SlideShare a Scribd company logo
1 of 94
Design and Performance Analysis
of 500 KWP On-Grid Solar PV
System
Amro Sadul Quddus
1300167009 DD SPVE
Installed Capacity of Rooftops
1. BNLT Block: 91 KWP
2. Medical Phase I: 100 KWP
3. Academic Block: 198 KWP
4. Civil Block: 111 KWP
Meteorological Data of Installation Site
Peak Sun Hours:
Daily irradiation is commonly
referred to as Peak Sun Hours.
Its unit is KWh/m2/day.
Month PSH
26̊ Tilt
Jan 4.93
Feb 6.02
Mar 6.65
Apr 6.50
May 6.14
June 5.25
Jul 4.37
Aug 4.29
Sep 4.68
Oct 5.79
Nov 5.58
Dec 5.02
Avg 5.43
Air Temperature:
26.95
N,
81.00
E
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Yearly
Avg
22
Year
Avg
15.8 19.5 25.3 30.0 31.2 30.6 28.7 27.9 26.6 24.3 20.7 16.7 24.8
Min 10.4 14.0 19.5 24.3 26.6 27.2 26.1 25.5 23.9 19.6 15.0 11.2 20.3
Max 21.8 25.1 30.7 34.9 35.3 33.7 31.1 30.4 29.7 29.4 27.3 23.4 29.4
PV Module Specifications
Polycrystalline
WP 320 W
VMPP 37.65 V
VOC 45.96 V
ISC 9.03 A
Efficiency 16.67%
TCoeff of VOC -0.310%/ ̊ C
TCoeff of VMP -0.409%/ ̊ C
TCoeff of ISC +0.052%/ ̊ C
Inverter Specifications
66 kVA Schneider Inverter:
Max DC input voltage 1000 V
MPPT voltage range 570-850 V
Max array short circuit current 140 A
No. of MPPT / max. no. of inputs per MPPT 1/14
AC output power 66 KW
Output voltage range 310-480 V
Max continous output current 96 A
25 kVA Schneider Inverter:
Max DC input voltage, open circuit 1000 V
MPPT voltage range 350 - 800 V
Number of MPPT / strings per MPPT 2 / 4
Max array short circuit current per MPPT 40.0 A
Rated output power (PF=1) 20.0 kW
AC voltage range 184 - 276 V / 319-478 V
Max output current 30.0 A
20 kVA Schneider Inverter:
Max DC input voltage, open circuit 1000 V
MPPT voltage range 430 - 800 V
Number of MPPT / strings per MPPT 2 / 4
Max array short circuit current per MPPT 40.0 A
Rated output power (PF=1) 25.0 kW
AC voltage range 184 - 276 V / 319-478 V
Max output current 37.0 A
BNLT Block
Installed Capacity 91 kWP
Total modules 340
Inverter 66 kVA x 1, 25 kVA x 1
Wattage of module 320 WP
Tilt 15 ̊
Orientation South
Circuit Diagram of Existing System
Tilt of Module
When 90 ̊ angle between Sun & module
Max energy will be collected
Tilt (β) = 180 - 90 - Altitude of Sun
Latitude of Integral University 26.57 ̊ N.
Altitude of Sun at solar noon on equinox @ I.U.L
 γc=90-latitude (equinox, Mar 21st / Sep 23rd)
→ 90 - 26.57 ̊ N = 63.43 ̊ S
Tilt (β) = 180 - 90 - Altitude of Sun
→ 180 - 90 - 63.43 ̊ S = 26.57 ≈ 27̊
Rooftop height of BNLT Blcok ≈ 22 m
Tilt of module in existing system 15 ̊
PV Array & Inverter Matching
66 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 19
Maximum number of modules 20 ← existing system
Current Matching
Max current input of inverter ÷{ISC Cell Eff = I SC-STC +[γI SC x (TCell
Eff - TSTC)]}
Maximum number of string 12 ← existing system
Power Matching
Maximum no. of module = Inverter's max PV array rated power ÷ rated
power of module
Maximum number of modules 240 ← existing system
25 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 14
Maximum number of modules 20 ← existing system
Current Matching
Max current input of inverter ÷{ISC Cell Eff = I SC-STC +[γI SC x (TCell
Eff - TSTC)]}
Maximum number of string 8
Actual no. of string 5
Power Matching
Maximum no. of module = Inverter's max PV array rated power /
rated power of module
Maximum number of modules 100 ← existing system
PV*Sol Simulation
PV Generator Output = 108.8 kWP
Spec. Annual Yield = 1532.44 kWh/kWP
Performance Ratio (PR) = 79.9%
Grid Feed-in = 166,729 kWh/Year
CO₂Emissions avoided = 100,038 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast per inverter
(Schneider 66 kW and 25 kW)
PV Energy Output Forecast for a Period
of 21 Years
Circuit Diagram of Optimized System
PV*Sol Simulation
PV Generator Output = 108.8 kWP
Spec. Annual Yield = 1538.26 kWh/kWP
Performance Ratio (PR) = 80.1%
Grid Feed-in = 167,363 kWh/Year
CO₂Emissions avoided = 100,418 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast per inverter
(Schneider 66 kW and 25 kW)
PV Energy Output Forecast for a Period
of 21 Years
Comparison of Results
Medical Phase I
Installed Capacity 100 kWP
Total modules 400
Inverter 25 kVA x 4
Wattage of module 320 WP
Tilt 15 ̊
Orientation South
Circuit Diagram of Existing System
Tilt of Module
When 90 ̊ angle between Sun & module
Max energy will be collected
Tilt (β) = 180 - 90 - Altitude of Sun
Latitude of Integral University 26.57 ̊ N.
Altitude of Sun at solar noon on equinox @ I.U.L
 γc=90-latitude (equinox, Mar 21st / Sep 23rd)
→ 90 - 26.57 ̊ N = 63.43 ̊ S
Tilt (β) = 180 - 90 - Altitude of Sun
→ 180 - 90 - 63.43 ̊ S = 26.57 ≈ 27̊
Rooftop height of Medical Phase I ≈ 14 m
Tilt of module in existing system 15 ̊
PV Array & Inverter Matching
25 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 14
Maximum number of modules 20 ← existing system
Current Matching
Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff
- TSTC)]}
Maximum number of string 8
Actual no. of string 5
Power Matching
Maximum no. of module = Inverter's max PV array rated power ÷
rated power of module
Maximum number of modules 100
4 x 25kVA inverter, total no. of modules 400
PV*Sol Simulation
PV Generator Output = 128 kWP
Spec. Annual Yield = 1516.16 kWh/kWP
Performance Ratio (PR) = 79.1%
Grid Feed-in = 194,068 kWh/Year
CO₂Emissions avoided = 116,441 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
PV Energy Output Forecast for a Period
of 21 Years
Circuit Diagram of Optimized System
PV*Sol Simulation Results
PV Generator Output = 128 kWP
Spec. Annual Yield = 1521.11 kWh/kWP
Performance Ratio (PR) = 79.2%
Grid Feed-in = 194,702 kWh/Year
CO₂Emissions avoided = 116,821 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast of inverter
(Schneider 25 kW × 4)
PV Energy Output Forecast for a Period
of 21 Years
Comparison of Results
Academic Block
Installed Capacity 198 kWP
Total modules 720
Inverter 66 kVA x 3
Wattage of module 320 WP
Tilt 15 ̊
Orientation South
Circuit Diagram of Existing System
Tilt of Module
When 90 ̊ angle between Sun & module
Max energy will be collected
Tilt (β) = 180 - 90 - Altitude of Sun
Latitude of Integral University 26.57 ̊ N.
Altitude of Sun at solar noon on equinox @ I.U.L
 γc=90-latitude (equinox, Mar 21st / Sep 23rd)
→ 90 - 26.57 ̊ N = 63.43 ̊ S
Tilt (β) = 180 - 90 - Altitude of Sun
→ 180 - 90 - 63.43 ̊ S = 26.57 ≈ 27 ̊
Rooftop height of Academic Blcok ≈ 12 m
Tilt of module in existing system 15 ̊
PV Array & Inverter Matching
66 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 19
Maximum number of modules 20 ← existing system
Current Matching
Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell
Eff - TSTC)]}
Maximum number of string 12 ← existing system
Power Matching
Maximum no. of module = Inverter's max PV array rated power ÷ rated
power of module
Maximum number of modules 240
3 x 66 kVA inverter, total no. of modules 720
PV*Sol Simulation
PV Generator Output = 230.4 kWP
Spec. Annual Yield = 1539.23 kWh/kWP
Performance Ratio (PR) = 80.3%
Grid Feed-in = 354,638 kWh/Year
CO₂Emissions avoided = 212,783 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast of inverter
(Schneider 66 kW × 3)
PV Energy Output Forecast for a Period
of 21 Years
Circuit Diagram of Optimized System
PV*Sol Simulation
PV Generator Output = 230.4 kWP
Spec. Annual Yield = 1546.49 kWh/kWP
Performance Ratio (PR) = 80.6%
Grid Feed-in = 356,311 kWh/Year
CO₂Emissions avoided = 213,787 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast of inverter
(Schneider 66 kW × 3)
PV Energy Output Forecast for a Period
of 21 Years
Comparison of Results
Civil Block
Installed Capacity 111 kWP
Total modules 417
Inverter 66 kVA x 1,25 kVA x 1,20 kVA x 1,
Wattage of module 320 WP
Tilt 15 ̊
Orientation South
Circuit Diagram of Existing System
Tilt of Module
When 90 ̊ angle between Sun & module
Max energy will be collected
Tilt (β) = 180 - 90 - Altitude of Sun
Latitude of Integral University 26.57 ̊ N.
Altitude of Sun at solar noon on equinox @ I.U.L
 γc=90-latitude (equinox, Mar 21st / Sep 23rd)
→ 90 - 26.57 ̊ N = 63.43 ̊ S
Tilt (β) = 180 - 90 - Altitude of Sun
→ 180 - 90 - 63.43 ̊ S = 26.57
Rooftop height of Civil Blcok ≈ 15 m.
Tilt of module in existing system 15 ̊
PV Array & Inverter Matching
66 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 19 ← existing system
Maximum number of modules 20
Current Matching
Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell
Eff - TSTC)]}
Maximum number of string 12
Actual no. of string 13
Power Matching
Maximum no. of module = Inverter's max PV array rated power ÷ rated
power of module
Maximum number of modules 240
Actual no. of modules 247
25 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 14
Maximum number of modules 20
Number of modules per string 18
Current Matching
Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff
- TSTC)]}
Maximum number of string 8
Actual no. of string 5
Power Matching
Maximum no. of module = Inverter's max PV array rated power ÷
rated power of module
Maximum number of modules 100
Actual no. of modules 90
20 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 12
Maximum number of modules 20 ← existing system
Current Matching
Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff
- TSTC)]}
Maximum number of string 8
Actual no.of string 4
Power Matching
Maximum no. of module = Inverter's max PV array rated power ÷
rated power of module
Maximum number of modules 80
Actual no. of modules 80
PV*Sol Simulation
PV Generator Output = 133.4 kWP
Spec. Annual Yield = 1530.80 kWh/kWP
Performance Ratio (PR) = 79.8%
Grid Feed-in = 204,271 kWh/Year
CO₂Emissions avoided = 122,562 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast of inverter
(Schneider 25 kW × 1, 20 kW × 1, 66 kW
× 1)
PV Energy Output Forecast for a Period
of 21 Years
Circuit Diagram of Optimized System
PV*Sol Simulation
PV Generator Output = 133.4 kWP
Spec. Annual Yield = 1537.37 kWh/kWP
Performance Ratio (PR) = 80.1%
Grid Feed-in = 205,146 kWh/Year
CO₂Emissions avoided = 123,088 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast of inverter
(Schneider 25 kW × 1, 20 kW × 1, 66 kW
× 1)
PV Energy Output Forecast for a Period
of 21 Years
Comparison of Results
Design and performance analysis of 500 KWp on-grid solar PV system

More Related Content

What's hot

Solar photovoltaic powerpoint
Solar photovoltaic powerpointSolar photovoltaic powerpoint
Solar photovoltaic powerpointWilliam Wallace
 
Basic Introduction to solar PV System.
Basic Introduction to solar PV System.Basic Introduction to solar PV System.
Basic Introduction to solar PV System.Urval Chotalia
 
Comparative Study on Forecasting & Scheduling - Solar & Wind 05.03.19
Comparative Study on Forecasting & Scheduling - Solar & Wind 05.03.19Comparative Study on Forecasting & Scheduling - Solar & Wind 05.03.19
Comparative Study on Forecasting & Scheduling - Solar & Wind 05.03.19Gensol Engineering Limited
 
Solar photovoltaic systems
Solar photovoltaic systemsSolar photovoltaic systems
Solar photovoltaic systemsanish_hercules
 
Impact of high level penetration of photovoltaics on Power system
Impact of high level penetration of photovoltaics on Power systemImpact of high level penetration of photovoltaics on Power system
Impact of high level penetration of photovoltaics on Power systemMuwaf_5
 
Ppt on design of solar photovoltaic generation for residential building
Ppt on design of solar photovoltaic generation for residential buildingPpt on design of solar photovoltaic generation for residential building
Ppt on design of solar photovoltaic generation for residential buildingSiya Agarwal
 
Solar PV design and installation
Solar PV design and installationSolar PV design and installation
Solar PV design and installationAYISHA NAZIBA
 
Design off grid solar PV system
Design off grid solar PV systemDesign off grid solar PV system
Design off grid solar PV systemRajesh Pindoriya
 
Webinar 02 demonstration of pv system design pvsyst
Webinar 02 demonstration of pv system design pvsystWebinar 02 demonstration of pv system design pvsyst
Webinar 02 demonstration of pv system design pvsystsolpowerpeople
 
Solar PV Codes and Standards
Solar PV Codes and StandardsSolar PV Codes and Standards
Solar PV Codes and StandardsSolar Reference
 
solar photovolatic power system
solar photovolatic power systemsolar photovolatic power system
solar photovolatic power systemSubir paul
 
Photovoltaic Systems: System Design Tools
Photovoltaic Systems: System Design ToolsPhotovoltaic Systems: System Design Tools
Photovoltaic Systems: System Design ToolsGavin Harper
 
Photovoltaic modules & sizing of pv system
Photovoltaic modules & sizing of pv systemPhotovoltaic modules & sizing of pv system
Photovoltaic modules & sizing of pv systemEr Madhuri More
 

What's hot (20)

Solar photovoltaic powerpoint
Solar photovoltaic powerpointSolar photovoltaic powerpoint
Solar photovoltaic powerpoint
 
Fundamentals of Solar PV System
Fundamentals of Solar PV SystemFundamentals of Solar PV System
Fundamentals of Solar PV System
 
Basic Introduction to solar PV System.
Basic Introduction to solar PV System.Basic Introduction to solar PV System.
Basic Introduction to solar PV System.
 
Comparative Study on Forecasting & Scheduling - Solar & Wind 05.03.19
Comparative Study on Forecasting & Scheduling - Solar & Wind 05.03.19Comparative Study on Forecasting & Scheduling - Solar & Wind 05.03.19
Comparative Study on Forecasting & Scheduling - Solar & Wind 05.03.19
 
Solar pv systems
Solar pv systemsSolar pv systems
Solar pv systems
 
Solar pv connected to grid
Solar pv connected to gridSolar pv connected to grid
Solar pv connected to grid
 
Solar PV Basics
Solar PV BasicsSolar PV Basics
Solar PV Basics
 
Solar Photovoltaic Energy
Solar Photovoltaic EnergySolar Photovoltaic Energy
Solar Photovoltaic Energy
 
Solar photovoltaic systems
Solar photovoltaic systemsSolar photovoltaic systems
Solar photovoltaic systems
 
Impact of high level penetration of photovoltaics on Power system
Impact of high level penetration of photovoltaics on Power systemImpact of high level penetration of photovoltaics on Power system
Impact of high level penetration of photovoltaics on Power system
 
Ppt on design of solar photovoltaic generation for residential building
Ppt on design of solar photovoltaic generation for residential buildingPpt on design of solar photovoltaic generation for residential building
Ppt on design of solar photovoltaic generation for residential building
 
Solar PV design and installation
Solar PV design and installationSolar PV design and installation
Solar PV design and installation
 
Design off grid solar PV system
Design off grid solar PV systemDesign off grid solar PV system
Design off grid solar PV system
 
Webinar 02 demonstration of pv system design pvsyst
Webinar 02 demonstration of pv system design pvsystWebinar 02 demonstration of pv system design pvsyst
Webinar 02 demonstration of pv system design pvsyst
 
Solar system design
Solar system designSolar system design
Solar system design
 
Solar PV Codes and Standards
Solar PV Codes and StandardsSolar PV Codes and Standards
Solar PV Codes and Standards
 
Splar pv
Splar pvSplar pv
Splar pv
 
solar photovolatic power system
solar photovolatic power systemsolar photovolatic power system
solar photovolatic power system
 
Photovoltaic Systems: System Design Tools
Photovoltaic Systems: System Design ToolsPhotovoltaic Systems: System Design Tools
Photovoltaic Systems: System Design Tools
 
Photovoltaic modules & sizing of pv system
Photovoltaic modules & sizing of pv systemPhotovoltaic modules & sizing of pv system
Photovoltaic modules & sizing of pv system
 

Similar to Design and performance analysis of 500 KWp on-grid solar PV system

Significanc of Tracking in PV system
Significanc of Tracking in PV systemSignificanc of Tracking in PV system
Significanc of Tracking in PV systemPragya Sharma
 
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
 Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)} Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}Mohammed Ahmed Ramadan
 
solar PV design.pptx
solar PV design.pptxsolar PV design.pptx
solar PV design.pptxUniversity
 
1kw 265invt
1kw 265invt1kw 265invt
1kw 265invtdungsp4
 
Solar_IT_03_101.pdf
Solar_IT_03_101.pdfSolar_IT_03_101.pdf
Solar_IT_03_101.pdfAntyMouda
 
Iaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysisIaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysisIaetsd Iaetsd
 
17 mse013 performance of power plant
17 mse013 performance of power plant17 mse013 performance of power plant
17 mse013 performance of power plantpaneliya sagar
 
Presentation On Solar Installation Project
Presentation On Solar Installation ProjectPresentation On Solar Installation Project
Presentation On Solar Installation ProjectDHiraj Bohara
 
stirling radioisotope generator
stirling radioisotope generatorstirling radioisotope generator
stirling radioisotope generatorparvez1290
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_JunMDO_Lab
 
Spring 2011 final project master
Spring 2011 final project  masterSpring 2011 final project  master
Spring 2011 final project masterbobmcgonigle
 
Solar generation for APC
Solar generation for APC Solar generation for APC
Solar generation for APC Molla Morshad
 
Impact of solar radiation and temperature levels on the variation of the seri...
Impact of solar radiation and temperature levels on the variation of the seri...Impact of solar radiation and temperature levels on the variation of the seri...
Impact of solar radiation and temperature levels on the variation of the seri...eSAT Journals
 
Small Scale Concentrated Solar Power
Small Scale Concentrated Solar PowerSmall Scale Concentrated Solar Power
Small Scale Concentrated Solar PowerMatthew Mobley
 

Similar to Design and performance analysis of 500 KWp on-grid solar PV system (20)

Significanc of Tracking in PV system
Significanc of Tracking in PV systemSignificanc of Tracking in PV system
Significanc of Tracking in PV system
 
17 mse014 pv syst
17 mse014 pv syst17 mse014 pv syst
17 mse014 pv syst
 
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
 Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)} Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
 
4 ee462_l_solar_ppt
 4 ee462_l_solar_ppt 4 ee462_l_solar_ppt
4 ee462_l_solar_ppt
 
solar PV design.pptx
solar PV design.pptxsolar PV design.pptx
solar PV design.pptx
 
1kw 265invt
1kw 265invt1kw 265invt
1kw 265invt
 
Solar_IT_03_101.pdf
Solar_IT_03_101.pdfSolar_IT_03_101.pdf
Solar_IT_03_101.pdf
 
Iaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysisIaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysis
 
17 mse013 performance of power plant
17 mse013 performance of power plant17 mse013 performance of power plant
17 mse013 performance of power plant
 
Presentation On Solar Installation Project
Presentation On Solar Installation ProjectPresentation On Solar Installation Project
Presentation On Solar Installation Project
 
stirling radioisotope generator
stirling radioisotope generatorstirling radioisotope generator
stirling radioisotope generator
 
shagufta-final review
shagufta-final reviewshagufta-final review
shagufta-final review
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_Jun
 
48 deshmukh
48 deshmukh48 deshmukh
48 deshmukh
 
Spring 2011 final project master
Spring 2011 final project  masterSpring 2011 final project  master
Spring 2011 final project master
 
GSA TUNED HIGH EXERGY IN PV ARRAY
GSA TUNED HIGH EXERGY IN PV ARRAYGSA TUNED HIGH EXERGY IN PV ARRAY
GSA TUNED HIGH EXERGY IN PV ARRAY
 
Solar generation for APC
Solar generation for APC Solar generation for APC
Solar generation for APC
 
Impact of solar radiation and temperature levels on the variation of the seri...
Impact of solar radiation and temperature levels on the variation of the seri...Impact of solar radiation and temperature levels on the variation of the seri...
Impact of solar radiation and temperature levels on the variation of the seri...
 
solar PV.pptx
solar PV.pptxsolar PV.pptx
solar PV.pptx
 
Small Scale Concentrated Solar Power
Small Scale Concentrated Solar PowerSmall Scale Concentrated Solar Power
Small Scale Concentrated Solar Power
 

Recently uploaded

AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........LeaCamillePacle
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayMakMakNepo
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 

Recently uploaded (20)

Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up Friday
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 

Design and performance analysis of 500 KWp on-grid solar PV system

  • 1. Design and Performance Analysis of 500 KWP On-Grid Solar PV System Amro Sadul Quddus 1300167009 DD SPVE
  • 2. Installed Capacity of Rooftops 1. BNLT Block: 91 KWP 2. Medical Phase I: 100 KWP 3. Academic Block: 198 KWP 4. Civil Block: 111 KWP
  • 3. Meteorological Data of Installation Site Peak Sun Hours: Daily irradiation is commonly referred to as Peak Sun Hours. Its unit is KWh/m2/day. Month PSH 26̊ Tilt Jan 4.93 Feb 6.02 Mar 6.65 Apr 6.50 May 6.14 June 5.25 Jul 4.37 Aug 4.29 Sep 4.68 Oct 5.79 Nov 5.58 Dec 5.02 Avg 5.43
  • 4. Air Temperature: 26.95 N, 81.00 E Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Yearly Avg 22 Year Avg 15.8 19.5 25.3 30.0 31.2 30.6 28.7 27.9 26.6 24.3 20.7 16.7 24.8 Min 10.4 14.0 19.5 24.3 26.6 27.2 26.1 25.5 23.9 19.6 15.0 11.2 20.3 Max 21.8 25.1 30.7 34.9 35.3 33.7 31.1 30.4 29.7 29.4 27.3 23.4 29.4
  • 5. PV Module Specifications Polycrystalline WP 320 W VMPP 37.65 V VOC 45.96 V ISC 9.03 A Efficiency 16.67% TCoeff of VOC -0.310%/ ̊ C TCoeff of VMP -0.409%/ ̊ C TCoeff of ISC +0.052%/ ̊ C
  • 6. Inverter Specifications 66 kVA Schneider Inverter: Max DC input voltage 1000 V MPPT voltage range 570-850 V Max array short circuit current 140 A No. of MPPT / max. no. of inputs per MPPT 1/14 AC output power 66 KW Output voltage range 310-480 V Max continous output current 96 A
  • 7. 25 kVA Schneider Inverter: Max DC input voltage, open circuit 1000 V MPPT voltage range 350 - 800 V Number of MPPT / strings per MPPT 2 / 4 Max array short circuit current per MPPT 40.0 A Rated output power (PF=1) 20.0 kW AC voltage range 184 - 276 V / 319-478 V Max output current 30.0 A
  • 8. 20 kVA Schneider Inverter: Max DC input voltage, open circuit 1000 V MPPT voltage range 430 - 800 V Number of MPPT / strings per MPPT 2 / 4 Max array short circuit current per MPPT 40.0 A Rated output power (PF=1) 25.0 kW AC voltage range 184 - 276 V / 319-478 V Max output current 37.0 A
  • 9. BNLT Block Installed Capacity 91 kWP Total modules 340 Inverter 66 kVA x 1, 25 kVA x 1 Wattage of module 320 WP Tilt 15 ̊ Orientation South
  • 10. Circuit Diagram of Existing System
  • 11. Tilt of Module When 90 ̊ angle between Sun & module Max energy will be collected Tilt (β) = 180 - 90 - Altitude of Sun
  • 12. Latitude of Integral University 26.57 ̊ N. Altitude of Sun at solar noon on equinox @ I.U.L  γc=90-latitude (equinox, Mar 21st / Sep 23rd) → 90 - 26.57 ̊ N = 63.43 ̊ S Tilt (β) = 180 - 90 - Altitude of Sun → 180 - 90 - 63.43 ̊ S = 26.57 ≈ 27̊ Rooftop height of BNLT Blcok ≈ 22 m Tilt of module in existing system 15 ̊
  • 13. PV Array & Inverter Matching 66 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 19 Maximum number of modules 20 ← existing system
  • 14. Current Matching Max current input of inverter ÷{ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 12 ← existing system Power Matching Maximum no. of module = Inverter's max PV array rated power ÷ rated power of module Maximum number of modules 240 ← existing system
  • 15. 25 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 14 Maximum number of modules 20 ← existing system
  • 16. Current Matching Max current input of inverter ÷{ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 8 Actual no. of string 5 Power Matching Maximum no. of module = Inverter's max PV array rated power / rated power of module Maximum number of modules 100 ← existing system
  • 17. PV*Sol Simulation PV Generator Output = 108.8 kWP Spec. Annual Yield = 1532.44 kWh/kWP Performance Ratio (PR) = 79.9% Grid Feed-in = 166,729 kWh/Year CO₂Emissions avoided = 100,038 kg/Year
  • 20. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 21. Production forecast per inverter (Schneider 66 kW and 25 kW)
  • 22. PV Energy Output Forecast for a Period of 21 Years
  • 23. Circuit Diagram of Optimized System
  • 24. PV*Sol Simulation PV Generator Output = 108.8 kWP Spec. Annual Yield = 1538.26 kWh/kWP Performance Ratio (PR) = 80.1% Grid Feed-in = 167,363 kWh/Year CO₂Emissions avoided = 100,418 kg/Year
  • 27. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 28. Production forecast per inverter (Schneider 66 kW and 25 kW)
  • 29. PV Energy Output Forecast for a Period of 21 Years
  • 31. Medical Phase I Installed Capacity 100 kWP Total modules 400 Inverter 25 kVA x 4 Wattage of module 320 WP Tilt 15 ̊ Orientation South
  • 32. Circuit Diagram of Existing System
  • 33. Tilt of Module When 90 ̊ angle between Sun & module Max energy will be collected Tilt (β) = 180 - 90 - Altitude of Sun
  • 34. Latitude of Integral University 26.57 ̊ N. Altitude of Sun at solar noon on equinox @ I.U.L  γc=90-latitude (equinox, Mar 21st / Sep 23rd) → 90 - 26.57 ̊ N = 63.43 ̊ S Tilt (β) = 180 - 90 - Altitude of Sun → 180 - 90 - 63.43 ̊ S = 26.57 ≈ 27̊ Rooftop height of Medical Phase I ≈ 14 m Tilt of module in existing system 15 ̊
  • 35. PV Array & Inverter Matching 25 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 14 Maximum number of modules 20 ← existing system
  • 36. Current Matching Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 8 Actual no. of string 5 Power Matching Maximum no. of module = Inverter's max PV array rated power ÷ rated power of module Maximum number of modules 100 4 x 25kVA inverter, total no. of modules 400
  • 37. PV*Sol Simulation PV Generator Output = 128 kWP Spec. Annual Yield = 1516.16 kWh/kWP Performance Ratio (PR) = 79.1% Grid Feed-in = 194,068 kWh/Year CO₂Emissions avoided = 116,441 kg/Year
  • 40. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 41. PV Energy Output Forecast for a Period of 21 Years
  • 42. Circuit Diagram of Optimized System
  • 43. PV*Sol Simulation Results PV Generator Output = 128 kWP Spec. Annual Yield = 1521.11 kWh/kWP Performance Ratio (PR) = 79.2% Grid Feed-in = 194,702 kWh/Year CO₂Emissions avoided = 116,821 kg/Year
  • 46. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 47. Production forecast of inverter (Schneider 25 kW × 4)
  • 48. PV Energy Output Forecast for a Period of 21 Years
  • 50. Academic Block Installed Capacity 198 kWP Total modules 720 Inverter 66 kVA x 3 Wattage of module 320 WP Tilt 15 ̊ Orientation South
  • 51. Circuit Diagram of Existing System
  • 52. Tilt of Module When 90 ̊ angle between Sun & module Max energy will be collected Tilt (β) = 180 - 90 - Altitude of Sun
  • 53. Latitude of Integral University 26.57 ̊ N. Altitude of Sun at solar noon on equinox @ I.U.L  γc=90-latitude (equinox, Mar 21st / Sep 23rd) → 90 - 26.57 ̊ N = 63.43 ̊ S Tilt (β) = 180 - 90 - Altitude of Sun → 180 - 90 - 63.43 ̊ S = 26.57 ≈ 27 ̊ Rooftop height of Academic Blcok ≈ 12 m Tilt of module in existing system 15 ̊
  • 54. PV Array & Inverter Matching 66 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 19 Maximum number of modules 20 ← existing system
  • 55. Current Matching Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 12 ← existing system Power Matching Maximum no. of module = Inverter's max PV array rated power ÷ rated power of module Maximum number of modules 240 3 x 66 kVA inverter, total no. of modules 720
  • 56. PV*Sol Simulation PV Generator Output = 230.4 kWP Spec. Annual Yield = 1539.23 kWh/kWP Performance Ratio (PR) = 80.3% Grid Feed-in = 354,638 kWh/Year CO₂Emissions avoided = 212,783 kg/Year
  • 59. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 60. Production forecast of inverter (Schneider 66 kW × 3)
  • 61. PV Energy Output Forecast for a Period of 21 Years
  • 62. Circuit Diagram of Optimized System
  • 63. PV*Sol Simulation PV Generator Output = 230.4 kWP Spec. Annual Yield = 1546.49 kWh/kWP Performance Ratio (PR) = 80.6% Grid Feed-in = 356,311 kWh/Year CO₂Emissions avoided = 213,787 kg/Year
  • 66. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 67. Production forecast of inverter (Schneider 66 kW × 3)
  • 68. PV Energy Output Forecast for a Period of 21 Years
  • 70. Civil Block Installed Capacity 111 kWP Total modules 417 Inverter 66 kVA x 1,25 kVA x 1,20 kVA x 1, Wattage of module 320 WP Tilt 15 ̊ Orientation South
  • 71. Circuit Diagram of Existing System
  • 72. Tilt of Module When 90 ̊ angle between Sun & module Max energy will be collected Tilt (β) = 180 - 90 - Altitude of Sun
  • 73. Latitude of Integral University 26.57 ̊ N. Altitude of Sun at solar noon on equinox @ I.U.L  γc=90-latitude (equinox, Mar 21st / Sep 23rd) → 90 - 26.57 ̊ N = 63.43 ̊ S Tilt (β) = 180 - 90 - Altitude of Sun → 180 - 90 - 63.43 ̊ S = 26.57 Rooftop height of Civil Blcok ≈ 15 m. Tilt of module in existing system 15 ̊
  • 74. PV Array & Inverter Matching 66 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 19 ← existing system Maximum number of modules 20
  • 75. Current Matching Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 12 Actual no. of string 13 Power Matching Maximum no. of module = Inverter's max PV array rated power ÷ rated power of module Maximum number of modules 240 Actual no. of modules 247
  • 76. 25 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 14 Maximum number of modules 20 Number of modules per string 18
  • 77. Current Matching Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 8 Actual no. of string 5 Power Matching Maximum no. of module = Inverter's max PV array rated power ÷ rated power of module Maximum number of modules 100 Actual no. of modules 90
  • 78. 20 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 12 Maximum number of modules 20 ← existing system
  • 79. Current Matching Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 8 Actual no.of string 4 Power Matching Maximum no. of module = Inverter's max PV array rated power ÷ rated power of module Maximum number of modules 80 Actual no. of modules 80
  • 80. PV*Sol Simulation PV Generator Output = 133.4 kWP Spec. Annual Yield = 1530.80 kWh/kWP Performance Ratio (PR) = 79.8% Grid Feed-in = 204,271 kWh/Year CO₂Emissions avoided = 122,562 kg/Year
  • 83. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 84. Production forecast of inverter (Schneider 25 kW × 1, 20 kW × 1, 66 kW × 1)
  • 85. PV Energy Output Forecast for a Period of 21 Years
  • 86. Circuit Diagram of Optimized System
  • 87. PV*Sol Simulation PV Generator Output = 133.4 kWP Spec. Annual Yield = 1537.37 kWh/kWP Performance Ratio (PR) = 80.1% Grid Feed-in = 205,146 kWh/Year CO₂Emissions avoided = 123,088 kg/Year
  • 90. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 91. Production forecast of inverter (Schneider 25 kW × 1, 20 kW × 1, 66 kW × 1)
  • 92. PV Energy Output Forecast for a Period of 21 Years