Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Oral presentation at Tsingtao 2015.7

218 views

Published on

Universal aging dynamics of hectorite suspensions

Published in: Science
  • Be the first to comment

  • Be the first to like this

Oral presentation at Tsingtao 2015.7

  1. 1. Universal aging dynamics of synthetic hectorite suspensions 合成水辉石悬浮液老化的动态普适性 孙尉翔 华南理工大学 材料科学研究所 2015-07第九届复杂流体流变学研讨会
  2. 2. Colloidal phase diagram Volume fraction Temperature Glass line Spinodal Glass Liquid Credit: Eric R. Weeks Laboratory http://www.physics.emory.edu/~weeks/la b/aging.html Gel Low vol. fraction Attractive High vol. fraction Repulsive
  3. 3. Gel Glass Colloidal Dynamics Credit: Eric R. Weeks Laboratory http://www.physics.emory.edu/~weeks/la b/aging.htmlPhysics 4, 42 (2011) J. Phys. Chem. 100, 13200 (1996)
  4. 4. Aging: Out-of-equilibrium dynamics
  5. 5. Universal aging dynamics
  6. 6. Aging is ubiquitous
  7. 7. Aging is ubiquitous
  8. 8. Rheology for aging dynamics L. C. E. Struik, Physical Aging in Amorphous Polymers and Other Materials (Elsevier Science, New York, 1978). L. C. E. Struik, Physical Aging in Amorphous Polymers and Other Materials (Elsevier Science, New York, 1978).
  9. 9. Multi-wave time sweep E. E. Holly et al. J. Non-Newtonian Fluid Mech., 1988, 27, 17-26.
  10. 10. Repeated Frequency Sweep M. Mours and H. H. Winter, Rheol. Acta 33, 385 (1994).
  11. 11. Repeated time sweep A. S. Negi and C. O. Osuji, Phys. Rev. E 82, 031404 (2010).
  12. 12. Materials a synthetic hectorite, [Mg5.34Li0.66Si8O20(OH)4]Na0.66 Layer size: 30 nm in diameter & 1 nm in thickness tw suspension in water Liquid – solid trans. Na+ Na+ Na+ Na+ Na+ Na+
  13. 13.  i 0 = 0  = 2f0 tw i = 3000 s -1 ti = 100 s Methods tw = 0 G Applying a sample Pre-shear Measurement tw 1. Kinetics Single freq. time swp. 2. Dynamics Multi-wave time swp. Pre-age
  14. 14. Kinetics of aging: T-dependence 101 102 103 10-1 100 101 102 T (°C) 10 15 20 25 30 35 40 45 G',G''(Pa) tw (s) Clay: 3.5 wt% Pre-age: 4 d G' G'' 0 = 0.5%,  = 6.28 rad/s 101 102 103 104 10-1 100 101 102 T (°C) 10 15 20 25 30 35 40 45 bT G',bT G''(Pa) tw /aT (s) Clay: 3.5 wt% Pre-age: 4 d Tref = 10°C 20 40 0.0 0.5 1.0 Shiftfactors T (°C) aT bT Preshearing at high rate ~ equilibrate at high T “Shear melting”
  15. 15. Kinetics of aging – temperature dependence 10 20 30 40 50 0.0 0.5 1.0 1.5 aT T (°C) L2.9-2d L3.2-2d L3.5-2d L3.5-4d
  16. 16. Modeling: Interaction potential Electrical potential clayparticle A1: Attractive with barrier
  17. 17. Modeling: Interaction potential 10 20 30 40 0.8 1.0 1.2 1.4 c (mScm-1 ) T (°C) L2.9-2d L3.2-2d L3.5-2d L3.5-4d (a) 10 20 30 40 0.016 0.018 0.020 0.022 0.024 0.026 [Na+ ](M) T (°C) (b) 0 50 100 0 2 4 (10-7 m2 s-1 V-1 ) T (°C) Na+ OH- Na+ Na+ Na+ Na+ Na+ Na+ 1 2 2 A 0 r B 1000 Nae N k T              κ-1 = 3.4~8.2 nm A2: ϕeff < 0.0857 Cluster / Gel Q2: Glass or gel?
  18. 18. Modeling: Interaction potential Na+ Na+ Na+ Na+ Na+ Na+ H. Ohshima, J. Colloid Interface Sci. 247, 18 (2002). Surface Charge Density / Surface Potential Relationship
  19. 19. Modeling: Reaction-limited colloidal aggregation 10 20 30 40 0.0 0.5 1.0 1.5 2.0 aT T (°C) L2.9-2d L3.2-2d L3.5-2d L3.5-4d
  20. 20. Modeling: Reaction-limited colloidal aggregation
  21. 21. Modeling: Kinetics 10 20 30 40 0.0 0.5 1.0 1.5 2.0 aT T (°C) L2.9-2d L3.2-2d L3.5-2d L3.5-4d 10 20 30 40 3.2 3.4 3.6 3.8 4.0 L3.5-2d L3.5-4d L3.2-2d Umax (10-19 J) T (°C) (c) L2.9-2d 10 20 30 40 85 90 95 L3.5-4d L3.5-2d L3.2-2d Umax /kB T T (°C) (d) L2.9-2d Increased potential barrier Increased collision probability Q3: Origin of the non- monotonic dependence? A3:
  22. 22. Modeling H. Tanaka, J. Meunier, and D. Bonn, Phys. Rev. E 69, 031404 (2004). B. Ruzicka and E. Zaccarelli, Soft Matter 7, 1268 (2011). No direct relationship between Cs and I under counterion- condensation!
  23. 23. Dynamics of aging Dyn. freq. swp. At different tw of aging Time – aging time superposition
  24. 24. Dynamics of aging Time – temp. superposition at different tw’s. Time – aging time – temp. superposition
  25. 25. Relaxation time dependence τ(T, tw; cL)
  26. 26. Relaxation time dependence τ(25°C, tw; cL)
  27. 27. Relaxation time spectra         2 2 2 2 2 2 ln 1 ln 1 G H d G H d                              J. Ramirez and A. E. Likhtman, Rheology of Entangled Polymers: Toolbox for the Analysis of Theory and Experiments, 2007.
  28. 28. Relaxation time spectra         c 0 , , 0, n n n G H                                          Spectrum for glasses: BSW spectrum mapped to mode-coupling theory (MCT): H. Winter, M. Siebenbürger, D. Hajnal, O. Henrich, M. Fuchs, and M. Ballauff, Rheol. Acta 48, 747 (2009).   c , , 0, n n G H                           0 max 0 max , , 0, n H H                   Spectrum for gels: critical gel theory M. Mours and H. H. Winter, Macromolecules 29, 7221 (1996). H. H. Winter, Macromolecules 46, 2425 (2013). ε: distance to transition (near-equilibrium) Gels: ε = |p – pc| Glass: ε = |ϕ – ϕg|   0 max 0 max , , 0, n H H                   Powerlaw distribution:
  29. 29. Relaxation time spectra   0 max max exp n H H                        cut-off function Transition from gel-like to glass-like behavior
  30. 30. Modeling H. Tanaka, J. Meunier, and D. Bonn, Phys. Rev. E 69, 031404 (2004). B. Ruzicka and E. Zaccarelli, Soft Matter 7, 1268 (2011). Gel – glass: ϕ – dependence or age – dependence?
  31. 31. Hectorite + PEG 0.0 5.0x10 -9 1.0x10 -8 1.5x10 -8 -20 0 20 Potential(kB T) h (m) UvdW Udl Usteric U Quenched by increasing U (old results) U=UvdW+Udl+Usteric √ W. Sun, T. Wang, C. Wang, X. Liu, and Z. Tong, Soft Matter 9, 6263 (2013).
  32. 32. 10 -1 10 1 10 3 10 5 10 0 10 1 10 2 cp = 0.63 wt%, tw,ref = 90 s tw / s 30 40 60 90 200 400 700 G',G''(Pa) at  (rad/s) 10 -5 10 -3 10 -1 10 1 10 0 10 1 10 2 tw = 90 s, cp,ref = 0.1 wt% cp / wt% 0 0.1 0.25 0.4 0.63 0.8 1.0 ap  (rad/s) Time – aging time superposition Time – PEG conc. superposition 10 -4 10 -2 10 0 10 2 10 -1 10 0 10 1 10 2 G',G''(Pa) rel  (rad/s) cp,ref = 0.1 wt% tw,ref = 90 s Relaxation time: cp tw “older” aging “younger” rejuvenation
  33. 33. Conclusions Na+ Na+ Na+ Na+ Na+ Na+ Increased potential barrier Increased collision probability
  34. 34. 青年科学基金 21204023 Prof. Z. Tong C. Liang W. Sun
  35. 35. Thank you!

×