SlideShare a Scribd company logo
1 of 45
Download to read offline
Introduction to Audio Content Analysis
module 3.1: input representation — signals
alexander lerch
overview intro periodic signals random signals signal description summary
introduction
overview
corresponding textbook section
section 3.1
lecture content
• deterministic & periodic signals
• Fourier Series
• random signals
• statistical signal description
• digital signals
learning objectives
• name basic signal categories
• discuss the nature of periodic signals with respect to harmonics
• give a short description of meaning and use of the Fourier Series
• list common descriptors for properties of a random signal
module 3.1: input representation — signals 1 / 18
overview intro periodic signals random signals signal description summary
introduction
overview
corresponding textbook section
section 3.1
lecture content
• deterministic & periodic signals
• Fourier Series
• random signals
• statistical signal description
• digital signals
learning objectives
• name basic signal categories
• discuss the nature of periodic signals with respect to harmonics
• give a short description of meaning and use of the Fourier Series
• list common descriptors for properties of a random signal
module 3.1: input representation — signals 1 / 18
overview intro periodic signals random signals signal description summary
audio signals
signal categories
deterministic signals:
predictable: future shape of the signal can be known (example: sinusoidal)
random signals:
unpredictable: no knowledge can help to predict what is coming next (example:
white noise)
“real-world” audio signals can be modeled as time-variant combination of
(quasi-)periodic parts
(quasi-)random parts
module 3.1: input representation — signals 2 / 18
overview intro periodic signals random signals signal description summary
audio signals
signal categories
deterministic signals:
predictable: future shape of the signal can be known (example: sinusoidal)
random signals:
unpredictable: no knowledge can help to predict what is coming next (example:
white noise)
“real-world” audio signals can be modeled as time-variant combination of
(quasi-)periodic parts
(quasi-)random parts
module 3.1: input representation — signals 2 / 18
overview intro periodic signals random signals signal description summary
audio signals
signal categories
deterministic signals:
predictable: future shape of the signal can be known (example: sinusoidal)
random signals:
unpredictable: no knowledge can help to predict what is coming next (example:
white noise)
“real-world” audio signals can be modeled as time-variant combination of
(quasi-)periodic parts
(quasi-)random parts
module 3.1: input representation — signals 2 / 18
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 1/5
periodic signals: most prominent examples of deterministic signals
x(t) = x(t + T0)
f0 =
1
T0
=
ω0
2π
module 3.1: input representation — signals 3 / 18
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 1/5
periodic signals: most prominent examples of deterministic signals
x(t) = x(t + T0)
f0 =
1
T0
=
ω0
2π
module 3.1: input representation — signals 3 / 18
matlab
source:
plotPeriodic.m
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 2/5
periodic signal ⇒ representation in Fourier series1
x(t) =
∞
X
k=−∞
akejω0kt
ω0 = 2π · f0
kω0: integer multiples of the lowest frequency
ejω0kt = cos(ω0kt) + j sin(ω0kt)
ak: Fourier coefficients — amplitude of each component
ak =
1
T0
T0/2
Z
−T0/2
x(t)e−jω0kt
dt
1
Jean-Baptiste Joseph Fourier, 1768–1830
module 3.1: input representation — signals 4 / 18
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 2/5
periodic signal ⇒ representation in Fourier series1
x(t) =
∞
X
k=−∞
akejω0kt
ω0 = 2π · f0
kω0: integer multiples of the lowest frequency
ejω0kt = cos(ω0kt) + j sin(ω0kt)
ak: Fourier coefficients — amplitude of each component
ak =
1
T0
T0/2
Z
−T0/2
x(t)e−jω0kt
dt
1
Jean-Baptiste Joseph Fourier, 1768–1830
module 3.1: input representation — signals 4 / 18
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 2/5
periodic signal ⇒ representation in Fourier series1
x(t) =
∞
X
k=−∞
akejω0kt
ω0 = 2π · f0
kω0: integer multiples of the lowest frequency
ejω0kt = cos(ω0kt) + j sin(ω0kt)
ak: Fourier coefficients — amplitude of each component
ak =
1
T0
T0/2
Z
−T0/2
x(t)e−jω0kt
dt
1
Jean-Baptiste Joseph Fourier, 1768–1830
module 3.1: input representation — signals 4 / 18
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 2/5
periodic signal ⇒ representation in Fourier series1
x(t) =
∞
X
k=−∞
akejω0kt
ω0 = 2π · f0
kω0: integer multiples of the lowest frequency
ejω0kt = cos(ω0kt) + j sin(ω0kt)
ak: Fourier coefficients — amplitude of each component
ak =
1
T0
T0/2
Z
−T0/2
x(t)e−jω0kt
dt
1
Jean-Baptiste Joseph Fourier, 1768–1830
module 3.1: input representation — signals 4 / 18
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 2/5
periodic signal ⇒ representation in Fourier series1
x(t) =
∞
X
k=−∞
akejω0kt
ω0 = 2π · f0
kω0: integer multiples of the lowest frequency
ejω0kt = cos(ω0kt) + j sin(ω0kt)
ak: Fourier coefficients — amplitude of each component
ak =
1
T0
T0/2
Z
−T0/2
x(t)e−jω0kt
dt
1
Jean-Baptiste Joseph Fourier, 1768–1830
module 3.1: input representation — signals 4 / 18
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 3/5
Fourier series
every periodic signal can be represented in a Fourier series
a periodic signal contains only frequencies at integer multiples of the
fundamental frequency f0
Fourier series can only be applied to periodic signals
Fourier series is analytically elegant but only of limited practical use as the
fundamental period has to be known
module 3.1: input representation — signals 5 / 18
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 3/5
Fourier series
every periodic signal can be represented in a Fourier series
a periodic signal contains only frequencies at integer multiples of the
fundamental frequency f0
Fourier series can only be applied to periodic signals
Fourier series is analytically elegant but only of limited practical use as the
fundamental period has to be known
module 3.1: input representation — signals 5 / 18
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 4/5
reconstruction of periodic signals with limited number of sinusoidals:
x̂(t) =
K
X
k=−K
akejω0kt
module 3.1: input representation — signals 6 / 18
matlab
source:
plotFourierSeries.m
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 5/5
1 3 1 25 50 harmonics
module 3.1: input representation — signals 7 / 18
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 5/5
1 3 1 25 50 harmonics
module 3.1: input representation — signals 7 / 18
matlab
source:
plotAdditiveSynthesis.m
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 5/5
1 3 1 25 50 harmonics
module 3.1: input representation — signals 7 / 18
matlab
source:
plotAdditiveSynthesis.m
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 5/5
1 3 1 25 50 harmonics
module 3.1: input representation — signals 7 / 18
matlab
source:
plotAdditiveSynthesis.m
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 5/5
1 3 1 25 50 harmonics
module 3.1: input representation — signals 7 / 18
matlab
source:
plotAdditiveSynthesis.m
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 5/5
1 3 1 25 50 harmonics
module 3.1: input representation — signals 7 / 18
matlab
source:
plotAdditiveSynthesis.m
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 5/5
1 3 10 25 50 harmonics
module 3.1: input representation — signals 7 / 18
matlab
source:
plotAdditiveSynthesis.m
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 5/5
1 3 10 25 50 harmonics
module 3.1: input representation — signals 7 / 18
matlab
source:
plotAdditiveSynthesis.m
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 5/5
1 3 10 25 50 harmonics
module 3.1: input representation — signals 7 / 18
matlab
source:
plotAdditiveSynthesis.m
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 5/5
1 3 10 25 50 harmonics
module 3.1: input representation — signals 7 / 18
matlab
source:
plotAdditiveSynthesis.m
overview intro periodic signals random signals signal description summary
audio signals
periodic signals 5/5
1 3 10 25 50 harmonics
module 3.1: input representation — signals 7 / 18
matlab
source:
plotAdditiveSynthesis.m
overview intro periodic signals random signals signal description summary
audio signals
random process 1/2
random process: ensemble of random series
module 3.1: input representation — signals 8 / 18
matlab
source:
plotRandomProcess.m
overview intro periodic signals random signals signal description summary
audio signals
random process 2/2
random process
ensemble of random series
each series represents a sample of the process
the following value is indetermined, regardless of any amount of knowledge
special case: stationarity
statistical properties such as the mean are time invariant
example: white noise
module 3.1: input representation — signals 9 / 18
overview intro periodic signals random signals signal description summary
statistical signal description
probability density function
PDF px (x)
x-axis: possible (amplitude) values
y-axis: probability
px (x) ≥ 0, and
∞
Z
−∞
px (x) dx = 1
RFD—Relative Frequency Distribution (sample of PDF)
histogram of (amplitude) values
module 3.1: input representation — signals 10 / 18
overview intro periodic signals random signals signal description summary
statistical signal description
probability density function
PDF px (x)
x-axis: possible (amplitude) values
y-axis: probability
px (x) ≥ 0, and
∞
Z
−∞
px (x) dx = 1
RFD—Relative Frequency Distribution (sample of PDF)
histogram of (amplitude) values
module 3.1: input representation — signals 10 / 18
overview intro periodic signals random signals signal description summary
statistical signal description
probability density function
PDF px (x)
x-axis: possible (amplitude) values
y-axis: probability
px (x) ≥ 0, and
∞
Z
−∞
px (x) dx = 1
RFD—Relative Frequency Distribution (sample of PDF)
histogram of (amplitude) values
module 3.1: input representation — signals 10 / 18
overview intro periodic signals random signals signal description summary
statistical signal description
PDF examples
What is the PDF of the following prototype signals:
module 3.1: input representation — signals 11 / 18
overview intro periodic signals random signals signal description summary
statistical signal description
PDF examples
What is the PDF of the following prototype signals:
square wave
sawtooth wave
sine wave
white noise (uniform, gaussian)
DC
module 3.1: input representation — signals 11 / 18
overview intro periodic signals random signals signal description summary
statistical signal description
PDF examples
What is the PDF of the following prototype signals:
module 3.1: input representation — signals 11 / 18
matlab
source:
plotPdfExamples.m
overview intro periodic signals random signals signal description summary
statistical signal description
RFD: real world signals
module 3.1: input representation — signals 12 / 18
matlab
source:
plotRfd.m
overview intro periodic signals random signals signal description summary
statistical signal description
arithmetic mean
from time series x:
µx (n) =
1
K
ie(n)
X
i=is(n)
x(i)
from distribution px :
µx (n) =
∞
X
x=−∞
x · px (x)
module 3.1: input representation — signals 13 / 18
matlab
source:
plotArithmeticMean.m
overview intro periodic signals random signals signal description summary
statistical signal description
geometric & harmonic mean
geometric mean
Mgv = N
v
u
u
t
N−1
Y
0
v(n)
= exp
1
N
N−1
X
0
log v(n)

!
.
harmonic mean
Mhv =
N
N−1
P
0
1/v(n)
.
module 3.1: input representation — signals 14 / 18
overview intro periodic signals random signals signal description summary
statistical signal description
geometric  harmonic mean
geometric mean
Mgv = N
v
u
u
t
N−1
Y
0
v(n)
= exp
1
N
N−1
X
0
log v(n)

!
.
harmonic mean
Mhv =
N
N−1
P
0
1/v(n)
.
module 3.1: input representation — signals 14 / 18
overview intro periodic signals random signals signal description summary
statistical signal description
variance  standard deviation
measure of spread of the signal around its mean
variance
• from signal block:
σ2
x (n) =
1
K
ie(n)
X
i=is(n)
x(i) − µx (n)
2
• from distribution:
σ2
x (n) =
∞
X
x=−∞
x − µx
2
· px (x)
standard deviation
σx (n) =
q
σ2
x (n)
module 3.1: input representation — signals 15 / 18
matlab
source:
plotStandardDeviation.m
overview intro periodic signals random signals signal description summary
statistical signal description
variance  standard deviation
measure of spread of the signal around its mean
variance
• from signal block:
σ2
x (n) =
1
K
ie(n)
X
i=is(n)
x(i) − µx (n)
2
• from distribution:
σ2
x (n) =
∞
X
x=−∞
x − µx
2
· px (x)
standard deviation
σx (n) =
q
σ2
x (n)
module 3.1: input representation — signals 15 / 18
matlab
source:
plotStandardDeviation.m
overview intro periodic signals random signals signal description summary
statistical signal description
variance  standard deviation
measure of spread of the signal around its mean
variance
• from signal block:
σ2
x (n) =
1
K
ie(n)
X
i=is(n)
x(i) − µx (n)
2
• from distribution:
σ2
x (n) =
∞
X
x=−∞
x − µx
2
· px (x)
standard deviation
σx (n) =
q
σ2
x (n)
module 3.1: input representation — signals 15 / 18
matlab
source:
plotStandardDeviation.m
overview intro periodic signals random signals signal description summary
statistical signal description
quantiles  quantile ranges
dividing the PDF into (equal sized) subsets
QX(cp) = argmin FX(x) ≤ cp

with FX(x) =
x
Z
−∞
px(y) dy
module 3.1: input representation — signals 16 / 18
matlab
source:
plotPdfQuantiles.m
overview intro periodic signals random signals signal description summary
statistical signal description
quantile examples
median
QX(0.5) = argmin FX(x) ≤ 0.5

quartiles: QX(0.25), QX(0.5), and QXx(0.75)
quantile range, e.g.
∆QX(0.9) = QX(0.95) − QX(0.05)
module 3.1: input representation — signals 17 / 18
overview intro periodic signals random signals signal description summary
summary
lecture content
signals can be categorized into deterministic and random signals
• deterministic signal can be described in a mathematical function
• random processes can only be described by their general properties
periodic signals
• periodic signals are probably the most music-related deterministic signal
• any periodic (pitched) signal is a sum of weighted sinusoidals
• frequencies only at the fundamental frequency and integer multiples
random signals
• noise, unpredictable
real-world signals
• can be seen as a time-varying mixture of these two signal categories
statistical features
• summarize technical signal characteristics in few numerical values
• may be used on a time domain, frequency domain, or feature domain signal
module 3.1: input representation — signals 18 / 18

More Related Content

Similar to 03-01-ACA-Input-Signals.pdf

CHƯƠNG 2 KỸ THUẬT TRUYỀN DẪN SỐ - THONG TIN SỐ
CHƯƠNG 2 KỸ THUẬT TRUYỀN DẪN SỐ - THONG TIN SỐCHƯƠNG 2 KỸ THUẬT TRUYỀN DẪN SỐ - THONG TIN SỐ
CHƯƠNG 2 KỸ THUẬT TRUYỀN DẪN SỐ - THONG TIN SỐlykhnh386525
 
Frequency and Power Estimator for Digital Receivers in Doppler Shift Environm...
Frequency and Power Estimator for Digital Receivers in Doppler Shift Environm...Frequency and Power Estimator for Digital Receivers in Doppler Shift Environm...
Frequency and Power Estimator for Digital Receivers in Doppler Shift Environm...CSCJournals
 
03-03-01-ACA-Input-TF-Fourier.pdf
03-03-01-ACA-Input-TF-Fourier.pdf03-03-01-ACA-Input-TF-Fourier.pdf
03-03-01-ACA-Input-TF-Fourier.pdfAlexanderLerch4
 
Frequency spectrum of periodic signal..
Frequency spectrum of periodic signal..    Frequency spectrum of periodic signal..
Frequency spectrum of periodic signal.. Smit Shah
 
Paper on Modeling and Subtractive synthesis of virtual violin
Paper on Modeling and Subtractive synthesis of virtual violinPaper on Modeling and Subtractive synthesis of virtual violin
Paper on Modeling and Subtractive synthesis of virtual violinVinoth Punniyamoorthy
 
Fourier_Series_april.pdf
Fourier_Series_april.pdfFourier_Series_april.pdf
Fourier_Series_april.pdfXaviAltamirano1
 
Fourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of TelecomFourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of TelecomAmirKhan877722
 
02_signals.pdf
02_signals.pdf02_signals.pdf
02_signals.pdfMituBaral2
 
Sampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxSampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxHamzaJaved306957
 
07-03-04-ACA-Tonal-Polyf0.pdf
07-03-04-ACA-Tonal-Polyf0.pdf07-03-04-ACA-Tonal-Polyf0.pdf
07-03-04-ACA-Tonal-Polyf0.pdfAlexanderLerch4
 
311 communication system concepts
311 communication system concepts311 communication system concepts
311 communication system conceptsMohammad Bappy
 
Band pass system
Band pass systemBand pass system
Band pass systemVARUN KUMAR
 
Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Jyothirmaye Suneel
 
Lecture 4-6.pdf
Lecture 4-6.pdfLecture 4-6.pdf
Lecture 4-6.pdfFaruque13
 
SP_BEE2143_C1.pptx
SP_BEE2143_C1.pptxSP_BEE2143_C1.pptx
SP_BEE2143_C1.pptxIffahSkmd
 

Similar to 03-01-ACA-Input-Signals.pdf (20)

CHƯƠNG 2 KỸ THUẬT TRUYỀN DẪN SỐ - THONG TIN SỐ
CHƯƠNG 2 KỸ THUẬT TRUYỀN DẪN SỐ - THONG TIN SỐCHƯƠNG 2 KỸ THUẬT TRUYỀN DẪN SỐ - THONG TIN SỐ
CHƯƠNG 2 KỸ THUẬT TRUYỀN DẪN SỐ - THONG TIN SỐ
 
Frequency and Power Estimator for Digital Receivers in Doppler Shift Environm...
Frequency and Power Estimator for Digital Receivers in Doppler Shift Environm...Frequency and Power Estimator for Digital Receivers in Doppler Shift Environm...
Frequency and Power Estimator for Digital Receivers in Doppler Shift Environm...
 
03-03-01-ACA-Input-TF-Fourier.pdf
03-03-01-ACA-Input-TF-Fourier.pdf03-03-01-ACA-Input-TF-Fourier.pdf
03-03-01-ACA-Input-TF-Fourier.pdf
 
Frequency spectrum of periodic signal..
Frequency spectrum of periodic signal..    Frequency spectrum of periodic signal..
Frequency spectrum of periodic signal..
 
rcg-ch4a.pdf
rcg-ch4a.pdfrcg-ch4a.pdf
rcg-ch4a.pdf
 
Rigaud_et_al_WASPAA
Rigaud_et_al_WASPAARigaud_et_al_WASPAA
Rigaud_et_al_WASPAA
 
Paper on Modeling and Subtractive synthesis of virtual violin
Paper on Modeling and Subtractive synthesis of virtual violinPaper on Modeling and Subtractive synthesis of virtual violin
Paper on Modeling and Subtractive synthesis of virtual violin
 
Fourier_Series_april.pdf
Fourier_Series_april.pdfFourier_Series_april.pdf
Fourier_Series_april.pdf
 
Fourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of TelecomFourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of Telecom
 
02_signals.pdf
02_signals.pdf02_signals.pdf
02_signals.pdf
 
Sampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxSampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptx
 
07-03-04-ACA-Tonal-Polyf0.pdf
07-03-04-ACA-Tonal-Polyf0.pdf07-03-04-ACA-Tonal-Polyf0.pdf
07-03-04-ACA-Tonal-Polyf0.pdf
 
311 communication system concepts
311 communication system concepts311 communication system concepts
311 communication system concepts
 
Band pass system
Band pass systemBand pass system
Band pass system
 
Unit 8
Unit 8Unit 8
Unit 8
 
Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15
 
12
1212
12
 
Lecture 4-6.pdf
Lecture 4-6.pdfLecture 4-6.pdf
Lecture 4-6.pdf
 
SP_BEE2143_C1.pptx
SP_BEE2143_C1.pptxSP_BEE2143_C1.pptx
SP_BEE2143_C1.pptx
 
Lecture13
Lecture13Lecture13
Lecture13
 

More from AlexanderLerch4

0A-02-ACA-Fundamentals-Convolution.pdf
0A-02-ACA-Fundamentals-Convolution.pdf0A-02-ACA-Fundamentals-Convolution.pdf
0A-02-ACA-Fundamentals-Convolution.pdfAlexanderLerch4
 
09-03-ACA-Temporal-Onsets.pdf
09-03-ACA-Temporal-Onsets.pdf09-03-ACA-Temporal-Onsets.pdf
09-03-ACA-Temporal-Onsets.pdfAlexanderLerch4
 
09-07-ACA-Temporal-Structure.pdf
09-07-ACA-Temporal-Structure.pdf09-07-ACA-Temporal-Structure.pdf
09-07-ACA-Temporal-Structure.pdfAlexanderLerch4
 
09-01-ACA-Temporal-Intro.pdf
09-01-ACA-Temporal-Intro.pdf09-01-ACA-Temporal-Intro.pdf
09-01-ACA-Temporal-Intro.pdfAlexanderLerch4
 
07-06-ACA-Tonal-Chord.pdf
07-06-ACA-Tonal-Chord.pdf07-06-ACA-Tonal-Chord.pdf
07-06-ACA-Tonal-Chord.pdfAlexanderLerch4
 
15-00-ACA-Music-Performance-Analysis.pdf
15-00-ACA-Music-Performance-Analysis.pdf15-00-ACA-Music-Performance-Analysis.pdf
15-00-ACA-Music-Performance-Analysis.pdfAlexanderLerch4
 
12-01-ACA-Similarity.pdf
12-01-ACA-Similarity.pdf12-01-ACA-Similarity.pdf
12-01-ACA-Similarity.pdfAlexanderLerch4
 
09-04-ACA-Temporal-BeatHisto.pdf
09-04-ACA-Temporal-BeatHisto.pdf09-04-ACA-Temporal-BeatHisto.pdf
09-04-ACA-Temporal-BeatHisto.pdfAlexanderLerch4
 
09-05-ACA-Temporal-Tempo.pdf
09-05-ACA-Temporal-Tempo.pdf09-05-ACA-Temporal-Tempo.pdf
09-05-ACA-Temporal-Tempo.pdfAlexanderLerch4
 
11-00-ACA-Fingerprinting.pdf
11-00-ACA-Fingerprinting.pdf11-00-ACA-Fingerprinting.pdf
11-00-ACA-Fingerprinting.pdfAlexanderLerch4
 
03-05-ACA-Input-Features.pdf
03-05-ACA-Input-Features.pdf03-05-ACA-Input-Features.pdf
03-05-ACA-Input-Features.pdfAlexanderLerch4
 
05-00-ACA-Data-Intro.pdf
05-00-ACA-Data-Intro.pdf05-00-ACA-Data-Intro.pdf
05-00-ACA-Data-Intro.pdfAlexanderLerch4
 
07-03-05-ACA-Tonal-F0Eval.pdf
07-03-05-ACA-Tonal-F0Eval.pdf07-03-05-ACA-Tonal-F0Eval.pdf
07-03-05-ACA-Tonal-F0Eval.pdfAlexanderLerch4
 
03-06-ACA-Input-FeatureLearning.pdf
03-06-ACA-Input-FeatureLearning.pdf03-06-ACA-Input-FeatureLearning.pdf
03-06-ACA-Input-FeatureLearning.pdfAlexanderLerch4
 
03-07-01-ACA-Input-Post-Processing.pdf
03-07-01-ACA-Input-Post-Processing.pdf03-07-01-ACA-Input-Post-Processing.pdf
03-07-01-ACA-Input-Post-Processing.pdfAlexanderLerch4
 
07-02-ACA-Tonal-Music.pdf
07-02-ACA-Tonal-Music.pdf07-02-ACA-Tonal-Music.pdf
07-02-ACA-Tonal-Music.pdfAlexanderLerch4
 

More from AlexanderLerch4 (20)

0A-02-ACA-Fundamentals-Convolution.pdf
0A-02-ACA-Fundamentals-Convolution.pdf0A-02-ACA-Fundamentals-Convolution.pdf
0A-02-ACA-Fundamentals-Convolution.pdf
 
12-02-ACA-Genre.pdf
12-02-ACA-Genre.pdf12-02-ACA-Genre.pdf
12-02-ACA-Genre.pdf
 
10-02-ACA-Alignment.pdf
10-02-ACA-Alignment.pdf10-02-ACA-Alignment.pdf
10-02-ACA-Alignment.pdf
 
09-03-ACA-Temporal-Onsets.pdf
09-03-ACA-Temporal-Onsets.pdf09-03-ACA-Temporal-Onsets.pdf
09-03-ACA-Temporal-Onsets.pdf
 
13-00-ACA-Mood.pdf
13-00-ACA-Mood.pdf13-00-ACA-Mood.pdf
13-00-ACA-Mood.pdf
 
09-07-ACA-Temporal-Structure.pdf
09-07-ACA-Temporal-Structure.pdf09-07-ACA-Temporal-Structure.pdf
09-07-ACA-Temporal-Structure.pdf
 
09-01-ACA-Temporal-Intro.pdf
09-01-ACA-Temporal-Intro.pdf09-01-ACA-Temporal-Intro.pdf
09-01-ACA-Temporal-Intro.pdf
 
07-06-ACA-Tonal-Chord.pdf
07-06-ACA-Tonal-Chord.pdf07-06-ACA-Tonal-Chord.pdf
07-06-ACA-Tonal-Chord.pdf
 
15-00-ACA-Music-Performance-Analysis.pdf
15-00-ACA-Music-Performance-Analysis.pdf15-00-ACA-Music-Performance-Analysis.pdf
15-00-ACA-Music-Performance-Analysis.pdf
 
12-01-ACA-Similarity.pdf
12-01-ACA-Similarity.pdf12-01-ACA-Similarity.pdf
12-01-ACA-Similarity.pdf
 
09-04-ACA-Temporal-BeatHisto.pdf
09-04-ACA-Temporal-BeatHisto.pdf09-04-ACA-Temporal-BeatHisto.pdf
09-04-ACA-Temporal-BeatHisto.pdf
 
09-05-ACA-Temporal-Tempo.pdf
09-05-ACA-Temporal-Tempo.pdf09-05-ACA-Temporal-Tempo.pdf
09-05-ACA-Temporal-Tempo.pdf
 
11-00-ACA-Fingerprinting.pdf
11-00-ACA-Fingerprinting.pdf11-00-ACA-Fingerprinting.pdf
11-00-ACA-Fingerprinting.pdf
 
08-00-ACA-Intensity.pdf
08-00-ACA-Intensity.pdf08-00-ACA-Intensity.pdf
08-00-ACA-Intensity.pdf
 
03-05-ACA-Input-Features.pdf
03-05-ACA-Input-Features.pdf03-05-ACA-Input-Features.pdf
03-05-ACA-Input-Features.pdf
 
05-00-ACA-Data-Intro.pdf
05-00-ACA-Data-Intro.pdf05-00-ACA-Data-Intro.pdf
05-00-ACA-Data-Intro.pdf
 
07-03-05-ACA-Tonal-F0Eval.pdf
07-03-05-ACA-Tonal-F0Eval.pdf07-03-05-ACA-Tonal-F0Eval.pdf
07-03-05-ACA-Tonal-F0Eval.pdf
 
03-06-ACA-Input-FeatureLearning.pdf
03-06-ACA-Input-FeatureLearning.pdf03-06-ACA-Input-FeatureLearning.pdf
03-06-ACA-Input-FeatureLearning.pdf
 
03-07-01-ACA-Input-Post-Processing.pdf
03-07-01-ACA-Input-Post-Processing.pdf03-07-01-ACA-Input-Post-Processing.pdf
03-07-01-ACA-Input-Post-Processing.pdf
 
07-02-ACA-Tonal-Music.pdf
07-02-ACA-Tonal-Music.pdf07-02-ACA-Tonal-Music.pdf
07-02-ACA-Tonal-Music.pdf
 

Recently uploaded

Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...ScyllaDB
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentationyogeshlabana357357
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctBrainSell Technologies
 
Intro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptxIntro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptxFIDO Alliance
 
Generative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfGenerative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfalexjohnson7307
 
Oauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftOauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftshyamraj55
 
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...ScyllaDB
 
Design Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxDesign Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxFIDO Alliance
 
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...marcuskenyatta275
 
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Skynet Technologies
 
Cyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptx
Cyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptxCyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptx
Cyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptxMasterG
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfSrushith Repakula
 
ADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxFIDO Alliance
 
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...FIDO Alliance
 
Vector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxVector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxjbellis
 
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdfMuhammad Subhan
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptxFIDO Alliance
 
How to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cfHow to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cfdanishmna97
 
Event-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream ProcessingEvent-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream ProcessingScyllaDB
 

Recently uploaded (20)

Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentation
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage Intacct
 
Intro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptxIntro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptx
 
Generative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfGenerative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdf
 
Oauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftOauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoft
 
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
 
Design Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxDesign Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptx
 
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
 
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
 
Cyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptx
Cyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptxCyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptx
Cyber Insurance - RalphGilot - Embry-Riddle Aeronautical University.pptx
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdf
 
ADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptx
 
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
 
Vector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxVector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptx
 
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 
How to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cfHow to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cf
 
Event-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream ProcessingEvent-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream Processing
 

03-01-ACA-Input-Signals.pdf

  • 1. Introduction to Audio Content Analysis module 3.1: input representation — signals alexander lerch
  • 2. overview intro periodic signals random signals signal description summary introduction overview corresponding textbook section section 3.1 lecture content • deterministic & periodic signals • Fourier Series • random signals • statistical signal description • digital signals learning objectives • name basic signal categories • discuss the nature of periodic signals with respect to harmonics • give a short description of meaning and use of the Fourier Series • list common descriptors for properties of a random signal module 3.1: input representation — signals 1 / 18
  • 3. overview intro periodic signals random signals signal description summary introduction overview corresponding textbook section section 3.1 lecture content • deterministic & periodic signals • Fourier Series • random signals • statistical signal description • digital signals learning objectives • name basic signal categories • discuss the nature of periodic signals with respect to harmonics • give a short description of meaning and use of the Fourier Series • list common descriptors for properties of a random signal module 3.1: input representation — signals 1 / 18
  • 4. overview intro periodic signals random signals signal description summary audio signals signal categories deterministic signals: predictable: future shape of the signal can be known (example: sinusoidal) random signals: unpredictable: no knowledge can help to predict what is coming next (example: white noise) “real-world” audio signals can be modeled as time-variant combination of (quasi-)periodic parts (quasi-)random parts module 3.1: input representation — signals 2 / 18
  • 5. overview intro periodic signals random signals signal description summary audio signals signal categories deterministic signals: predictable: future shape of the signal can be known (example: sinusoidal) random signals: unpredictable: no knowledge can help to predict what is coming next (example: white noise) “real-world” audio signals can be modeled as time-variant combination of (quasi-)periodic parts (quasi-)random parts module 3.1: input representation — signals 2 / 18
  • 6. overview intro periodic signals random signals signal description summary audio signals signal categories deterministic signals: predictable: future shape of the signal can be known (example: sinusoidal) random signals: unpredictable: no knowledge can help to predict what is coming next (example: white noise) “real-world” audio signals can be modeled as time-variant combination of (quasi-)periodic parts (quasi-)random parts module 3.1: input representation — signals 2 / 18
  • 7. overview intro periodic signals random signals signal description summary audio signals periodic signals 1/5 periodic signals: most prominent examples of deterministic signals x(t) = x(t + T0) f0 = 1 T0 = ω0 2π module 3.1: input representation — signals 3 / 18
  • 8. overview intro periodic signals random signals signal description summary audio signals periodic signals 1/5 periodic signals: most prominent examples of deterministic signals x(t) = x(t + T0) f0 = 1 T0 = ω0 2π module 3.1: input representation — signals 3 / 18 matlab source: plotPeriodic.m
  • 9. overview intro periodic signals random signals signal description summary audio signals periodic signals 2/5 periodic signal ⇒ representation in Fourier series1 x(t) = ∞ X k=−∞ akejω0kt ω0 = 2π · f0 kω0: integer multiples of the lowest frequency ejω0kt = cos(ω0kt) + j sin(ω0kt) ak: Fourier coefficients — amplitude of each component ak = 1 T0 T0/2 Z −T0/2 x(t)e−jω0kt dt 1 Jean-Baptiste Joseph Fourier, 1768–1830 module 3.1: input representation — signals 4 / 18
  • 10. overview intro periodic signals random signals signal description summary audio signals periodic signals 2/5 periodic signal ⇒ representation in Fourier series1 x(t) = ∞ X k=−∞ akejω0kt ω0 = 2π · f0 kω0: integer multiples of the lowest frequency ejω0kt = cos(ω0kt) + j sin(ω0kt) ak: Fourier coefficients — amplitude of each component ak = 1 T0 T0/2 Z −T0/2 x(t)e−jω0kt dt 1 Jean-Baptiste Joseph Fourier, 1768–1830 module 3.1: input representation — signals 4 / 18
  • 11. overview intro periodic signals random signals signal description summary audio signals periodic signals 2/5 periodic signal ⇒ representation in Fourier series1 x(t) = ∞ X k=−∞ akejω0kt ω0 = 2π · f0 kω0: integer multiples of the lowest frequency ejω0kt = cos(ω0kt) + j sin(ω0kt) ak: Fourier coefficients — amplitude of each component ak = 1 T0 T0/2 Z −T0/2 x(t)e−jω0kt dt 1 Jean-Baptiste Joseph Fourier, 1768–1830 module 3.1: input representation — signals 4 / 18
  • 12. overview intro periodic signals random signals signal description summary audio signals periodic signals 2/5 periodic signal ⇒ representation in Fourier series1 x(t) = ∞ X k=−∞ akejω0kt ω0 = 2π · f0 kω0: integer multiples of the lowest frequency ejω0kt = cos(ω0kt) + j sin(ω0kt) ak: Fourier coefficients — amplitude of each component ak = 1 T0 T0/2 Z −T0/2 x(t)e−jω0kt dt 1 Jean-Baptiste Joseph Fourier, 1768–1830 module 3.1: input representation — signals 4 / 18
  • 13. overview intro periodic signals random signals signal description summary audio signals periodic signals 2/5 periodic signal ⇒ representation in Fourier series1 x(t) = ∞ X k=−∞ akejω0kt ω0 = 2π · f0 kω0: integer multiples of the lowest frequency ejω0kt = cos(ω0kt) + j sin(ω0kt) ak: Fourier coefficients — amplitude of each component ak = 1 T0 T0/2 Z −T0/2 x(t)e−jω0kt dt 1 Jean-Baptiste Joseph Fourier, 1768–1830 module 3.1: input representation — signals 4 / 18
  • 14. overview intro periodic signals random signals signal description summary audio signals periodic signals 3/5 Fourier series every periodic signal can be represented in a Fourier series a periodic signal contains only frequencies at integer multiples of the fundamental frequency f0 Fourier series can only be applied to periodic signals Fourier series is analytically elegant but only of limited practical use as the fundamental period has to be known module 3.1: input representation — signals 5 / 18
  • 15. overview intro periodic signals random signals signal description summary audio signals periodic signals 3/5 Fourier series every periodic signal can be represented in a Fourier series a periodic signal contains only frequencies at integer multiples of the fundamental frequency f0 Fourier series can only be applied to periodic signals Fourier series is analytically elegant but only of limited practical use as the fundamental period has to be known module 3.1: input representation — signals 5 / 18
  • 16. overview intro periodic signals random signals signal description summary audio signals periodic signals 4/5 reconstruction of periodic signals with limited number of sinusoidals: x̂(t) = K X k=−K akejω0kt module 3.1: input representation — signals 6 / 18 matlab source: plotFourierSeries.m
  • 17. overview intro periodic signals random signals signal description summary audio signals periodic signals 5/5 1 3 1 25 50 harmonics module 3.1: input representation — signals 7 / 18
  • 18. overview intro periodic signals random signals signal description summary audio signals periodic signals 5/5 1 3 1 25 50 harmonics module 3.1: input representation — signals 7 / 18 matlab source: plotAdditiveSynthesis.m
  • 19. overview intro periodic signals random signals signal description summary audio signals periodic signals 5/5 1 3 1 25 50 harmonics module 3.1: input representation — signals 7 / 18 matlab source: plotAdditiveSynthesis.m
  • 20. overview intro periodic signals random signals signal description summary audio signals periodic signals 5/5 1 3 1 25 50 harmonics module 3.1: input representation — signals 7 / 18 matlab source: plotAdditiveSynthesis.m
  • 21. overview intro periodic signals random signals signal description summary audio signals periodic signals 5/5 1 3 1 25 50 harmonics module 3.1: input representation — signals 7 / 18 matlab source: plotAdditiveSynthesis.m
  • 22. overview intro periodic signals random signals signal description summary audio signals periodic signals 5/5 1 3 1 25 50 harmonics module 3.1: input representation — signals 7 / 18 matlab source: plotAdditiveSynthesis.m
  • 23. overview intro periodic signals random signals signal description summary audio signals periodic signals 5/5 1 3 10 25 50 harmonics module 3.1: input representation — signals 7 / 18 matlab source: plotAdditiveSynthesis.m
  • 24. overview intro periodic signals random signals signal description summary audio signals periodic signals 5/5 1 3 10 25 50 harmonics module 3.1: input representation — signals 7 / 18 matlab source: plotAdditiveSynthesis.m
  • 25. overview intro periodic signals random signals signal description summary audio signals periodic signals 5/5 1 3 10 25 50 harmonics module 3.1: input representation — signals 7 / 18 matlab source: plotAdditiveSynthesis.m
  • 26. overview intro periodic signals random signals signal description summary audio signals periodic signals 5/5 1 3 10 25 50 harmonics module 3.1: input representation — signals 7 / 18 matlab source: plotAdditiveSynthesis.m
  • 27. overview intro periodic signals random signals signal description summary audio signals periodic signals 5/5 1 3 10 25 50 harmonics module 3.1: input representation — signals 7 / 18 matlab source: plotAdditiveSynthesis.m
  • 28. overview intro periodic signals random signals signal description summary audio signals random process 1/2 random process: ensemble of random series module 3.1: input representation — signals 8 / 18 matlab source: plotRandomProcess.m
  • 29. overview intro periodic signals random signals signal description summary audio signals random process 2/2 random process ensemble of random series each series represents a sample of the process the following value is indetermined, regardless of any amount of knowledge special case: stationarity statistical properties such as the mean are time invariant example: white noise module 3.1: input representation — signals 9 / 18
  • 30. overview intro periodic signals random signals signal description summary statistical signal description probability density function PDF px (x) x-axis: possible (amplitude) values y-axis: probability px (x) ≥ 0, and ∞ Z −∞ px (x) dx = 1 RFD—Relative Frequency Distribution (sample of PDF) histogram of (amplitude) values module 3.1: input representation — signals 10 / 18
  • 31. overview intro periodic signals random signals signal description summary statistical signal description probability density function PDF px (x) x-axis: possible (amplitude) values y-axis: probability px (x) ≥ 0, and ∞ Z −∞ px (x) dx = 1 RFD—Relative Frequency Distribution (sample of PDF) histogram of (amplitude) values module 3.1: input representation — signals 10 / 18
  • 32. overview intro periodic signals random signals signal description summary statistical signal description probability density function PDF px (x) x-axis: possible (amplitude) values y-axis: probability px (x) ≥ 0, and ∞ Z −∞ px (x) dx = 1 RFD—Relative Frequency Distribution (sample of PDF) histogram of (amplitude) values module 3.1: input representation — signals 10 / 18
  • 33. overview intro periodic signals random signals signal description summary statistical signal description PDF examples What is the PDF of the following prototype signals: module 3.1: input representation — signals 11 / 18
  • 34. overview intro periodic signals random signals signal description summary statistical signal description PDF examples What is the PDF of the following prototype signals: square wave sawtooth wave sine wave white noise (uniform, gaussian) DC module 3.1: input representation — signals 11 / 18
  • 35. overview intro periodic signals random signals signal description summary statistical signal description PDF examples What is the PDF of the following prototype signals: module 3.1: input representation — signals 11 / 18 matlab source: plotPdfExamples.m
  • 36. overview intro periodic signals random signals signal description summary statistical signal description RFD: real world signals module 3.1: input representation — signals 12 / 18 matlab source: plotRfd.m
  • 37. overview intro periodic signals random signals signal description summary statistical signal description arithmetic mean from time series x: µx (n) = 1 K ie(n) X i=is(n) x(i) from distribution px : µx (n) = ∞ X x=−∞ x · px (x) module 3.1: input representation — signals 13 / 18 matlab source: plotArithmeticMean.m
  • 38. overview intro periodic signals random signals signal description summary statistical signal description geometric & harmonic mean geometric mean Mgv = N v u u t N−1 Y 0 v(n) = exp 1 N N−1 X 0 log v(n) ! . harmonic mean Mhv = N N−1 P 0 1/v(n) . module 3.1: input representation — signals 14 / 18
  • 39. overview intro periodic signals random signals signal description summary statistical signal description geometric harmonic mean geometric mean Mgv = N v u u t N−1 Y 0 v(n) = exp 1 N N−1 X 0 log v(n) ! . harmonic mean Mhv = N N−1 P 0 1/v(n) . module 3.1: input representation — signals 14 / 18
  • 40. overview intro periodic signals random signals signal description summary statistical signal description variance standard deviation measure of spread of the signal around its mean variance • from signal block: σ2 x (n) = 1 K ie(n) X i=is(n) x(i) − µx (n) 2 • from distribution: σ2 x (n) = ∞ X x=−∞ x − µx 2 · px (x) standard deviation σx (n) = q σ2 x (n) module 3.1: input representation — signals 15 / 18 matlab source: plotStandardDeviation.m
  • 41. overview intro periodic signals random signals signal description summary statistical signal description variance standard deviation measure of spread of the signal around its mean variance • from signal block: σ2 x (n) = 1 K ie(n) X i=is(n) x(i) − µx (n) 2 • from distribution: σ2 x (n) = ∞ X x=−∞ x − µx 2 · px (x) standard deviation σx (n) = q σ2 x (n) module 3.1: input representation — signals 15 / 18 matlab source: plotStandardDeviation.m
  • 42. overview intro periodic signals random signals signal description summary statistical signal description variance standard deviation measure of spread of the signal around its mean variance • from signal block: σ2 x (n) = 1 K ie(n) X i=is(n) x(i) − µx (n) 2 • from distribution: σ2 x (n) = ∞ X x=−∞ x − µx 2 · px (x) standard deviation σx (n) = q σ2 x (n) module 3.1: input representation — signals 15 / 18 matlab source: plotStandardDeviation.m
  • 43. overview intro periodic signals random signals signal description summary statistical signal description quantiles quantile ranges dividing the PDF into (equal sized) subsets QX(cp) = argmin FX(x) ≤ cp with FX(x) = x Z −∞ px(y) dy module 3.1: input representation — signals 16 / 18 matlab source: plotPdfQuantiles.m
  • 44. overview intro periodic signals random signals signal description summary statistical signal description quantile examples median QX(0.5) = argmin FX(x) ≤ 0.5 quartiles: QX(0.25), QX(0.5), and QXx(0.75) quantile range, e.g. ∆QX(0.9) = QX(0.95) − QX(0.05) module 3.1: input representation — signals 17 / 18
  • 45. overview intro periodic signals random signals signal description summary summary lecture content signals can be categorized into deterministic and random signals • deterministic signal can be described in a mathematical function • random processes can only be described by their general properties periodic signals • periodic signals are probably the most music-related deterministic signal • any periodic (pitched) signal is a sum of weighted sinusoidals • frequencies only at the fundamental frequency and integer multiples random signals • noise, unpredictable real-world signals • can be seen as a time-varying mixture of these two signal categories statistical features • summarize technical signal characteristics in few numerical values • may be used on a time domain, frequency domain, or feature domain signal module 3.1: input representation — signals 18 / 18