca++ Na+ Mg++ K+ SiO2 Fe2O3 Al2O3
100 57.0 3.0 2.4 1.3 1.25 0.2 0.04 0.02
Soluble Supergene Residual
Mg Mn++ Co++ Ni++ Al+++ Cr+++ Fe+++
3.1 1.3 -1.7 -3.2 -15.3 -16.4 -18.1
 Highly soluble and highly mobile
 Easily leached out of the laterite profile
 Taken to lakes, rivers and the sea
Ca, Na, Mg, K, Si
 Limited solubility –— Supergene enrichment
 Partly soluble in acidic ground water
 Insoluble in the presence of more soluble elements (Si,
Mg)
Ni++, Co++, Mn++
 Non soluble and residual
 Insoluble in ground waters at ordinary pH / Eh conditions
 Make up bulk of the residual soil
Al+++, Fe+++, Cr+++,Ti, Mn+++
Forsterite: 2MgO.SiO2 (MgO = 57.3%)
 Highly unstable in weathering
environment
 Individual SiO4 tetrahedra are
weakly bonded by cations
 Magnesia is highly soluble in ground water
 Release of magnesia breaks down the Olivine structure
 Breakdown of Olivines releases various cations:
 Mg, Fe, Al, Ni, Mn
Sorowako Olivine:
• FeO = 9.0%
• Al2O3 = 0.4%
• NiO = 0.37%
• MnO = 0.12%
• Cr2O3 = 0.02%
• TiO2 = 0.02%
Replacements
Enstatite: MgO.SiO2 (MgO = 40.2%)
 Relatively unstable in weathering
environment (but < Olivine)
 Individual SiO4 tetrahedra are
bonded by shared Oxygen
 Magnesia is highly soluble in
ground water
 Release of magnesia breaks down the Pyroxene
 Breakdown of Pyroxenes releases various cations:
 Mg, Fe, Al, Ca, Cr, Mn, Ni
Sorowako Pyroxene:
Opx Cpx
• FeO = 6.0 2.5
• Al2O3 = 3.2 3.5
• CaO = 1.9 21.7
• NiO = 0.08 0.05
• MnO = 0.13 0.08
• Cr2O3 = 0.58 0.86
• TiO2 = 0.05 0.09
Replacements
 Serpentine: 3MgO.2SiO2.2H2O [H4Mg3Si2O9]
 Magnesia is leached out first, leaving behind a silica
enriched phase or montmorillonite and chlorite
 Ni can replace the magnesium being leached.This results
in the formation of:
 Nickeliferous serpentine
 Through a similar process, nickel is also fixed inTalc,
Chlorite, and Smectite
 Eventually, montmorillonite and chlorite also break down,
releasing remaining magnesia and silica and forming iron
sesquioxides
Course of Laterisation
MgO
SiO2
FeO or F2O3
Bedrock
Soft
Saprolite
Hard
Saprolite
All compositions are shown
in terms of the three oxides
PATH OF
LATERISATION
Limonite
Highly Mobile
Ca, Na, K, Mg
Less Mobile
Si
Non-Mobile
Fe, Al, Cr, Ti
Olivine
Opx
Cpx
Montmorillonite
Illite
Nontronite
Goethite
Siliceous
Nontronite
Ultramafic
Rocks
Course of Laterisation
MOBILE vs. NON-MOBILE ELEMENTS
IN COMMON MINERALS ASSOCIATED WITH LATERITES
0
10
20
30
40
50
60
70
80
90
100
0 10 20 30 40 50 60 70 80 90 100
NON-MOBILE ELEMENTS (Al2O3 + Fe2O3)
MOBILE
ELEMENTS
(Na2O+K2O+CaO+MgO+SiO2)
Halloysite
Kaolin
Illite
NATURAL OLIVINES
& PYROXENES
Serpentine
CLAYS &
CHLORITE
HYDROXIDES OF Al AND Fe
Clinochlore
Montmorillonite
Hematite
Parent rock
Saprolite with clays
having low Fe & Al
Saprolite & intermediate
zone with clays having high
Fe & Al
Hydroxides of aluminium and
iron (yellow & ochre colour)
Red
laterite
Nontronite
Dunite Goethite
Mineral Olivine Goethite
Composition (Mg,Fe)2SiO4 Fe2O3.H2O
Block size, m. 1 x 1 x 1 1 x 1 x 0.32
Particle density 3.2 4.4
Dry Bulk Density 3.2 1.1
Fe content, % 5.5% 50%
Kg of Fe 176 176
Dunite
Goethite
Volume of Goethite =
Dunite: density x % Fe
Goethite: density x % Fe
= =
17.6
55.0
0.32
1.0 m
0.32 m
CaO = 0.5%
Na2O = 0.1
K2O = 0.1
MgO = 45%
SiO2 = 41%
MnO = 0.1%
CoO = 0.005%
NiO = 0.4%
Al2O3 = 1.1%
Cr2O3 = 0.5%
Fe2O3 = 10%
Highly mobile;
quickly leached.
(87%)
Less mobile;
supergene
enrichment.
Non-mobile;
residual
concentration.
Acidic
Rain
1m
3m
Ultramafics
(< 1%)
(12%) Limonite
WEATHERING
SYSTEM
Temperature
Rainfall
Acidity of rain
Seasonality
ATMOSPHERIC BIOSPHERIC
HYDROSPHERIC LITHOSPHERIC
COMBINATION
Vegetation type
Decay intensity
Microbial activity
Human activity
Water availability
Water absorption
Up/down movement
Porosity/drainage
Water table position
Water table fluctuation
Geomorphology
Rock composition
Mineral grain size
Mineral stabilities
Porosity
Fractures & joints
pH (acidity)
Eh (Redox)
Rate of removal
Time duration
FACTORS THAT INFLUENCE CHEMICAL
WEATHERING
 TEMPERATURE
 Each 10 C change increases weathering speed by 2-3 times
 Chemical weathering in tropics is 20-40 times higher than in
temperate regions
 RAINFALL
 Acidity of rain (dissolved CO2, Nitrous oxides)
 Amount of precipitation (higher rainfall = higher leaching)
 Seasonality:Constant humid vs.Wet/dry seasonal
 EFFECT OF CLIMATE
 Hematitic soils develop in hot and dryer climate
 Goethitic/limonitic soils develop in hot and wet climate
 Hot and humid climate leads to complete leaching of SiO2 & MgO
 Seasonal wet/dry climate leads to formation of smectites
 Climate can vary considerably over time [fossil laterites]
Rainfall,
0
–
3,000
mm
Temperature,
0
-
30ºC
Tundra
Taiga
(Northern
Forests
Steppes
Semi-desert
&
Desert
Savannas
Savannas
Tropical
Fe/Al
K
I/M
K
I/M
Bedrock with incipient
chemical alteration
Legend:
Fe/Al: Oxides/Hydroxides
K: Kaolinite clays
I/M: Illite/Montmorillonite
SOILS & RELATIVE DEPTH OF WEATHERING
 Tropical climate leads to rapid decay of biological
matter
 Microbial activity hastens the decay process
 Vegetation decay forms various organic acids: humic,
carbonic, fulvic, crenic, apocrenic, oxalic and lichenic
acids
 Presence of organic matter creates reducing
conditions (assists the conversion of ferric to ferrous
iron)
 WATER ABSORPTION
 WATERTABLE
 Vadose zone: lying above the water table.
This zone is wetted by meteoric water that comes from
above. Zone of non-saturation. Zone of oxidation.
 Phreatic zone: lying below the water table.
This zone is wetted by water held in pore spaces.
Zone of saturation. Zone of reduction.
 FLUCTUATION OFWATERTABLE
 Assists greatly in flushing the laterite of dissolved material
 Controls supergene enrichment of Mn and Co
 The position of water table depends on:
 Amount of rainfall
 Ground porosity/permeability
 Topographic characteristics
 Permanently High water table
 Much of rock filled with water
 Less oxygen being supplied
 Permanently Low water table
 Likely less rainfall and little ground water to attack minerals
 Slow removal of dissolved material
 Fluctuating water table
 Varying zones of oxidation and reduction
 Frequent flushing of system to remove dissolved material
 PARENT ROCK COMPOSITION
 Rocks high in Fe yield iron laterites (mafic / ultramafic)
 Rocks high in Al yield aluminous bauxites (syenites / trachytes)
 Rocks with some nickel content yield nickeliferous laterites
 Unserpentinised peridotites are more susceptible to weathering than
serpentinised peridotites
 MINERAL GRAIN SIZE
 Coarse-grained rocks are more susceptible to weathering
 FRACTURES / FAULTS / JOINTS
 Provide access to acidic ground waters; assist in removal of dissolved
material
 STABILITYOF MINERALS
 Process of chemical weathering leads to the formation of secondary
minerals that are increasingly more stable
Olivine Ortho-pyroxene Clino-pyroxene
SiO2 40 55 – 62 50 – 53
TiO2 0.02 – 0.05 0.02 – 0.05 0.1 – 0.6
Al2O3 0.4 – 0.6 1.7 – 3.2 3 – 4
Cr2O3 0.02 – 0.2 0.6 0.8 – 0.9
Fe2O3 All iron reported as FeO
FeO 8 – 10 5 – 6 2.5 – 4.0
MnO 0.12 – 0.16 0.1 0.1
NiO 0.3 – 0.5 0.06 – 0.1 0.05 – 0.07
CoO 0.01 – 0.02 0.006 0.003
MgO 47 – 51 32 – 35 18 – 22
CaO 0.04 – 0.07 1 – 2 17 – 22
Olivine
Augite
Hornblende
Biotites
Ca-Plagioclase
Na-Plagioclase
K-Feldspar
Muscovite
Quartz
Goldich (1938) determined the following sequence of decreasing
weathering susceptibilities for the common rock-forming minerals
 In general, crystal structure of mafic silicates controls weathering:
 Olivine, with its independent silicon tetrahedra is the most unstable
 Pyroxenes, with polymerised chains, are more stable
 Amphiboles, with their ring structures, are still more stable
 Clays and micas with sheet-like structure are the most stable
 Reiche (1943) devised aWeathering Potential Index:
Mineral WPI Mineral WPI
Forsterite 66 Biotite 22
Enstatite 55 Orthoclase 12
Anthophyllite 40 Quartz 0
Augite 39 Muscovite -10.7
Hornblende 36 Kaolinite -67
Talc 29 Gibbsite -300
Ultimate
stable
residuum
Hematite [Fe2O3]
Goethite [Fe2O3.H2O]
Limonite [Fe2O3.3H2O]
Boehmite [Al2O3.H2O]
Bauxite [Al2O3.2H2O]
Gibbsite [Al2O3.3H2O]
Secondary
minerals
Kaolinite
Smectites
Kaolinite
Primary
minerals
Olivine
Pyroxene
Plagioclase
Alkali Feldspars
Increased
Leaching
 The progression of clay minerals generally follows
the line of reduction of leachable components (SiO2,
MgO):
Type of clay % Leachables % Non-leachables
Nontronite 38.0 (SiO2) 50.6 (Fe2O3)
Halloysite 40.8 (SiO2) 34.6 (Al2O3)
Kaolinite 46.5 (SiO2) 39.5 (Al2O3)
Siliceous
nontronite
57.5 (SiO2) 38.2 (Fe2O3)
Montmorillonite 62.3 (CaO, MgO, SiO2) 18.3 (Al2O3)
Clinochlore 68.7 (MgO, SiO2) 18.3 (Al2O3)
 Control of water absorption
 High water run-off on steep slopes
 High water absorption on moderate & gentle slopes
 Water logging and saturation in basin areas
 Rate of sub-surface drainage and removal of dissolved
 Rate of erosion
 Control of laterite preservation
 Slopes of <15% are generally required to preserve the laterite
 Ideal landforms for laterite development & preservation
 Rolling to gently sloping morphology
 Elevated area
 Surface runoff is not excessive
 Sub-surface drainage is good
Steep Hill
Depression / basin
Gentle Hill
Plateau
River Terrace
Dissected Plateau
 pH of normal waters lies between 4 and 9
 Most oxides show some solubilities in natural waters
 Oxides of Ca, Mg, Na and K are completely soluble
 Oxides ofTi,Al, and Ferric iron (Fe+++) are insoluble
 Solubilities of many oxides are pH dependent:
 Ti, Ca, Fe++ iron
 Alumina is not soluble in the normal ground water pH
 Alumina is soluble at pH < 4 and at pH > 10
 With abundant organic matter available, pH may drop to < 4
 Plant roots carry low pH values, commonly 4 but down to 2
 Where abundant basic minerals are being weathered (olivine, pyroxene,
nepheline), pH conditions may climb to beyond 9
 Redox Potential of a system is a measure of the ability to bring about reduction
or oxidation reactions
 Reduction: decrease in the positive valency of an element (Fe+++ to Fe++) or an
increase in the negative valency of an element
 Oxidation: increase in the positive valency of an element (Fe++ to Fe+++) or the
decrease in the negative valency of an element
 The neutral value of Redox Potential is zero
 At lower values (-), the R. Potential represents reducing conditions
 At higher values (+), the R. Potential represents oxidising conditions
 Two factors control the Redox Potential during weathering:
 Atmospheric oxygen (creates oxidising conditions)
 Organic matter (creates reducing conditions)
2 4 6 8
0 10 12 14
1.0
- 0.6
- 0.4
- 0.2
0.0
0.2
0.4
0.6
0.8
Fe++
Fe+++
Fe++
Fe+++
O2
H2
H2O
H2O
Natural
Environments
Eh
pH
Reducing
Oxidising
Acidic Alkaline
 Laterisation rate based on mineral solubilities:
 1mm/100 years; 1m/100,000 years; 10m/million years
 Laterisation rate based on drainage water compositions
(P. Golightly, 1979)
 1.4mm/100 years; 1.4m/100,000 years; 14m/million years
 Chemical weathering in New Caledonia (Trescases, 1975)
 2.9-4.7mm/100 years
 Chemical weathering in Africa (Tardy, 1969)
 0.5-3.3mm/100 years
 Chemical weathering tends to slow down with time
 Interruptions in chemical weathering
 Fossil laterites
Water table
Water table
Regolith
Weathering Front
Thick Regolith due to
soil preservation
Thick Regolith due to
deposition of transported soil
Thin Regolith due to
soil erosion
 Ca
 Na
 Mg High mobility; mostly leached out
 K
 Si
 Mn
 Co Medium mobility; supergene
enrichment
 Ni
 Al
 Cr No mobility; residual enrichment
 Fe
 Ca is present essentially in clinopyroxenes
 Ca in olivines = maximum 1%
 Ca in Orthopyroxenes = maximum 2%
 Ca in clinopyroxenes = 22% at Sorowako; 18% at Goro
 Ca is extremely soluble in ground water
 Practically all Ca is leached out in the early
stages of laterisation
 Final laterite residuum (goethite/limonite) have
Ca generally < 0.05%
 Na and K present in ultramafic rocks in
extremely small quantities (< 0.1% each)
 Na and K are highly soluble in ground waters
and are quickly leached out of original
ferromagnesian minerals
 All Na goes to the rivers/lakes/sea
 K is preferentially fixed in clay minerals
(vermiculite, montmorillonite, chlorites,
micas, illites)
 Relative abundance of Na and K:
Wt.% in
earth’s crust
Wt.% in
Igneous rocks
Wt.% in
sea water
Na 2.8 2.29 1.08
K 2.6 2.22 0.04
 Magnesia is present in Olivine, Pyroxene and Serpentine
 Olivine = 57%; Enstatite = 40%; Serpentine = 44%
 Magnesia is released by the breakdown of ferromagnesian
minerals
 Magnesia is highly soluble in ground water
 It is the first major component to be leached out in large
quantities
 Some magnesia may stay in the laterite profile to form
clay minerals and nickel hydrosilicates
 Final products of lateritic weathering (hematite/goethite/
limonite) do not contain any magnesia
 Silica is present in Olivine, Pyroxene and Serpentine
 Olivine = 43%; Enstatite = 60%; Serpentine = 43%
 Silica is released by the breakdown of ferro-
magnesian silicates
 In humid environments, laterite is constantly flushed
and little silica gets fixed as smectite/nontronite clays
 In wet-dry environments, flushing of laterite profile is
poor and silica gets fixed as smectite/nontronite clays
in the Intermediate Zone
 In the alkaline environment (where MgO is being
released), silica can precipitate from solution as
amorphous silica (silica veins, boxwork, coatings)
0
5
10
15
20
25
30
35
40
45
5 10 15 20 25 30 35 40 45 50 55
% Fe
%
SiO2,
%
MgO
SiO2
MgO
 Iron in ultramafics: Ferrous Ferric
 In olivine (MgO.FeO.SiO2) : Fe++
 In pyroxene (MgO.FeO.2SiO2) : Fe++
 In chromite (FeO.Cr2O3) : Fe++
 In ilmenite (FeO.TiO2) : Fe++
 In magnetite (FeO.Fe2O3) : Fe++ Fe+++
 Fe in mafic minerals causes great instability during weathering
 Breakdown of mafic minerals releases Ferrous ions
 Ferrous ions are quite soluble and mobile
 Ferrous ions get quickly oxidised to ferric ions, as:
 Hematite / Maghemite,Goethite, Limonite
 Iron in primary magnetite and ilmenite oxidises to form:
 Hematite / Maghemite,Goethite, Limonite
 Favourable conditions for the formation of
hematite and goethite (Kampf and
Schwertmann, 1983):
Temperature Excess
Moisture
Soil
Carbon
pH Altitude
Hematite High Low Low High Low
Goethite Low
< 15 C
High
> 1000mm
High
> 3%
Low High
 Alumina is present in:
 Pyroxenes (as impurity and as solid solution)  2-4%
 Common Spinel (MgO.Al2O3)
 On the breakdown of pyroxenes, alumina is temporarily
fixed in the chlorites (Clinochlore: 5MgO.Al2O3.3SiO2.4H2O)
 After the breakdown of chlorites, alumina is fixed in
gibbsite (Al2O3.3H2O)
 Alumina is very insoluble in ground water in the pH range
commonly found (4 – 9)
 Al+++ and Fe+++ are truly residual elements in laterites
 Chromite occurs in ultramafics as
 Accessory chromite: FeO.Cr2O3
 Ionic replacement of Mg and Fe in Olivines and pyroxenes
 Trivalent Cr3+ in chromite is insoluble and very stable
 Divalent Cr2+ in ferromagnesian minerals is soluble and mobile
 Some Cr2+ is oxidised to Cr3+ and thus stabilised
 Some Cr2+ is oxidised to Cr6+ as hexavalent oxide (CrO3) or hexavalent
chromate (CrO4)2-
 Some hexavalent chrome may naturally get reduced to trivalent
chrome
 Remaining hexavalent chrome may be released to the natural
environment where it is extremely toxic (carcinogenic)
 Nickel is present in ferromagnesian minerals as ionic
replacement of Mg and Fe
 Olivines: 0.3%
 Orthopyroxenes: 0.1%
 Clinopyroxenes: 0.05%
 Serpentines: inherited from the primary mafic mineral
 After breakdown of mafic minerals, Ni is released
 Ni is soluble in percolating acidic waters
 Ni is insoluble in alkaline waters in the saprolite zone
 Ni is precipitated as hydrous nickel silicate with
serpentine, chlorite or clay structure
 Some nickel is adsorbed or enters the goethite structure
 Minor amounts of Mn and Co are present in the mafic
minerals (Olivine and Pyroxene)
 On the breakdown of mafic minerals, Mn and Co are
released
 Mn and Co are slightly soluble in acidic waters at the top of
the laterite profile
 Mn and Co are very insoluble in alkaline waters
 Mn and Co concentrate at the bottom of the Limonite
Zone
 Much of Cobalt is tied to the manganese wad
0
5
10
15
20
25
30
35
40
45
50
-6 -4 -2 0 2 4 6 8 10 12 14
DEPTH IN METRES
PERCENTAGES
Transition
zone
Fe
SiO2
AlO2O3
MgO
LIMONITE SAPROLITE
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
-6 -4 -2 0 2 4 6 8 10 12 14
DEPTH IN METRES
PERCENTAGES
Transition
zone
Cr2O3
MnO
Co
Ni
Supergene Ni
enrichment
LIMONITE SAPROLITE
Original
Bedrock
Limonite
Zone
Concentration
Factor
Ni 0.28 1.00 3.6
Fe 6.0 50.0 8.3
Co < 0.007 0.131 18.7
SiO2 40.9 2.3 Leached out
MgO 35.3 1.5 Leached out
Al2O3 1.13 8.5 7.5
Cr2O3 0.45 3.44 7.6
MnO 0.13 1.25 9.6
TiO2 0.01 0.086 8.6
+1 +2 +3 Spinels +4 +5 +6
Al2O3
CaO
CoO Co2O3
Cr2O3 CrO3
(CrO4)
FeO Fe2O3 Fe3O4
K2O
MgO
MnO Mn2O3 Mn3O4 MnO2
Na2O
NiO
P2O5
SiO2
TiO
Primary
igneous
minerals
Olivine
Pyroxene
Magnetite
Chromite
Mafics Spinels
Hydro-
thermal
minerals
Serpentine
Talc
Chlorite
Secondary
Laterite
weathering
minerals
Oxides &
Hydroxides
Silica
Hematite
Goethite
Limonite
Bauxite
Gibbsite
Serpentine
Talc
Chlorite
Nickel
Silicates
Nepouite
Willemsite
Pimellite
Connarite
Falcondite
Nimite
Noumeite
Magnetite
Clays
Kaolinite
Smectite:
(Mont-
morillonite)
(Nontronite)
Illite
Mixed Layer
Brucite
H2O
MgO
FeO
SiO2
Fe2O3
H2O
Fo
Fa
En
Fs
Serp.
Talc
Magnesioferrite
Hematite
Magnetite
Goethite
Limonite
Xanthosiderite
Esmeraldaite
OLIV
PYX
Chlor.
Al2O3
Boehmite
Bauxite
Gibbsite
MgO
SiO2
FeO
Forsterite
Quartz
Enstatite
Fayalite
Ferrosilite
Olivines
Pyroxenes
Sorowako
Unserp.
Poro
Harzburg.
Tiebaghi
Harzburg.
Goro
Olvine
Goro
Olivine
SiO2 40.3 40.8 39.2 39.9 40.9
TiO2 0.02 0.016 0.046
Al2O3 0.41 0.38 0.63
Cr2O3 0.02 0.21 0.08
Fe2O3 All iron reported as FeO
FeO 8.92 7.8 9.0 7.95 10.27
MnO 0.13 0.12 0.157
NiO 0.37 0.5 0.3 0.356 0.304
CoO 0.013 0.010 0.019
MgO 50.8 49.2 51.4 51.4 47.1
CaO 0.07 0.039 0.69
Totals 101.28 98.3 99.9 100.84 100.2
 Forsterite crystallises first (higher melting temperature)
 If the olivine is allowed to react with the liquid magma, it
will change its composition towards ferrous olivine
 As the larger ferrous cations replace the smaller Mg
cations, the melting temperature is progressively reduced
 If the original magma has more silica than can be used by
the olivines (> 40%), then the more siliceous mafic
minerals such as pyroxenes will be formed
 Olivines can take up to 0.5% of NiO (0.4% Ni)
 Ni occurs as replacement of Mg atoms by Ni atoms
 General Formula: R2Si2O6 or RO.SiO2
 Orthopyroxenes:
 Enstatite: MgSiO3
 Ferrosilite: FeSiO3
 Hypersthene: (Mg,Fe)SiO3
 Clinopyroxenes:
 Diopside: (Ca,Mg)SiO3
 Augite: (Ca, Mg, Fe)SiO3
Wo (Ca)
En
(Mg)
Fs
(Fe)
Orthopyroxenes
Pigeonite
Augite
Diopside
Ferro-
augite
Soroako
Unserp
Opx
Goro
Opx
Poro
Harzburg.
Opx
Tiebaghi
Harzburg.
Opx
Soroako
Unserp.
Cpx
Goro
Cpx
SiO2 55.1 55.9 60.1 61.8 53.2 50.5
TiO2 0.05 0.022 0.09 0.55
Al2O3 3.23 1.72 3.47 4.09
Cr2O3 0.58 0.57 0.86 0.916
FeO 5.79 5.3 5.8 5.4 2.52 3.96
MnO 0.13 0.13 0.08 0.105
NiO 0.076 0.073 0.1 0.06 0.05 0.074
CoO 0.006 0.006 <0.006 0.003
MgO 33.5 35.1 34.7 32.7 18.5 22.3
CaO 1.86 1.04 21.7 17.65
Totals 100.7 99.97 100.7 99.96 101.1 101.5
MgO SiO2
H2O
Fo En
Talc
Serpentine
Alteration of Forsterite
+800°C: Fo to En
625-800°C: Fo to En to Talc
500-625°C: Fo to Talc
200-500°C: Fo to Serpentine
Hydro
thermal
Magmatic
0
50
100
150
200
250
300
350
0 2 4 6 8 10 12 14 16 18 20
DEPTH, kilometres
Temperature,
Celcius
Volcanic
Areas
Average
Earth
Thick
Continent
Heat Gradients:
Volcanic Areas: 1 ºC / 10m
Average Earth: 1 ºC / 30-35m
Thick Continental crust: 1 ºC / 100m
 Olivine Serpentine
Mg2SiO4 H4Mg3Si2O9
2(MgO).SiO2 3(MgO).2SiO2.2H2O
D = 3.2 D = 2.2 – 2.4
In terms of equivalent MgO content:
6(MgO).3SiO2 6(MgO).4SiO2.4H2O
 Process of serpentinisation involves:
 Addition of water
 Addition of silica (or removal of MgO)
 Release of FeO and its oxidation to Fe3O4 (magnetite)
 Lowering of bulk density (increase in volume)
 Lizardite: (not the same as serpentinite)
 Most common form
 Massive
 Antigorite:
 Micaceous, foliated, lamellar, columnar form
 Lamellae are stiff and brittle
 Chrysotile:
 Delicately fibrous
 Fibres are flexible and easily separable
 Occurs in veins or matted masses
 Most common constituent of commercial “asbestos”
 Hazardous to human health if fibres are inhaled
 Talc
 H2Mg3Si4O12 (4.8% LOI)
 Sepiolite
 H4Mg2Si3O10 (12.1% LOI)
 High-water Sepiolite
 H10Mg4Si6O21 (14.7% LOI)
 Saponite
 H32Mg9Al2Si10O48 (21.3% LOI)
 Iddingsite
 H8MgFe2Si3O14 (15.9% LOI)
Chlorite (clinochlore) falls in composition in
between serpentine and amesite:
 Serpentine H4Mg3Si2O9 (13.0%
LOI)
 Clinochlore H8Mg5Al2Si3O18 (13.0% LOI)
 Amesite H4Mg2Al2SiO9 (12.9% LOI)
MgO.FeO
SiO2
Al2O3
Prochlorite
Serpentine
Penninite
Amesite
Chlinochlore
Penninite, Chlinochlore and
Amesite have 13% water of
hydration that is not shown
in the ternary plot
Chlorite compositions
SPINELS: RO.R2O3 [R=Fe, Mg, Mn, Ni, Zn]
[R2=Al, Fe, Cr, Mn]
 Magnetite: Fe3O4 (FeO.Fe2O3) [Fe=72.3%]
 Chromite: FeCr2O4 (FeO.Cr2O3)
 Common spinel: MgAl2O4 (MgO.Al2O3)
OXIDES:
 Hematite: Fe2O3
[Fe=69.9%]
 Maghemite: Fe2.66 O4 [Fe=69.9%]
 Silica: SiO2
SPINELS
MgO
R2O3
FeO
(MgO.Fe2O3) Magnesioferrite
(MgO.Al2O3) Spinel
Chromite (FeO.Cr2O3)
Magnetite (FeO.Fe2O3)
Hercynite (FeO.Al2O3)
FeO
MgO
Fe2O3 Cr2O3
Chromite
Magnesiochromite
Magnesioferrite
Magnetite
 Hematite – Fe2O3
 Non-magnetic
 Formed through reduction of Ferric Hydroxides
 Gives the laterite its distinctive “red” colour (laterite rouge)
 Maghemite –Fe2O3 — Fe3O4
 Magnetic variety of hematite
 Partial reduction of hematite through forest fires?
 Crystal structure closer to that of magnetite (Fe2.66 O4)
 Iron deficiency in structure amounts to 11.33%
 The spinel structure of maghemite inverts to the hematite structure
on heating
 Hydroxides of Iron: H2O+
 Turgite Fe2O3.0.5H2O 5.3%
 Goethite Fe2O3.H2O 10.1%
 Hydrogoethite Fe2O3.1.33H2O 13.1%
 Limonite Fe2O3.1.5H2O 14.5%
 Xanthosiderite Fe2O3.2H2O 18.4%
 Esmeraldaite Fe2O3.4H2O 31.1%
 Hydroxides of Aluminium:
 Boehmite Al2O3.H2O 15.1%
 Bauxite Al2O3.2H2O 26.1%
 Gibbsite Al2O3.3H2O 34.7%
 Hydroxide of Magnesium
 Brucite MgO.H2O 30.9
Brucite
H2O
MgO
FeO
SiO2
Fe2O3
H2O
Fo
Fa
En
Fs
Serp.
Talc
Magnesioferrite
Hematite
Magnetite
Goethite
Limonite
Xanthosiderite
Esmeraldaite
OLIV
PYX
Chlor.
Al2O3
Boehmite
Bauxite
Gibbsite
Al2O3
H2O
Fe2O3
Hematite
Boehmite
Goethite
Limonite
Xanthosiderite (Lim)
Esmeraldaite (Lim)
Aluminum Sesquioxide Iron Sesquioxide
Bauxite
Gibbsite
1 H2O
2 H2O
Gibbsite : Al2O3.3H2O
Bauxite: Al2O3.2H2O
Boehmite: Al2O3.H2O
Corundum: Al2O3
Esmeraldaite: Fe2O3.4H2O
Xanthosiderite: Fe2O3.2H2O
Limonite: Fe2O3.1.5 H2O
Goethite: Fe2O3.H2O
Hematite: Fe2O3
Corundum
Group name
“Limonites”
3 – 6m 6 – 9m 9 – 12m
SiO2 1.61 1.33 2.71
TiO2 0.08 0.18 0.09
Al2O3 10.24 11.13 11.95
Cr2O3 3.25 3.37 3.15
Fe2O3 71.96 70.23 68.79
MnO2 0.08 0.04 0.08
NiO 0.41 0.36 0.13
CoO
MgO 0.48 0.46 0.47
CaO 0.02 0.01 0.01
LOI ? ? ?
Totals 88.26 87.13 87.41
 Asbolane or manganese wad is black and amorphous
 It occurs as thin coatings on joints, fractures and occasionally as
nodules and beads
 The material is rich in manganese and contains appreciable
quantities of Fe2O3, Al2O3, CoO and NiO
 Significant amount of water of hydration may be present (12% in
a sample from New Caledonia)
Soroako
Lim. 3-6m
Soroako
Lim. 6-9m
Soroako
Lim. 9-12m
Soroako
Saprolite
New
Caledonia
Al2O3 9.0 15.0 7.0 3.5 19.2
Fe2O3 18.4 14.3 36.0 14.2 16.0
Mn2O3 31.0 33.6 33.0 32.0 39.3
NiO 1.7 3.4 2.3 16.2 n.a.
CoO 7.1 7.4 5.0 3.2 7.0
 Kaolinite Al2Si2O5(OH)4
 Smectite - Montmorillonite (Al,Mg)2Si4O10(OH)2.nH2O
 Smectite - Nontronite Fe2(Si,Al)4O10(OH)2.nH2O
 Smectite – Saponite (Mg,Fe)3(Si,Al)4O10(OH)2.nH2O
 Illite KAl3Si3O10(OH)2
SiO2
MgO NiO
Kerolite - Talc
Serpentine Pimelite
Nepouite
7°A basal
spacing
GARNIERITES
Mg3Si4O10(OH)2.nH2O
Mg3Si2O5(OH)4
Ni3Si4O10(OH)2.H2O
Ni3Si2O5(OH)4
10°A basal
spacing
(Serpentine & Talc Division)
Serpentine
(Chrys. / Lizard.)
H4Mg3Si2O9 Pecroaite /
Nepouite
H4Ni3Si2O9
Talc H2Mg3Si4O12 Willemseite H2Ni3Si4O12
Kerolite
(Hydrous Talc)
H2Mg3Si4O12.nH2O Pimellite H2Ni3Si4O12.nH2O
Sepiolite (Dana) H4Mg2Si3O10 Connarite H4Ni2Si3O10
Sepiolite (hi-H2O) H10Mg4Si6O21 Falcondite H10Ni4Si6O21
(Chlorite Division)
Clinochlore H8Mg5Al2Si3O18 Nimite H8Ni5Al2Si3O18
Magnesian Hydrosilicates Nickel Hydrosilicates
GARNIERITE COMPOSITION FIELDS
NiO
H2O
SiO2 + Others
Nepouite
Nimite
Falcondite
Garnierite
Willemsite
 In nickel hydrosilicates, nickel replaces the Mg atoms
 Replacement occurs in serpentine, talc and chlorite
 Garnierite is a group name for nickel hydrosilicates
 Garnierites have the crystal structure of serpentine, talc, or
chlorite
 Garnierites are largely of supergene origin
 Garnierites occur as fillings in open spaces or as coatings in joint
and fracture surfaces
 Garnierites range in colour from green (light and dark), to yellow-
green, to light blue and turquoise blue. Dark green varieties carry
more nickel
SiO2 MgO FeO NiO
New Caledonia, sample-1 53.0 18.1 0.1 20.9
New Caledonia, sample-2 49.0 18.9 0.2 21.7
New Caledonia, sample-3 53.2 15.0 0.0 24.5
New Caledonia, sample-4 49.8 13.5 0.2 29.2
New Caledonia, sample-5 37.4 2.7 0.3 49.6
Morro do Cerisco, Brazil 43.7 30.4 5.5 5.5
Morro do Niquel, Brazil 52.9 18.3 0.2 16.8
Riddle, Oregon, USA 47.8 18.6 0.1 19.6
Riddle, Oregon, USA 52.3 16.3 n.a. 20.8
 Serpentine Minerals
 Chrysotile
 Amphibole Minerals
 Tremolite-Actinolite
 Crocidolite
 Cummingtonite
AMPHIBOLE MINERALS
Fe
Mg
Ca
Na
H2Mg7Si8O24 H2Fe7Si8O24
Calcic amphiboles
Actinolite Ferro
Actinolite
Cummingtonite Grunerite
Sodic amphiboles
Tremolite
H2Ca2Mg5Si8O24
H2Ca2Fe5Si8O24
Glaucophane
H2Na2Mg3Al2Si8O24
Riebeckite (Crocidolite)
H2Na2Fe5Si8O24
H2Ca7Si8O24
H2Na14Si8O24
Tigereye: Silica replacing crocidolite amphibole
High Density
Bedrock zone
Variable Density
Saprolite zone
Ferruginous
zone
Bulk Density
Depth
Top
Bottom
Intermediate
zone
Ferricrete /
Silcrete
Run-of-mine
Wt.% / Ni
Reject
Wt.% / Ni
Recovered
Wt.% / Ni
Ni
upgrading
Sorowako W. Block
-1” ore type
100%
1.09% Ni
65%
0.6% Ni
35%
2.0% Ni 83%
Sorowako E. Block
-1” ore type
100%
1.33% Ni
55%
1.03% Ni
45%
1.7% Ni 28%
Sorowako E. Block
-6” ore type
100%
1.51% Ni
23%
0.89% Ni
77%
1.7% Ni 13%
Sorowako E. Block
-18” ore type
100%
1.59% Ni
14%
0.9% Ni
86%
1.7% Ni 7%
Bulong
High upgrading ore
100%
1.60%
25%
0.94% Ni
75%
1.82% Ni 14%
Bulong
Low upgrading ore
100%
1.58% Ni
14%
0.85%
86%
1.7% Ni 7%
Vermelho
-100# fraction
100%
0.8% Ni
49.6%
0.34%
50.4%
1.25% Ni 56%
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
0 10 20 30 40 50 60 70 80 90 100
QUANTITY OF REJECT, wt%
UPGRADING
INDEX
Values of Upgrading Index are based on a
constant Head Grade of 1.0%Ni with variable
quantity of rejects (X-axis) and variable grade of
rejects (different curves).
0.1
0.0
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
P.T. INCO
Saprolite zone
Ferruginous zone
Bedrock
Forms of nickel in the laterite profile
Nickel as hydroxide essentially in the
goethite-limonite structure. Some Ni
adsorbed by Mn-Hydroxides.
Nickel as hydro-silicate essentially with
the talc-serpentine-clay lattice structure:
Nickel talc
Nickel serpentine
Nickel smectites
Nickel as silicate essentially in the ferro-
magnesian minerals, as ionic
replacement of Mg and Fe atoms:
Olivine
Pyroxene
Serpentine
 Nickel grade; cobalt grade
 Resource tonnage / Life of Mine / scale of operation
 Ore chemistry and mineralogy
 Ore consistency
 Upgradeability of ore
 Process selection
 Availability of cheap power supply
 Selection of fuel
 Availability of raw materials: water, silica flux, aggregate
 Availability of infrastructure
 Location of project
 Mining method
 Environmental considerations
 Negotiations with local and central governments
 Funding of the project
 Selection of engineer and contractor
 Political risk
 Bureaucracy
 Regulatory framework (environmental, legal)
 Taxation, royalties
 Slow ramp-up rates
 Energy costs
 Depressed metal prices
 Processing risk
 Construction risk
 Financial elements: interest rates, exchange rates
 Environmental regulations: lower thresholds
New Projects:
 Goro Nickel, New Caledonia 54 k
 Onca-Puma, Brazil 25 k
 Ravensthorpe, Australia (QNI) 50 k
 Ramu River, PNG
Expansions:
 Sorowako, Indonesia 22 k
 Doniambo, New Caledonia 15 k
 Murrin-Murrin, Australia 10 k
Under
Construction
New Projects:
 Koniambo, New Caledonia 54 k
 Vermellho, Brazil 45 k
 Ambatovy, Madagascar 40 k
 BarroAlto, Brazil 20 k
 Fenix (Skye), Guatemala 20 k
 Sorowako HPAL, Indonesia 20 k
 Pomalaa HPAL, Indonesia 20-45
Expansions:
 Coral Bay, Philippines 15 k
 Moa Bay, Cuba 17 k
 Loma de Niquel,Venezuela 17 k
New Projects:
 Bahodopi, Indonesia
 Gag Island, Indonesia
 Weda Bay, Indonesia
Expansions:
 Goro, New Caledonia
 Sulawesi, Indonesia
 Onca-Puma, Brazil
 Cuba
 Pyrometallurgical processing
(Ore is melted)
 Production of Ferro-nickel
 Production of Ni-S matte
 Hydrometallurgical processing (Leaching by acid)
 PAL (Pressure acid leaching) – HPAL
 EPAL (Enhanced Pressure Acid Leaching
 AL (Atmospheric Leaching)
 Heap Leaching
 Combined pyro and hydro process (Caron)
(Ore is reduced at high temperature, then leached)
Project Owner Country Remarks
Cerro Matoso BHP-B Columbia
Codemin Anglo Brazil
Doniambo SLN/Eramet New Caledonia
Exmibal Ex. Inco Guatemala Mothballed
Falcondo Falconbridge Dominican Rep.
Fenimark FENI (govt.) Macedonia Closed
Hyuga Sumitomo Japan Imported ore
Larymna Larco Greece
Loma de Hiero Anglo Venezuela
Morro do Niquel Anglo Brazil Closed
Oheyama Nippon Yakin Japan Imported ore
Onca-Puma Vale Inco Brazil
PAMCO Nippon Steel Japan Imported ore
Pomalaa ANTAM Indonesia Some imported ore
Project Owner Country Remarks
Sorowako PT Inco Indonesia
Doniambo SLN/Eramet New Caledonia
Project Owner Country Remarks
Moa Bay Cuba Niquel Cuba First HPAL
Bulong Australia Shut down
Cawse Norilsk Australia
Murrin-Murrin Minara Australia
Coral Bay Sumitomo Philippines
Goro Vale Inco New Caledonia Under construction
Ramu River PNG Under construction
Ravensthorpe BHP-B Australia Under construction
Project Owner Country Remarks
Nicaro Union del Niq Cuba
Punta Gorda Union del Niq Cuba
Nonoc Philippines Closed
QNI BHP-Billiton Australia Imported ores
Tocantins Niquel Toc. Brazil
Project Owner Country Remarks
Caldag European
Nickel
Turkey First Heap Leach
project
Ravensthorpe BHP-B Australia Part of flow sheet
Murrin-Murrin Minara Australia Expansion of
project
Piaui Vale Brazil Being fast-tracked
for production
Ferro-Nickel Process
Upgrading in the mine
Drying of ore
Upgrading after drying
Calcining
Electric Furnace Smelting
Refining Furnace
Ferro-Nickel Product
20 – 50% Ni
Nickel-Matte Process
Upgrading in the mine
Drying of ore
Upgrading after drying
Calcining
Electric Furnace Smelting
Converting
Nickel-Matte Product
78% Ni
Important concerns:
 Slag should not attack refractory (S/M ratio)
 Melting temperature should be suitable (S/M;
Fe)
 Olivine should not be introduced to the furnace
 Appropriate reduction of ore prior to smelting
 Ni/Fe ratio in the ore for ferro-nickel operation
Ore Preparation: wetting, screening
Pre Heating through flash steam
Pressure Acid Leach in autoclave
Heat recovery from leached pulp
CCD thickening and washing
Neutralisation of pregnant solution
Precipitation of metals by adding H2S/alkali
Solid/liquid separation
Ni/Co products as mixed sulphides, oxides, hydroxides
Important concerns:
 Amounts of soluble Mg and Al in ore (acid consumers)
 Acid to ore ratio required for process
 Minimum operating temperature required to leach
 What is the appropriate pressure during leaching
 Retention time in the autoclave
 Rheological behaviour during slurrying
 How to recover metals in the back end of processing
 What product to make
Ore Preparation: screening, upgrading
Drying, using oil or coal
Grinding
Reduction, using CO/H2
Ammonia leaching
CCD thickening and washing
Stripping, using steam
Calcining of Ni/Co precipitate
Sintering of calcine
Nickel oxide product
Nickel Sulphide Nickel Laterite
Mining Hard rock mining more
expensive. Many sulphides U/G
Soft rock mining cheap.
Only open cast mining
Deposit
uniformity
More uniform in chemistry and
mineralogy
More varied in chemistry
and mineralogy; stratified
Upgrading Highly upgradeable to sulphide
concentrate
Low upgradeability. Final
grade generally <2.0% Ni.
Ore/Con
shipping
Relatively cheap (per lb Ni) due
to high upgradeability
Relatively high (per lb Ni)
due to low upgradeability
Processing cost Modest due to high Ni content.
Sulphur provides latent heat.
High due to low Ni content.
High energy input required.
Ni recovery High due to consistency of ore
chemistry and mineralogy
Modest due to compromise
for prevalent chemistry
Capital cost Modest per lb of Ni High per lb of Ni
Project size/life Can be short to medium Long to pay for high capital
6,600,000 Hectares
PT INCO — Original Concession area
-1” +1-6” +6-18” +18”
18” ore
(90% Rec.)
Ore
55%
Ore
20%
Ore
15%
Reject
10%
6” ore
(75% Rec.)
Ore
55%
Ore
20%
Reject
15%
Reject
10%
1” ore
(55% Rec.)
Ore
55%
Reject
20%
Reject
15%
Reject
10%
1” Hi Oliv.
(55% Rec.)
Ore
55%
Reject
20%
Reject
15%
Reject
10%
1” Lo Oliv.
(75% Rec.)
Ore
55%
Ore
20%
Reject
15%
Reject
10%
Screen recoveries given on wet basis
Packing
E.L E.L E.L
ESP
THICKENER
Scrubber
500 T
BIN
100 T
BIN
ESP
M.C
Slag to Disposal area (1500°C)
Furnace Matte (1350°C)
Electric Furnace
Silica Flux
Scrap
Converter
Matte Cast
Hot Calcine (700°C)
Wet Ore Stockpile
Dryer Kiln
Reduction Kiln
Recycle
to Dryer
Slurry
Dry Dust
Pugmill
Dust
Market
Fluid Bed
Stack
HSFO
Air
Granulation
HSFO
Air
Liquid Sulphur
Dry Dust
DKP
Dried Ore Storage
Rock
West Block (Reject)
East Block (Crushed)
Hot Gas
Water (Hi pressure)
Granulated
Matte
Oversize
(Recycle to Converter)
M.C
Air
Product Dryer
Simplified Process Plant Flow Sheet
WET ORE STOCKPILE
For efficient operation smelter feed must meet
the following requirement:
 S/M ratio 1.95 – 2.15 (optimum level of
2.05)
 Iron content 20 – 23% Fe (optimum level of
21.5%)
 Olivine content of <22% in any East Block batch
Packing
E.L E.L E.L
ESP
THICKENER
Scrubber
500 T
BIN
100 T
BIN
ESP
M.C
Slag to Disposal area (1500°C)
Furnace Matte (1350°C)
Electric Furnace
Silica Flux
Scrap
Converter
Matte Cast
Hot Calcine (700°C)
Wet Ore Stockpile
Dryer Kiln
Reduction Kiln
Recycle
to Dryer
Slurry
Dry Dust
Pugmill
Dust
Market
Fluid Bed
Stack
HSFO
Air
Granulation
HSFO
Air
Liquid Sulphur
Dry Dust
DKP
Dried Ore Storage
Rock
West Block (Reject)
East Block (Crushed)
Hot Gas
Water (Hi pressure)
Granulated
Matte
Oversize
(Recycle to Converter)
M.C
Air
Product Dryer
Drying Operation
Screening of dried ore at 3/4“ screen
- 3/4“ + 3/4“
West Block type Product.
Saved as Ore
Reject.
Discarded
East Block type Product.
Saved as Ore
Crushed.
Added to Ore
DRYER
Packing
E.L E.L E.L
ESP
THICKENER
Scrubber
500 T
BIN
100 T
BIN
ESP
M.C
Slag to Disposal area (1500°C)
Furnace Matte (1350°C)
Electric Furnace
Silica Flux
Scrap
Converter
Matte Cast
Hot Calcine (700°C)
Wet Ore Stockpile
Dryer Kiln
Reduction Kiln
Recycle
to Dryer
Slurry
Dry Dust
Pugmill
Dust
Market
Fluid Bed
Stack
HSFO
Air
Granulation
HSFO
Air
Liquid Sulphur
Dry Dust
DKP
Dried Ore Storage
Rock
West Block (Reject)
East Block (Crushed)
Hot Gas
Water (Hi pressure)
Granulated
Matte
Oversize
(Recycle to Converter)
M.C
Air
Product Dryer
Reduction Operation
Diameter, m Length, m Throughput, Wmt / Hr
Kiln 1 5.5 100 145
Kiln 2 5.5 100 145
Kiln 3 5.5 100 145
Kiln 4 6.0 115 190
Kiln 5 6.0 135 215
REDUCTION KILN
REDUCTION
KILN FEED
1 2 3 4 5 6
1300
1400
1500
1600
1700
20%
FeO
25%
FeO
30%
FeO
Silica / Magnesia Ratio
T°C
1979
Current
LIQUID
SOLID
18 m
Matte
Refractory bricks on
Sidewalls & hearth
Slag
Matte
Slag
Copper “fingers”
(water cooled)
18 m
Matte
Refractory bricks on
Sidewalls & hearth
Slag
Matte
Slag
Copper “fingers”
(water cooled)
Olivine mush
causing ineffective
heat transfer
Packing
E.L E.L E.L
ESP
THICKENER
Scrubber
500 T
BIN
100 T
BIN
ESP
M.C
Slag to Disposal area (1500°C)
Furnace Matte (1350°C)
Electric Furnace
Silica Flux
Scrap
Converter
Matte Cast
Hot Calcine (700°C)
Wet Ore Stockpile
Dryer Kiln
Reduction Kiln
Recycle
to Dryer
Slurry
Dry Dust
Pugmill
Dust
Market
Fluid Bed
Stack
HSFO
Air
Granulation
HSFO
Air
Liquid Sulphur
Dry Dust
DKP
Dried Ore Storage
Rock
West Block (Reject)
East Block (Crushed)
Hot Gas
Water (Hi pressure)
Granulated
Matte
Oversize
(Recycle to Converter)
M.C
Air
Product Dryer
• Converter Matte is cast, granulated with water sprays, dried,
screened, packed into 3-tonne polypropylene cloth bags,
and shipped to the client in Japan
• Average Product analysis: 78% Ni
1-2% Co
20% S
Converting, Granulating, Packing,
Shipping
E. Block
Ore
W. Block
Ore
RKF Calcine EF
Slag
EF
Matte
Product
SiO2 34.7 37.1 36.1 40.8 47.7
MgO 20.7 15.4 18.1 18.9 22.2
Fe2O3 27.7 32.0 30.0 29.2 25.9 Fe=61.5 Fe=0.5
FeO All iron reported as Fe2O3
Al2O3 3.12 2.53 2.92 2.77 3.02
Cr2O3 1.42 1.87 1.64 1.68 1.78
MnO 0.53 0.63 0.57 0.57 0.66
NiO 1.80 2.60 2.44 2.57 0.19 Ni=27.5 Ni=78.5
CoO 0.08 0.10 0.09 0.09 0.03 Co=0.76 Co=1.2
CaO 0.32 0.46 0.39 0.45 0.50
LOI ? ? ? 0.0 0.0 S=9.2 S=19.7
Total 90.86 92.69 92.25 97.03 101.98 98.96 99.90
 Eksplorasi nikel laterite merupakan salah satu
usaha bisnis yang berisiko tinggi.
 Diperlukan konsep dan strategi yang matang
serta personil yang berpengalaman untuk
menjalankan bisnis tersebut.
 Keberhasilan bisnis diukur dari cara
mengelola tingkat resiko dengan cara/
metode yang efektif dan efesien
 Apa definisi eksplorasi dan Strategi eksplorasi
 Kenapa strategi dan managemen eksplorasi itu
penting?
 Aspek apa saja yang mempengaruhi dalam
menyusun strategi eksporasi
 Strategi eksplorasi meliputi apa saja?
 Bagaimana mengelola eksplorasi sebagai bisnis
yang berisiko tinggi menjadi sesuatu yang
menguntungkan
 Bagaimana mengimplementasikan strategi
eksplorasi untuk cebakan nikel laterite.
 Secara khusus definisi Eksplorasi Geologi
(Koesoemadinata,_) adalah :
 “Suatu aktifitas untuk mencari tahu keberadaan
suatu objek geologi di suatu daerah atau ruang
yang sebelumnya tidak diketahui keberadaannya.
Objek geologi yang dimaksud terutama komoditi
potensi bahan galian seperti cebakan mineral,
batubara, minyak dan gas bumi ataupun air tanah.
Selain itu objek geologi dapat berupa gejala geologi
yang bermanfaat atau memiliki dampak negatif
seperti: patahan, data batuan untuk keperluan
konstruksi sipil dll.”.
 “Suatu keahlian dalam perencanaan dan dan
pengarahan kegiatan eksplorasi yang berskala besar
dalam bentuk tahapan-tahapan yang efektif dan efisien
untuk mencari daerah yang favorable akan terdapatnya
cebakan mineral ekonomis”.
 Kegiatan eksplorasi adalah kegiatan usaha ekonomi yg beresiko
tinggi (geologi, teknologi, ekonomi dan politik)
 Paradigma eksplorasi yang tumbuh seiring dengan resiko yang
ada
• Dalam kegiatan eksplorasi sangat diperlukan pentahapan dimana pada akhir
suatu tahap dilakukan pengambilan keputusan dilanjutkan atau tidak.
• Peluang yang lebih besar tergantung pada kerapatan data, teknologi yang lebih
tinggi, personil yang lebih banyak dan waktu yang lebih lama
• Keseluruhan faktor tersebut berbanding lurus dengan biaya yang dibutuhkan
 Paradigma tersebut merupakan dasar dalam menyusun Strategi
eksplorasi untuk
 Menentukan urutan kegiatan eksplorasi,
 Memperbesar peluang keberhasilan
 Memperkecil resiko kegagalan
• Peluang atau probabilitas / Success ratio
• Pertaruhan dengan resiko yang sangat tinggi
• Parameter geologi (model dan kriteria geologi)
• keberadaan data yang merupakan situasi sesaat.
• Kegagalan salah satu aktifitasnya.
 Penentuan tahapan-tahapan eksplorasi
 Penentuan metode pada setiap tahapan
 Penentuan target atau hasil yang diharapkan
dari setiap tahapan
 Penentuan desain eksplorasi dalam setiap tahapan
 Penentuan personil, peralatan dan biaya dari
setiap tahapan
TAHAPAN EKSPLORASI
Catatan :
Dalam penilaian daerah
prospek hanya didasar-
kan kepada
pertimbangan aspek
geologi saja
STUDI KELAYAKAN, AMDAL & PERENCANAAN TAMBANG
TAHAP EKSPLORASI PENDAHULUAN (RECONNAISSANCE)
Lingkup pekerjaan : studi pustaka, pemetaan geologi skala 1:50.000, pengambilan conto, pembuatan sumur uji (jika dipandang perlu)
dan analisa conto
TIDAK PROSPEK
TAHAP EKSPLORASI SEMI DETIL
Lingkup pekerjaan : pemetaan geologi dan topografi skala
1:5.000/ 1:10.000, pengambilan conto, pembuatan sumur uji (jika
diperlukan), pemboran pandu, survey geofisika dan geokimia,
analisa laboratorium.
PROSPEK
DISEBAGIAN WILAYAH
EVALUASI
Evaluasi Geologi Permukaan &
Bawah Permukaan-Semi Detil
TAHAP EKSPLORASI DETAIL
Lingkup pekerjaan : pemetaan geologi dan topografi skala 1:1.000/1:2.000, pengambilan conto, pemboran detil,
survey geofisika dan geokimia, analisa laboratorium, penelitian geologi teknik
Evaluasi Geologi Permukaan & Bawah Permukaan - Detil
Dilanjutkan
Dilanjutkan
DAERAH KETERDAPATAN/KP. EKSPLORASI
JIKA DATA-DATA GEOLOGI CUKUP
MEMADAI (kerapatan datanya)
LOKASI TAMBANG/ KP. EKSPLOITASI
TAHAPAN STUDI LITERATUR DAN SITE VISIT
STOP
PENYELIDIKAN TIDAK
DILANJUTKAN
 Membuat strategi eksplorasi dan menjalankan
secara konsisten, efektif dan efesien dengan
mengurangi resiko
 Memahami secara utuh model geologi daerah
eksplorasi
 Improvisasi dan kompetensi geologist berperan
dalam proses evaluasi dan peningkatan tahapan
eksplorasi selanjutnya.
 Pengelola eksplorasi (Manager proyek) harus
memiliki wawasan tentang orientasi bisnis
perusahaan, perkembangan teknologi eksplorasi
dan kebutuhan pasar komoditi
 Memahami karakteristik dan model geologi nikel laterite
 Memahami spesifikasi bijih untuk kebutuhan pasar
(market deman) maupun untuk rencana pembuatan
pabrik (pig iron, limonite ore dan high grade saprolite ore)
 Membuat strategi eksplorasi yang efektif dan efisien
untuk nikel laterite (tahapan, metode, target, personil dan
peralatan)
 Melaksanakan strategi eksplorasi secara konsisten dan
melakukan kontrol terhadap kualitas dan kuantitas data
yang dihasilkan/
 Memaksimalkan data evaluasi geologi untuk perencanaan
tahapan berikutnya
 Ada 3 jenis spesifikasi bijih nikel laterite yang
diperdagangkan secara umum
 Pig Iron (Ni 1.2 – 1.4; Fe > 45%
 Limonite ore (Ni 1.5 ; Fe 35%
 High Grade Saprolite ore (Ni> 1.9%
DATABASE REVIEW
EXPLORATION
TARGETTING
RECONNAISSANCE
TESTPITTING
SAMPLING &
ASSAYING
DRILLING PROGRAM
GEOEVALUATION AND
REPORT ING
 To Located the landform characteristic based on :
 Aerial photograph (smaller map scale)
 landsat imagerial (Regional view)/Satellite
 Aster Image
 Access recognition
 Cultivated Boundary
 Open space area recognition.
 Structural geology dan lithology interpretation.
Significant Zn anomalies and Minor Cu Pb anomalies
TARGETING PROSPECTING -
ASTER IMAGING ANALYSIS
The green color that
represent Magnetit-
Chromite mineral has
showing good indication
Key objective : Preliminary
observation of lithology (ultramafic,
sediment, limestone, etc), alteration
(clay, silicic, laterite, gossans),
structure geology, lineament,
morphology, drainage and vegetation
anomaly for defining further
exploration target.
 Digitizing from old data
 Aanalyzing and evaluation for
previous data collected
 Map Overlay and combining and
extraction for target selection
Exploration
Target
Criteria :
 Slope and landform identification from landsat or
aerial photograph
 Geological Condition
 Drainage system
 Undulating Topography
 Good Laterite Profile (define from previous testpit
recognition)
 Preliminary visit to confirm the
lithology and morphology of
the target area.
 To confirm the accessibility of
the target area.
 To define the geological condition I.e,
lithology, structure, serpentinization
and iron crust distribution.
 Outcrop observation
 Float mapping
 Structural geology (fault, joint, fold)
 Surface Sampling (assay, thin section
Float Mapping
Outcrop observation
GPS Reading
 The pit location was selected ramdomly base on topography interpretation
 Tespit dimension 1.5m x 1.25 m
 To provide large samples for more accurate tonnage factor and ore type fraction.
 To understand the actual laterite profile characteristic
Weighing
Quartering
Enter the
Hole
Transfer Material to
surface
Bottom Pit
 First phase core drilling for 400m stagger
 Secod phase core drilling for 200 m regular spacing
 Using Jacro rig with HQ size tripple tube
 Objective to understand ore continuity, thickness,
chemistry distribution for resource estimation
Critical Issues:
- Quality of sample (core recovery)
-- Accuracy (deptth, interbal, etc)
 Core logging
 Screening and Fractination
 Weighing
 Reduction sampling
 Numbering and labelling
Screening
Weighing Reduction
Sample
Labeling/
Packing
Core Logging
 QAQC Program is mandatory for exploration
drilling projects which will be reported under NI
43-101.
 The QAQC program is to ensure a consistently
high quality work that will maintain public
confidence and assist securities regulators, at
any stage of project from pre-feasibility,
feasibility and operating mine.
 This guidelines is to be implemented for
exploration and the lab. Based on this, MRMR
document will more reliable and in line with
current industry practice
Precision = Cluster
Accuracy = closeness to target
Bias = difference from target
Good
Accuracy &
Precision
Good Precision,
Bias
Poor Precision,
good accuracy
Poor Precision
Poor accuracy
Quality Assurance (QA)  Setup system (all those planned or systematic actions
necessary to provide adequate confidence that a product or service will satisfy given
needs.
 Establishment of systems and standards
 Ensure quality
QualityControl (QC)  Implementation (assurance in the quality context is the relief of
concern about the quality of product. Sampling plans and audits, the quality control
devices, are designed to supply part of this assurance
 use of statistical tools and checks (duplicate, standard, blank, check assay and repetition)
 ensure the systems are in statistical control
 To control the preparation samples during splitting /reduce samples.
 Using for calculate precision (average difference between samples)
and bias (repeatability between the duplicate pairs)
 Consists of :
-Wet Duplicate
- Splitter Duplicate
- Pulp Duplicate
Drilling
Preparation
(Wet splitting)-
Wet Duplicate
Preparation
(Boyd splitting)-
Splitter Duplicate
Preparation
(CRM splitting)-
Pulp Duplicate
Lab Assaying
Pulp Duplicate
Contribute Error
Wet Dup
20 %
Splitter Dup
15 %
Pulp Dup
10 %
Pulp Dup
3 %
y=x
R2
=1
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Original Sample
Duplicate
sample
Scatter Plot - Ni (%)
y = 0.992x + 0.0091
R2
= 0.9854
0
0.5
1
1.5
2
2.5
3
3.5
0 0.5 1 1.5 2 2.5 3 3.5
Original Ni (%)
Duplicate
Ni
(%)
Ideal
Scatter Plot
-50
-40
-30
-20
-10
0
10
20
30
40
50
0.00 1.00 2.00 3.00 4.00
Average
Rel
Diff
%
Rel Diff Cr
PTI SH's Wet Duplicate Samples - Ni
Cumulative Frequency of the Relative Error
Estimate of Precision
0%
10%
20%
30%
40%
50%
60%
70%
80%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Relative difference Plot Cumulative Precision Plot
 Certified references material or in- house standard.
 Value is known
 Allows assessment of accuracy and bias
 Purpose of standards:
▪ Ensure accuracy of results
▪ Ensure required analytical precision – mechanical failure
▪ Ensure there is no bias
Ni (QC SAPO)
1.90
1.95
2.00
2.05
2.10
2.15
2.20
Bias in Ni Sap Ore, but still in
acceptable range of 3SD
Standard Sample Monitoring
 Samples with grade less than the limit detection.
 Blank sample measure the contamination cleanliness in sample
preparation
 Also need to be able to compare results with immediately preceding
laboratory analyzed sample (develop QAQC program)
 Blank materials are better in silica sand, but granite and granodiorite
as much better.
Ni (SPL Blank New )
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
Blank Sample Monitoringc
 Check Assay is precision check to compare analysis data between
primary lab and secondary lab
 To send 3 – 5% samples/month to External lab for checks.
 Repetition is precision check to control the lab instruments (XRF)
and to control backup sample (Pulp Storage)
 To send 30 samples/week to External Lab.
Repetition Samples
y = 0.9847x + 0.009
R2
= 0.9941
0
1
2
3
4
5
0 1 2 3 4 5
Ni % Previous result
Ni
%
Current
Result
Ni Comparison
y = 0.9839x + 0.0132
R2
= 0.9943
0
1
2
3
4
5
6
7
0 1 2 3 4 5 6 7
PTI Lab
Intertek
Lab
Check Assay Repetition Sample
DATA COMPILATION
 To collect all the data I.e field data, laboratory, logging and store in
database format
 Integrating the information from the various data.
 Mostly store in digital data
DATAVALIDATION
 Data Clean-Up, to make sure the data are ready to use and do not
contain an error, I.e:
 Coordinat and grid check (drill and test pit)
 Miss type of Assay value and logging data
 Hole and sample number check
 To combine the spread sheet assay data with location where sample was
taken
Horisontal Scale : BH_73 – BH_119
Vertical Scale 1 : 4
High Grade Ore
 Evaluasi geologi adalah salah tahapan penting dalam kegiatan eksplorasi dimana
hasil evaluasi ini akan menentukan tahapan apakah suatu kegiatan eksplorasi
prospek untuk dilanjutkan/ ditingkatkan atau tidak
 Setiap peningkatan tahapan eksplorasi akan memberikan konsekuensi biaya
yang sangat besar sehingga keputusan prospek atau tidak suatu wilayah
eksplorasi harus dilakukan secara akurat dan komprehensif.
 Tujuan akhir dari suatu kegitan eksplorasi adalah
 Mengetahui berapa besar nilai ekonomi dari endapan bahan galian disuatu daerah
 Diketahui berapa banyak, besar dan kuantitas, kualitas endapan bahan galian
 Besarnya, kuantitas dan kualitas dinyatakan sebagai cadangan bahan tambang.
 Evaluasi geologi meliputi beberapa tahapan
 Kompilasi data geologi dan penysunan database geologi
 Validasi database geologi dan akuisisi data
 Pengolahan data dan perhitungan cadangan
 Pembuatan laporan sumberdaya dan cadangan
Titik Bor Easting Northing FR TO Length Ni co fe soi2 CaO Mgo
Geo
Layer
Ore Layer
BH_178 510198,92 9911099,2 0,00 1,00 1,00 0,74 0,06 41,60 7,25 <0.01 0,83 LIM OB
BH_178 510198,92 9911099,2 1,00 2,00 1,00 0,79 0,09 42,10 6,71 <0.01 0,86 LIM OB
BH_178 510198,92 9911099,2 2,00 3,00 1,00 0,95 0,09 43,20 6,95 0,01 1,98 LIM OB
BH_178 510198,92 9911099,2 3,00 4,00 1,00 1,19 0,09 37,70 16,70 0,05 5,46 LIM OB
BH_178 510198,92 9911099,2 4,00 5,00 1,00 1,51 0,04 16,40 38,80 0,32 22,20 SAP OB
BH_178 510198,92 9911099,2 5,00 6,00 1,00 2,12 0,03 11,70 10,90 0,17 27,20 SAP HGO
BH_178 510198,92 9911099,2 6,00 7,00 1,00 2,18 0,03 12,40 38,70 0,17 26,80 SAP HGO
BH_178 510198,92 9911099,2 7,00 8,00 1,00 2,44 0,03 12,80 38,10 0,16 26,80 SAP HGO
BH_178 510198,92 9911099,2 8,00 9,00 1,00 2,38 0,04 13,80 36,70 0,18 25,30 SAP HGO
BH_178 510198,92 9911099,2 9,00 10,00 1,00 1,60 0,02 8,56 41,20 0,31 32,70 SAP BZ
BH_178 510198,92 9911099,2 10,00 11,00 1,00 1,38 0,03 10,30 41,60 0,26 29,60 SAP BZ
BH_178 510198,92 9911099,2 11,00 12,00 1,00 1,33 0,03 12,80 42,40 0,38 24,20 SAP BZ
BH_178 510198,92 9911099,2 12,00 13,00 1,00 1,18 0,03 10,60 42,40 0,23 28,10 SAP BZ
Titik Bor Easting Northing FR TO Length Ni co fe soi2 CaO Mgo
Geo
Layer
Ore Layer
BH_183 510201,17 9910851,3 0,00 1,00 1,00 0,64 0,04 39,20 6,97 <0.01 0,59 LIM OB
BH_183 510201,17 9910851,3 1,00 2,00 1,00 0,80 0,10 40,60 5,90 <0.01 0,60 LIM OB
BH_183 510201,17 9910851,3 2,00 3,00 1,00 0,95 0,14 45,60 3,14 <0.01 0,80 LIM OB
BH_183 510201,17 9910851,3 3,00 4,00 1,00 1,36 0,09 45,50 5,98 <0.01 2,15 LIM LGO
BH_183 510201,17 9910851,3 4,00 5,00 1,00 1,48 0,09 46,20 4,80 <0.01 1,79 LIM LGO
BH_183 510201,17 9910851,3 5,00 6,00 1,00 1,60 0,13 46,40 3,56 0,10 1,16 LIM LGO
BH_183 510201,17 9910851,3 6,00 7,00 1,00 1,51 0,16 42,00 9,95 <0.01 3,95 LIM LGO
BH_183 510201,17 9910851,3 7,00 8,00 1,00 1,33 0,12 46,20 5,53 0,01 1,46 LIM LGO
BH_183 510201,17 9910851,3 8,00 9,00 1,00 1,35 0,09 35,30 23,80 0,01 4,42 LIM MGO
BH_183 510201,17 9910851,3 9,00 10,00 1,00 1,70 0,08 39,00 16,30 0,01 3,42 LIM MGO
BH_183 510201,17 9910851,3 10,00 11,00 1,00 1,67 0,10 40,10 11,40 0,04 5,46 LIM MGO
BH_183 510201,17 9910851,3 11,00 12,00 1,00 1,68 0,07 29,80 23,50 2,06 10,60 SAP MGO
BH_183 510201,17 9910851,3 12,00 13,00 1,00 1,42 0,04 17,70 35,90 2,62 21,70 SAP BZ
BH_183 510201,17 9910851,3 13,00 14,00 1,00 0,88 0,03 10,80 40,50 1,14 33,20 SAP BZ
BH_183 510201,17 9910851,3 14,00 15,00 1,00 1,03 0,03 14,10 38,30 1,22 27,30 SAP BZ
BH_183 510201,17 9910851,3 15,00 16,00 1,00 1,21 0,03 9,98 47,40 0,49 26,00 SAP BZ
BH_183 510201,17 9910851,3 16,00 17,00 1,00 1,67 0,02 7,96 44,20 0,33 30,00 SAP BZ
BH_183 510201,17 9910851,3 17,00 18,00 1,00 1,35 0,02 8,92 41,10 0,40 33,00 SAP BZ
BH_183 510201,17 9910851,3 18,00 19,00 1,00 0,97 0,02 9,31 42,50 0,47 31,40 BRK BZ
BH_183 510201,17 9910851,3 19,00 20,00 1,00 0,39 0,02 6,72 41,70 0,17 35,50 BRK BZ
BH_183 510201,17 9910851,3 20,00 21,00 1,00 0,22 0,02 5,77 41,10 0,09 37,50 BRK BZ
 Metode perhitungan coventional (Geometrik)
 Section
 Isochore
 Poligonal
▪ Included area
▪ Extended area (regular grid)
▪ Triangle
▪ Bi-sect polygon
 Metode perhitungan Moderen (geostatistik)
 Linear regresion
 Inverse distance
 Kriging
 Strategi eksplorasi adalah sangat penting dan
merupakan kunci keberhasilan dalam
kegiatan eksplorasi
 Kegiatan eksplorasi yang dikelola dengan
baik akan memberikan hasil yang optimal,
efektif dan efesien serta mengurangi resiko
yang timbul
 Evaluasi geologi merupakan kunci layak
tidaknya suatu tahapan eksplorasi untuk
dilanjutkan atau tidak.
TerimaKasih
Contact Person : Suharto
HP : 08124244871
Email : suharto_mks@yahoo.com

More Related Content

What's hot

Models and exploration methods for major gold deposit types
Models and exploration methods for major gold deposit typesModels and exploration methods for major gold deposit types
Models and exploration methods for major gold deposit typesMYO AUNG Myanmar
 
Volcanogenic massive sulphide deposits
Volcanogenic massive sulphide depositsVolcanogenic massive sulphide deposits
Volcanogenic massive sulphide depositsMostafa Masoud
 
Nickel : Indian occurrence
Nickel : Indian occurrence Nickel : Indian occurrence
Nickel : Indian occurrence AbhiRam152
 
Application of Rare Earth Elements in Geological Studies
Application of Rare Earth Elements in Geological StudiesApplication of Rare Earth Elements in Geological Studies
Application of Rare Earth Elements in Geological StudiesSolomon Adeyinka
 
mineral resources and mining
 mineral resources and mining  mineral resources and mining
mineral resources and mining AMIT SAHU
 
nickel laterite dep phil
nickel laterite dep philnickel laterite dep phil
nickel laterite dep philArjaylyn Babala
 
Topic 1: Ore mineralogy and orebodies
Topic 1: Ore mineralogy and orebodiesTopic 1: Ore mineralogy and orebodies
Topic 1: Ore mineralogy and orebodiesLondon Mining Network
 
Ore deposit related to clastic sedimentation
Ore deposit related to clastic sedimentationOre deposit related to clastic sedimentation
Ore deposit related to clastic sedimentationPramoda Raj
 
Economic geology - Metamorphic ore deposits
Economic geology - Metamorphic ore depositsEconomic geology - Metamorphic ore deposits
Economic geology - Metamorphic ore depositsAbdelMonem Soltan
 
Economic geology - Magmatic ore deposits 2
Economic geology - Magmatic ore deposits 2Economic geology - Magmatic ore deposits 2
Economic geology - Magmatic ore deposits 2AbdelMonem Soltan
 
Oxidation supergene enrichment
Oxidation supergene enrichmentOxidation supergene enrichment
Oxidation supergene enrichmentVishnu Raayan
 

What's hot (20)

Models and exploration methods for major gold deposit types
Models and exploration methods for major gold deposit typesModels and exploration methods for major gold deposit types
Models and exploration methods for major gold deposit types
 
Volcanogenic massive sulphide deposits
Volcanogenic massive sulphide depositsVolcanogenic massive sulphide deposits
Volcanogenic massive sulphide deposits
 
Wall Rock Alteration
Wall Rock AlterationWall Rock Alteration
Wall Rock Alteration
 
Macventures MPSA 016_93_XIII
Macventures MPSA 016_93_XIIIMacventures MPSA 016_93_XIII
Macventures MPSA 016_93_XIII
 
Lecture 10 textures of ore deposits and associated features
Lecture 10 textures of ore deposits and associated featuresLecture 10 textures of ore deposits and associated features
Lecture 10 textures of ore deposits and associated features
 
Topic 3 ore forming processes and magmatic mineral deposits
Topic 3 ore forming processes and magmatic mineral depositsTopic 3 ore forming processes and magmatic mineral deposits
Topic 3 ore forming processes and magmatic mineral deposits
 
Nickel : Indian occurrence
Nickel : Indian occurrence Nickel : Indian occurrence
Nickel : Indian occurrence
 
SULFIDE MINERALIZATION IN EGYPT
SULFIDE MINERALIZATION IN EGYPT SULFIDE MINERALIZATION IN EGYPT
SULFIDE MINERALIZATION IN EGYPT
 
Application of Rare Earth Elements in Geological Studies
Application of Rare Earth Elements in Geological StudiesApplication of Rare Earth Elements in Geological Studies
Application of Rare Earth Elements in Geological Studies
 
mineral resources and mining
 mineral resources and mining  mineral resources and mining
mineral resources and mining
 
nickel laterite dep phil
nickel laterite dep philnickel laterite dep phil
nickel laterite dep phil
 
Topic 1: Ore mineralogy and orebodies
Topic 1: Ore mineralogy and orebodiesTopic 1: Ore mineralogy and orebodies
Topic 1: Ore mineralogy and orebodies
 
Komatiite
KomatiiteKomatiite
Komatiite
 
Ore deposit related to clastic sedimentation
Ore deposit related to clastic sedimentationOre deposit related to clastic sedimentation
Ore deposit related to clastic sedimentation
 
Economic geology - Metamorphic ore deposits
Economic geology - Metamorphic ore depositsEconomic geology - Metamorphic ore deposits
Economic geology - Metamorphic ore deposits
 
Economic geology - Magmatic ore deposits 2
Economic geology - Magmatic ore deposits 2Economic geology - Magmatic ore deposits 2
Economic geology - Magmatic ore deposits 2
 
Lamprophyre
LamprophyreLamprophyre
Lamprophyre
 
Stages of mining Development and Exploitation
Stages of mining Development and ExploitationStages of mining Development and Exploitation
Stages of mining Development and Exploitation
 
Geological Thermometers
Geological ThermometersGeological Thermometers
Geological Thermometers
 
Oxidation supergene enrichment
Oxidation supergene enrichmentOxidation supergene enrichment
Oxidation supergene enrichment
 

Similar to Nickel Laterite Deposit.pptx

Class 3 xid-15234938_1
Class 3  xid-15234938_1Class 3  xid-15234938_1
Class 3 xid-15234938_1Jason Loxton
 
Chemical weathering and formation of clay minerals.pptx
Chemical weathering and formation of clay minerals.pptxChemical weathering and formation of clay minerals.pptx
Chemical weathering and formation of clay minerals.pptxIsmailKatun1
 
Ranking Light to Heavy Rare Earth Deposits Worldwide
Ranking Light to Heavy Rare Earth Deposits WorldwideRanking Light to Heavy Rare Earth Deposits Worldwide
Ranking Light to Heavy Rare Earth Deposits WorldwideRare Earths / Rare Metals
 
Me551:geo551 geology of industrial minerals 5
Me551:geo551 geology of industrial minerals 5 Me551:geo551 geology of industrial minerals 5
Me551:geo551 geology of industrial minerals 5 Tolun Vural
 
Economic geology - Supergene ore deposits
Economic geology - Supergene ore depositsEconomic geology - Supergene ore deposits
Economic geology - Supergene ore depositsAbdelMonem Soltan
 
Ore deposits (contact metamorphism)
Ore deposits (contact metamorphism)Ore deposits (contact metamorphism)
Ore deposits (contact metamorphism)knowledge
 
High level presentation on the geology of South Africa
High level presentation on the geology of South AfricaHigh level presentation on the geology of South Africa
High level presentation on the geology of South AfricaJames AH Campbell
 
Olamide's_SEMINAR_Reviewed
Olamide's_SEMINAR_ReviewedOlamide's_SEMINAR_Reviewed
Olamide's_SEMINAR_ReviewedOlamide Olabisi
 
Ocean Floor & Ocean Sediments
Ocean Floor & Ocean Sediments Ocean Floor & Ocean Sediments
Ocean Floor & Ocean Sediments M Bhatt
 
Lesson 7 Earth and Earth Resources - Mineral Resources.pptx
Lesson 7 Earth and Earth Resources - Mineral Resources.pptxLesson 7 Earth and Earth Resources - Mineral Resources.pptx
Lesson 7 Earth and Earth Resources - Mineral Resources.pptxBerniceCayabyab1
 
Clay Mineralogy.ppt
Clay Mineralogy.pptClay Mineralogy.ppt
Clay Mineralogy.pptssuser615d86
 
Extraction and Applications of Rare Earth Metals and Alloys (Uranium, Lithium...
Extraction and Applications of Rare Earth Metals and Alloys (Uranium, Lithium...Extraction and Applications of Rare Earth Metals and Alloys (Uranium, Lithium...
Extraction and Applications of Rare Earth Metals and Alloys (Uranium, Lithium...Ajjay Kumar Gupta
 

Similar to Nickel Laterite Deposit.pptx (20)

Komatiite
KomatiiteKomatiite
Komatiite
 
Class 3 xid-15234938_1
Class 3  xid-15234938_1Class 3  xid-15234938_1
Class 3 xid-15234938_1
 
Chemical weathering and formation of clay minerals.pptx
Chemical weathering and formation of clay minerals.pptxChemical weathering and formation of clay minerals.pptx
Chemical weathering and formation of clay minerals.pptx
 
lec17.ppt
lec17.pptlec17.ppt
lec17.ppt
 
Ranking Light to Heavy Rare Earth Deposits Worldwide
Ranking Light to Heavy Rare Earth Deposits WorldwideRanking Light to Heavy Rare Earth Deposits Worldwide
Ranking Light to Heavy Rare Earth Deposits Worldwide
 
Me551:geo551 geology of industrial minerals 5
Me551:geo551 geology of industrial minerals 5 Me551:geo551 geology of industrial minerals 5
Me551:geo551 geology of industrial minerals 5
 
SEDIMENTATION.ppt
SEDIMENTATION.pptSEDIMENTATION.ppt
SEDIMENTATION.ppt
 
Economic geology - Supergene ore deposits
Economic geology - Supergene ore depositsEconomic geology - Supergene ore deposits
Economic geology - Supergene ore deposits
 
Ore deposits (contact metamorphism)
Ore deposits (contact metamorphism)Ore deposits (contact metamorphism)
Ore deposits (contact metamorphism)
 
Mineral
MineralMineral
Mineral
 
High level presentation on the geology of South Africa
High level presentation on the geology of South AfricaHigh level presentation on the geology of South Africa
High level presentation on the geology of South Africa
 
Olamide's_SEMINAR_Reviewed
Olamide's_SEMINAR_ReviewedOlamide's_SEMINAR_Reviewed
Olamide's_SEMINAR_Reviewed
 
Geokniga Diamond Geology
Geokniga Diamond GeologyGeokniga Diamond Geology
Geokniga Diamond Geology
 
Ocean Floor & Ocean Sediments
Ocean Floor & Ocean Sediments Ocean Floor & Ocean Sediments
Ocean Floor & Ocean Sediments
 
Lesson 7 Earth and Earth Resources - Mineral Resources.pptx
Lesson 7 Earth and Earth Resources - Mineral Resources.pptxLesson 7 Earth and Earth Resources - Mineral Resources.pptx
Lesson 7 Earth and Earth Resources - Mineral Resources.pptx
 
Nickel_Processes.ppt
Nickel_Processes.pptNickel_Processes.ppt
Nickel_Processes.ppt
 
Clay Mineralogy.ppt
Clay Mineralogy.pptClay Mineralogy.ppt
Clay Mineralogy.ppt
 
Diagenesis of clay minerals
Diagenesis of clay mineralsDiagenesis of clay minerals
Diagenesis of clay minerals
 
Extraction and Applications of Rare Earth Metals and Alloys (Uranium, Lithium...
Extraction and Applications of Rare Earth Metals and Alloys (Uranium, Lithium...Extraction and Applications of Rare Earth Metals and Alloys (Uranium, Lithium...
Extraction and Applications of Rare Earth Metals and Alloys (Uranium, Lithium...
 
Residual Mineral Deposits
Residual Mineral DepositsResidual Mineral Deposits
Residual Mineral Deposits
 

Recently uploaded

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 

Recently uploaded (20)

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 

Nickel Laterite Deposit.pptx

  • 2. 1. Overview of Nickel and its deposits 2. What are nickel laterites 3. Description of a laterite profile 4. Chemical weathering of ultramafic rocks 5. Factors that influence laterite formation 6. Role of various elements during laterisation 7. Minerals associated with ultramafics and laterites 8. Physical and chemical properties of nickel laterites relevant to their exploitation 9. Processing of Nickel Laterites 10. Exploration strategy and Management of Nickel Laterite
  • 3.
  • 4.  Nickel was first discovered in 1751  Derived from German “kupfernickel”  false copper  Major uses of nickel:  Stainless steel 65%  Specialty alloys 12%  Plating 8%  Other uses 15%  Addition of nickel imparts corrosion resistance, and ability to withstand high temperatures and pressures  Primary nickel supply comes from newly mined ores  Secondary nickel supply comes from recycling scrap
  • 5.  Major Nickel producing companies: 1. Norilsk 243,000 t (19%) 2. CVRD Inco 221,000 t (17%) 3. BHP-Billiton 146,000 t (11%) 4. Falconbridge 114,000 t (9%) [Now Exstrata] 5. Jinchuan 93,000 t (7%) 6. Eramet 59,000 t (5%) 7. Sumitomo 51,000 t (4%)  Major Nickel producing countries: 1. Russia (Norilsk Nickel group) 2. Canada (CVRD Inco, Falconbridge, Sheritt) 3. Australia (BHP-B, Minara, Cawse, LionOre)
  • 6.  Sulphide nickel deposits  Nickel as nickel sulphide  pentlandite, millerite  Nickel ores processed through milling and smelting  Laterite nickel deposits  Oxide Ni deposits: Ni as hydroxide in the ferruginous zone  Clay silicate deposits: Ni as clay silicate  Hydrous silicate deposits: Ni as hydrous-silicate in saprolite  Nickel ores processed through pyro-metallurgy (smelting) or hydro-metallurgy (leaching)
  • 7. Mt Ore % Ni Contained Nickel Mt Relative % SULPHIDES 10,594 0.58 62 31% LATERITES 10,382 1.32 140 69% TOTAL 20,976 0.96 202 100% Excluding sea-based manganese nodules
  • 8. PRIMARY Ni PRODUCTION WORLD Ni RESOURCES SULPHIDE SULPHIDE LATERITE LATERITE 60% 40% 30% 70%
  • 11. Mt Resource %Ni Mt Ni % Caribbean 2785 1.26 35.0 25 New Caledonia 1890 1.52 28.7 20 Indonesia 1401 1.63 22.8 16 Philippines 1162 1.30 15.1 11 Australia 1144 0.95 10.9 8 Africa 800 1.33 10.7 8 C. & S. America 661 1.60 10.6 8 Other 539 1.08 5.8 4 Total 10382 1.34 140 100
  • 13.
  • 14.  Buchanan Hamilton introduced the term for the “brick stones” used by people in South India that hardened on exposure to the sun (Latin word “later” means brick)  Current use of the term “laterite” does not require this hardening characteristic  Nickel laterites are:  Residual soils  Rich in sesquioxides of iron with some nickel enrichment  Have developed over mafic/ultramafic rocks  Through processes of chemical weathering and supergene enrichment  Under tropical climatic conditions
  • 15.  A soil is a naturally occurring body made up of layers which differ from the parent material in their physical, chemical, mineralogical, biological and textural characteristics.  Soils are formed through several processes that include:  Addition through transportation  Removal at the top of the profile through erosion  Removal from the soil profile through leaching  Migration of elements through the soil profile (through leaching)
  • 16. TEMPERATURE HUMIDITY / RAINFALL TUNDRA Gray Desert and Sierozem Brown Chestnut Degraded Chernozem Brunizem PODZOL Brown Podzolic Gray-Brown Podzolic Red Desert Redd ish Bro wn Reddish Chestnut Reddish Prairie Red-Yellow Podzolic LATERITE Reddish brown Latosolic Yellowish brown Latosolic TUNDRA PODZOL Red Desert Degraded Chermozem Brunizem Brown Podzolic Gray-Brown Podzolic Reddish Prairie Red-Yellow Podzolic Yellow-brown Latsolic Reddish-brown Latsolic LATERITE Gray Desert & Sierozem Brown Chestnut Chemozem Reddish Brown Reddish Chestnut Dry Dry Wet Wet Cold Cold Hot Hot GREAT SOIL GROUPS OF THE WORLD
  • 17.  In stratigraphy, laterites represent unconformities (break in stratigraphic sequence)  Laterites make poor soils for agriculture  Laterites are source of metals:  Ni, Co, Cr, Fe (from laterites derived from ultramafic rocks)  Al (from laterites derived from aluminous rocks)
  • 18.
  • 19. P.T. INCO Development of weathering crust on a peridotite boulder (Sorowako)
  • 20. Red Laterite Yellow Laterite Saprolite zone Bedrock pinnacle
  • 21. Red Laterite Yellow Laterite Saprolite zone Bedrock Hematite zone Limonite zone Zone of altered bedrock (clayey matrix + boulders) Fresh bedrock Ferruginous Zone Intermediate zone
  • 22. Red Laterite Yellow Laterite Saprolite zone Bedrock • Fresh bedrock • Joints and fractures opening up as hydrostatic pressure is removed • Percolating rain water circulating along joint and fracture surfaces • Signs of incipient weathering • Original rock composition and texture fully preserved
  • 23.
  • 24. Red Laterite Yellow Laterite Saprolite zone Bedrock • Rock fragments + saprolised boulders + precipitated silica + garnierite • Chemical weathering proceeding actively along joints and fractures • Silica and magnesia being leached out • Rock porosity increasing with time • Bulk density decreasing with time • Zone still not collapsed • Original rock texture still preserved • Upper part more ferruginous than lower part • High SiO2 and MgO contents • Low Fe content • Zone of supergene Ni enrichment
  • 25.
  • 26.
  • 27. Red Laterite Yellow Laterite Saprolite zone Bedrock • Soft smectite clays + silica • Chemical weathering (silica & magnesia leaching) extremely advanced • Rock porosity at its maximum • Bulk density at its lowest • Zone is ready to collapse • Moisture content at its highest • Original rock texture barely discernible • Upper part more ferruginous than lower part • Often the preferred location for Mn and Co enrichment
  • 28. Red Laterite Yellow Laterite Saprolite zone Bedrock • Zone rich in hydrated Fe oxides + • Chemical weathering near complete • Silica and magnesia fully leached out • Residual concentrations of other elements at near maximum • Rock porosity decreasing with time • Bulk density increasing with time • Zone is collapsed • Original rock texture obliterated
  • 29. Red Laterite Yellow Laterite Saprolite zone Bedrock • Zone rich in hematite and less hydrated Fe oxides (goethite) • Chemical weathering complete • Silica and magnesia fully leached out • Residual concentrations of other elements at maximum • Rock porosity decreasing with time • Bulk density increasing with time • Zone is completely collapsed • Original rock texture obliterated • Further changes include formation of duricrust (ferricrete or silcrete)
  • 30. 0 5 10 15 20 DEPTH (m) WEST BLOCK UNSERPENTINISED EAST BLOCK SERPENTINISED Limonite Overburden Iron cap Limonite ore Saprolite Ore Bedrock
  • 31. 0 20 40 DEPTH (m) SILICATE (eg New Caledonia) CLAY (eg Murrin Murrin) OXIDE (eg Moa Bay) Cuirasse Red limonite Yellow limonite Earthy ore Ore with boulders Rocky ore Bedrock Bedrock Saprolite (Serpentine, chlorite, smectite) Smectite zone Ferruginous zone Colluvium Bedrock Saprolite Limonite Limonite overburden Iron cap
  • 32. Ferricrete Limonite Nontronite Saprolite %Ni .2 -.5 .6-1.4 1.2 .4 %Co .02 .1-.2 .08 .02 %Mg .6 1-2 3.5 12.0 %Fe 35+ 45 18 9 Ferricrete Limonite Nontronite Saprolite Altered Peridotite WA Laterite Profile Dryer Climate (Western Australia) Humid Climate (Indonesia hills) %Ni .2 -.5 1.2-1.7 1.5 -3 %Co .02 .1-.2 .05-.1 %Mg .6 1-2 10-20 %Fe 35+ 45 10-25 %Ni .2 -.5 1.2-17 1.5-3 %Co .02 .1-.2 .05-.1 %Mg .6 1 -4 10-30 %Fe 35+ 45 10-20 Humid Climate (Goro Plateau)
  • 34.
  • 35. TERMINOLOGY  Rich in mafic (ferro-magnesian) minerals  Generally contain less than 45% SiO2 (except pyroxenite)  Colour indices of more than 70  Generally lack any feldspar  No exact counterpart among lavas (extrusive rocks)  The density of ultramafic magma is too high to rise through the sialic portion of the crust FORMATION  Crystal settling (by gravity) in a magma chamber (layered intrusions)  Intrusion of hot, semi-solid, crystalline mass (dykes, lenses, stocks)  Through obduction of oceanic crust upon continental landmass in orogenic belts
  • 36. DUNITE  Monomineralic rock composed entirely of olivine. Originally seen at Dun Mountain in New Zealand PYROXENITE  Monomineralic rock composed entirely of pyroxene  Orthopyroxenites: Bronzitites  Clinopyroxenites: Diopsidites; diallagites HORNBLENDITES  Monomineralic rocks composed entirely of hornblende SERPENTINITE  Monomineralic rock composed entirely of serpentine PERIDOTITE  Ultramafic rocks containing olivine and other mafic minerals  Pyroxene peridotite / Hornblende peridotite / Mica peridotite
  • 39.
  • 40.  Ni in ultramafic rocks is primarily in mafic minerals  High in olivines (0.2 – 0.3% Ni)  Low in orthopyroxenes (0.05 – 0.1% Ni)  Very low in clinopyroxenes (< 0.05% Ni)  Thus, decrease in the olivine content of the ultramafic reduces the overall nickel content of the rock:  Highest Ni grades in dunites  Lower Ni grades in peridotites  Lowest Ni grades in pyroxenites  Ni in mafic minerals is largely as a replacement of Mg  Ni in mafic minerals falls with the order of crystallisation  Some Ni may exist as replacement of the larger Fe atoms  Primary chromite and magnetite may contain minor Ni
  • 41. Four major processes under which rocks change their physical or chemical properties:  Melting (at very high temperatures)  Metamorphism (high temperatures / pressure / addition)  Hydrothermal alteration (through high-temperature fluids)  Weathering (at ordinary temperatures and pressure) Types of weathering:  Physical (mechanical breakdown of rocks) ▪ erosion, thermal expansion/contraction, action of plants  Chemical (breakdown of rocks through chemical processes) ▪ contact with water, oxygen, carbon dioxide, etc.
  • 43. “The process in which rocks react to atmospheric, hydrospheric and biologic agencies to produce mineral phases that are more stable” 1. Hydrolysis Oxygen, carbon dioxide, ground water, dissolved acids attack the minerals in the rock 2. Oxidation Elements released by chemical weathering are oxidised 3. Hydration Reaction with water adds the hydroxyl ion to newly formed minerals 4. Solution The more soluble products of weathering are dissolved and removed And the cycle continues .....
  • 44. RAIN AND THUNDER STORMS Nitrous oxides, CO2 HUMOUS (Organic) LAYER WATER TABLE ZONE OF OXIDATION (Reducing conditions) (Reducing conditions) Acidic Rain Acidic Rain
  • 45.  The sum of negative and positive charges are equal within a crystal (Pauling’s Rule)  However, exposed atoms and ions on crystal surfaces possess unsaturated valencies and are thus charged  Water molecules are attracted to the charged surfaces  Attractive forces cause polarisation of water into H+ and OH- ions  Hydroxyl (OH)- ions then bond to exposed cations  Hydrogen ions (H)+ bond to exposed oxygen and other negative ions  In the case of silicates, H+ attacks the Si-O-Si bonds and releases silica as orthosilicic acid (H4SiO4)
  • 46.  Common oxidising agent in the soil is oxygen dissolved in ground water  Much of ferrous ions in the weathering profile are converted to ferric state under highly oxidising conditions.  Oxidising conditions exist only above the water table  Below the water table, conditions are generally reducing  Organic matter at the very top may also create reducing conditions  Hot, well-drained environment favours oxidation through the destruction of organic matter and lowering of water table  Cool, poorly-drained environment promotes accumulation of organic matter and reducing conditions
  • 47.  In the presence of Hydroxyl ion (OH)-, freshly created oxides are converted to hydroxides  The more common hydroxides found in lateritic soils include:  Hydrated iron oxides: Goethite / Limonite  Hydrated Aluminum oxides:Boehmite / Bauxite / Gibbsite  Hydrated manganese oxides: Pyrochroite / Manganite / Psilomelane  Many new secondary mafic minerals are formed due to hydration:  Serpentine /Talc / Chlorite  Hydration also results in the formation of clay minerals:  Kaolinite; Halloysite; Illite; Smectites; Saponite
  • 48.  For chemical weathering to continue, broken down constituents must be removed  Solution of broken down constituents exposes new surfaces  Dissolved constituents are removed by percolating ground waters  Ground waters generally travel from top to bottom in a weathering profile  Dissolved constituents are eventually drained out to rivers, lakes and the ocean  The relative proportions of dissolved constituents in ground water confirm the relative solubilities of various oxides in the laboratory  Dissolved CO2 in ground water is a very strong leaching agent
  • 49.  Solubilities of some minerals:  Halite (NaCl): 3005 g/litre  Gypsum (CaSO4.2H2O): 1.8 g/litre  Silica gel: 0.12 g/litre  Quartz (SiO2): 0.007 g/litre  Relative solubilities of some minerals (Paul Golightly):  Forsterite  Enstatite  Serpentine  Talc  Amorphous silica  NickelTalc (Kerolite)  Gibbsite  Goethite Highly soluble Highly insoluble
  • 50.  Polynov’s estimate of elemental mobilities:  Hudson’s estimate of elemental mobilities Cl > SO4 > Na > Ca > Mg > K > Si > Fe+++ > Al  Berger’s estimate of hydroxide mobilities: Cl SO4 Ca++ Na+ Mg++ K+ SiO2 Fe2O3 Al2O3 100 57.0 3.0 2.4 1.3 1.25 0.2 0.04 0.02 Soluble Supergene Residual Mg Mn++ Co++ Ni++ Al+++ Cr+++ Fe+++ 3.1 1.3 -1.7 -3.2 -15.3 -16.4 -18.1
  • 51.  Highly soluble and highly mobile  Easily leached out of the laterite profile  Taken to lakes, rivers and the sea Ca, Na, Mg, K, Si  Limited solubility –— Supergene enrichment  Partly soluble in acidic ground water  Insoluble in the presence of more soluble elements (Si, Mg) Ni++, Co++, Mn++  Non soluble and residual  Insoluble in ground waters at ordinary pH / Eh conditions  Make up bulk of the residual soil Al+++, Fe+++, Cr+++,Ti, Mn+++
  • 52. Forsterite: 2MgO.SiO2 (MgO = 57.3%)  Highly unstable in weathering environment  Individual SiO4 tetrahedra are weakly bonded by cations  Magnesia is highly soluble in ground water  Release of magnesia breaks down the Olivine structure  Breakdown of Olivines releases various cations:  Mg, Fe, Al, Ni, Mn Sorowako Olivine: • FeO = 9.0% • Al2O3 = 0.4% • NiO = 0.37% • MnO = 0.12% • Cr2O3 = 0.02% • TiO2 = 0.02% Replacements
  • 53. Enstatite: MgO.SiO2 (MgO = 40.2%)  Relatively unstable in weathering environment (but < Olivine)  Individual SiO4 tetrahedra are bonded by shared Oxygen  Magnesia is highly soluble in ground water  Release of magnesia breaks down the Pyroxene  Breakdown of Pyroxenes releases various cations:  Mg, Fe, Al, Ca, Cr, Mn, Ni Sorowako Pyroxene: Opx Cpx • FeO = 6.0 2.5 • Al2O3 = 3.2 3.5 • CaO = 1.9 21.7 • NiO = 0.08 0.05 • MnO = 0.13 0.08 • Cr2O3 = 0.58 0.86 • TiO2 = 0.05 0.09 Replacements
  • 54.  Serpentine: 3MgO.2SiO2.2H2O [H4Mg3Si2O9]  Magnesia is leached out first, leaving behind a silica enriched phase or montmorillonite and chlorite  Ni can replace the magnesium being leached.This results in the formation of:  Nickeliferous serpentine  Through a similar process, nickel is also fixed inTalc, Chlorite, and Smectite  Eventually, montmorillonite and chlorite also break down, releasing remaining magnesia and silica and forming iron sesquioxides
  • 55. Course of Laterisation MgO SiO2 FeO or F2O3 Bedrock Soft Saprolite Hard Saprolite All compositions are shown in terms of the three oxides PATH OF LATERISATION Limonite
  • 56. Highly Mobile Ca, Na, K, Mg Less Mobile Si Non-Mobile Fe, Al, Cr, Ti Olivine Opx Cpx Montmorillonite Illite Nontronite Goethite Siliceous Nontronite Ultramafic Rocks
  • 57. Course of Laterisation MOBILE vs. NON-MOBILE ELEMENTS IN COMMON MINERALS ASSOCIATED WITH LATERITES 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 NON-MOBILE ELEMENTS (Al2O3 + Fe2O3) MOBILE ELEMENTS (Na2O+K2O+CaO+MgO+SiO2) Halloysite Kaolin Illite NATURAL OLIVINES & PYROXENES Serpentine CLAYS & CHLORITE HYDROXIDES OF Al AND Fe Clinochlore Montmorillonite Hematite Parent rock Saprolite with clays having low Fe & Al Saprolite & intermediate zone with clays having high Fe & Al Hydroxides of aluminium and iron (yellow & ochre colour) Red laterite Nontronite
  • 58. Dunite Goethite Mineral Olivine Goethite Composition (Mg,Fe)2SiO4 Fe2O3.H2O Block size, m. 1 x 1 x 1 1 x 1 x 0.32 Particle density 3.2 4.4 Dry Bulk Density 3.2 1.1 Fe content, % 5.5% 50% Kg of Fe 176 176 Dunite Goethite Volume of Goethite = Dunite: density x % Fe Goethite: density x % Fe = = 17.6 55.0 0.32 1.0 m 0.32 m
  • 59. CaO = 0.5% Na2O = 0.1 K2O = 0.1 MgO = 45% SiO2 = 41% MnO = 0.1% CoO = 0.005% NiO = 0.4% Al2O3 = 1.1% Cr2O3 = 0.5% Fe2O3 = 10% Highly mobile; quickly leached. (87%) Less mobile; supergene enrichment. Non-mobile; residual concentration. Acidic Rain 1m 3m Ultramafics (< 1%) (12%) Limonite
  • 60.
  • 61. WEATHERING SYSTEM Temperature Rainfall Acidity of rain Seasonality ATMOSPHERIC BIOSPHERIC HYDROSPHERIC LITHOSPHERIC COMBINATION Vegetation type Decay intensity Microbial activity Human activity Water availability Water absorption Up/down movement Porosity/drainage Water table position Water table fluctuation Geomorphology Rock composition Mineral grain size Mineral stabilities Porosity Fractures & joints pH (acidity) Eh (Redox) Rate of removal Time duration FACTORS THAT INFLUENCE CHEMICAL WEATHERING
  • 62.  TEMPERATURE  Each 10 C change increases weathering speed by 2-3 times  Chemical weathering in tropics is 20-40 times higher than in temperate regions  RAINFALL  Acidity of rain (dissolved CO2, Nitrous oxides)  Amount of precipitation (higher rainfall = higher leaching)  Seasonality:Constant humid vs.Wet/dry seasonal  EFFECT OF CLIMATE  Hematitic soils develop in hot and dryer climate  Goethitic/limonitic soils develop in hot and wet climate  Hot and humid climate leads to complete leaching of SiO2 & MgO  Seasonal wet/dry climate leads to formation of smectites  Climate can vary considerably over time [fossil laterites]
  • 63. Rainfall, 0 – 3,000 mm Temperature, 0 - 30ºC Tundra Taiga (Northern Forests Steppes Semi-desert & Desert Savannas Savannas Tropical Fe/Al K I/M K I/M Bedrock with incipient chemical alteration Legend: Fe/Al: Oxides/Hydroxides K: Kaolinite clays I/M: Illite/Montmorillonite SOILS & RELATIVE DEPTH OF WEATHERING
  • 64.  Tropical climate leads to rapid decay of biological matter  Microbial activity hastens the decay process  Vegetation decay forms various organic acids: humic, carbonic, fulvic, crenic, apocrenic, oxalic and lichenic acids  Presence of organic matter creates reducing conditions (assists the conversion of ferric to ferrous iron)
  • 65.  WATER ABSORPTION  WATERTABLE  Vadose zone: lying above the water table. This zone is wetted by meteoric water that comes from above. Zone of non-saturation. Zone of oxidation.  Phreatic zone: lying below the water table. This zone is wetted by water held in pore spaces. Zone of saturation. Zone of reduction.  FLUCTUATION OFWATERTABLE  Assists greatly in flushing the laterite of dissolved material  Controls supergene enrichment of Mn and Co
  • 66.  The position of water table depends on:  Amount of rainfall  Ground porosity/permeability  Topographic characteristics  Permanently High water table  Much of rock filled with water  Less oxygen being supplied  Permanently Low water table  Likely less rainfall and little ground water to attack minerals  Slow removal of dissolved material  Fluctuating water table  Varying zones of oxidation and reduction  Frequent flushing of system to remove dissolved material
  • 67.  PARENT ROCK COMPOSITION  Rocks high in Fe yield iron laterites (mafic / ultramafic)  Rocks high in Al yield aluminous bauxites (syenites / trachytes)  Rocks with some nickel content yield nickeliferous laterites  Unserpentinised peridotites are more susceptible to weathering than serpentinised peridotites  MINERAL GRAIN SIZE  Coarse-grained rocks are more susceptible to weathering  FRACTURES / FAULTS / JOINTS  Provide access to acidic ground waters; assist in removal of dissolved material  STABILITYOF MINERALS  Process of chemical weathering leads to the formation of secondary minerals that are increasingly more stable
  • 68. Olivine Ortho-pyroxene Clino-pyroxene SiO2 40 55 – 62 50 – 53 TiO2 0.02 – 0.05 0.02 – 0.05 0.1 – 0.6 Al2O3 0.4 – 0.6 1.7 – 3.2 3 – 4 Cr2O3 0.02 – 0.2 0.6 0.8 – 0.9 Fe2O3 All iron reported as FeO FeO 8 – 10 5 – 6 2.5 – 4.0 MnO 0.12 – 0.16 0.1 0.1 NiO 0.3 – 0.5 0.06 – 0.1 0.05 – 0.07 CoO 0.01 – 0.02 0.006 0.003 MgO 47 – 51 32 – 35 18 – 22 CaO 0.04 – 0.07 1 – 2 17 – 22
  • 69. Olivine Augite Hornblende Biotites Ca-Plagioclase Na-Plagioclase K-Feldspar Muscovite Quartz Goldich (1938) determined the following sequence of decreasing weathering susceptibilities for the common rock-forming minerals
  • 70.  In general, crystal structure of mafic silicates controls weathering:  Olivine, with its independent silicon tetrahedra is the most unstable  Pyroxenes, with polymerised chains, are more stable  Amphiboles, with their ring structures, are still more stable  Clays and micas with sheet-like structure are the most stable  Reiche (1943) devised aWeathering Potential Index: Mineral WPI Mineral WPI Forsterite 66 Biotite 22 Enstatite 55 Orthoclase 12 Anthophyllite 40 Quartz 0 Augite 39 Muscovite -10.7 Hornblende 36 Kaolinite -67 Talc 29 Gibbsite -300
  • 71. Ultimate stable residuum Hematite [Fe2O3] Goethite [Fe2O3.H2O] Limonite [Fe2O3.3H2O] Boehmite [Al2O3.H2O] Bauxite [Al2O3.2H2O] Gibbsite [Al2O3.3H2O] Secondary minerals Kaolinite Smectites Kaolinite Primary minerals Olivine Pyroxene Plagioclase Alkali Feldspars Increased Leaching
  • 72.  The progression of clay minerals generally follows the line of reduction of leachable components (SiO2, MgO): Type of clay % Leachables % Non-leachables Nontronite 38.0 (SiO2) 50.6 (Fe2O3) Halloysite 40.8 (SiO2) 34.6 (Al2O3) Kaolinite 46.5 (SiO2) 39.5 (Al2O3) Siliceous nontronite 57.5 (SiO2) 38.2 (Fe2O3) Montmorillonite 62.3 (CaO, MgO, SiO2) 18.3 (Al2O3) Clinochlore 68.7 (MgO, SiO2) 18.3 (Al2O3)
  • 73.  Control of water absorption  High water run-off on steep slopes  High water absorption on moderate & gentle slopes  Water logging and saturation in basin areas  Rate of sub-surface drainage and removal of dissolved  Rate of erosion  Control of laterite preservation  Slopes of <15% are generally required to preserve the laterite  Ideal landforms for laterite development & preservation  Rolling to gently sloping morphology  Elevated area  Surface runoff is not excessive  Sub-surface drainage is good
  • 74. Steep Hill Depression / basin Gentle Hill Plateau River Terrace Dissected Plateau
  • 75.  pH of normal waters lies between 4 and 9  Most oxides show some solubilities in natural waters  Oxides of Ca, Mg, Na and K are completely soluble  Oxides ofTi,Al, and Ferric iron (Fe+++) are insoluble  Solubilities of many oxides are pH dependent:  Ti, Ca, Fe++ iron  Alumina is not soluble in the normal ground water pH  Alumina is soluble at pH < 4 and at pH > 10  With abundant organic matter available, pH may drop to < 4  Plant roots carry low pH values, commonly 4 but down to 2  Where abundant basic minerals are being weathered (olivine, pyroxene, nepheline), pH conditions may climb to beyond 9
  • 76.  Redox Potential of a system is a measure of the ability to bring about reduction or oxidation reactions  Reduction: decrease in the positive valency of an element (Fe+++ to Fe++) or an increase in the negative valency of an element  Oxidation: increase in the positive valency of an element (Fe++ to Fe+++) or the decrease in the negative valency of an element  The neutral value of Redox Potential is zero  At lower values (-), the R. Potential represents reducing conditions  At higher values (+), the R. Potential represents oxidising conditions  Two factors control the Redox Potential during weathering:  Atmospheric oxygen (creates oxidising conditions)  Organic matter (creates reducing conditions)
  • 77. 2 4 6 8 0 10 12 14 1.0 - 0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6 0.8 Fe++ Fe+++ Fe++ Fe+++ O2 H2 H2O H2O Natural Environments Eh pH Reducing Oxidising Acidic Alkaline
  • 78.  Laterisation rate based on mineral solubilities:  1mm/100 years; 1m/100,000 years; 10m/million years  Laterisation rate based on drainage water compositions (P. Golightly, 1979)  1.4mm/100 years; 1.4m/100,000 years; 14m/million years  Chemical weathering in New Caledonia (Trescases, 1975)  2.9-4.7mm/100 years  Chemical weathering in Africa (Tardy, 1969)  0.5-3.3mm/100 years  Chemical weathering tends to slow down with time  Interruptions in chemical weathering  Fossil laterites
  • 79. Water table Water table Regolith Weathering Front Thick Regolith due to soil preservation Thick Regolith due to deposition of transported soil Thin Regolith due to soil erosion
  • 80.
  • 81.  Ca  Na  Mg High mobility; mostly leached out  K  Si  Mn  Co Medium mobility; supergene enrichment  Ni  Al  Cr No mobility; residual enrichment  Fe
  • 82.  Ca is present essentially in clinopyroxenes  Ca in olivines = maximum 1%  Ca in Orthopyroxenes = maximum 2%  Ca in clinopyroxenes = 22% at Sorowako; 18% at Goro  Ca is extremely soluble in ground water  Practically all Ca is leached out in the early stages of laterisation  Final laterite residuum (goethite/limonite) have Ca generally < 0.05%
  • 83.  Na and K present in ultramafic rocks in extremely small quantities (< 0.1% each)  Na and K are highly soluble in ground waters and are quickly leached out of original ferromagnesian minerals  All Na goes to the rivers/lakes/sea  K is preferentially fixed in clay minerals (vermiculite, montmorillonite, chlorites, micas, illites)  Relative abundance of Na and K: Wt.% in earth’s crust Wt.% in Igneous rocks Wt.% in sea water Na 2.8 2.29 1.08 K 2.6 2.22 0.04
  • 84.  Magnesia is present in Olivine, Pyroxene and Serpentine  Olivine = 57%; Enstatite = 40%; Serpentine = 44%  Magnesia is released by the breakdown of ferromagnesian minerals  Magnesia is highly soluble in ground water  It is the first major component to be leached out in large quantities  Some magnesia may stay in the laterite profile to form clay minerals and nickel hydrosilicates  Final products of lateritic weathering (hematite/goethite/ limonite) do not contain any magnesia
  • 85.  Silica is present in Olivine, Pyroxene and Serpentine  Olivine = 43%; Enstatite = 60%; Serpentine = 43%  Silica is released by the breakdown of ferro- magnesian silicates  In humid environments, laterite is constantly flushed and little silica gets fixed as smectite/nontronite clays  In wet-dry environments, flushing of laterite profile is poor and silica gets fixed as smectite/nontronite clays in the Intermediate Zone  In the alkaline environment (where MgO is being released), silica can precipitate from solution as amorphous silica (silica veins, boxwork, coatings)
  • 86. 0 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 50 55 % Fe % SiO2, % MgO SiO2 MgO
  • 87.  Iron in ultramafics: Ferrous Ferric  In olivine (MgO.FeO.SiO2) : Fe++  In pyroxene (MgO.FeO.2SiO2) : Fe++  In chromite (FeO.Cr2O3) : Fe++  In ilmenite (FeO.TiO2) : Fe++  In magnetite (FeO.Fe2O3) : Fe++ Fe+++  Fe in mafic minerals causes great instability during weathering  Breakdown of mafic minerals releases Ferrous ions  Ferrous ions are quite soluble and mobile  Ferrous ions get quickly oxidised to ferric ions, as:  Hematite / Maghemite,Goethite, Limonite  Iron in primary magnetite and ilmenite oxidises to form:  Hematite / Maghemite,Goethite, Limonite
  • 88.  Favourable conditions for the formation of hematite and goethite (Kampf and Schwertmann, 1983): Temperature Excess Moisture Soil Carbon pH Altitude Hematite High Low Low High Low Goethite Low < 15 C High > 1000mm High > 3% Low High
  • 89.  Alumina is present in:  Pyroxenes (as impurity and as solid solution)  2-4%  Common Spinel (MgO.Al2O3)  On the breakdown of pyroxenes, alumina is temporarily fixed in the chlorites (Clinochlore: 5MgO.Al2O3.3SiO2.4H2O)  After the breakdown of chlorites, alumina is fixed in gibbsite (Al2O3.3H2O)  Alumina is very insoluble in ground water in the pH range commonly found (4 – 9)  Al+++ and Fe+++ are truly residual elements in laterites
  • 90.  Chromite occurs in ultramafics as  Accessory chromite: FeO.Cr2O3  Ionic replacement of Mg and Fe in Olivines and pyroxenes  Trivalent Cr3+ in chromite is insoluble and very stable  Divalent Cr2+ in ferromagnesian minerals is soluble and mobile  Some Cr2+ is oxidised to Cr3+ and thus stabilised  Some Cr2+ is oxidised to Cr6+ as hexavalent oxide (CrO3) or hexavalent chromate (CrO4)2-  Some hexavalent chrome may naturally get reduced to trivalent chrome  Remaining hexavalent chrome may be released to the natural environment where it is extremely toxic (carcinogenic)
  • 91.  Nickel is present in ferromagnesian minerals as ionic replacement of Mg and Fe  Olivines: 0.3%  Orthopyroxenes: 0.1%  Clinopyroxenes: 0.05%  Serpentines: inherited from the primary mafic mineral  After breakdown of mafic minerals, Ni is released  Ni is soluble in percolating acidic waters  Ni is insoluble in alkaline waters in the saprolite zone  Ni is precipitated as hydrous nickel silicate with serpentine, chlorite or clay structure  Some nickel is adsorbed or enters the goethite structure
  • 92.  Minor amounts of Mn and Co are present in the mafic minerals (Olivine and Pyroxene)  On the breakdown of mafic minerals, Mn and Co are released  Mn and Co are slightly soluble in acidic waters at the top of the laterite profile  Mn and Co are very insoluble in alkaline waters  Mn and Co concentrate at the bottom of the Limonite Zone  Much of Cobalt is tied to the manganese wad
  • 93. 0 5 10 15 20 25 30 35 40 45 50 -6 -4 -2 0 2 4 6 8 10 12 14 DEPTH IN METRES PERCENTAGES Transition zone Fe SiO2 AlO2O3 MgO LIMONITE SAPROLITE
  • 94. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -6 -4 -2 0 2 4 6 8 10 12 14 DEPTH IN METRES PERCENTAGES Transition zone Cr2O3 MnO Co Ni Supergene Ni enrichment LIMONITE SAPROLITE
  • 95. Original Bedrock Limonite Zone Concentration Factor Ni 0.28 1.00 3.6 Fe 6.0 50.0 8.3 Co < 0.007 0.131 18.7 SiO2 40.9 2.3 Leached out MgO 35.3 1.5 Leached out Al2O3 1.13 8.5 7.5 Cr2O3 0.45 3.44 7.6 MnO 0.13 1.25 9.6 TiO2 0.01 0.086 8.6
  • 96.
  • 97. +1 +2 +3 Spinels +4 +5 +6 Al2O3 CaO CoO Co2O3 Cr2O3 CrO3 (CrO4) FeO Fe2O3 Fe3O4 K2O MgO MnO Mn2O3 Mn3O4 MnO2 Na2O NiO P2O5 SiO2 TiO
  • 101. Sorowako Unserp. Poro Harzburg. Tiebaghi Harzburg. Goro Olvine Goro Olivine SiO2 40.3 40.8 39.2 39.9 40.9 TiO2 0.02 0.016 0.046 Al2O3 0.41 0.38 0.63 Cr2O3 0.02 0.21 0.08 Fe2O3 All iron reported as FeO FeO 8.92 7.8 9.0 7.95 10.27 MnO 0.13 0.12 0.157 NiO 0.37 0.5 0.3 0.356 0.304 CoO 0.013 0.010 0.019 MgO 50.8 49.2 51.4 51.4 47.1 CaO 0.07 0.039 0.69 Totals 101.28 98.3 99.9 100.84 100.2
  • 102.  Forsterite crystallises first (higher melting temperature)  If the olivine is allowed to react with the liquid magma, it will change its composition towards ferrous olivine  As the larger ferrous cations replace the smaller Mg cations, the melting temperature is progressively reduced  If the original magma has more silica than can be used by the olivines (> 40%), then the more siliceous mafic minerals such as pyroxenes will be formed  Olivines can take up to 0.5% of NiO (0.4% Ni)  Ni occurs as replacement of Mg atoms by Ni atoms
  • 103.  General Formula: R2Si2O6 or RO.SiO2  Orthopyroxenes:  Enstatite: MgSiO3  Ferrosilite: FeSiO3  Hypersthene: (Mg,Fe)SiO3  Clinopyroxenes:  Diopside: (Ca,Mg)SiO3  Augite: (Ca, Mg, Fe)SiO3 Wo (Ca) En (Mg) Fs (Fe) Orthopyroxenes Pigeonite Augite Diopside Ferro- augite
  • 104. Soroako Unserp Opx Goro Opx Poro Harzburg. Opx Tiebaghi Harzburg. Opx Soroako Unserp. Cpx Goro Cpx SiO2 55.1 55.9 60.1 61.8 53.2 50.5 TiO2 0.05 0.022 0.09 0.55 Al2O3 3.23 1.72 3.47 4.09 Cr2O3 0.58 0.57 0.86 0.916 FeO 5.79 5.3 5.8 5.4 2.52 3.96 MnO 0.13 0.13 0.08 0.105 NiO 0.076 0.073 0.1 0.06 0.05 0.074 CoO 0.006 0.006 <0.006 0.003 MgO 33.5 35.1 34.7 32.7 18.5 22.3 CaO 1.86 1.04 21.7 17.65 Totals 100.7 99.97 100.7 99.96 101.1 101.5
  • 105. MgO SiO2 H2O Fo En Talc Serpentine Alteration of Forsterite +800°C: Fo to En 625-800°C: Fo to En to Talc 500-625°C: Fo to Talc 200-500°C: Fo to Serpentine Hydro thermal Magmatic
  • 106. 0 50 100 150 200 250 300 350 0 2 4 6 8 10 12 14 16 18 20 DEPTH, kilometres Temperature, Celcius Volcanic Areas Average Earth Thick Continent Heat Gradients: Volcanic Areas: 1 ºC / 10m Average Earth: 1 ºC / 30-35m Thick Continental crust: 1 ºC / 100m
  • 107.  Olivine Serpentine Mg2SiO4 H4Mg3Si2O9 2(MgO).SiO2 3(MgO).2SiO2.2H2O D = 3.2 D = 2.2 – 2.4 In terms of equivalent MgO content: 6(MgO).3SiO2 6(MgO).4SiO2.4H2O  Process of serpentinisation involves:  Addition of water  Addition of silica (or removal of MgO)  Release of FeO and its oxidation to Fe3O4 (magnetite)  Lowering of bulk density (increase in volume)
  • 108.  Lizardite: (not the same as serpentinite)  Most common form  Massive  Antigorite:  Micaceous, foliated, lamellar, columnar form  Lamellae are stiff and brittle  Chrysotile:  Delicately fibrous  Fibres are flexible and easily separable  Occurs in veins or matted masses  Most common constituent of commercial “asbestos”  Hazardous to human health if fibres are inhaled
  • 109.  Talc  H2Mg3Si4O12 (4.8% LOI)  Sepiolite  H4Mg2Si3O10 (12.1% LOI)  High-water Sepiolite  H10Mg4Si6O21 (14.7% LOI)  Saponite  H32Mg9Al2Si10O48 (21.3% LOI)  Iddingsite  H8MgFe2Si3O14 (15.9% LOI)
  • 110. Chlorite (clinochlore) falls in composition in between serpentine and amesite:  Serpentine H4Mg3Si2O9 (13.0% LOI)  Clinochlore H8Mg5Al2Si3O18 (13.0% LOI)  Amesite H4Mg2Al2SiO9 (12.9% LOI)
  • 111. MgO.FeO SiO2 Al2O3 Prochlorite Serpentine Penninite Amesite Chlinochlore Penninite, Chlinochlore and Amesite have 13% water of hydration that is not shown in the ternary plot Chlorite compositions
  • 112. SPINELS: RO.R2O3 [R=Fe, Mg, Mn, Ni, Zn] [R2=Al, Fe, Cr, Mn]  Magnetite: Fe3O4 (FeO.Fe2O3) [Fe=72.3%]  Chromite: FeCr2O4 (FeO.Cr2O3)  Common spinel: MgAl2O4 (MgO.Al2O3) OXIDES:  Hematite: Fe2O3 [Fe=69.9%]  Maghemite: Fe2.66 O4 [Fe=69.9%]  Silica: SiO2
  • 113. SPINELS MgO R2O3 FeO (MgO.Fe2O3) Magnesioferrite (MgO.Al2O3) Spinel Chromite (FeO.Cr2O3) Magnetite (FeO.Fe2O3) Hercynite (FeO.Al2O3)
  • 115.  Hematite – Fe2O3  Non-magnetic  Formed through reduction of Ferric Hydroxides  Gives the laterite its distinctive “red” colour (laterite rouge)  Maghemite –Fe2O3 — Fe3O4  Magnetic variety of hematite  Partial reduction of hematite through forest fires?  Crystal structure closer to that of magnetite (Fe2.66 O4)  Iron deficiency in structure amounts to 11.33%  The spinel structure of maghemite inverts to the hematite structure on heating
  • 116.  Hydroxides of Iron: H2O+  Turgite Fe2O3.0.5H2O 5.3%  Goethite Fe2O3.H2O 10.1%  Hydrogoethite Fe2O3.1.33H2O 13.1%  Limonite Fe2O3.1.5H2O 14.5%  Xanthosiderite Fe2O3.2H2O 18.4%  Esmeraldaite Fe2O3.4H2O 31.1%  Hydroxides of Aluminium:  Boehmite Al2O3.H2O 15.1%  Bauxite Al2O3.2H2O 26.1%  Gibbsite Al2O3.3H2O 34.7%  Hydroxide of Magnesium  Brucite MgO.H2O 30.9
  • 118. Al2O3 H2O Fe2O3 Hematite Boehmite Goethite Limonite Xanthosiderite (Lim) Esmeraldaite (Lim) Aluminum Sesquioxide Iron Sesquioxide Bauxite Gibbsite 1 H2O 2 H2O Gibbsite : Al2O3.3H2O Bauxite: Al2O3.2H2O Boehmite: Al2O3.H2O Corundum: Al2O3 Esmeraldaite: Fe2O3.4H2O Xanthosiderite: Fe2O3.2H2O Limonite: Fe2O3.1.5 H2O Goethite: Fe2O3.H2O Hematite: Fe2O3 Corundum Group name “Limonites”
  • 119. 3 – 6m 6 – 9m 9 – 12m SiO2 1.61 1.33 2.71 TiO2 0.08 0.18 0.09 Al2O3 10.24 11.13 11.95 Cr2O3 3.25 3.37 3.15 Fe2O3 71.96 70.23 68.79 MnO2 0.08 0.04 0.08 NiO 0.41 0.36 0.13 CoO MgO 0.48 0.46 0.47 CaO 0.02 0.01 0.01 LOI ? ? ? Totals 88.26 87.13 87.41
  • 120.  Asbolane or manganese wad is black and amorphous  It occurs as thin coatings on joints, fractures and occasionally as nodules and beads  The material is rich in manganese and contains appreciable quantities of Fe2O3, Al2O3, CoO and NiO  Significant amount of water of hydration may be present (12% in a sample from New Caledonia) Soroako Lim. 3-6m Soroako Lim. 6-9m Soroako Lim. 9-12m Soroako Saprolite New Caledonia Al2O3 9.0 15.0 7.0 3.5 19.2 Fe2O3 18.4 14.3 36.0 14.2 16.0 Mn2O3 31.0 33.6 33.0 32.0 39.3 NiO 1.7 3.4 2.3 16.2 n.a. CoO 7.1 7.4 5.0 3.2 7.0
  • 121.  Kaolinite Al2Si2O5(OH)4  Smectite - Montmorillonite (Al,Mg)2Si4O10(OH)2.nH2O  Smectite - Nontronite Fe2(Si,Al)4O10(OH)2.nH2O  Smectite – Saponite (Mg,Fe)3(Si,Al)4O10(OH)2.nH2O  Illite KAl3Si3O10(OH)2
  • 122. SiO2 MgO NiO Kerolite - Talc Serpentine Pimelite Nepouite 7°A basal spacing GARNIERITES Mg3Si4O10(OH)2.nH2O Mg3Si2O5(OH)4 Ni3Si4O10(OH)2.H2O Ni3Si2O5(OH)4 10°A basal spacing
  • 123. (Serpentine & Talc Division) Serpentine (Chrys. / Lizard.) H4Mg3Si2O9 Pecroaite / Nepouite H4Ni3Si2O9 Talc H2Mg3Si4O12 Willemseite H2Ni3Si4O12 Kerolite (Hydrous Talc) H2Mg3Si4O12.nH2O Pimellite H2Ni3Si4O12.nH2O Sepiolite (Dana) H4Mg2Si3O10 Connarite H4Ni2Si3O10 Sepiolite (hi-H2O) H10Mg4Si6O21 Falcondite H10Ni4Si6O21 (Chlorite Division) Clinochlore H8Mg5Al2Si3O18 Nimite H8Ni5Al2Si3O18 Magnesian Hydrosilicates Nickel Hydrosilicates
  • 124. GARNIERITE COMPOSITION FIELDS NiO H2O SiO2 + Others Nepouite Nimite Falcondite Garnierite Willemsite
  • 125.  In nickel hydrosilicates, nickel replaces the Mg atoms  Replacement occurs in serpentine, talc and chlorite  Garnierite is a group name for nickel hydrosilicates  Garnierites have the crystal structure of serpentine, talc, or chlorite  Garnierites are largely of supergene origin  Garnierites occur as fillings in open spaces or as coatings in joint and fracture surfaces  Garnierites range in colour from green (light and dark), to yellow- green, to light blue and turquoise blue. Dark green varieties carry more nickel
  • 126. SiO2 MgO FeO NiO New Caledonia, sample-1 53.0 18.1 0.1 20.9 New Caledonia, sample-2 49.0 18.9 0.2 21.7 New Caledonia, sample-3 53.2 15.0 0.0 24.5 New Caledonia, sample-4 49.8 13.5 0.2 29.2 New Caledonia, sample-5 37.4 2.7 0.3 49.6 Morro do Cerisco, Brazil 43.7 30.4 5.5 5.5 Morro do Niquel, Brazil 52.9 18.3 0.2 16.8 Riddle, Oregon, USA 47.8 18.6 0.1 19.6 Riddle, Oregon, USA 52.3 16.3 n.a. 20.8
  • 127.  Serpentine Minerals  Chrysotile  Amphibole Minerals  Tremolite-Actinolite  Crocidolite  Cummingtonite
  • 128. AMPHIBOLE MINERALS Fe Mg Ca Na H2Mg7Si8O24 H2Fe7Si8O24 Calcic amphiboles Actinolite Ferro Actinolite Cummingtonite Grunerite Sodic amphiboles Tremolite H2Ca2Mg5Si8O24 H2Ca2Fe5Si8O24 Glaucophane H2Na2Mg3Al2Si8O24 Riebeckite (Crocidolite) H2Na2Fe5Si8O24 H2Ca7Si8O24 H2Na14Si8O24
  • 129. Tigereye: Silica replacing crocidolite amphibole
  • 130.
  • 131. High Density Bedrock zone Variable Density Saprolite zone Ferruginous zone Bulk Density Depth Top Bottom Intermediate zone Ferricrete / Silcrete
  • 132. Run-of-mine Wt.% / Ni Reject Wt.% / Ni Recovered Wt.% / Ni Ni upgrading Sorowako W. Block -1” ore type 100% 1.09% Ni 65% 0.6% Ni 35% 2.0% Ni 83% Sorowako E. Block -1” ore type 100% 1.33% Ni 55% 1.03% Ni 45% 1.7% Ni 28% Sorowako E. Block -6” ore type 100% 1.51% Ni 23% 0.89% Ni 77% 1.7% Ni 13% Sorowako E. Block -18” ore type 100% 1.59% Ni 14% 0.9% Ni 86% 1.7% Ni 7% Bulong High upgrading ore 100% 1.60% 25% 0.94% Ni 75% 1.82% Ni 14% Bulong Low upgrading ore 100% 1.58% Ni 14% 0.85% 86% 1.7% Ni 7% Vermelho -100# fraction 100% 0.8% Ni 49.6% 0.34% 50.4% 1.25% Ni 56%
  • 133. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 0 10 20 30 40 50 60 70 80 90 100 QUANTITY OF REJECT, wt% UPGRADING INDEX Values of Upgrading Index are based on a constant Head Grade of 1.0%Ni with variable quantity of rejects (X-axis) and variable grade of rejects (different curves). 0.1 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
  • 134. P.T. INCO Saprolite zone Ferruginous zone Bedrock Forms of nickel in the laterite profile Nickel as hydroxide essentially in the goethite-limonite structure. Some Ni adsorbed by Mn-Hydroxides. Nickel as hydro-silicate essentially with the talc-serpentine-clay lattice structure: Nickel talc Nickel serpentine Nickel smectites Nickel as silicate essentially in the ferro- magnesian minerals, as ionic replacement of Mg and Fe atoms: Olivine Pyroxene Serpentine
  • 135.
  • 136.  Nickel grade; cobalt grade  Resource tonnage / Life of Mine / scale of operation  Ore chemistry and mineralogy  Ore consistency  Upgradeability of ore  Process selection  Availability of cheap power supply  Selection of fuel  Availability of raw materials: water, silica flux, aggregate  Availability of infrastructure  Location of project  Mining method  Environmental considerations  Negotiations with local and central governments  Funding of the project  Selection of engineer and contractor
  • 137.  Political risk  Bureaucracy  Regulatory framework (environmental, legal)  Taxation, royalties  Slow ramp-up rates  Energy costs  Depressed metal prices  Processing risk  Construction risk  Financial elements: interest rates, exchange rates  Environmental regulations: lower thresholds
  • 138. New Projects:  Goro Nickel, New Caledonia 54 k  Onca-Puma, Brazil 25 k  Ravensthorpe, Australia (QNI) 50 k  Ramu River, PNG Expansions:  Sorowako, Indonesia 22 k  Doniambo, New Caledonia 15 k  Murrin-Murrin, Australia 10 k Under Construction
  • 139. New Projects:  Koniambo, New Caledonia 54 k  Vermellho, Brazil 45 k  Ambatovy, Madagascar 40 k  BarroAlto, Brazil 20 k  Fenix (Skye), Guatemala 20 k  Sorowako HPAL, Indonesia 20 k  Pomalaa HPAL, Indonesia 20-45 Expansions:  Coral Bay, Philippines 15 k  Moa Bay, Cuba 17 k  Loma de Niquel,Venezuela 17 k
  • 140. New Projects:  Bahodopi, Indonesia  Gag Island, Indonesia  Weda Bay, Indonesia Expansions:  Goro, New Caledonia  Sulawesi, Indonesia  Onca-Puma, Brazil  Cuba
  • 141.
  • 142.  Pyrometallurgical processing (Ore is melted)  Production of Ferro-nickel  Production of Ni-S matte  Hydrometallurgical processing (Leaching by acid)  PAL (Pressure acid leaching) – HPAL  EPAL (Enhanced Pressure Acid Leaching  AL (Atmospheric Leaching)  Heap Leaching  Combined pyro and hydro process (Caron) (Ore is reduced at high temperature, then leached)
  • 143. Project Owner Country Remarks Cerro Matoso BHP-B Columbia Codemin Anglo Brazil Doniambo SLN/Eramet New Caledonia Exmibal Ex. Inco Guatemala Mothballed Falcondo Falconbridge Dominican Rep. Fenimark FENI (govt.) Macedonia Closed Hyuga Sumitomo Japan Imported ore Larymna Larco Greece Loma de Hiero Anglo Venezuela Morro do Niquel Anglo Brazil Closed Oheyama Nippon Yakin Japan Imported ore Onca-Puma Vale Inco Brazil PAMCO Nippon Steel Japan Imported ore Pomalaa ANTAM Indonesia Some imported ore
  • 144. Project Owner Country Remarks Sorowako PT Inco Indonesia Doniambo SLN/Eramet New Caledonia
  • 145. Project Owner Country Remarks Moa Bay Cuba Niquel Cuba First HPAL Bulong Australia Shut down Cawse Norilsk Australia Murrin-Murrin Minara Australia Coral Bay Sumitomo Philippines Goro Vale Inco New Caledonia Under construction Ramu River PNG Under construction Ravensthorpe BHP-B Australia Under construction
  • 146. Project Owner Country Remarks Nicaro Union del Niq Cuba Punta Gorda Union del Niq Cuba Nonoc Philippines Closed QNI BHP-Billiton Australia Imported ores Tocantins Niquel Toc. Brazil
  • 147. Project Owner Country Remarks Caldag European Nickel Turkey First Heap Leach project Ravensthorpe BHP-B Australia Part of flow sheet Murrin-Murrin Minara Australia Expansion of project Piaui Vale Brazil Being fast-tracked for production
  • 148. Ferro-Nickel Process Upgrading in the mine Drying of ore Upgrading after drying Calcining Electric Furnace Smelting Refining Furnace Ferro-Nickel Product 20 – 50% Ni Nickel-Matte Process Upgrading in the mine Drying of ore Upgrading after drying Calcining Electric Furnace Smelting Converting Nickel-Matte Product 78% Ni
  • 149. Important concerns:  Slag should not attack refractory (S/M ratio)  Melting temperature should be suitable (S/M; Fe)  Olivine should not be introduced to the furnace  Appropriate reduction of ore prior to smelting  Ni/Fe ratio in the ore for ferro-nickel operation
  • 150. Ore Preparation: wetting, screening Pre Heating through flash steam Pressure Acid Leach in autoclave Heat recovery from leached pulp CCD thickening and washing Neutralisation of pregnant solution Precipitation of metals by adding H2S/alkali Solid/liquid separation Ni/Co products as mixed sulphides, oxides, hydroxides
  • 151. Important concerns:  Amounts of soluble Mg and Al in ore (acid consumers)  Acid to ore ratio required for process  Minimum operating temperature required to leach  What is the appropriate pressure during leaching  Retention time in the autoclave  Rheological behaviour during slurrying  How to recover metals in the back end of processing  What product to make
  • 152. Ore Preparation: screening, upgrading Drying, using oil or coal Grinding Reduction, using CO/H2 Ammonia leaching CCD thickening and washing Stripping, using steam Calcining of Ni/Co precipitate Sintering of calcine Nickel oxide product
  • 153. Nickel Sulphide Nickel Laterite Mining Hard rock mining more expensive. Many sulphides U/G Soft rock mining cheap. Only open cast mining Deposit uniformity More uniform in chemistry and mineralogy More varied in chemistry and mineralogy; stratified Upgrading Highly upgradeable to sulphide concentrate Low upgradeability. Final grade generally <2.0% Ni. Ore/Con shipping Relatively cheap (per lb Ni) due to high upgradeability Relatively high (per lb Ni) due to low upgradeability Processing cost Modest due to high Ni content. Sulphur provides latent heat. High due to low Ni content. High energy input required. Ni recovery High due to consistency of ore chemistry and mineralogy Modest due to compromise for prevalent chemistry Capital cost Modest per lb of Ni High per lb of Ni Project size/life Can be short to medium Long to pay for high capital
  • 154.
  • 155. 6,600,000 Hectares PT INCO — Original Concession area
  • 156.
  • 157.
  • 158.
  • 159. -1” +1-6” +6-18” +18” 18” ore (90% Rec.) Ore 55% Ore 20% Ore 15% Reject 10% 6” ore (75% Rec.) Ore 55% Ore 20% Reject 15% Reject 10% 1” ore (55% Rec.) Ore 55% Reject 20% Reject 15% Reject 10% 1” Hi Oliv. (55% Rec.) Ore 55% Reject 20% Reject 15% Reject 10% 1” Lo Oliv. (75% Rec.) Ore 55% Ore 20% Reject 15% Reject 10% Screen recoveries given on wet basis
  • 160. Packing E.L E.L E.L ESP THICKENER Scrubber 500 T BIN 100 T BIN ESP M.C Slag to Disposal area (1500°C) Furnace Matte (1350°C) Electric Furnace Silica Flux Scrap Converter Matte Cast Hot Calcine (700°C) Wet Ore Stockpile Dryer Kiln Reduction Kiln Recycle to Dryer Slurry Dry Dust Pugmill Dust Market Fluid Bed Stack HSFO Air Granulation HSFO Air Liquid Sulphur Dry Dust DKP Dried Ore Storage Rock West Block (Reject) East Block (Crushed) Hot Gas Water (Hi pressure) Granulated Matte Oversize (Recycle to Converter) M.C Air Product Dryer Simplified Process Plant Flow Sheet
  • 162. For efficient operation smelter feed must meet the following requirement:  S/M ratio 1.95 – 2.15 (optimum level of 2.05)  Iron content 20 – 23% Fe (optimum level of 21.5%)  Olivine content of <22% in any East Block batch
  • 163. Packing E.L E.L E.L ESP THICKENER Scrubber 500 T BIN 100 T BIN ESP M.C Slag to Disposal area (1500°C) Furnace Matte (1350°C) Electric Furnace Silica Flux Scrap Converter Matte Cast Hot Calcine (700°C) Wet Ore Stockpile Dryer Kiln Reduction Kiln Recycle to Dryer Slurry Dry Dust Pugmill Dust Market Fluid Bed Stack HSFO Air Granulation HSFO Air Liquid Sulphur Dry Dust DKP Dried Ore Storage Rock West Block (Reject) East Block (Crushed) Hot Gas Water (Hi pressure) Granulated Matte Oversize (Recycle to Converter) M.C Air Product Dryer Drying Operation Screening of dried ore at 3/4“ screen - 3/4“ + 3/4“ West Block type Product. Saved as Ore Reject. Discarded East Block type Product. Saved as Ore Crushed. Added to Ore
  • 164. DRYER
  • 165. Packing E.L E.L E.L ESP THICKENER Scrubber 500 T BIN 100 T BIN ESP M.C Slag to Disposal area (1500°C) Furnace Matte (1350°C) Electric Furnace Silica Flux Scrap Converter Matte Cast Hot Calcine (700°C) Wet Ore Stockpile Dryer Kiln Reduction Kiln Recycle to Dryer Slurry Dry Dust Pugmill Dust Market Fluid Bed Stack HSFO Air Granulation HSFO Air Liquid Sulphur Dry Dust DKP Dried Ore Storage Rock West Block (Reject) East Block (Crushed) Hot Gas Water (Hi pressure) Granulated Matte Oversize (Recycle to Converter) M.C Air Product Dryer Reduction Operation Diameter, m Length, m Throughput, Wmt / Hr Kiln 1 5.5 100 145 Kiln 2 5.5 100 145 Kiln 3 5.5 100 145 Kiln 4 6.0 115 190 Kiln 5 6.0 135 215
  • 167. 1 2 3 4 5 6 1300 1400 1500 1600 1700 20% FeO 25% FeO 30% FeO Silica / Magnesia Ratio T°C 1979 Current LIQUID SOLID
  • 168. 18 m Matte Refractory bricks on Sidewalls & hearth Slag Matte Slag Copper “fingers” (water cooled)
  • 169. 18 m Matte Refractory bricks on Sidewalls & hearth Slag Matte Slag Copper “fingers” (water cooled) Olivine mush causing ineffective heat transfer
  • 170. Packing E.L E.L E.L ESP THICKENER Scrubber 500 T BIN 100 T BIN ESP M.C Slag to Disposal area (1500°C) Furnace Matte (1350°C) Electric Furnace Silica Flux Scrap Converter Matte Cast Hot Calcine (700°C) Wet Ore Stockpile Dryer Kiln Reduction Kiln Recycle to Dryer Slurry Dry Dust Pugmill Dust Market Fluid Bed Stack HSFO Air Granulation HSFO Air Liquid Sulphur Dry Dust DKP Dried Ore Storage Rock West Block (Reject) East Block (Crushed) Hot Gas Water (Hi pressure) Granulated Matte Oversize (Recycle to Converter) M.C Air Product Dryer • Converter Matte is cast, granulated with water sprays, dried, screened, packed into 3-tonne polypropylene cloth bags, and shipped to the client in Japan • Average Product analysis: 78% Ni 1-2% Co 20% S Converting, Granulating, Packing, Shipping
  • 171. E. Block Ore W. Block Ore RKF Calcine EF Slag EF Matte Product SiO2 34.7 37.1 36.1 40.8 47.7 MgO 20.7 15.4 18.1 18.9 22.2 Fe2O3 27.7 32.0 30.0 29.2 25.9 Fe=61.5 Fe=0.5 FeO All iron reported as Fe2O3 Al2O3 3.12 2.53 2.92 2.77 3.02 Cr2O3 1.42 1.87 1.64 1.68 1.78 MnO 0.53 0.63 0.57 0.57 0.66 NiO 1.80 2.60 2.44 2.57 0.19 Ni=27.5 Ni=78.5 CoO 0.08 0.10 0.09 0.09 0.03 Co=0.76 Co=1.2 CaO 0.32 0.46 0.39 0.45 0.50 LOI ? ? ? 0.0 0.0 S=9.2 S=19.7 Total 90.86 92.69 92.25 97.03 101.98 98.96 99.90
  • 172.
  • 173.  Eksplorasi nikel laterite merupakan salah satu usaha bisnis yang berisiko tinggi.  Diperlukan konsep dan strategi yang matang serta personil yang berpengalaman untuk menjalankan bisnis tersebut.  Keberhasilan bisnis diukur dari cara mengelola tingkat resiko dengan cara/ metode yang efektif dan efesien
  • 174.  Apa definisi eksplorasi dan Strategi eksplorasi  Kenapa strategi dan managemen eksplorasi itu penting?  Aspek apa saja yang mempengaruhi dalam menyusun strategi eksporasi  Strategi eksplorasi meliputi apa saja?  Bagaimana mengelola eksplorasi sebagai bisnis yang berisiko tinggi menjadi sesuatu yang menguntungkan  Bagaimana mengimplementasikan strategi eksplorasi untuk cebakan nikel laterite.
  • 175.  Secara khusus definisi Eksplorasi Geologi (Koesoemadinata,_) adalah :  “Suatu aktifitas untuk mencari tahu keberadaan suatu objek geologi di suatu daerah atau ruang yang sebelumnya tidak diketahui keberadaannya. Objek geologi yang dimaksud terutama komoditi potensi bahan galian seperti cebakan mineral, batubara, minyak dan gas bumi ataupun air tanah. Selain itu objek geologi dapat berupa gejala geologi yang bermanfaat atau memiliki dampak negatif seperti: patahan, data batuan untuk keperluan konstruksi sipil dll.”.
  • 176.  “Suatu keahlian dalam perencanaan dan dan pengarahan kegiatan eksplorasi yang berskala besar dalam bentuk tahapan-tahapan yang efektif dan efisien untuk mencari daerah yang favorable akan terdapatnya cebakan mineral ekonomis”.
  • 177.  Kegiatan eksplorasi adalah kegiatan usaha ekonomi yg beresiko tinggi (geologi, teknologi, ekonomi dan politik)  Paradigma eksplorasi yang tumbuh seiring dengan resiko yang ada • Dalam kegiatan eksplorasi sangat diperlukan pentahapan dimana pada akhir suatu tahap dilakukan pengambilan keputusan dilanjutkan atau tidak. • Peluang yang lebih besar tergantung pada kerapatan data, teknologi yang lebih tinggi, personil yang lebih banyak dan waktu yang lebih lama • Keseluruhan faktor tersebut berbanding lurus dengan biaya yang dibutuhkan  Paradigma tersebut merupakan dasar dalam menyusun Strategi eksplorasi untuk  Menentukan urutan kegiatan eksplorasi,  Memperbesar peluang keberhasilan  Memperkecil resiko kegagalan
  • 178. • Peluang atau probabilitas / Success ratio • Pertaruhan dengan resiko yang sangat tinggi • Parameter geologi (model dan kriteria geologi) • keberadaan data yang merupakan situasi sesaat. • Kegagalan salah satu aktifitasnya.
  • 179.  Penentuan tahapan-tahapan eksplorasi  Penentuan metode pada setiap tahapan  Penentuan target atau hasil yang diharapkan dari setiap tahapan  Penentuan desain eksplorasi dalam setiap tahapan  Penentuan personil, peralatan dan biaya dari setiap tahapan
  • 180. TAHAPAN EKSPLORASI Catatan : Dalam penilaian daerah prospek hanya didasar- kan kepada pertimbangan aspek geologi saja STUDI KELAYAKAN, AMDAL & PERENCANAAN TAMBANG TAHAP EKSPLORASI PENDAHULUAN (RECONNAISSANCE) Lingkup pekerjaan : studi pustaka, pemetaan geologi skala 1:50.000, pengambilan conto, pembuatan sumur uji (jika dipandang perlu) dan analisa conto TIDAK PROSPEK TAHAP EKSPLORASI SEMI DETIL Lingkup pekerjaan : pemetaan geologi dan topografi skala 1:5.000/ 1:10.000, pengambilan conto, pembuatan sumur uji (jika diperlukan), pemboran pandu, survey geofisika dan geokimia, analisa laboratorium. PROSPEK DISEBAGIAN WILAYAH EVALUASI Evaluasi Geologi Permukaan & Bawah Permukaan-Semi Detil TAHAP EKSPLORASI DETAIL Lingkup pekerjaan : pemetaan geologi dan topografi skala 1:1.000/1:2.000, pengambilan conto, pemboran detil, survey geofisika dan geokimia, analisa laboratorium, penelitian geologi teknik Evaluasi Geologi Permukaan & Bawah Permukaan - Detil Dilanjutkan Dilanjutkan DAERAH KETERDAPATAN/KP. EKSPLORASI JIKA DATA-DATA GEOLOGI CUKUP MEMADAI (kerapatan datanya) LOKASI TAMBANG/ KP. EKSPLOITASI TAHAPAN STUDI LITERATUR DAN SITE VISIT STOP PENYELIDIKAN TIDAK DILANJUTKAN
  • 181.  Membuat strategi eksplorasi dan menjalankan secara konsisten, efektif dan efesien dengan mengurangi resiko  Memahami secara utuh model geologi daerah eksplorasi  Improvisasi dan kompetensi geologist berperan dalam proses evaluasi dan peningkatan tahapan eksplorasi selanjutnya.  Pengelola eksplorasi (Manager proyek) harus memiliki wawasan tentang orientasi bisnis perusahaan, perkembangan teknologi eksplorasi dan kebutuhan pasar komoditi
  • 182.  Memahami karakteristik dan model geologi nikel laterite  Memahami spesifikasi bijih untuk kebutuhan pasar (market deman) maupun untuk rencana pembuatan pabrik (pig iron, limonite ore dan high grade saprolite ore)  Membuat strategi eksplorasi yang efektif dan efisien untuk nikel laterite (tahapan, metode, target, personil dan peralatan)  Melaksanakan strategi eksplorasi secara konsisten dan melakukan kontrol terhadap kualitas dan kuantitas data yang dihasilkan/  Memaksimalkan data evaluasi geologi untuk perencanaan tahapan berikutnya
  • 183.  Ada 3 jenis spesifikasi bijih nikel laterite yang diperdagangkan secara umum  Pig Iron (Ni 1.2 – 1.4; Fe > 45%  Limonite ore (Ni 1.5 ; Fe 35%  High Grade Saprolite ore (Ni> 1.9%
  • 185.  To Located the landform characteristic based on :  Aerial photograph (smaller map scale)  landsat imagerial (Regional view)/Satellite  Aster Image  Access recognition  Cultivated Boundary  Open space area recognition.  Structural geology dan lithology interpretation.
  • 186.
  • 187. Significant Zn anomalies and Minor Cu Pb anomalies TARGETING PROSPECTING - ASTER IMAGING ANALYSIS The green color that represent Magnetit- Chromite mineral has showing good indication Key objective : Preliminary observation of lithology (ultramafic, sediment, limestone, etc), alteration (clay, silicic, laterite, gossans), structure geology, lineament, morphology, drainage and vegetation anomaly for defining further exploration target.
  • 188.  Digitizing from old data  Aanalyzing and evaluation for previous data collected  Map Overlay and combining and extraction for target selection Exploration Target Criteria :  Slope and landform identification from landsat or aerial photograph  Geological Condition  Drainage system  Undulating Topography  Good Laterite Profile (define from previous testpit recognition)
  • 189.  Preliminary visit to confirm the lithology and morphology of the target area.  To confirm the accessibility of the target area.
  • 190.  To define the geological condition I.e, lithology, structure, serpentinization and iron crust distribution.  Outcrop observation  Float mapping  Structural geology (fault, joint, fold)  Surface Sampling (assay, thin section Float Mapping Outcrop observation GPS Reading
  • 191.
  • 192.  The pit location was selected ramdomly base on topography interpretation  Tespit dimension 1.5m x 1.25 m  To provide large samples for more accurate tonnage factor and ore type fraction.  To understand the actual laterite profile characteristic Weighing Quartering Enter the Hole Transfer Material to surface Bottom Pit
  • 193.  First phase core drilling for 400m stagger  Secod phase core drilling for 200 m regular spacing  Using Jacro rig with HQ size tripple tube  Objective to understand ore continuity, thickness, chemistry distribution for resource estimation Critical Issues: - Quality of sample (core recovery) -- Accuracy (deptth, interbal, etc)
  • 194.  Core logging  Screening and Fractination  Weighing  Reduction sampling  Numbering and labelling Screening Weighing Reduction Sample Labeling/ Packing Core Logging
  • 195.  QAQC Program is mandatory for exploration drilling projects which will be reported under NI 43-101.  The QAQC program is to ensure a consistently high quality work that will maintain public confidence and assist securities regulators, at any stage of project from pre-feasibility, feasibility and operating mine.  This guidelines is to be implemented for exploration and the lab. Based on this, MRMR document will more reliable and in line with current industry practice
  • 196. Precision = Cluster Accuracy = closeness to target Bias = difference from target Good Accuracy & Precision Good Precision, Bias Poor Precision, good accuracy Poor Precision Poor accuracy Quality Assurance (QA)  Setup system (all those planned or systematic actions necessary to provide adequate confidence that a product or service will satisfy given needs.  Establishment of systems and standards  Ensure quality QualityControl (QC)  Implementation (assurance in the quality context is the relief of concern about the quality of product. Sampling plans and audits, the quality control devices, are designed to supply part of this assurance  use of statistical tools and checks (duplicate, standard, blank, check assay and repetition)  ensure the systems are in statistical control
  • 197.  To control the preparation samples during splitting /reduce samples.  Using for calculate precision (average difference between samples) and bias (repeatability between the duplicate pairs)  Consists of : -Wet Duplicate - Splitter Duplicate - Pulp Duplicate Drilling Preparation (Wet splitting)- Wet Duplicate Preparation (Boyd splitting)- Splitter Duplicate Preparation (CRM splitting)- Pulp Duplicate Lab Assaying Pulp Duplicate Contribute Error Wet Dup 20 % Splitter Dup 15 % Pulp Dup 10 % Pulp Dup 3 %
  • 198. y=x R2 =1 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Original Sample Duplicate sample Scatter Plot - Ni (%) y = 0.992x + 0.0091 R2 = 0.9854 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5 Original Ni (%) Duplicate Ni (%) Ideal Scatter Plot -50 -40 -30 -20 -10 0 10 20 30 40 50 0.00 1.00 2.00 3.00 4.00 Average Rel Diff % Rel Diff Cr PTI SH's Wet Duplicate Samples - Ni Cumulative Frequency of the Relative Error Estimate of Precision 0% 10% 20% 30% 40% 50% 60% 70% 80% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Relative difference Plot Cumulative Precision Plot
  • 199.  Certified references material or in- house standard.  Value is known  Allows assessment of accuracy and bias  Purpose of standards: ▪ Ensure accuracy of results ▪ Ensure required analytical precision – mechanical failure ▪ Ensure there is no bias Ni (QC SAPO) 1.90 1.95 2.00 2.05 2.10 2.15 2.20 Bias in Ni Sap Ore, but still in acceptable range of 3SD Standard Sample Monitoring
  • 200.  Samples with grade less than the limit detection.  Blank sample measure the contamination cleanliness in sample preparation  Also need to be able to compare results with immediately preceding laboratory analyzed sample (develop QAQC program)  Blank materials are better in silica sand, but granite and granodiorite as much better. Ni (SPL Blank New ) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Blank Sample Monitoringc
  • 201.  Check Assay is precision check to compare analysis data between primary lab and secondary lab  To send 3 – 5% samples/month to External lab for checks.  Repetition is precision check to control the lab instruments (XRF) and to control backup sample (Pulp Storage)  To send 30 samples/week to External Lab. Repetition Samples y = 0.9847x + 0.009 R2 = 0.9941 0 1 2 3 4 5 0 1 2 3 4 5 Ni % Previous result Ni % Current Result Ni Comparison y = 0.9839x + 0.0132 R2 = 0.9943 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 PTI Lab Intertek Lab Check Assay Repetition Sample
  • 202. DATA COMPILATION  To collect all the data I.e field data, laboratory, logging and store in database format  Integrating the information from the various data.  Mostly store in digital data DATAVALIDATION  Data Clean-Up, to make sure the data are ready to use and do not contain an error, I.e:  Coordinat and grid check (drill and test pit)  Miss type of Assay value and logging data  Hole and sample number check  To combine the spread sheet assay data with location where sample was taken
  • 203. Horisontal Scale : BH_73 – BH_119 Vertical Scale 1 : 4 High Grade Ore
  • 204.  Evaluasi geologi adalah salah tahapan penting dalam kegiatan eksplorasi dimana hasil evaluasi ini akan menentukan tahapan apakah suatu kegiatan eksplorasi prospek untuk dilanjutkan/ ditingkatkan atau tidak  Setiap peningkatan tahapan eksplorasi akan memberikan konsekuensi biaya yang sangat besar sehingga keputusan prospek atau tidak suatu wilayah eksplorasi harus dilakukan secara akurat dan komprehensif.  Tujuan akhir dari suatu kegitan eksplorasi adalah  Mengetahui berapa besar nilai ekonomi dari endapan bahan galian disuatu daerah  Diketahui berapa banyak, besar dan kuantitas, kualitas endapan bahan galian  Besarnya, kuantitas dan kualitas dinyatakan sebagai cadangan bahan tambang.  Evaluasi geologi meliputi beberapa tahapan  Kompilasi data geologi dan penysunan database geologi  Validasi database geologi dan akuisisi data  Pengolahan data dan perhitungan cadangan  Pembuatan laporan sumberdaya dan cadangan
  • 205. Titik Bor Easting Northing FR TO Length Ni co fe soi2 CaO Mgo Geo Layer Ore Layer BH_178 510198,92 9911099,2 0,00 1,00 1,00 0,74 0,06 41,60 7,25 <0.01 0,83 LIM OB BH_178 510198,92 9911099,2 1,00 2,00 1,00 0,79 0,09 42,10 6,71 <0.01 0,86 LIM OB BH_178 510198,92 9911099,2 2,00 3,00 1,00 0,95 0,09 43,20 6,95 0,01 1,98 LIM OB BH_178 510198,92 9911099,2 3,00 4,00 1,00 1,19 0,09 37,70 16,70 0,05 5,46 LIM OB BH_178 510198,92 9911099,2 4,00 5,00 1,00 1,51 0,04 16,40 38,80 0,32 22,20 SAP OB BH_178 510198,92 9911099,2 5,00 6,00 1,00 2,12 0,03 11,70 10,90 0,17 27,20 SAP HGO BH_178 510198,92 9911099,2 6,00 7,00 1,00 2,18 0,03 12,40 38,70 0,17 26,80 SAP HGO BH_178 510198,92 9911099,2 7,00 8,00 1,00 2,44 0,03 12,80 38,10 0,16 26,80 SAP HGO BH_178 510198,92 9911099,2 8,00 9,00 1,00 2,38 0,04 13,80 36,70 0,18 25,30 SAP HGO BH_178 510198,92 9911099,2 9,00 10,00 1,00 1,60 0,02 8,56 41,20 0,31 32,70 SAP BZ BH_178 510198,92 9911099,2 10,00 11,00 1,00 1,38 0,03 10,30 41,60 0,26 29,60 SAP BZ BH_178 510198,92 9911099,2 11,00 12,00 1,00 1,33 0,03 12,80 42,40 0,38 24,20 SAP BZ BH_178 510198,92 9911099,2 12,00 13,00 1,00 1,18 0,03 10,60 42,40 0,23 28,10 SAP BZ
  • 206. Titik Bor Easting Northing FR TO Length Ni co fe soi2 CaO Mgo Geo Layer Ore Layer BH_183 510201,17 9910851,3 0,00 1,00 1,00 0,64 0,04 39,20 6,97 <0.01 0,59 LIM OB BH_183 510201,17 9910851,3 1,00 2,00 1,00 0,80 0,10 40,60 5,90 <0.01 0,60 LIM OB BH_183 510201,17 9910851,3 2,00 3,00 1,00 0,95 0,14 45,60 3,14 <0.01 0,80 LIM OB BH_183 510201,17 9910851,3 3,00 4,00 1,00 1,36 0,09 45,50 5,98 <0.01 2,15 LIM LGO BH_183 510201,17 9910851,3 4,00 5,00 1,00 1,48 0,09 46,20 4,80 <0.01 1,79 LIM LGO BH_183 510201,17 9910851,3 5,00 6,00 1,00 1,60 0,13 46,40 3,56 0,10 1,16 LIM LGO BH_183 510201,17 9910851,3 6,00 7,00 1,00 1,51 0,16 42,00 9,95 <0.01 3,95 LIM LGO BH_183 510201,17 9910851,3 7,00 8,00 1,00 1,33 0,12 46,20 5,53 0,01 1,46 LIM LGO BH_183 510201,17 9910851,3 8,00 9,00 1,00 1,35 0,09 35,30 23,80 0,01 4,42 LIM MGO BH_183 510201,17 9910851,3 9,00 10,00 1,00 1,70 0,08 39,00 16,30 0,01 3,42 LIM MGO BH_183 510201,17 9910851,3 10,00 11,00 1,00 1,67 0,10 40,10 11,40 0,04 5,46 LIM MGO BH_183 510201,17 9910851,3 11,00 12,00 1,00 1,68 0,07 29,80 23,50 2,06 10,60 SAP MGO BH_183 510201,17 9910851,3 12,00 13,00 1,00 1,42 0,04 17,70 35,90 2,62 21,70 SAP BZ BH_183 510201,17 9910851,3 13,00 14,00 1,00 0,88 0,03 10,80 40,50 1,14 33,20 SAP BZ BH_183 510201,17 9910851,3 14,00 15,00 1,00 1,03 0,03 14,10 38,30 1,22 27,30 SAP BZ BH_183 510201,17 9910851,3 15,00 16,00 1,00 1,21 0,03 9,98 47,40 0,49 26,00 SAP BZ BH_183 510201,17 9910851,3 16,00 17,00 1,00 1,67 0,02 7,96 44,20 0,33 30,00 SAP BZ BH_183 510201,17 9910851,3 17,00 18,00 1,00 1,35 0,02 8,92 41,10 0,40 33,00 SAP BZ BH_183 510201,17 9910851,3 18,00 19,00 1,00 0,97 0,02 9,31 42,50 0,47 31,40 BRK BZ BH_183 510201,17 9910851,3 19,00 20,00 1,00 0,39 0,02 6,72 41,70 0,17 35,50 BRK BZ BH_183 510201,17 9910851,3 20,00 21,00 1,00 0,22 0,02 5,77 41,10 0,09 37,50 BRK BZ
  • 207.  Metode perhitungan coventional (Geometrik)  Section  Isochore  Poligonal ▪ Included area ▪ Extended area (regular grid) ▪ Triangle ▪ Bi-sect polygon  Metode perhitungan Moderen (geostatistik)  Linear regresion  Inverse distance  Kriging
  • 208.
  • 209.  Strategi eksplorasi adalah sangat penting dan merupakan kunci keberhasilan dalam kegiatan eksplorasi  Kegiatan eksplorasi yang dikelola dengan baik akan memberikan hasil yang optimal, efektif dan efesien serta mengurangi resiko yang timbul  Evaluasi geologi merupakan kunci layak tidaknya suatu tahapan eksplorasi untuk dilanjutkan atau tidak.
  • 210. TerimaKasih Contact Person : Suharto HP : 08124244871 Email : suharto_mks@yahoo.com