SlideShare a Scribd company logo
1 of 3
Selective Search
which combines the strength of both an
i] exhaustive search and ii] segmentation.
- Like exhaustive search, we aim to capture all possible object locations.
- Like segmentation, we use the image structure to guide our sampling process.
1.1 Exhaustive Search
As an object can be located at any position and scale in the image, it is natural
to search everywhere [8, 16, 36].
However, the visual search spaceis huge, making an exhaustive search
computationally expensive.
This imposes constraints on the evaluation costper location and/or the number
of locations considered. Hence most of these sliding window techniques use a
coarsesearch grid and fixed aspect ratios, using weak classifiers and economic
image features such as HOG [8, 16, 36]. This method is often used as a
preselection step in a cascadeof classifiers [16, 36].
Related to the sliding window technique is the highly successfulpart-based
object localisation method [12].
Their method also performs an exhaustive search using a linear SVM and HOG
features. However, they search for objects and object parts, whose combination
results in an impressive object detection performance.
This both alleviates the constraints of using a regular grid, fixed scales, and
fixed aspectratio, while at the same time reduces the number of locations
visited. This is done by directly searching for the optimal window within the
image using a branch and bound technique.
While they obtain impressive results for linear classifiers, [1] found that for
non-linear classifiers the method in practice still visits over a 100,000 windows
per image.
Instead of a blind exhaustive search or a branch and bound search, we propose
selective search. We use the underlying image structure to generate object
locations.
In contrast to the discussed methods, this yields a completely class-independent
set of locations. Furthermore, because we do not use a fixed aspectratio, our
method is not limited to objects but should be able to find stuff like “grass” and
“sand”as well (this also holds for [17]).
Finally, we hope to generate fewer locations, which should make the problem
easier as the variability of samples becomes lower. And more importantly, it
frees up computational power which can be used for stronger machine learning
techniques and more powerful appearance models.
2.2 Segmentation
Both methods generate multiple foreground/background segmentations, learn to predict the
likelihood that a foreground segment is a complete object, and use this to rank the segments.
Both algorithms show a promising ability to accurately delineate objects within images,
confirmed by [19] who achieve state-of-the-art results on pixel-wise image classification
using [4]. As common in segmentation, both methods rely on a single strong algorithm for
identifying good regions. They obtain a variety of locations by using many randomly
initialised foreground and background seeds. In contrast, we explicitly deal with a variety of
image conditions by using different grouping criteria and different representations. This
means a lower computational investment as we do not have to invest in the single best
segmentation strategy, such as using the excellent yet expensive contour detector of [3].
Furthermore, as we deal with different image conditions separately, we expect our locations
to have a more consistent quality. Finally, our selective search paradigm dictates that the
most interesting question is not how our regions compare to [4, 9], but rather how they can
complement each other. Gu et al. [15] address the problem of carefully segmenting and
recognizing objects based on their parts. They first generate a set of part hypotheses using a
grouping method based on Arbelaez et al. [3]. Each part hypothesis is described by both
appearance and shape features. Then, an object is recognized and carefully delineated by
using its parts, achieving good results for shape recognition. In their work, the segmentation
is hierarchical and yields segments at all scales. However, they use a single grouping strategy
3 SelectiveSearch
In this section we detail our selective search algorithm for object recognition
and present a variety of diversification strategies to deal with as many image
conditions as possible. A selective search algorithm is subject to the following
design considerations: Capture All Scales. Objects can occurat any scale within
the image. Furthermore, some objects have less clear boundaries then other
objects. Therefore, in selective search all object scales have to be taken into
account, as illustrated in Figure 2. This is most naturally achieved by using an
hierarchical algorithm. Diversification. There is no single optimal strategy to
group regions together. As observed earlier in Figure 1, regions may form an
object because of only colour, only texture, or becauseparts are enclosed.
Furthermore, lighting conditions such as shading and the colour of the light may
influence how regions form an object. Therefore instead of a single strategy
which works well in most cases, we want to have a diverse set of strategies to
deal with all cases. Fast to Compute. The goal of selective search is to yield a
set of possible object locations for use in a practical object recognition
framework. The creation of this set should not become a computational
bottleneck, hence our algorithm should be reasonably fast.

More Related Content

What's hot

Image Retrieval using Graph based Visual Saliency
Image Retrieval using Graph based Visual SaliencyImage Retrieval using Graph based Visual Saliency
Image Retrieval using Graph based Visual SaliencyIRJET Journal
 
DETECTION OF DENSE, OVERLAPPING, GEOMETRIC OBJECTS
DETECTION OF DENSE, OVERLAPPING, GEOMETRIC OBJECTSDETECTION OF DENSE, OVERLAPPING, GEOMETRIC OBJECTS
DETECTION OF DENSE, OVERLAPPING, GEOMETRIC OBJECTSijaia
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 
K-Means Clustering in Moving Objects Extraction with Selective Background
K-Means Clustering in Moving Objects Extraction with Selective BackgroundK-Means Clustering in Moving Objects Extraction with Selective Background
K-Means Clustering in Moving Objects Extraction with Selective BackgroundIJCSIS Research Publications
 
Sketch based image retrieval through hypothesis-driven object boundary select...
Sketch based image retrieval through hypothesis-driven object boundary select...Sketch based image retrieval through hypothesis-driven object boundary select...
Sketch based image retrieval through hypothesis-driven object boundary select...I3E Technologies
 
Review of ocr techniques used in automatic mail sorting of postal envelopes
Review of ocr techniques used in automatic mail sorting of postal envelopesReview of ocr techniques used in automatic mail sorting of postal envelopes
Review of ocr techniques used in automatic mail sorting of postal envelopessipij
 
Currency recognition on mobile phones
Currency recognition on mobile phonesCurrency recognition on mobile phones
Currency recognition on mobile phoneshabeebsab
 
Authenticate Aadhar Card Picture with Current Image using Content Based Image...
Authenticate Aadhar Card Picture with Current Image using Content Based Image...Authenticate Aadhar Card Picture with Current Image using Content Based Image...
Authenticate Aadhar Card Picture with Current Image using Content Based Image...ijtsrd
 
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapes
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapesIEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapes
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapesIEEEBEBTECHSTUDENTPROJECTS
 
Content Based Image Retrieval
Content Based Image RetrievalContent Based Image Retrieval
Content Based Image RetrievalRayan Dasoriya
 
A CONCERT EVALUATION OF EXEMPLAR BASED IMAGE INPAINTING ALGORITHMS FOR NATURA...
A CONCERT EVALUATION OF EXEMPLAR BASED IMAGE INPAINTING ALGORITHMS FOR NATURA...A CONCERT EVALUATION OF EXEMPLAR BASED IMAGE INPAINTING ALGORITHMS FOR NATURA...
A CONCERT EVALUATION OF EXEMPLAR BASED IMAGE INPAINTING ALGORITHMS FOR NATURA...cscpconf
 
Color Particle Filter Tracking using Frame Segmentation based on JND Color an...
Color Particle Filter Tracking using Frame Segmentation based on JND Color an...Color Particle Filter Tracking using Frame Segmentation based on JND Color an...
Color Particle Filter Tracking using Frame Segmentation based on JND Color an...IOSRJVSP
 

What's hot (19)

Image Retrieval using Graph based Visual Saliency
Image Retrieval using Graph based Visual SaliencyImage Retrieval using Graph based Visual Saliency
Image Retrieval using Graph based Visual Saliency
 
DETECTION OF DENSE, OVERLAPPING, GEOMETRIC OBJECTS
DETECTION OF DENSE, OVERLAPPING, GEOMETRIC OBJECTSDETECTION OF DENSE, OVERLAPPING, GEOMETRIC OBJECTS
DETECTION OF DENSE, OVERLAPPING, GEOMETRIC OBJECTS
 
Image Indexing and Retrieval
Image Indexing and RetrievalImage Indexing and Retrieval
Image Indexing and Retrieval
 
Image Inpainting
Image InpaintingImage Inpainting
Image Inpainting
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
K-Means Clustering in Moving Objects Extraction with Selective Background
K-Means Clustering in Moving Objects Extraction with Selective BackgroundK-Means Clustering in Moving Objects Extraction with Selective Background
K-Means Clustering in Moving Objects Extraction with Selective Background
 
Sketch based image retrieval through hypothesis-driven object boundary select...
Sketch based image retrieval through hypothesis-driven object boundary select...Sketch based image retrieval through hypothesis-driven object boundary select...
Sketch based image retrieval through hypothesis-driven object boundary select...
 
50120130405033
5012013040503350120130405033
50120130405033
 
Image segmentation based on color
Image segmentation based on colorImage segmentation based on color
Image segmentation based on color
 
Review of ocr techniques used in automatic mail sorting of postal envelopes
Review of ocr techniques used in automatic mail sorting of postal envelopesReview of ocr techniques used in automatic mail sorting of postal envelopes
Review of ocr techniques used in automatic mail sorting of postal envelopes
 
Currency recognition on mobile phones
Currency recognition on mobile phonesCurrency recognition on mobile phones
Currency recognition on mobile phones
 
Authenticate Aadhar Card Picture with Current Image using Content Based Image...
Authenticate Aadhar Card Picture with Current Image using Content Based Image...Authenticate Aadhar Card Picture with Current Image using Content Based Image...
Authenticate Aadhar Card Picture with Current Image using Content Based Image...
 
CBIR by deep learning
CBIR by deep learningCBIR by deep learning
CBIR by deep learning
 
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapes
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapesIEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapes
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Tension in active shapes
 
Content Based Image Retrieval
Content Based Image RetrievalContent Based Image Retrieval
Content Based Image Retrieval
 
A CONCERT EVALUATION OF EXEMPLAR BASED IMAGE INPAINTING ALGORITHMS FOR NATURA...
A CONCERT EVALUATION OF EXEMPLAR BASED IMAGE INPAINTING ALGORITHMS FOR NATURA...A CONCERT EVALUATION OF EXEMPLAR BASED IMAGE INPAINTING ALGORITHMS FOR NATURA...
A CONCERT EVALUATION OF EXEMPLAR BASED IMAGE INPAINTING ALGORITHMS FOR NATURA...
 
Beyond Bag of Features: Adaptive Hilbert Scan Based Tree for Image Retrieval
Beyond Bag of Features: Adaptive Hilbert Scan Based Tree for Image RetrievalBeyond Bag of Features: Adaptive Hilbert Scan Based Tree for Image Retrieval
Beyond Bag of Features: Adaptive Hilbert Scan Based Tree for Image Retrieval
 
B49010511
B49010511B49010511
B49010511
 
Color Particle Filter Tracking using Frame Segmentation based on JND Color an...
Color Particle Filter Tracking using Frame Segmentation based on JND Color an...Color Particle Filter Tracking using Frame Segmentation based on JND Color an...
Color Particle Filter Tracking using Frame Segmentation based on JND Color an...
 

Similar to Selective search

Semi-Supervised Method of Multiple Object Segmentation with a Region Labeling...
Semi-Supervised Method of Multiple Object Segmentation with a Region Labeling...Semi-Supervised Method of Multiple Object Segmentation with a Region Labeling...
Semi-Supervised Method of Multiple Object Segmentation with a Region Labeling...sipij
 
Object-Oriented Approach of Information Extraction from High Resolution Satel...
Object-Oriented Approach of Information Extraction from High Resolution Satel...Object-Oriented Approach of Information Extraction from High Resolution Satel...
Object-Oriented Approach of Information Extraction from High Resolution Satel...iosrjce
 
Object Capturing In A Cluttered Scene By Using Point Feature Matching
Object Capturing In A Cluttered Scene By Using Point Feature MatchingObject Capturing In A Cluttered Scene By Using Point Feature Matching
Object Capturing In A Cluttered Scene By Using Point Feature MatchingIJERA Editor
 
OBJECT DETECTION AND RECOGNITION: A SURVEY
OBJECT DETECTION AND RECOGNITION: A SURVEYOBJECT DETECTION AND RECOGNITION: A SURVEY
OBJECT DETECTION AND RECOGNITION: A SURVEYJournal For Research
 
Implementation of Object Tracking for Real Time Video
Implementation of Object Tracking for Real Time VideoImplementation of Object Tracking for Real Time Video
Implementation of Object Tracking for Real Time VideoIDES Editor
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER) ijceronline
 
Image Segmentation Using Pairwise Correlation Clustering
Image Segmentation Using Pairwise Correlation ClusteringImage Segmentation Using Pairwise Correlation Clustering
Image Segmentation Using Pairwise Correlation ClusteringIJERA Editor
 
Dj31514517
Dj31514517Dj31514517
Dj31514517IJMER
 
Dj31514517
Dj31514517Dj31514517
Dj31514517IJMER
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Ijarcet vol-2-issue-4-1383-1388
Ijarcet vol-2-issue-4-1383-1388Ijarcet vol-2-issue-4-1383-1388
Ijarcet vol-2-issue-4-1383-1388Editor IJARCET
 
A Density Based Clustering Technique For Large Spatial Data Using Polygon App...
A Density Based Clustering Technique For Large Spatial Data Using Polygon App...A Density Based Clustering Technique For Large Spatial Data Using Polygon App...
A Density Based Clustering Technique For Large Spatial Data Using Polygon App...IOSR Journals
 
Texture Segmentation Based on Multifractal Dimension
Texture Segmentation Based on Multifractal DimensionTexture Segmentation Based on Multifractal Dimension
Texture Segmentation Based on Multifractal Dimensionijsc
 
Texture Segmentation Based on Multifractal Dimension
Texture Segmentation Based on Multifractal Dimension  Texture Segmentation Based on Multifractal Dimension
Texture Segmentation Based on Multifractal Dimension ijsc
 
Massive Regional Texture Extraction for Aerial and Natural Images
Massive Regional Texture Extraction for Aerial and Natural ImagesMassive Regional Texture Extraction for Aerial and Natural Images
Massive Regional Texture Extraction for Aerial and Natural ImagesIOSR Journals
 
Improving the Accuracy of Object Based Supervised Image Classification using ...
Improving the Accuracy of Object Based Supervised Image Classification using ...Improving the Accuracy of Object Based Supervised Image Classification using ...
Improving the Accuracy of Object Based Supervised Image Classification using ...CSCJournals
 

Similar to Selective search (20)

Semi-Supervised Method of Multiple Object Segmentation with a Region Labeling...
Semi-Supervised Method of Multiple Object Segmentation with a Region Labeling...Semi-Supervised Method of Multiple Object Segmentation with a Region Labeling...
Semi-Supervised Method of Multiple Object Segmentation with a Region Labeling...
 
2001714
20017142001714
2001714
 
Object-Oriented Approach of Information Extraction from High Resolution Satel...
Object-Oriented Approach of Information Extraction from High Resolution Satel...Object-Oriented Approach of Information Extraction from High Resolution Satel...
Object-Oriented Approach of Information Extraction from High Resolution Satel...
 
H017344752
H017344752H017344752
H017344752
 
Object Capturing In A Cluttered Scene By Using Point Feature Matching
Object Capturing In A Cluttered Scene By Using Point Feature MatchingObject Capturing In A Cluttered Scene By Using Point Feature Matching
Object Capturing In A Cluttered Scene By Using Point Feature Matching
 
Handling Uncertainty under Spatial Feature Extraction through Probabilistic S...
Handling Uncertainty under Spatial Feature Extraction through Probabilistic S...Handling Uncertainty under Spatial Feature Extraction through Probabilistic S...
Handling Uncertainty under Spatial Feature Extraction through Probabilistic S...
 
OBJECT DETECTION AND RECOGNITION: A SURVEY
OBJECT DETECTION AND RECOGNITION: A SURVEYOBJECT DETECTION AND RECOGNITION: A SURVEY
OBJECT DETECTION AND RECOGNITION: A SURVEY
 
Implementation of Object Tracking for Real Time Video
Implementation of Object Tracking for Real Time VideoImplementation of Object Tracking for Real Time Video
Implementation of Object Tracking for Real Time Video
 
Hidden Surface Removal.pptx
Hidden Surface Removal.pptxHidden Surface Removal.pptx
Hidden Surface Removal.pptx
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Image Segmentation Using Pairwise Correlation Clustering
Image Segmentation Using Pairwise Correlation ClusteringImage Segmentation Using Pairwise Correlation Clustering
Image Segmentation Using Pairwise Correlation Clustering
 
Dj31514517
Dj31514517Dj31514517
Dj31514517
 
Dj31514517
Dj31514517Dj31514517
Dj31514517
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Ijarcet vol-2-issue-4-1383-1388
Ijarcet vol-2-issue-4-1383-1388Ijarcet vol-2-issue-4-1383-1388
Ijarcet vol-2-issue-4-1383-1388
 
A Density Based Clustering Technique For Large Spatial Data Using Polygon App...
A Density Based Clustering Technique For Large Spatial Data Using Polygon App...A Density Based Clustering Technique For Large Spatial Data Using Polygon App...
A Density Based Clustering Technique For Large Spatial Data Using Polygon App...
 
Texture Segmentation Based on Multifractal Dimension
Texture Segmentation Based on Multifractal DimensionTexture Segmentation Based on Multifractal Dimension
Texture Segmentation Based on Multifractal Dimension
 
Texture Segmentation Based on Multifractal Dimension
Texture Segmentation Based on Multifractal Dimension  Texture Segmentation Based on Multifractal Dimension
Texture Segmentation Based on Multifractal Dimension
 
Massive Regional Texture Extraction for Aerial and Natural Images
Massive Regional Texture Extraction for Aerial and Natural ImagesMassive Regional Texture Extraction for Aerial and Natural Images
Massive Regional Texture Extraction for Aerial and Natural Images
 
Improving the Accuracy of Object Based Supervised Image Classification using ...
Improving the Accuracy of Object Based Supervised Image Classification using ...Improving the Accuracy of Object Based Supervised Image Classification using ...
Improving the Accuracy of Object Based Supervised Image Classification using ...
 

Recently uploaded

Displacement, Velocity, Acceleration, and Second Derivatives
Displacement, Velocity, Acceleration, and Second DerivativesDisplacement, Velocity, Acceleration, and Second Derivatives
Displacement, Velocity, Acceleration, and Second Derivatives23050636
 
Seven tools of quality control.slideshare
Seven tools of quality control.slideshareSeven tools of quality control.slideshare
Seven tools of quality control.slideshareraiaryan448
 
一比一原版(曼大毕业证书)曼尼托巴大学毕业证成绩单留信学历认证一手价格
一比一原版(曼大毕业证书)曼尼托巴大学毕业证成绩单留信学历认证一手价格一比一原版(曼大毕业证书)曼尼托巴大学毕业证成绩单留信学历认证一手价格
一比一原版(曼大毕业证书)曼尼托巴大学毕业证成绩单留信学历认证一手价格q6pzkpark
 
如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样
如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样
如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样wsppdmt
 
obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...
obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...
obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...yulianti213969
 
Ranking and Scoring Exercises for Research
Ranking and Scoring Exercises for ResearchRanking and Scoring Exercises for Research
Ranking and Scoring Exercises for ResearchRajesh Mondal
 
Credit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital AgeCredit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital AgeBoston Institute of Analytics
 
Bios of leading Astrologers & Researchers
Bios of leading Astrologers & ResearchersBios of leading Astrologers & Researchers
Bios of leading Astrologers & Researchersdarmandersingh4580
 
DBMS UNIT 5 46 CONTAINS NOTES FOR THE STUDENTS
DBMS UNIT 5 46 CONTAINS NOTES FOR THE STUDENTSDBMS UNIT 5 46 CONTAINS NOTES FOR THE STUDENTS
DBMS UNIT 5 46 CONTAINS NOTES FOR THE STUDENTSSnehalVinod
 
jll-asia-pacific-capital-tracker-1q24.pdf
jll-asia-pacific-capital-tracker-1q24.pdfjll-asia-pacific-capital-tracker-1q24.pdf
jll-asia-pacific-capital-tracker-1q24.pdfjaytendertech
 
Huawei Ransomware Protection Storage Solution Technical Overview Presentation...
Huawei Ransomware Protection Storage Solution Technical Overview Presentation...Huawei Ransomware Protection Storage Solution Technical Overview Presentation...
Huawei Ransomware Protection Storage Solution Technical Overview Presentation...LuisMiguelPaz5
 
Las implicancias del memorándum de entendimiento entre Codelco y SQM según la...
Las implicancias del memorándum de entendimiento entre Codelco y SQM según la...Las implicancias del memorándum de entendimiento entre Codelco y SQM según la...
Las implicancias del memorándum de entendimiento entre Codelco y SQM según la...Voces Mineras
 
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...Klinik kandungan
 
SAC 25 Final National, Regional & Local Angel Group Investing Insights 2024 0...
SAC 25 Final National, Regional & Local Angel Group Investing Insights 2024 0...SAC 25 Final National, Regional & Local Angel Group Investing Insights 2024 0...
SAC 25 Final National, Regional & Local Angel Group Investing Insights 2024 0...Elaine Werffeli
 
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单学位证留信学历认证原件一样
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单学位证留信学历认证原件一样如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单学位证留信学历认证原件一样
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单学位证留信学历认证原件一样jk0tkvfv
 
sourabh vyas1222222222222222222244444444
sourabh vyas1222222222222222222244444444sourabh vyas1222222222222222222244444444
sourabh vyas1222222222222222222244444444saurabvyas476
 
Abortion Clinic in Kempton Park +27791653574 WhatsApp Abortion Clinic Service...
Abortion Clinic in Kempton Park +27791653574 WhatsApp Abortion Clinic Service...Abortion Clinic in Kempton Park +27791653574 WhatsApp Abortion Clinic Service...
Abortion Clinic in Kempton Park +27791653574 WhatsApp Abortion Clinic Service...mikehavy0
 
如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证acoha1
 
Simplify hybrid data integration at an enterprise scale. Integrate all your d...
Simplify hybrid data integration at an enterprise scale. Integrate all your d...Simplify hybrid data integration at an enterprise scale. Integrate all your d...
Simplify hybrid data integration at an enterprise scale. Integrate all your d...varanasisatyanvesh
 

Recently uploaded (20)

Displacement, Velocity, Acceleration, and Second Derivatives
Displacement, Velocity, Acceleration, and Second DerivativesDisplacement, Velocity, Acceleration, and Second Derivatives
Displacement, Velocity, Acceleration, and Second Derivatives
 
Seven tools of quality control.slideshare
Seven tools of quality control.slideshareSeven tools of quality control.slideshare
Seven tools of quality control.slideshare
 
一比一原版(曼大毕业证书)曼尼托巴大学毕业证成绩单留信学历认证一手价格
一比一原版(曼大毕业证书)曼尼托巴大学毕业证成绩单留信学历认证一手价格一比一原版(曼大毕业证书)曼尼托巴大学毕业证成绩单留信学历认证一手价格
一比一原版(曼大毕业证书)曼尼托巴大学毕业证成绩单留信学历认证一手价格
 
如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样
如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样
如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样
 
obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...
obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...
obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...
 
Abortion pills in Doha {{ QATAR }} +966572737505) Get Cytotec
Abortion pills in Doha {{ QATAR }} +966572737505) Get CytotecAbortion pills in Doha {{ QATAR }} +966572737505) Get Cytotec
Abortion pills in Doha {{ QATAR }} +966572737505) Get Cytotec
 
Ranking and Scoring Exercises for Research
Ranking and Scoring Exercises for ResearchRanking and Scoring Exercises for Research
Ranking and Scoring Exercises for Research
 
Credit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital AgeCredit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital Age
 
Bios of leading Astrologers & Researchers
Bios of leading Astrologers & ResearchersBios of leading Astrologers & Researchers
Bios of leading Astrologers & Researchers
 
DBMS UNIT 5 46 CONTAINS NOTES FOR THE STUDENTS
DBMS UNIT 5 46 CONTAINS NOTES FOR THE STUDENTSDBMS UNIT 5 46 CONTAINS NOTES FOR THE STUDENTS
DBMS UNIT 5 46 CONTAINS NOTES FOR THE STUDENTS
 
jll-asia-pacific-capital-tracker-1q24.pdf
jll-asia-pacific-capital-tracker-1q24.pdfjll-asia-pacific-capital-tracker-1q24.pdf
jll-asia-pacific-capital-tracker-1q24.pdf
 
Huawei Ransomware Protection Storage Solution Technical Overview Presentation...
Huawei Ransomware Protection Storage Solution Technical Overview Presentation...Huawei Ransomware Protection Storage Solution Technical Overview Presentation...
Huawei Ransomware Protection Storage Solution Technical Overview Presentation...
 
Las implicancias del memorándum de entendimiento entre Codelco y SQM según la...
Las implicancias del memorándum de entendimiento entre Codelco y SQM según la...Las implicancias del memorándum de entendimiento entre Codelco y SQM según la...
Las implicancias del memorándum de entendimiento entre Codelco y SQM según la...
 
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
 
SAC 25 Final National, Regional & Local Angel Group Investing Insights 2024 0...
SAC 25 Final National, Regional & Local Angel Group Investing Insights 2024 0...SAC 25 Final National, Regional & Local Angel Group Investing Insights 2024 0...
SAC 25 Final National, Regional & Local Angel Group Investing Insights 2024 0...
 
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单学位证留信学历认证原件一样
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单学位证留信学历认证原件一样如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单学位证留信学历认证原件一样
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单学位证留信学历认证原件一样
 
sourabh vyas1222222222222222222244444444
sourabh vyas1222222222222222222244444444sourabh vyas1222222222222222222244444444
sourabh vyas1222222222222222222244444444
 
Abortion Clinic in Kempton Park +27791653574 WhatsApp Abortion Clinic Service...
Abortion Clinic in Kempton Park +27791653574 WhatsApp Abortion Clinic Service...Abortion Clinic in Kempton Park +27791653574 WhatsApp Abortion Clinic Service...
Abortion Clinic in Kempton Park +27791653574 WhatsApp Abortion Clinic Service...
 
如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
 
Simplify hybrid data integration at an enterprise scale. Integrate all your d...
Simplify hybrid data integration at an enterprise scale. Integrate all your d...Simplify hybrid data integration at an enterprise scale. Integrate all your d...
Simplify hybrid data integration at an enterprise scale. Integrate all your d...
 

Selective search

  • 1. Selective Search which combines the strength of both an i] exhaustive search and ii] segmentation. - Like exhaustive search, we aim to capture all possible object locations. - Like segmentation, we use the image structure to guide our sampling process. 1.1 Exhaustive Search As an object can be located at any position and scale in the image, it is natural to search everywhere [8, 16, 36]. However, the visual search spaceis huge, making an exhaustive search computationally expensive. This imposes constraints on the evaluation costper location and/or the number of locations considered. Hence most of these sliding window techniques use a coarsesearch grid and fixed aspect ratios, using weak classifiers and economic image features such as HOG [8, 16, 36]. This method is often used as a preselection step in a cascadeof classifiers [16, 36]. Related to the sliding window technique is the highly successfulpart-based object localisation method [12]. Their method also performs an exhaustive search using a linear SVM and HOG features. However, they search for objects and object parts, whose combination results in an impressive object detection performance. This both alleviates the constraints of using a regular grid, fixed scales, and fixed aspectratio, while at the same time reduces the number of locations visited. This is done by directly searching for the optimal window within the image using a branch and bound technique. While they obtain impressive results for linear classifiers, [1] found that for non-linear classifiers the method in practice still visits over a 100,000 windows per image. Instead of a blind exhaustive search or a branch and bound search, we propose selective search. We use the underlying image structure to generate object locations.
  • 2. In contrast to the discussed methods, this yields a completely class-independent set of locations. Furthermore, because we do not use a fixed aspectratio, our method is not limited to objects but should be able to find stuff like “grass” and “sand”as well (this also holds for [17]). Finally, we hope to generate fewer locations, which should make the problem easier as the variability of samples becomes lower. And more importantly, it frees up computational power which can be used for stronger machine learning techniques and more powerful appearance models. 2.2 Segmentation Both methods generate multiple foreground/background segmentations, learn to predict the likelihood that a foreground segment is a complete object, and use this to rank the segments. Both algorithms show a promising ability to accurately delineate objects within images, confirmed by [19] who achieve state-of-the-art results on pixel-wise image classification using [4]. As common in segmentation, both methods rely on a single strong algorithm for identifying good regions. They obtain a variety of locations by using many randomly initialised foreground and background seeds. In contrast, we explicitly deal with a variety of image conditions by using different grouping criteria and different representations. This means a lower computational investment as we do not have to invest in the single best segmentation strategy, such as using the excellent yet expensive contour detector of [3]. Furthermore, as we deal with different image conditions separately, we expect our locations to have a more consistent quality. Finally, our selective search paradigm dictates that the most interesting question is not how our regions compare to [4, 9], but rather how they can complement each other. Gu et al. [15] address the problem of carefully segmenting and recognizing objects based on their parts. They first generate a set of part hypotheses using a grouping method based on Arbelaez et al. [3]. Each part hypothesis is described by both appearance and shape features. Then, an object is recognized and carefully delineated by using its parts, achieving good results for shape recognition. In their work, the segmentation is hierarchical and yields segments at all scales. However, they use a single grouping strategy
  • 3. 3 SelectiveSearch In this section we detail our selective search algorithm for object recognition and present a variety of diversification strategies to deal with as many image conditions as possible. A selective search algorithm is subject to the following design considerations: Capture All Scales. Objects can occurat any scale within the image. Furthermore, some objects have less clear boundaries then other objects. Therefore, in selective search all object scales have to be taken into account, as illustrated in Figure 2. This is most naturally achieved by using an hierarchical algorithm. Diversification. There is no single optimal strategy to group regions together. As observed earlier in Figure 1, regions may form an object because of only colour, only texture, or becauseparts are enclosed. Furthermore, lighting conditions such as shading and the colour of the light may influence how regions form an object. Therefore instead of a single strategy which works well in most cases, we want to have a diverse set of strategies to deal with all cases. Fast to Compute. The goal of selective search is to yield a set of possible object locations for use in a practical object recognition framework. The creation of this set should not become a computational bottleneck, hence our algorithm should be reasonably fast.