SlideShare a Scribd company logo
1 of 42
Download to read offline
Structural properties of a binary colloidal
mixture under shear reversal
Amit e
Workshop Bartholomäberg
Particle and field based methods for
complex fluids and soft materials
Amit Kumar Bhattacharjee
Courant Institute of Mathematical Sciences
New York University, New York
IISERM SeminarApril 13, 2015
Structural properties of a binary colloidal
mixture under shear reversal
Amit Bhattacharjee
Workshop Bartholomäberg
Collaborators and advisors
Aleksandar Donev (New York)
Andy Nonaka (Berkeley)
Alejandro Garcia (San Jose)
John B. Bell (Berkeley)
Juergen Horbach (Duesseldorf)
Matthias Fuchs (Konstanz)
Thomas Voigtmann (Koeln)
Gautam I. Menon (Chennai)
Ronojoy Adhikari (Chennai)
Fluctuating hydrodynamics of
multi-component non-ideal liquids
and chemically reactive fluids.
“Bauschinger effect” in dense
supercooled colloidal melt under
instantaneous shear reversal.
Inhomogeneous phenomena in
nematic liquid crystals.
USA
Germany
USA
India
1/38Amit Bhattacharjee Courant Institute (NYU)
Structural properties of a binary colloidal
mixture under shear reversal
Amit Bhattacharjee
Workshop Bartholomäberg
Prologue
 Solid, liquid, gas, plasma.
 F = E – TS; Hard matter (crystals) = E dominated phases (minimize E);
Soft matter (liquids) = S dominated phases (maximize S).
 Changes of phase – order of transition (e.g. liquid to solid, paramagnet to
ferromagnet).
 Soft to touch, easily malleable, can't withhold shear.
 Examples: milk, paint (colloid), rubber, tissues (polymer), toothpaste (gels),
LCD devices (liquid crystal) ….
States of matter
Complex fluids
2/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Structural properties of a binary colloidal
mixture under shear reversal
Amit Bhattacharjee
Workshop Bartholomäberg
Prologue
 Multistage transition process in fluids composed with
anisotropic particles: mesophases (Nematic, Discotic, Cholesteric,
Smectic A – C, Columnar liquid crystals).
 Glass transition – a non thermodynamic transition :
a) no consumption/expulsion of latent heat,
b) no changes in structural properties,
c) (almost) no change in thermodynamic properties,
d) drastic change in transport properties (viscosity, diffusion-constant etc).
 Complex physico-chemical processes in multicomponent gases and liquids
leading to macroscale structure.
Complexity in complex fluids
3/38
n
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Prologue
Necessity for studying
Images © [1] Vinayak Industries, Mumbai,
[2] Schott AG, Mainz, [3] Wagner (Delaware)
 Technological applications:
Thermometers, laptop & mobile screens,
Casting, cooling and solidification,1,2
Body armour (STF enabled Kevlar).3
 Medical examples:
Sub cellular structures, blood flow,
joint lubricants, pharmaceuticals.
4/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Prologue
Theoretical methods
 Atomistic description:
a) Ignore electronic d.o.f. classical N-particle Newton's equation.
b) approximation: 2-body interations in central forcefield (e.g. LJ,
Yukawa, WCA etc).
 Mesoscopic description:
a) Identify order parameter, broken symmetry, conservation laws,
type of transition of the phase.
b) Construct a free energy functional and spatial coarse-graining.
c) Temporal coarse graining.
 Measurement of the equilibrium and non-equilibrium properties.
5/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Prologue
LLNS
TDGL
KMC
DPD
SRD
LBM
LD
BD
DFT
MD Meso-scale
Micro-scales
Length
Time
Computational methods
Macro-scales
6/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Outline
Bauschinger effect in vitrifying colloidal melt
 Simulation methods.
 Rheological properties in forward shear.
 Response to instantaneous shear reversal.
 Structural properties and interconnection with stresses.
 Non­equilibrium thermodynamics of diffusion.
 Low Mach number equations. 
 Numerical methods and benchmarks.
 Applications: Giant non­EQ concentration fluctuations.
 Compressible hydrodynamics of reactive gas.
 Comparison of particle/field based methods for homogeneous systems.
Fluctuating hydrodynamics of multispecies mixtures
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
7/38Amit Bhattacharjee Courant Institute (NYU)
Bauschinger effect in binary supercooled colloidal
glass-forming melt
=
8/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee
+ = ?
=
Courant Institute (NYU)
Zausch et al,
J. Phys. Cond. Matt. (2008).
Brader et al,
Phys. Rev. E (2010).
Simulation method
 WCA pair potential1
(soft, purely repulsive)
 Thermostat : dissipative particle dynamics[2,3]
(DPD) local
conservation of momentum.
 Solve N-particle Newton's equation with Lees Edwards BC.
mi
˙⃗ri = ⃗pi ; ˙⃗pi=−∑i≠ j
⃗∇ U ij (⃗r )−∑i≠ j
ζω
2
( ⃗rij )( ̂rij⋅⃗vij ) ̂rij+√2kB T ζω( ⃗rij)N ij ̂rij .
conservative dissipative stochastic
N=2NA=2NB=1300, σ AA=1.0, σBB=5/6, σAB=(σAA+σBB)/2, ϵ=1, L=10.
[1] Chandler et al, J. Chem. Phys. (1971).
[2] Espanol et al, Euro. Phys. Lett. (1996).
[3] Peters, Euro. Phys. Lett. (2004).
UWCA (r)=
{4 ϵ[( σ
r
)
12
−(σ
r
)
6
]+ϵ, r<2
1/6
σ
0, r≥21/6
σ
〈N ij (t)〉 = 0,
〈 N ij(t)N kl (,t ')〉 = (δik δjl +δil δjk )δ(t−t ')δ(r−r ')
9/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
S (q)=
1
N
〈ρ(q)ρ(−q)〉
g(r)=
V
N
2
〈∑i
N
∑j≠i
N
δ(ri−r j−r)〉
Fs
α
(q ,t)=
1
N α
∑i
N α
〈ρi (q ,t)ρi(q ,0)〉
Δrα
2
(t)=〈∣rα(t)−rα (0)∣2
〉
t2
t
caging
caging
~
~
Equilibrium: structure and dynamics
 Pair correlation .
 Structure function .
 Density autocorrelator (SISF) .
 Mean squared displacement (MSD) .
10/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Out-of-equilibrium scenario
 Shear applied through Lees-Edwards BC.
 Planar Couette flow is established within a few
NEMD steps (no shear banding).
 Shear rate perturbs the interplay between
intrinsic single particle time & structural
relaxation time shear thinning:
linear response breaks down.
˙
˙
x
y
z
gradient
vorticity
Newtonian
T=0.4
0

0
˙−1
11/38
T=0.4, ˙γ=0.005
τ0=0.48, τα=2.5 x103
Pe0=2.4 x10−3
, Peα=12.5.
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Properties in forward shear: dynamics
 Stress tensor1
:
 Visco-elastic response.
 Local stress:
 Jump in local stress variance at 10% strain amplitude.
 Overshoot in stress[2,3]
: shear induced local melting
of glass (breaking of cage structure): superdiffusive
intermediate motion2
.
elastic
plastic
T=0.4
EQ
〈 r
2
〉~t

 ˙tw
0

xy=〈 xy 〉=−1/V 〈∑i=1
N
[mi vi , x vi , y∑j≠i
rij , x Fij , y ]〉.
kinetic virial
xy=−1/V ∑j≠i
rij , x Fij , y .
12/38
[1] Kirkwood, J. Chem Phys. (1946).
[2] Horbach et al, J. Phys. Cond. Mat. (2008).
[3] Bhattacharjee, Soft Matter (accepted).
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Properties in forward shear: structure
 Pair correlation shows no signature of shear.
 Projection onto spherical harmonics:
real and imaginary component of
is sensitive to shear.
 Interconnection between stress and structure[1,3]
 Maximum extension-compression exhibited
near overshoot2
seen in .
 No shear banding3
found (planar Couette flow
is established for all steps).
g22
αβ
(r)
σxy=K cα
2
∫
0
∞
drr3 ∂V
αβ
∂r
ℑ(g22
αβ
(r))
g(r)=∑l=0
∞
∑m=−l
l
glm (∣r∣)Y
lm
(θ,ϕ).
N 1=K cα
2
∫
0
∞
dr r3 ∂V
αβ
∂r
ℜ(g22
αβ
(r))
σ=
ρ2
2
∫
0
∞
d r∑α ,β
cα cβ
rr
r
∂V αβ
∂r
g
αβ
(r)
g(r ,θ)
γ=0.025 γ=0.25γ=0.1
[1] Kirkwood, J Chem Phys. (1946).
[2] Hess et al, Phys. Rev. A, (1987).
[3] Bhattacharjee, Soft Matter (accepted)
13/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
extension
compression
Instantaneous shear reversal: dynamics
 Strong history dependence: preparation state-dependent response.
 Bauschinger effect[1,2]
: less yield strength when reversed from plastic deformed state.
 No signature of strong resistance to the back flow, shear banding2
, STZs or
channelized stress relaxation.
 No overshoot in stresses[2,3]
and absence of superdiffusive motion.
−γw
el
−γw
max −γw
s
[1] Karmakar et al, Phys. Rev. E (2010).
[2] Bhattacharjee et al, J. Chem. Phys. (2013).
[3] Bhattacharjee, Soft Matter (accepted).
14/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Properties after shear reversal
γ=75−0.025 γ=75−0.25
 Absence of superdiffusive motion due to cage-removal.
 Osmotic pressure and local stress variance stays
unchanged.
 Isotropic evolution of structure in reversal with
attainment of Couette flow in few MD steps.
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee 15/38Courant Institute (NYU)
Summary: rheology of dense colloidal melt
 Response to forward shear: Shear and normal stress overshoot with step jump in
osmotic pressure and local stress variance at 10% strain amplitude with
super-diffusive particle motion.
 Response to shear reversal : history (strain) dependent flow effect, lesser yield
strength and elastic constants, absence of overshoot and super-diffusive motion.
 Local structure (projected onto spherical harmonics) is sensitive to flow, without
any shape distortion at equal stress at late times. No cluttering in structure found
while reversing the flow direction.
 Findings in par with experiments1
and the MCT-ITT theoretical framework2
.
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
16/38Amit Bhattacharjee
[1] Egelhaaf lab, Univ. Düsseldorf.
[2] Fuchs group, Univ. Konstanz.
Courant Institute (NYU)
Fluctuating hydrodynamics of non-ideal multispecies mixtures
Aim: To formulate theory and accurate computation for n-component
miscible liquid at finite temperature in flow.
[1] Vailati et al, Nature Comm. (2011).
17/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee
 Soret effect induced giant non-equilibrium concentration fluctuations in
microgravity1
.
Courant Institute (NYU)
5mm side
1mmthick
18/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee
Theoretical prescription
 Assumption of local equilibrium, balance equations
(mass, momentum, energy & entropy).
 Constitutive relations, OCRR, odd and even order processes.
 Relation between diffusive flux and concentration gradient in 1-component
gas/liquid: Fick's law.
 In binary system, chemical potential gradient drives diffusion process
(Einstein-Teorell approach, Chapman-Enskog approach). Also, diffusion
can be induced by temperature gradient (Soret effect), heat exchange
(Dufour effect), barodiffusion and external forces.
 Ideal and non-ideal systems of gas and liquid.
 Straightforward generalization in multicomponent diffusion:
Maxwell-Stefan and Fickian description.
 Thermal fluctuation can be added to deterministic flux (LLNS) satisfying
discrete-FDT.
Courant Institute (NYU)
Low Mach number hydrodynamics
 Sound waves are faster than momentum diffusion in liquids (Ma=0 limit).
 EOS constraint .
 Low Mach number equations
 ensures continuity equation . EOS constraint leads to (1).
 Constitutive flux-force relation obtained from non-equilibrium TD of
diffusion for nonideal liquids comparing diffusion driving force to frictional
force
 Non-ideality parameter .
 is SPD, zero row and column sums, so as .
 where .
∂t ρi =−∇⋅(ρi v)−∇⋅Fi , (i=1,2,..., N )
∂t (ρ v)+∇ π =−∇⋅(ρv v
T
)+∇⋅(η(∇ +∇
T
)v+Σ)+ρ g ,
∇⋅v =−∇⋅(Σi=1
N
Fi / ̄ρi) Σ = √ηkB T (W +WT
)
〈Wij (r ,t)Wkl (r ' ,t ')〉 = δik δjl δ(t−t ')δ(r−r ')
Σi=1
N
ρi/ ̄ρi=1
Σi=1
N
Fi=0 ∂t ρ=−∇⋅(ρv)
…. (1)
F= ̄F+̃F (determinstic + stochastic)
̄F=−L(
∇T μ
T
+ξ
∇ T
T
2
)=−ρW χ[Γ ∇ x+(ϕ−w)
∇ P
nkB T
+ζ
∇ T
T
]
L,χ ξ
19/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
ϕi=ρi/ ̄ρi
wi=ρi/ρ
Γ=Ι+(X−xx
T
)Η
xi=
wi /mi
Σi=1
N
wi/miχ=(Λ+TrΛ w w
T
)
−1
−(Tr Λ)
−1
11
T
Λij=−xi xj/Dij
Low Mach number fluctuating hydrodynamics
 Comparing MS and Onsager expression gives the stochastic contribution.
 Complete equation for mass fraction:
 Numerical scheme: staggered grid, finite-volume method implemented on
BoxLib: scalars live on centres, vectors live on faces and edges ensuring
Einstein's discrete FDT.
 Benchmarks: static and dynamic correlators: &
20/38
∂t (ρ w)+∇⋅(ρw v) = ∇⋅
{ρW
[χ
(Γ ∇ x+(ϕ−w)
∇ P
nkBT
+ζ
∇ T
T )]+√2kB L1
2
Ζ
}
̃F=√2kB L1
2
Ζ
Sw
(i , j)
(k) Sρ(k)
〈Ζi (r ,t)Ζj (r ' ,t ')〉=δij δ(t−t ' )δ(r−r ' )
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Sρ(kx ,ky)
m1=1,m2=2,m3=3,
ρ1=0.6,ρ2=1.05,ρ3=1.35,
̄ρ1=2, ̄ρ2=3, ̄ρ3=3.857,
Lx=Ly=32,Δx=Δ y=1,
Sρ
eq
=0.3.
Non-equilibrium fluctuations
21/38
 In presence of weak concentration gradient,
correlations in non-eq fluctuations occur by
coupling to velocity fluctuations : power law
spectrum[1,2]
~ .
 For theoretical calculations, we create diffusion
barrier for first species and deal with ideal( ), isothermal( ),
incompressible( ) mixture with stochastic mass flux .
 Barodiffusion gives ordinary equilibrium
fluctuations while thermo-diffusion (Soret
effect) gives correct enhanced spectrum as
usually done in experiments.
k−4
̃F=0
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee
[1] Bhattacharjee et al, Phys. of Fluids (2015). [2] Donev et al CAMCOS, 9-1, 47 (2014).
H=0 ∇ T =0
̄ρ1,2,3=1
Courant Institute (NYU)
Lx=128,Ly=64
Δx=Δy=1
Compressible hydrodynamics of multispecies reactive mixture
22/38
 Elementary reaction , mass conservation
 Compressible FNS with law of mass action(LMA): chemical hydrodynamics
 Stochastic momentum
flux
 Number density evolution for homogeneous well-mixed system,
Log mean equation (LME):
Chemical Langevin equation (CLE):
 LMA:
 For ideal gas,
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Σs=1
Ns
νsr Μs ⇔Σs=1
Ns
νrs Μs
∂t ρs =−∇⋅(ρs v)−∇⋅Fs +ms Ωs , (s=1,2,..., Ns)
∂t (ρ v) =−∇⋅Π−∇⋅(ρv v
T
+pΙ)+ρ g ,
∂t (ρ E) =−∇⋅[(ρ E+p)v]−∇⋅[ϑ+Π⋅v]+ρ v⋅g
̃Π = √ηkB T (W +WT
)+(
√kB κT
6
−
√kB ηT
3
Tr(W +WT
))
〈Wij (r ,t)Wkl (r ' ,t ')〉 = δik δjl δ(t−t ')δ(r−r ')
Π=−η(∇ +∇
T
)v−(κ−
2
3
η)I (∇⋅v)+̃Π
Amit Bhattacharjee
∑s
Fs=0, ∑s
ms Ωs=0.
Ω=̄Ω+̂Ω.
dns/dt= ̄Ωs+∑r
νsr √2 Dr
LM
/dV oWr (t)
dns/dt= ̄Ωs+∑r
νsr √2 Dr
CL
/dV W r (t)
Courant Institute (NYU)
+ -
Σs(νsr−νrs)mr=0.Nr
+ -
̄Ωs=Σr νsr
p
τr kB T
[exp(Σs νsr ms μs /kB T)−exp(Σs νsr ms μs/kB T)],
̄Ωs=Σr νsr (kf Πs' ns'
νs' r
−kr Πs' ns'
νs' r
),
- Dr
LM
=logmean[k f Πs ns
νsr
, kr Πs ns
νsr
],
Dr
CL
=arthmean[k f Πs ns
νsr
,kr Πs ns
νsr
].
+ -
+
Homogeneous dimerization reaction
23/38
 For ,
 Production rate factors
 At equilibrium , mass fraction .
 Comparison with particle based methods (SSA) at EQ: LME is closest truth
to CME, while CLE has it's usual shortcoming (unphysical negative values).
 At out-of-EQ states: noise covariance of CLE agrees more to SSA/CME, but
while distribution is not Gaussian, CLE is no better than LME.
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee
[1] Bhattacharjee et al, arXiv:1503.07478 (2015).
̄Ω1=−2(kf n1
2
−kr n2), ̄Ω2=− ̄Ω1/2, m2=2m1, n1+2n2=n02A⇔ A2
kf /kr=1/n0 Y1=n1/n0=0.5
DLM
=
kf n1
2
−kr n2
ln(kf n1
2
)−ln(kr n2)
, DCL
=
1
2
(kf n1
2
+kr n2)
100 monomer
+ 4 dimer
〈N1〉≈54
kf =2.78x10
−4
kr=0.3
Δt=0.005
〈N1〉≈16
kf =0.00625
kr=0.2
16 monomer
+ 8 dimer
Courant Institute (NYU)
kf
kr
Non-equilibrium fluctuations in flow
24/38
 Effect of chemical reaction ,
is penetration depth that controls switch to spectrum
for small wave numbers ( ), long wave numbers still exhibit
spectrum[1,2]
. At very small wave numbers saturates.
 Linear concentration profile is only established at no-reaction limit.
 Validity to couple SSA & hydrodynamics: work in progress.
k−2
S(k)=
kB T (∇ Y1)2
ηχk
4 (1+(dk)−2
)−1
k
−4
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee
[1] Bedeaux et al, J.Chem Phys (2008).
[2] Bhattacharjee et al, arXiv:1503.07478 (2015)
d=√χ/3 kr
Courant Institute (NYU)
k≪
1
d
S(k)
RD RD + Hydro
Summary: Multispecies diffusive liquids and reactive gas
 We formulated a complete theory amenable to computers for studying n-component
ideal/non-ideal liquid at finite temperature from first principles of NEQ-TD in
conjunction to low-Mach (quasi-incompressible) formulation. This is first direct solution
of the full LLNS equations, maintaining 2nd
order accuracy.
 We find non-equilibrium power law spectra in the presence of concentration gradient
that is put either by hand or derived via temperature gradient (Soret effect) as
incorporated in experiments.
 Chemical reactions affect the spectra by truncating the low Fourier modes, giving clear
distinction between diffusion and reaction dominated regime.
 Different formalism for chemical reaction hints that SSA gives correct distribution of
CME (poisson process) while SODE's (diffusion process) are not quantitatively accurate.
LME is better than CLE for close to equilibrium while in out-of-EQ, both are worse.
Hint for improving LME/CLE: Poisson noise (Tau-leaping).
25/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Thank You!
Structural properties of a binary colloidal
mixture under shear reversal
Amit Bhattacharjee
Inhomogeneous phenomena in nematic liquid crystals
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee 26/38Courant Institute (NYU)
Nematic “mesophase”
 Consist of anisotropic molecules (e.g. rods and discs) with long-range
orientational order devoid of translational order.
 Uniaxial/biaxial phase rotational symmetry about direction of order described
by one/two headless vector n (director) and l (co-director).
 Liquid-nematic solid transition is weakly first order.
Motivating examples
Topological defect entanglement
in NLC film of width 790mm after
temperature quench, showing
monopoles, boojums and various
integer/half-integer defects [Turok
et al, Science, '91]
Schlieren textures with two
and four brushes exhibited
by a uniaxial NLC film at 118
deg celsius [Chandrasekhar,
et al, Current Science, '98]
Nucleation of ellipsoidal NLC
droplet with aspect ratio 1.7
and homogeneous director
field in MC simulation. [Cuetos
et al, Phys.Rev.Lett, '07]
27/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
 Quantified through a symmetric traceless tensor field with
five degrees of freedom.
Definition of order
Qαβ
molecular frame:
principal frame:
Qαβ( x ,t)=∫d u f ( x ,u ,t)uu
Qαβ(x ,t)=
3
2
S (nα nβ−
1
3
δαβ)+
T
2
{lα lβ−(n×l)α(n×l)β }
 Principal values represent strength of uniaxial and biaxial order (S,T)
 Principal axes denote director, codirector and joint normal ( ).
correspond to isotropic liquid phase.
correspond to uniaxial nematic phase.
correspond to biaxial nematic phase.
 Statics:
n ,l , n×l
S=T =0
S=
2
3,
T =0
T ≠0
FGLdG=∫d3
x[
1
2
ATr Q2
+
1
3
BTr Q3
+
1
4
C (TrQ2
)2
+E'
(TrQ3
)2
+
1
2
L1(∂α Qβ γ)(∂α Qβγ)+
1
2
L2(∂α Qαβ)(∂γ Qβγ)]
28/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Statics (contd.) and kinetics
∂t Qαβ(x ,t)=−Γαβμ ν
δ FGLdG
δQμ ν
+ζαβ(x ,t)
 Landau-Ginzburg model-A kinetics for non-conserved order
 is a stochastic thermal force satisfying the structure of .Qαβ
ζαβ
Free energy
diagram
Phase diagram
29/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Numerical recipe and benchmarks
 Projection to orthonormal basis .
 Numerical integration of a equations and back transformation to
principal frame extraction of eigenvalues/eigenvectors to get back .
 Integrator benchmarks: OU process, static and dynamic correlator in
isotropic phase, angle-angle correlator in uniaxial nematic phase.
Qαβ=∑
i=1
5
ai ( x ,t)T αβ
i
,ζαβ=∑
i=1
5
ai (x ,t)ζαβ
i
Qαβ
Determinstic problems:
 Method of Lines (MOL).
 Spectral collocation method (SCM).
 High performance computing (HPC).
 Stochastic Method of Lines (SMOL).
Stochastic problems:
Applications
 Structure of isotropic-nematic
interface.
 Spinodal coarsening kinetics.
 Nucleation kinetics.
30/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Application-I
Local/nonlocal properties
of isotropic-nematic interface
31/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Application-I : Local/nonlocal properties of I-N interface
Isotropic IsotropicNematic
z
x
ya
Lx
Free energy per unit length of having a strip:
 Nature of I-N interface? de Gennes ansatz1
no
anisotropic elasticity reducing to scalar equation
in S. Later works tackled planar anchoring
problem with three variables. No results known
for oblique anchoring.
 Finding the ansatz to be valid at limit.
F=−a Lx(FN −F I )+Lx σ
L2=0
1) P.G. de Gennes, Mol.Cryst.Liq.Cryst. (1971).
L2=0
32/38
Fdistortion=∫d3
x {
1
2
L1(∂α Qβ γ)(∂α Qβ γ)+
1
2
L2(∂α Qα β)(∂γQβ γ)}
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Application-I : Local/nonlocal properties of I-N interface
L2=18L1
L2
 Local biaxiality of uniaxial interface
with planar anchoring (using SCM).
 In oblique anchoring, director alignment
favours sign of .
L2=−L1
L2=36L1
33/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Application-I : Local/nonlocal properties of I-N interface
ζαβ=0Fluctuating interface ζαβ≠0
34/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Application-II
Phase ordering spinodal kinetics
35/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Application-II : Phase ordering spinodal kinetics [2D (d=2; s=3)]
 Topological classification and visualization of point defects1
–
(Uniaxial) and (Biaxial).
 Defects visualized via scalar and vector order that shows all class of
defect classes partially absent in schlieren texture measured in
experiments ( ).
π1(S
2
/ℤ2)=Z2 π1(S
3
/ D2)=ℚ8
intensity ∝sin2
[2θ]
S (x ,t)
sin
2
(2θ)[ x ,t]
T (x ,t)
Uniaxial defect
Biaxial
defect
1) Mermin, Rev. Mod. Phys. (1979).
36/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
Application-II : Intercommutation of line defects
 Line defects annihilate by intercommuting (exchanging segements)
and forming loops1
.
 Competion between energetics and Topology no topological rigidity
found in Biaxial nematics.
Uniaxial defect
Biaxial defect
[3D (d=3; s=3)]
1) Turok et al, Science (1991)
37/38
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee Courant Institute (NYU)
 Formulation of fluctuating kinetics of uniaxial/biaxial nematic in GLdG
framework, leading to novel visualization techniques and HPC ( in 2D,
lattice in 3D).
 Validated de Gennes ansatz at limit of the problem.
 Isotropic-uniaxial nematic interface obtains biaxiality for .
 Oblique director anchoring: scalars remain local to the interface and
anchoring follows a linear profile: planar for and homeotropic for
 Classification and visualization of all defect classes.
 Controversy in growth exponent been settled with clear time-scale
separation at different stages of phase ordering.
 Minimal GLdG framework incapable of topological rigidity in BN.
Methods
Summary: Inhomogeneous phenomena in nematics
1024
2
256
3
I-N Interface
L2=0
L2≠0
L2>0 L2<0.
Coarsening kinetics
Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion
Amit Bhattacharjee 38/38Courant Institute (NYU)
 Thermal fluctuation inducded nucleation of NLC phase in 3D.
 Uniaxial and Biaxial NLC under electric field in 3D.
 Coupling incompressible flow[1,2]
to Q equations and
fluctuations 3D line defects in flow.
 Rheology in nematics.
 Multicomponent phase flow with fluctuations2
.
Field based methods
Research proposal(s)
2D uniaxial defects in
electric field [Oliveira
et al, Phys.Rev.E, '10]
2D slice of ellipsoidal
nematic phase in isotropic
phase [Bhattacharjee,
PhD Thesis, '10]
Velocity field of
defects pair in LB
simulations [Yeomans
et al, Phys.Rev.Lett., '02]
±
1
2
[1] Berris & Edwards, Thermodynamics of
flowing system, Oxford (1994).
[2] Donev et al, Phys. Rev. E (2014).
Nucleation and
growth of nematic
phase of 5CB at
cooling rate 0.001
degC/min
[Sun et al,
Phys.Rev.E, '09]
Amit Bhattacharjee Courant Institute (NYU) 1/2
Proposal
 Dense colloidal rheology: role of size disparity3
, flow
geometry (planar Couette[4,5]
, uniaxial extension, mixed),
flow history (shear cessation6
, non-instantaneous flow
reversal and LAOS7
), coarse graining.
 Microrheology of colloid-nematic mixture8
.
 Glassy nematic rheology8
.
Particle based methods
Research proposal(s)
 Chemical reaction-diffusion systems: GENERIC / CLE / CME coupled
to compressible NS equations: Schlögl model1
, Dimerization reaction2
.
[1] Lubensky et al, Phys. Rev. E. (2012).
[2] Bedeaux et al J. Chem. Phys (2011).
[3] Voigtmann and Horbach, Phys. Rev. Lett. (2009).
[4] Bhattacharjee et al, J. Chem. Phys. (2013).
[5] Bhattacharjee, arXiv 1410.8115 (2014).
[6] Zausch Horbach, Euro. Phys. Lett. (2010).
[7] Brader et al, Phys. Rev. E., (2010).
[8] Onuki et al, Phys. Rev. E., (2014).
Elastic map with small and
large elastic constant at
strain=0.1 [Bhattacharjee,
unpublished]
2/2Amit Bhattacharjee Courant Institute (NYU)

More Related Content

What's hot

Physical Characterization of a Method for Production of High Stability Suspen...
Physical Characterization of a Method for Production of High Stability Suspen...Physical Characterization of a Method for Production of High Stability Suspen...
Physical Characterization of a Method for Production of High Stability Suspen...Editor IJCATR
 
Growth and Characterisation of a New Semi–Organic Nonlinear Optical TTMZS Sin...
Growth and Characterisation of a New Semi–Organic Nonlinear Optical TTMZS Sin...Growth and Characterisation of a New Semi–Organic Nonlinear Optical TTMZS Sin...
Growth and Characterisation of a New Semi–Organic Nonlinear Optical TTMZS Sin...Editor IJCATR
 
Critical analysis of zwietering correlation for solids
Critical analysis of zwietering correlation for solidsCritical analysis of zwietering correlation for solids
Critical analysis of zwietering correlation for solidsfabiola_9
 
An analysis of material behavior during processing and under In
An analysis of material behavior during processing and under InAn analysis of material behavior during processing and under In
An analysis of material behavior during processing and under InJamie Sawdon
 
Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...
Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...
Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...theijes
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
Growth and characterization of pure and ni2+ doped glycine sodium sulfate cry...
Growth and characterization of pure and ni2+ doped glycine sodium sulfate cry...Growth and characterization of pure and ni2+ doped glycine sodium sulfate cry...
Growth and characterization of pure and ni2+ doped glycine sodium sulfate cry...eSAT Journals
 
Growth and physical properties of pure and manganese doped strontium tartrate...
Growth and physical properties of pure and manganese doped strontium tartrate...Growth and physical properties of pure and manganese doped strontium tartrate...
Growth and physical properties of pure and manganese doped strontium tartrate...eSAT Publishing House
 

What's hot (10)

2
22
2
 
Physical Characterization of a Method for Production of High Stability Suspen...
Physical Characterization of a Method for Production of High Stability Suspen...Physical Characterization of a Method for Production of High Stability Suspen...
Physical Characterization of a Method for Production of High Stability Suspen...
 
Growth and Characterisation of a New Semi–Organic Nonlinear Optical TTMZS Sin...
Growth and Characterisation of a New Semi–Organic Nonlinear Optical TTMZS Sin...Growth and Characterisation of a New Semi–Organic Nonlinear Optical TTMZS Sin...
Growth and Characterisation of a New Semi–Organic Nonlinear Optical TTMZS Sin...
 
Hl3114341439
Hl3114341439Hl3114341439
Hl3114341439
 
Critical analysis of zwietering correlation for solids
Critical analysis of zwietering correlation for solidsCritical analysis of zwietering correlation for solids
Critical analysis of zwietering correlation for solids
 
An analysis of material behavior during processing and under In
An analysis of material behavior during processing and under InAn analysis of material behavior during processing and under In
An analysis of material behavior during processing and under In
 
Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...
Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...
Structural and Dielectric Studies of Cerium Substituted Nickel Ferrite Nano P...
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
Growth and characterization of pure and ni2+ doped glycine sodium sulfate cry...
Growth and characterization of pure and ni2+ doped glycine sodium sulfate cry...Growth and characterization of pure and ni2+ doped glycine sodium sulfate cry...
Growth and characterization of pure and ni2+ doped glycine sodium sulfate cry...
 
Growth and physical properties of pure and manganese doped strontium tartrate...
Growth and physical properties of pure and manganese doped strontium tartrate...Growth and physical properties of pure and manganese doped strontium tartrate...
Growth and physical properties of pure and manganese doped strontium tartrate...
 

Similar to Particle and field based methods for complex fluids and soft materials

TSU Seminar, JNCASR, March 2016
TSU Seminar, JNCASR, March 2016TSU Seminar, JNCASR, March 2016
TSU Seminar, JNCASR, March 2016Amit Bhattacharjee
 
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...Amit Bhattacharjee
 
PhD Defense Slides
PhD Defense SlidesPhD Defense Slides
PhD Defense Slidesacadien
 
Oral presentation at Tsingtao 2015.7
Oral presentation at Tsingtao 2015.7Oral presentation at Tsingtao 2015.7
Oral presentation at Tsingtao 2015.7Weixiang Sun
 
2018-11-26 Investigation of the band structure of quantum wells based on gapl...
2018-11-26 Investigation of the band structure of quantum wells based on gapl...2018-11-26 Investigation of the band structure of quantum wells based on gapl...
2018-11-26 Investigation of the band structure of quantum wells based on gapl...LeonidBovkun
 
The Combined Role of Thermodynamics and Kinetics in the Growth of Colloidal B...
The Combined Role of Thermodynamics and Kinetics in the Growth of Colloidal B...The Combined Role of Thermodynamics and Kinetics in the Growth of Colloidal B...
The Combined Role of Thermodynamics and Kinetics in the Growth of Colloidal B...Lucid Designs
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingNikolai Priezjev
 
Zannoni Liquid Crystal Modeling BO_ECME8_Jun05e .pdf
Zannoni Liquid Crystal Modeling BO_ECME8_Jun05e .pdfZannoni Liquid Crystal Modeling BO_ECME8_Jun05e .pdf
Zannoni Liquid Crystal Modeling BO_ECME8_Jun05e .pdfssuserc6ea64
 
Research summary for Yi Yang
Research summary for Yi YangResearch summary for Yi Yang
Research summary for Yi Yangyxy081020
 
Poster adiabatic march
Poster adiabatic marchPoster adiabatic march
Poster adiabatic marchZe-Yang Li
 
Peridynamic simulation of delamination propagation in fiber-reinforced composite
Peridynamic simulation of delamination propagation in fiber-reinforced compositePeridynamic simulation of delamination propagation in fiber-reinforced composite
Peridynamic simulation of delamination propagation in fiber-reinforced compositeYILE HU
 
Numerical simulation of Granular Flow Based on Micropolar Fluid Theory
Numerical simulation of Granular Flow Based on Micropolar Fluid TheoryNumerical simulation of Granular Flow Based on Micropolar Fluid Theory
Numerical simulation of Granular Flow Based on Micropolar Fluid TheoryShin-Ichiro Serizawa
 
Dynamical heterogeneity and structural relaxation in periodically deformed po...
Dynamical heterogeneity and structural relaxation in periodically deformed po...Dynamical heterogeneity and structural relaxation in periodically deformed po...
Dynamical heterogeneity and structural relaxation in periodically deformed po...Nikolai Priezjev
 
Effect of chain stiffness on interfacial slip in nanoscale polymer films: A m...
Effect of chain stiffness on interfacial slip in nanoscale polymer films: A m...Effect of chain stiffness on interfacial slip in nanoscale polymer films: A m...
Effect of chain stiffness on interfacial slip in nanoscale polymer films: A m...Nikolai Priezjev
 

Similar to Particle and field based methods for complex fluids and soft materials (20)

TSU Seminar, JNCASR, March 2016
TSU Seminar, JNCASR, March 2016TSU Seminar, JNCASR, March 2016
TSU Seminar, JNCASR, March 2016
 
Seminar iitkgp
Seminar iitkgpSeminar iitkgp
Seminar iitkgp
 
Nucleating Nematic Droplets
Nucleating Nematic DropletsNucleating Nematic Droplets
Nucleating Nematic Droplets
 
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
 
PhD Defense Slides
PhD Defense SlidesPhD Defense Slides
PhD Defense Slides
 
Oral presentation at Tsingtao 2015.7
Oral presentation at Tsingtao 2015.7Oral presentation at Tsingtao 2015.7
Oral presentation at Tsingtao 2015.7
 
NANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic SolidsNANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic Solids
 
defense_2013
defense_2013defense_2013
defense_2013
 
2018-11-26 Investigation of the band structure of quantum wells based on gapl...
2018-11-26 Investigation of the band structure of quantum wells based on gapl...2018-11-26 Investigation of the band structure of quantum wells based on gapl...
2018-11-26 Investigation of the band structure of quantum wells based on gapl...
 
The Combined Role of Thermodynamics and Kinetics in the Growth of Colloidal B...
The Combined Role of Thermodynamics and Kinetics in the Growth of Colloidal B...The Combined Role of Thermodynamics and Kinetics in the Growth of Colloidal B...
The Combined Role of Thermodynamics and Kinetics in the Growth of Colloidal B...
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
 
Zannoni Liquid Crystal Modeling BO_ECME8_Jun05e .pdf
Zannoni Liquid Crystal Modeling BO_ECME8_Jun05e .pdfZannoni Liquid Crystal Modeling BO_ECME8_Jun05e .pdf
Zannoni Liquid Crystal Modeling BO_ECME8_Jun05e .pdf
 
Research summary for Yi Yang
Research summary for Yi YangResearch summary for Yi Yang
Research summary for Yi Yang
 
Poster adiabatic march
Poster adiabatic marchPoster adiabatic march
Poster adiabatic march
 
Peridynamic simulation of delamination propagation in fiber-reinforced composite
Peridynamic simulation of delamination propagation in fiber-reinforced compositePeridynamic simulation of delamination propagation in fiber-reinforced composite
Peridynamic simulation of delamination propagation in fiber-reinforced composite
 
Numerical simulation of Granular Flow Based on Micropolar Fluid Theory
Numerical simulation of Granular Flow Based on Micropolar Fluid TheoryNumerical simulation of Granular Flow Based on Micropolar Fluid Theory
Numerical simulation of Granular Flow Based on Micropolar Fluid Theory
 
Dynamical heterogeneity and structural relaxation in periodically deformed po...
Dynamical heterogeneity and structural relaxation in periodically deformed po...Dynamical heterogeneity and structural relaxation in periodically deformed po...
Dynamical heterogeneity and structural relaxation in periodically deformed po...
 
15 16
15 1615 16
15 16
 
Elecnem
ElecnemElecnem
Elecnem
 
Effect of chain stiffness on interfacial slip in nanoscale polymer films: A m...
Effect of chain stiffness on interfacial slip in nanoscale polymer films: A m...Effect of chain stiffness on interfacial slip in nanoscale polymer films: A m...
Effect of chain stiffness on interfacial slip in nanoscale polymer films: A m...
 

Recently uploaded

Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2John Carlo Rollon
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxEran Akiva Sinbar
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 

Recently uploaded (20)

Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 

Particle and field based methods for complex fluids and soft materials

  • 1. Structural properties of a binary colloidal mixture under shear reversal Amit e Workshop Bartholomäberg Particle and field based methods for complex fluids and soft materials Amit Kumar Bhattacharjee Courant Institute of Mathematical Sciences New York University, New York IISERM SeminarApril 13, 2015
  • 2. Structural properties of a binary colloidal mixture under shear reversal Amit Bhattacharjee Workshop Bartholomäberg Collaborators and advisors Aleksandar Donev (New York) Andy Nonaka (Berkeley) Alejandro Garcia (San Jose) John B. Bell (Berkeley) Juergen Horbach (Duesseldorf) Matthias Fuchs (Konstanz) Thomas Voigtmann (Koeln) Gautam I. Menon (Chennai) Ronojoy Adhikari (Chennai) Fluctuating hydrodynamics of multi-component non-ideal liquids and chemically reactive fluids. “Bauschinger effect” in dense supercooled colloidal melt under instantaneous shear reversal. Inhomogeneous phenomena in nematic liquid crystals. USA Germany USA India 1/38Amit Bhattacharjee Courant Institute (NYU)
  • 3. Structural properties of a binary colloidal mixture under shear reversal Amit Bhattacharjee Workshop Bartholomäberg Prologue  Solid, liquid, gas, plasma.  F = E – TS; Hard matter (crystals) = E dominated phases (minimize E); Soft matter (liquids) = S dominated phases (maximize S).  Changes of phase – order of transition (e.g. liquid to solid, paramagnet to ferromagnet).  Soft to touch, easily malleable, can't withhold shear.  Examples: milk, paint (colloid), rubber, tissues (polymer), toothpaste (gels), LCD devices (liquid crystal) …. States of matter Complex fluids 2/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 4. Structural properties of a binary colloidal mixture under shear reversal Amit Bhattacharjee Workshop Bartholomäberg Prologue  Multistage transition process in fluids composed with anisotropic particles: mesophases (Nematic, Discotic, Cholesteric, Smectic A – C, Columnar liquid crystals).  Glass transition – a non thermodynamic transition : a) no consumption/expulsion of latent heat, b) no changes in structural properties, c) (almost) no change in thermodynamic properties, d) drastic change in transport properties (viscosity, diffusion-constant etc).  Complex physico-chemical processes in multicomponent gases and liquids leading to macroscale structure. Complexity in complex fluids 3/38 n Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 5. Prologue Necessity for studying Images © [1] Vinayak Industries, Mumbai, [2] Schott AG, Mainz, [3] Wagner (Delaware)  Technological applications: Thermometers, laptop & mobile screens, Casting, cooling and solidification,1,2 Body armour (STF enabled Kevlar).3  Medical examples: Sub cellular structures, blood flow, joint lubricants, pharmaceuticals. 4/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 6. Prologue Theoretical methods  Atomistic description: a) Ignore electronic d.o.f. classical N-particle Newton's equation. b) approximation: 2-body interations in central forcefield (e.g. LJ, Yukawa, WCA etc).  Mesoscopic description: a) Identify order parameter, broken symmetry, conservation laws, type of transition of the phase. b) Construct a free energy functional and spatial coarse-graining. c) Temporal coarse graining.  Measurement of the equilibrium and non-equilibrium properties. 5/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 7. Prologue LLNS TDGL KMC DPD SRD LBM LD BD DFT MD Meso-scale Micro-scales Length Time Computational methods Macro-scales 6/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 8. Outline Bauschinger effect in vitrifying colloidal melt  Simulation methods.  Rheological properties in forward shear.  Response to instantaneous shear reversal.  Structural properties and interconnection with stresses.  Non­equilibrium thermodynamics of diffusion.  Low Mach number equations.   Numerical methods and benchmarks.  Applications: Giant non­EQ concentration fluctuations.  Compressible hydrodynamics of reactive gas.  Comparison of particle/field based methods for homogeneous systems. Fluctuating hydrodynamics of multispecies mixtures Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion 7/38Amit Bhattacharjee Courant Institute (NYU)
  • 9. Bauschinger effect in binary supercooled colloidal glass-forming melt = 8/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee + = ? = Courant Institute (NYU) Zausch et al, J. Phys. Cond. Matt. (2008). Brader et al, Phys. Rev. E (2010).
  • 10. Simulation method  WCA pair potential1 (soft, purely repulsive)  Thermostat : dissipative particle dynamics[2,3] (DPD) local conservation of momentum.  Solve N-particle Newton's equation with Lees Edwards BC. mi ˙⃗ri = ⃗pi ; ˙⃗pi=−∑i≠ j ⃗∇ U ij (⃗r )−∑i≠ j ζω 2 ( ⃗rij )( ̂rij⋅⃗vij ) ̂rij+√2kB T ζω( ⃗rij)N ij ̂rij . conservative dissipative stochastic N=2NA=2NB=1300, σ AA=1.0, σBB=5/6, σAB=(σAA+σBB)/2, ϵ=1, L=10. [1] Chandler et al, J. Chem. Phys. (1971). [2] Espanol et al, Euro. Phys. Lett. (1996). [3] Peters, Euro. Phys. Lett. (2004). UWCA (r)= {4 ϵ[( σ r ) 12 −(σ r ) 6 ]+ϵ, r<2 1/6 σ 0, r≥21/6 σ 〈N ij (t)〉 = 0, 〈 N ij(t)N kl (,t ')〉 = (δik δjl +δil δjk )δ(t−t ')δ(r−r ') 9/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 11. S (q)= 1 N 〈ρ(q)ρ(−q)〉 g(r)= V N 2 〈∑i N ∑j≠i N δ(ri−r j−r)〉 Fs α (q ,t)= 1 N α ∑i N α 〈ρi (q ,t)ρi(q ,0)〉 Δrα 2 (t)=〈∣rα(t)−rα (0)∣2 〉 t2 t caging caging ~ ~ Equilibrium: structure and dynamics  Pair correlation .  Structure function .  Density autocorrelator (SISF) .  Mean squared displacement (MSD) . 10/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 12. Out-of-equilibrium scenario  Shear applied through Lees-Edwards BC.  Planar Couette flow is established within a few NEMD steps (no shear banding).  Shear rate perturbs the interplay between intrinsic single particle time & structural relaxation time shear thinning: linear response breaks down. ˙ ˙ x y z gradient vorticity Newtonian T=0.4 0  0 ˙−1 11/38 T=0.4, ˙γ=0.005 τ0=0.48, τα=2.5 x103 Pe0=2.4 x10−3 , Peα=12.5. Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 13. Properties in forward shear: dynamics  Stress tensor1 :  Visco-elastic response.  Local stress:  Jump in local stress variance at 10% strain amplitude.  Overshoot in stress[2,3] : shear induced local melting of glass (breaking of cage structure): superdiffusive intermediate motion2 . elastic plastic T=0.4 EQ 〈 r 2 〉~t   ˙tw 0  xy=〈 xy 〉=−1/V 〈∑i=1 N [mi vi , x vi , y∑j≠i rij , x Fij , y ]〉. kinetic virial xy=−1/V ∑j≠i rij , x Fij , y . 12/38 [1] Kirkwood, J. Chem Phys. (1946). [2] Horbach et al, J. Phys. Cond. Mat. (2008). [3] Bhattacharjee, Soft Matter (accepted). Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 14. Properties in forward shear: structure  Pair correlation shows no signature of shear.  Projection onto spherical harmonics: real and imaginary component of is sensitive to shear.  Interconnection between stress and structure[1,3]  Maximum extension-compression exhibited near overshoot2 seen in .  No shear banding3 found (planar Couette flow is established for all steps). g22 αβ (r) σxy=K cα 2 ∫ 0 ∞ drr3 ∂V αβ ∂r ℑ(g22 αβ (r)) g(r)=∑l=0 ∞ ∑m=−l l glm (∣r∣)Y lm (θ,ϕ). N 1=K cα 2 ∫ 0 ∞ dr r3 ∂V αβ ∂r ℜ(g22 αβ (r)) σ= ρ2 2 ∫ 0 ∞ d r∑α ,β cα cβ rr r ∂V αβ ∂r g αβ (r) g(r ,θ) γ=0.025 γ=0.25γ=0.1 [1] Kirkwood, J Chem Phys. (1946). [2] Hess et al, Phys. Rev. A, (1987). [3] Bhattacharjee, Soft Matter (accepted) 13/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU) extension compression
  • 15. Instantaneous shear reversal: dynamics  Strong history dependence: preparation state-dependent response.  Bauschinger effect[1,2] : less yield strength when reversed from plastic deformed state.  No signature of strong resistance to the back flow, shear banding2 , STZs or channelized stress relaxation.  No overshoot in stresses[2,3] and absence of superdiffusive motion. −γw el −γw max −γw s [1] Karmakar et al, Phys. Rev. E (2010). [2] Bhattacharjee et al, J. Chem. Phys. (2013). [3] Bhattacharjee, Soft Matter (accepted). 14/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 16. Properties after shear reversal γ=75−0.025 γ=75−0.25  Absence of superdiffusive motion due to cage-removal.  Osmotic pressure and local stress variance stays unchanged.  Isotropic evolution of structure in reversal with attainment of Couette flow in few MD steps. Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee 15/38Courant Institute (NYU)
  • 17. Summary: rheology of dense colloidal melt  Response to forward shear: Shear and normal stress overshoot with step jump in osmotic pressure and local stress variance at 10% strain amplitude with super-diffusive particle motion.  Response to shear reversal : history (strain) dependent flow effect, lesser yield strength and elastic constants, absence of overshoot and super-diffusive motion.  Local structure (projected onto spherical harmonics) is sensitive to flow, without any shape distortion at equal stress at late times. No cluttering in structure found while reversing the flow direction.  Findings in par with experiments1 and the MCT-ITT theoretical framework2 . Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion 16/38Amit Bhattacharjee [1] Egelhaaf lab, Univ. Düsseldorf. [2] Fuchs group, Univ. Konstanz. Courant Institute (NYU)
  • 18. Fluctuating hydrodynamics of non-ideal multispecies mixtures Aim: To formulate theory and accurate computation for n-component miscible liquid at finite temperature in flow. [1] Vailati et al, Nature Comm. (2011). 17/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee  Soret effect induced giant non-equilibrium concentration fluctuations in microgravity1 . Courant Institute (NYU) 5mm side 1mmthick
  • 19. 18/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Theoretical prescription  Assumption of local equilibrium, balance equations (mass, momentum, energy & entropy).  Constitutive relations, OCRR, odd and even order processes.  Relation between diffusive flux and concentration gradient in 1-component gas/liquid: Fick's law.  In binary system, chemical potential gradient drives diffusion process (Einstein-Teorell approach, Chapman-Enskog approach). Also, diffusion can be induced by temperature gradient (Soret effect), heat exchange (Dufour effect), barodiffusion and external forces.  Ideal and non-ideal systems of gas and liquid.  Straightforward generalization in multicomponent diffusion: Maxwell-Stefan and Fickian description.  Thermal fluctuation can be added to deterministic flux (LLNS) satisfying discrete-FDT. Courant Institute (NYU)
  • 20. Low Mach number hydrodynamics  Sound waves are faster than momentum diffusion in liquids (Ma=0 limit).  EOS constraint .  Low Mach number equations  ensures continuity equation . EOS constraint leads to (1).  Constitutive flux-force relation obtained from non-equilibrium TD of diffusion for nonideal liquids comparing diffusion driving force to frictional force  Non-ideality parameter .  is SPD, zero row and column sums, so as .  where . ∂t ρi =−∇⋅(ρi v)−∇⋅Fi , (i=1,2,..., N ) ∂t (ρ v)+∇ π =−∇⋅(ρv v T )+∇⋅(η(∇ +∇ T )v+Σ)+ρ g , ∇⋅v =−∇⋅(Σi=1 N Fi / ̄ρi) Σ = √ηkB T (W +WT ) 〈Wij (r ,t)Wkl (r ' ,t ')〉 = δik δjl δ(t−t ')δ(r−r ') Σi=1 N ρi/ ̄ρi=1 Σi=1 N Fi=0 ∂t ρ=−∇⋅(ρv) …. (1) F= ̄F+̃F (determinstic + stochastic) ̄F=−L( ∇T μ T +ξ ∇ T T 2 )=−ρW χ[Γ ∇ x+(ϕ−w) ∇ P nkB T +ζ ∇ T T ] L,χ ξ 19/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU) ϕi=ρi/ ̄ρi wi=ρi/ρ Γ=Ι+(X−xx T )Η xi= wi /mi Σi=1 N wi/miχ=(Λ+TrΛ w w T ) −1 −(Tr Λ) −1 11 T Λij=−xi xj/Dij
  • 21. Low Mach number fluctuating hydrodynamics  Comparing MS and Onsager expression gives the stochastic contribution.  Complete equation for mass fraction:  Numerical scheme: staggered grid, finite-volume method implemented on BoxLib: scalars live on centres, vectors live on faces and edges ensuring Einstein's discrete FDT.  Benchmarks: static and dynamic correlators: & 20/38 ∂t (ρ w)+∇⋅(ρw v) = ∇⋅ {ρW [χ (Γ ∇ x+(ϕ−w) ∇ P nkBT +ζ ∇ T T )]+√2kB L1 2 Ζ } ̃F=√2kB L1 2 Ζ Sw (i , j) (k) Sρ(k) 〈Ζi (r ,t)Ζj (r ' ,t ')〉=δij δ(t−t ' )δ(r−r ' ) Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU) Sρ(kx ,ky) m1=1,m2=2,m3=3, ρ1=0.6,ρ2=1.05,ρ3=1.35, ̄ρ1=2, ̄ρ2=3, ̄ρ3=3.857, Lx=Ly=32,Δx=Δ y=1, Sρ eq =0.3.
  • 22. Non-equilibrium fluctuations 21/38  In presence of weak concentration gradient, correlations in non-eq fluctuations occur by coupling to velocity fluctuations : power law spectrum[1,2] ~ .  For theoretical calculations, we create diffusion barrier for first species and deal with ideal( ), isothermal( ), incompressible( ) mixture with stochastic mass flux .  Barodiffusion gives ordinary equilibrium fluctuations while thermo-diffusion (Soret effect) gives correct enhanced spectrum as usually done in experiments. k−4 ̃F=0 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee [1] Bhattacharjee et al, Phys. of Fluids (2015). [2] Donev et al CAMCOS, 9-1, 47 (2014). H=0 ∇ T =0 ̄ρ1,2,3=1 Courant Institute (NYU) Lx=128,Ly=64 Δx=Δy=1
  • 23. Compressible hydrodynamics of multispecies reactive mixture 22/38  Elementary reaction , mass conservation  Compressible FNS with law of mass action(LMA): chemical hydrodynamics  Stochastic momentum flux  Number density evolution for homogeneous well-mixed system, Log mean equation (LME): Chemical Langevin equation (CLE):  LMA:  For ideal gas, Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Σs=1 Ns νsr Μs ⇔Σs=1 Ns νrs Μs ∂t ρs =−∇⋅(ρs v)−∇⋅Fs +ms Ωs , (s=1,2,..., Ns) ∂t (ρ v) =−∇⋅Π−∇⋅(ρv v T +pΙ)+ρ g , ∂t (ρ E) =−∇⋅[(ρ E+p)v]−∇⋅[ϑ+Π⋅v]+ρ v⋅g ̃Π = √ηkB T (W +WT )+( √kB κT 6 − √kB ηT 3 Tr(W +WT )) 〈Wij (r ,t)Wkl (r ' ,t ')〉 = δik δjl δ(t−t ')δ(r−r ') Π=−η(∇ +∇ T )v−(κ− 2 3 η)I (∇⋅v)+̃Π Amit Bhattacharjee ∑s Fs=0, ∑s ms Ωs=0. Ω=̄Ω+̂Ω. dns/dt= ̄Ωs+∑r νsr √2 Dr LM /dV oWr (t) dns/dt= ̄Ωs+∑r νsr √2 Dr CL /dV W r (t) Courant Institute (NYU) + - Σs(νsr−νrs)mr=0.Nr + - ̄Ωs=Σr νsr p τr kB T [exp(Σs νsr ms μs /kB T)−exp(Σs νsr ms μs/kB T)], ̄Ωs=Σr νsr (kf Πs' ns' νs' r −kr Πs' ns' νs' r ), - Dr LM =logmean[k f Πs ns νsr , kr Πs ns νsr ], Dr CL =arthmean[k f Πs ns νsr ,kr Πs ns νsr ]. + - +
  • 24. Homogeneous dimerization reaction 23/38  For ,  Production rate factors  At equilibrium , mass fraction .  Comparison with particle based methods (SSA) at EQ: LME is closest truth to CME, while CLE has it's usual shortcoming (unphysical negative values).  At out-of-EQ states: noise covariance of CLE agrees more to SSA/CME, but while distribution is not Gaussian, CLE is no better than LME. Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee [1] Bhattacharjee et al, arXiv:1503.07478 (2015). ̄Ω1=−2(kf n1 2 −kr n2), ̄Ω2=− ̄Ω1/2, m2=2m1, n1+2n2=n02A⇔ A2 kf /kr=1/n0 Y1=n1/n0=0.5 DLM = kf n1 2 −kr n2 ln(kf n1 2 )−ln(kr n2) , DCL = 1 2 (kf n1 2 +kr n2) 100 monomer + 4 dimer 〈N1〉≈54 kf =2.78x10 −4 kr=0.3 Δt=0.005 〈N1〉≈16 kf =0.00625 kr=0.2 16 monomer + 8 dimer Courant Institute (NYU) kf kr
  • 25. Non-equilibrium fluctuations in flow 24/38  Effect of chemical reaction , is penetration depth that controls switch to spectrum for small wave numbers ( ), long wave numbers still exhibit spectrum[1,2] . At very small wave numbers saturates.  Linear concentration profile is only established at no-reaction limit.  Validity to couple SSA & hydrodynamics: work in progress. k−2 S(k)= kB T (∇ Y1)2 ηχk 4 (1+(dk)−2 )−1 k −4 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee [1] Bedeaux et al, J.Chem Phys (2008). [2] Bhattacharjee et al, arXiv:1503.07478 (2015) d=√χ/3 kr Courant Institute (NYU) k≪ 1 d S(k) RD RD + Hydro
  • 26. Summary: Multispecies diffusive liquids and reactive gas  We formulated a complete theory amenable to computers for studying n-component ideal/non-ideal liquid at finite temperature from first principles of NEQ-TD in conjunction to low-Mach (quasi-incompressible) formulation. This is first direct solution of the full LLNS equations, maintaining 2nd order accuracy.  We find non-equilibrium power law spectra in the presence of concentration gradient that is put either by hand or derived via temperature gradient (Soret effect) as incorporated in experiments.  Chemical reactions affect the spectra by truncating the low Fourier modes, giving clear distinction between diffusion and reaction dominated regime.  Different formalism for chemical reaction hints that SSA gives correct distribution of CME (poisson process) while SODE's (diffusion process) are not quantitatively accurate. LME is better than CLE for close to equilibrium while in out-of-EQ, both are worse. Hint for improving LME/CLE: Poisson noise (Tau-leaping). 25/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 28. Structural properties of a binary colloidal mixture under shear reversal Amit Bhattacharjee Inhomogeneous phenomena in nematic liquid crystals Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee 26/38Courant Institute (NYU)
  • 29. Nematic “mesophase”  Consist of anisotropic molecules (e.g. rods and discs) with long-range orientational order devoid of translational order.  Uniaxial/biaxial phase rotational symmetry about direction of order described by one/two headless vector n (director) and l (co-director).  Liquid-nematic solid transition is weakly first order. Motivating examples Topological defect entanglement in NLC film of width 790mm after temperature quench, showing monopoles, boojums and various integer/half-integer defects [Turok et al, Science, '91] Schlieren textures with two and four brushes exhibited by a uniaxial NLC film at 118 deg celsius [Chandrasekhar, et al, Current Science, '98] Nucleation of ellipsoidal NLC droplet with aspect ratio 1.7 and homogeneous director field in MC simulation. [Cuetos et al, Phys.Rev.Lett, '07] 27/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 30.  Quantified through a symmetric traceless tensor field with five degrees of freedom. Definition of order Qαβ molecular frame: principal frame: Qαβ( x ,t)=∫d u f ( x ,u ,t)uu Qαβ(x ,t)= 3 2 S (nα nβ− 1 3 δαβ)+ T 2 {lα lβ−(n×l)α(n×l)β }  Principal values represent strength of uniaxial and biaxial order (S,T)  Principal axes denote director, codirector and joint normal ( ). correspond to isotropic liquid phase. correspond to uniaxial nematic phase. correspond to biaxial nematic phase.  Statics: n ,l , n×l S=T =0 S= 2 3, T =0 T ≠0 FGLdG=∫d3 x[ 1 2 ATr Q2 + 1 3 BTr Q3 + 1 4 C (TrQ2 )2 +E' (TrQ3 )2 + 1 2 L1(∂α Qβ γ)(∂α Qβγ)+ 1 2 L2(∂α Qαβ)(∂γ Qβγ)] 28/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 31. Statics (contd.) and kinetics ∂t Qαβ(x ,t)=−Γαβμ ν δ FGLdG δQμ ν +ζαβ(x ,t)  Landau-Ginzburg model-A kinetics for non-conserved order  is a stochastic thermal force satisfying the structure of .Qαβ ζαβ Free energy diagram Phase diagram 29/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 32. Numerical recipe and benchmarks  Projection to orthonormal basis .  Numerical integration of a equations and back transformation to principal frame extraction of eigenvalues/eigenvectors to get back .  Integrator benchmarks: OU process, static and dynamic correlator in isotropic phase, angle-angle correlator in uniaxial nematic phase. Qαβ=∑ i=1 5 ai ( x ,t)T αβ i ,ζαβ=∑ i=1 5 ai (x ,t)ζαβ i Qαβ Determinstic problems:  Method of Lines (MOL).  Spectral collocation method (SCM).  High performance computing (HPC).  Stochastic Method of Lines (SMOL). Stochastic problems: Applications  Structure of isotropic-nematic interface.  Spinodal coarsening kinetics.  Nucleation kinetics. 30/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 33. Application-I Local/nonlocal properties of isotropic-nematic interface 31/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 34. Application-I : Local/nonlocal properties of I-N interface Isotropic IsotropicNematic z x ya Lx Free energy per unit length of having a strip:  Nature of I-N interface? de Gennes ansatz1 no anisotropic elasticity reducing to scalar equation in S. Later works tackled planar anchoring problem with three variables. No results known for oblique anchoring.  Finding the ansatz to be valid at limit. F=−a Lx(FN −F I )+Lx σ L2=0 1) P.G. de Gennes, Mol.Cryst.Liq.Cryst. (1971). L2=0 32/38 Fdistortion=∫d3 x { 1 2 L1(∂α Qβ γ)(∂α Qβ γ)+ 1 2 L2(∂α Qα β)(∂γQβ γ)} Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 35. Application-I : Local/nonlocal properties of I-N interface L2=18L1 L2  Local biaxiality of uniaxial interface with planar anchoring (using SCM).  In oblique anchoring, director alignment favours sign of . L2=−L1 L2=36L1 33/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 36. Application-I : Local/nonlocal properties of I-N interface ζαβ=0Fluctuating interface ζαβ≠0 34/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 37. Application-II Phase ordering spinodal kinetics 35/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 38. Application-II : Phase ordering spinodal kinetics [2D (d=2; s=3)]  Topological classification and visualization of point defects1 – (Uniaxial) and (Biaxial).  Defects visualized via scalar and vector order that shows all class of defect classes partially absent in schlieren texture measured in experiments ( ). π1(S 2 /ℤ2)=Z2 π1(S 3 / D2)=ℚ8 intensity ∝sin2 [2θ] S (x ,t) sin 2 (2θ)[ x ,t] T (x ,t) Uniaxial defect Biaxial defect 1) Mermin, Rev. Mod. Phys. (1979). 36/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 39. Application-II : Intercommutation of line defects  Line defects annihilate by intercommuting (exchanging segements) and forming loops1 .  Competion between energetics and Topology no topological rigidity found in Biaxial nematics. Uniaxial defect Biaxial defect [3D (d=3; s=3)] 1) Turok et al, Science (1991) 37/38 Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee Courant Institute (NYU)
  • 40.  Formulation of fluctuating kinetics of uniaxial/biaxial nematic in GLdG framework, leading to novel visualization techniques and HPC ( in 2D, lattice in 3D).  Validated de Gennes ansatz at limit of the problem.  Isotropic-uniaxial nematic interface obtains biaxiality for .  Oblique director anchoring: scalars remain local to the interface and anchoring follows a linear profile: planar for and homeotropic for  Classification and visualization of all defect classes.  Controversy in growth exponent been settled with clear time-scale separation at different stages of phase ordering.  Minimal GLdG framework incapable of topological rigidity in BN. Methods Summary: Inhomogeneous phenomena in nematics 1024 2 256 3 I-N Interface L2=0 L2≠0 L2>0 L2<0. Coarsening kinetics Introduction Dense colloids Multispecies mixtures Liquid Crystals Conclusion Amit Bhattacharjee 38/38Courant Institute (NYU)
  • 41.  Thermal fluctuation inducded nucleation of NLC phase in 3D.  Uniaxial and Biaxial NLC under electric field in 3D.  Coupling incompressible flow[1,2] to Q equations and fluctuations 3D line defects in flow.  Rheology in nematics.  Multicomponent phase flow with fluctuations2 . Field based methods Research proposal(s) 2D uniaxial defects in electric field [Oliveira et al, Phys.Rev.E, '10] 2D slice of ellipsoidal nematic phase in isotropic phase [Bhattacharjee, PhD Thesis, '10] Velocity field of defects pair in LB simulations [Yeomans et al, Phys.Rev.Lett., '02] ± 1 2 [1] Berris & Edwards, Thermodynamics of flowing system, Oxford (1994). [2] Donev et al, Phys. Rev. E (2014). Nucleation and growth of nematic phase of 5CB at cooling rate 0.001 degC/min [Sun et al, Phys.Rev.E, '09] Amit Bhattacharjee Courant Institute (NYU) 1/2 Proposal
  • 42.  Dense colloidal rheology: role of size disparity3 , flow geometry (planar Couette[4,5] , uniaxial extension, mixed), flow history (shear cessation6 , non-instantaneous flow reversal and LAOS7 ), coarse graining.  Microrheology of colloid-nematic mixture8 .  Glassy nematic rheology8 . Particle based methods Research proposal(s)  Chemical reaction-diffusion systems: GENERIC / CLE / CME coupled to compressible NS equations: Schlögl model1 , Dimerization reaction2 . [1] Lubensky et al, Phys. Rev. E. (2012). [2] Bedeaux et al J. Chem. Phys (2011). [3] Voigtmann and Horbach, Phys. Rev. Lett. (2009). [4] Bhattacharjee et al, J. Chem. Phys. (2013). [5] Bhattacharjee, arXiv 1410.8115 (2014). [6] Zausch Horbach, Euro. Phys. Lett. (2010). [7] Brader et al, Phys. Rev. E., (2010). [8] Onuki et al, Phys. Rev. E., (2014). Elastic map with small and large elastic constant at strain=0.1 [Bhattacharjee, unpublished] 2/2Amit Bhattacharjee Courant Institute (NYU)