SlideShare a Scribd company logo
1 of 37
Download to read offline
Introduction to Audio Content Analysis
module 3.3.1: time-frequency representations — Fourier transform
alexander lerch
overview introduction definition properties sampled STFT DFT summary
introduction
overview
corresponding textbook section
section 3.3.1
appendix B
lecture content
• FT of continuous signals
• FT properties
• FT of sampled signals
• Short Time FT (STFT)
• DFT
learning objectives
• name and explain definition and properties of the FT
module 3.3.1: time-frequency representations — Fourier transform 1 / 19
overview introduction definition properties sampled STFT DFT summary
introduction
overview
corresponding textbook section
section 3.3.1
appendix B
lecture content
• FT of continuous signals
• FT properties
• FT of sampled signals
• Short Time FT (STFT)
• DFT
learning objectives
• name and explain definition and properties of the FT
module 3.3.1: time-frequency representations — Fourier transform 1 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
introduction
top time domain signal magnitude spectrum in dB
bottom real spectrum imaginary spectrum
module 3.3.1: time-frequency representations — Fourier transform 2 / 19
matlab
source:
plotFourierTransform.m
overview introduction definition properties sampled STFT DFT summary
fourier transform
definition (continuous)
X(jω) = F[x(t)] =
∞
Z
−∞
x(t)e−jωt
dt
sidenote: Fourier series coefficients
ak =
1
T0
T0/2
Z
−T0/2
x(t)e−jω0kt
dt
T0 → ∞ to allow the analysis of aperiodic functions
⇒ kω0 → ω
module 3.3.1: time-frequency representations — Fourier transform 3 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
definition (continuous)
X(jω) = F[x(t)] =
∞
Z
−∞
x(t)e−jωt
dt
sidenote: Fourier series coefficients
ak =
1
T0
T0/2
Z
−T0/2
x(t)e−jω0kt
dt
T0 → ∞ to allow the analysis of aperiodic functions
⇒ kω0 → ω
module 3.3.1: time-frequency representations — Fourier transform 3 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
representations
X(jω) = ℜ[X(jω)] + ℑ[X(jω)]
= |X(jω)|
| {z }
magnitude
· ΦX(ω)
| {z }
phase
|X(jω)| =
q
ℜ[X(jω)]2 + ℑ[X(jω)]2
ΦX(ω) = atan 2

ℑ[X(jω)]
ℜ[X(jω)]

complex spectrum either represented as magnitude  phase or as real  imaginary
magnitude spectrum has no negative values
module 3.3.1: time-frequency representations — Fourier transform 4 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
representations
X(jω) = ℜ[X(jω)] + ℑ[X(jω)]
= |X(jω)|
| {z }
magnitude
· ΦX(ω)
| {z }
phase
|X(jω)| =
q
ℜ[X(jω)]2 + ℑ[X(jω)]2
ΦX(ω) = atan 2

ℑ[X(jω)]
ℜ[X(jω)]

note:
complex spectrum either represented as magnitude  phase or as real  imaginary
magnitude spectrum has no negative values
module 3.3.1: time-frequency representations — Fourier transform 4 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 1: invertibility
x(t) = F−1
[X(jω)]
=
1
2π
∞
Z
−∞
X(jω)ejωt
dω
time domain signal can be perfectly reconstructed — no information loss
FT and IFT are very similar, largely equivalent
module 3.3.1: time-frequency representations — Fourier transform 5 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 1: invertibility
x(t) = F−1
[X(jω)]
=
1
2π
∞
Z
−∞
X(jω)ejωt
dω
note:
time domain signal can be perfectly reconstructed — no information loss
FT and IFT are very similar, largely equivalent
module 3.3.1: time-frequency representations — Fourier transform 5 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 2: superposition
y(t) = c1 · x1(t) + c2 · x2(t)
7→
Y (jω) = c1 · X1(jω) + c2 · X2(jω)
FT is a linear transform
module 3.3.1: time-frequency representations — Fourier transform 6 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 2: superposition
y(t) = c1 · x1(t) + c2 · x2(t)
7→
Y (jω) = c1 · X1(jω) + c2 · X2(jω)
note:
FT is a linear transform
module 3.3.1: time-frequency representations — Fourier transform 6 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 3: convolution and multiplication
y(t) =
Z ∞
−∞
h(τ) · x(t − τ) dτ
7→
Y (jω) = H(jω) · X(jω)
convolution in time domain means multiplication in frequency domain
convolution in frequency domain means multiplication in time domain
module 3.3.1: time-frequency representations — Fourier transform 7 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 3: convolution and multiplication
y(t) =
Z ∞
−∞
h(τ) · x(t − τ) dτ
7→
Y (jω) = H(jω) · X(jω)
note:
convolution in time domain means multiplication in frequency domain
convolution in frequency domain means multiplication in time domain
module 3.3.1: time-frequency representations — Fourier transform 7 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 4: Parseval’s theorem
∞
Z
−∞
x2
(t) dt =
1
2π
∞
Z
−∞
|X(jω)|2
dω
energy of the signal is preserved when switching between time and frequency
domains
module 3.3.1: time-frequency representations — Fourier transform 8 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 4: Parseval’s theorem
∞
Z
−∞
x2
(t) dt =
1
2π
∞
Z
−∞
|X(jω)|2
dω
note:
energy of the signal is preserved when switching between time and frequency
domains
module 3.3.1: time-frequency representations — Fourier transform 8 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 5: time  frequency shift
time shift
x(t − t0) 7→ X(jω)e−jωt0
frequency shift
1
2π
∞
Z
−∞
X(jω − ω0)ejωt
dω = ejω0t
· x(t)
time shift results in phase shift
frequency shift results in modulation of time signal
module 3.3.1: time-frequency representations — Fourier transform 9 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 5: time  frequency shift
time shift
x(t − t0) 7→ X(jω)e−jωt0
frequency shift
1
2π
∞
Z
−∞
X(jω − ω0)ejωt
dω = ejω0t
· x(t)
note:
time shift results in phase shift
frequency shift results in modulation of time signal
module 3.3.1: time-frequency representations — Fourier transform 9 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 6: symmetry
|X(jω)| = |X(−jω)|
ΦX(ω) = −ΦX(−ω)
spectrum of (real) signal is conjugate complex
• magnitude spectrum is symmetric to ordinate
• phase spectrum is symmetric to origin
even signals have no imaginary spectrum
odd signals have no real spectrum
module 3.3.1: time-frequency representations — Fourier transform 10 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 6: symmetry
|X(jω)| = |X(−jω)|
ΦX(ω) = −ΦX(−ω)
note:
spectrum of (real) signal is conjugate complex
• magnitude spectrum is symmetric to ordinate
• phase spectrum is symmetric to origin
even signals have no imaginary spectrum
odd signals have no real spectrum
module 3.3.1: time-frequency representations — Fourier transform 10 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 7: time  frequency scaling
y(t) = x(c · t)
7→
Y (jω) =
1
|c|
X

j
ω
c

scaling of abscissa in one domain leads to inverse scaling in the other domain
module 3.3.1: time-frequency representations — Fourier transform 11 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
property 7: time  frequency scaling
y(t) = x(c · t)
7→
Y (jω) =
1
|c|
X

j
ω
c

note:
scaling of abscissa in one domain leads to inverse scaling in the other domain
module 3.3.1: time-frequency representations — Fourier transform 11 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
sampled time signals 1/2
sampled time signal can be modeled as multiplication of original signal with delta
pulse δT(t)
multiplication in time domain 7→ convolution in frequency domain
F[x(i)] = F[x(t) · δT(t)]
= F[x(t)] ∗ F[δT(t)]
= X(jω) ∗ ∆T(jω)
note
even if time domain signal is discrete, its Fourier transform is still continuous
spectrum is repeated periodically
module 3.3.1: time-frequency representations — Fourier transform 12 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
sampled time signals 1/2
sampled time signal can be modeled as multiplication of original signal with delta
pulse δT(t)
multiplication in time domain 7→ convolution in frequency domain
F[x(i)] = F[x(t) · δT(t)]
= F[x(t)] ∗ F[δT(t)]
= X(jω) ∗ ∆T(jω)
note
even if time domain signal is discrete, its Fourier transform is still continuous
spectrum is repeated periodically
module 3.3.1: time-frequency representations — Fourier transform 12 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
sampled time signals 1/2
sampled time signal can be modeled as multiplication of original signal with delta
pulse δT(t)
multiplication in time domain 7→ convolution in frequency domain
F[x(i)] = F[x(t) · δT(t)]
= F[x(t)] ∗ F[δT(t)]
= X(jω) ∗ ∆T(jω)
note
even if time domain signal is discrete, its Fourier transform is still continuous
spectrum is repeated periodically
module 3.3.1: time-frequency representations — Fourier transform 12 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
sampled time signals 2/2
module 3.3.1: time-frequency representations — Fourier transform 13 / 19
matlab
source:
matlab/animateSampling.m
overview introduction definition properties sampled STFT DFT summary
fourier transform
STFT 1/2
short time Fourier transform (STFT):
Fourier transform of a short time segment
reasons:
• remember block based processing
• segment can be seen as quasi-periodic or stationary
implementation:
• pretend signal is 0 outside of the segment
⇒ multiplication of signal and window function
module 3.3.1: time-frequency representations — Fourier transform 14 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
STFT 1/2
short time Fourier transform (STFT):
Fourier transform of a short time segment
reasons:
• remember block based processing
• segment can be seen as quasi-periodic or stationary
implementation:
• pretend signal is 0 outside of the segment
⇒ multiplication of signal and window function
module 3.3.1: time-frequency representations — Fourier transform 14 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
STFT 1/2
short time Fourier transform (STFT):
Fourier transform of a short time segment
reasons:
• remember block based processing
• segment can be seen as quasi-periodic or stationary
implementation:
• pretend signal is 0 outside of the segment
⇒ multiplication of signal and window function
module 3.3.1: time-frequency representations — Fourier transform 14 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
STFT 2/2
module 3.3.1: time-frequency representations — Fourier transform 15 / 19
matlab
source:
matlab/animateStft.m
overview introduction definition properties sampled STFT DFT summary
fourier transform
STFT: window functions
time domain multiplication 7→ frequency domain convolution
time domain shape determines frequency domain shape of the window
module 3.3.1: time-frequency representations — Fourier transform 16 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
STFT: window functions
time domain multiplication 7→ frequency domain convolution
time domain shape determines frequency domain shape of the window
module 3.3.1: time-frequency representations — Fourier transform 16 / 19
matlab
source:
plotSpectralWindows.m
overview introduction definition properties sampled STFT DFT summary
fourier transform
STFT: window functions
time domain multiplication 7→ frequency domain convolution
time domain shape determines frequency domain shape of the window
spectral leakage characterization
main lobe width
side lobe height
side lobe attenuation
module 3.3.1: time-frequency representations — Fourier transform 16 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
DFT
digital domain: requires discrete frequency values:
⇒ discrete Fourier transform
X(k) =
K−1
X
i=0
x(i)e−jki 2π
K
with
∆Ω =
2π
KTS
=
2πfS
K
2 interpretations:
sampled continuous Fourier transform
continuous Fourier transform of periodically extended time domain segment
module 3.3.1: time-frequency representations — Fourier transform 17 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
DFT
digital domain: requires discrete frequency values:
⇒ discrete Fourier transform
X(k) =
K−1
X
i=0
x(i)e−jki 2π
K
with
∆Ω =
2π
KTS
=
2πfS
K
2 interpretations:
sampled continuous Fourier transform
continuous Fourier transform of periodically extended time domain segment
module 3.3.1: time-frequency representations — Fourier transform 17 / 19
overview introduction definition properties sampled STFT DFT summary
fourier transform
spectrogram
spectrogram allows to visualize temporal changes in the spectrum
displays the magnitude spectrum only
module 3.3.1: time-frequency representations — Fourier transform 18 / 19
matlab
source:
plotSpecgram.m
overview introduction definition properties sampled STFT DFT summary
summary
lecture content
Fourier Transform (of a real signal)
• is conjugate complex
• often represented as magnitude + phase
• invertible
• linear
• convolution in time domain is multiplication in frequency domain
• energy preserving
• time shift result in phase shift, frequency shift results in amplitude modulation
• symmetric
• time scaling result in inverse frequency scaling
FT of sampled signals:
• is periodic with sample rate
STFT
• window results in spectral leakage (convolution in freq domain)
DFT
• discrete in both time and freq domain
module 3.3.1: time-frequency representations — Fourier transform 19 / 19

More Related Content

Similar to 03-03-01-ACA-Input-TF-Fourier.pdf

Master Thesis on Rotating Cryostats and FFT, DRAFT VERSION
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSIONMaster Thesis on Rotating Cryostats and FFT, DRAFT VERSION
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSIONKaarle Kulvik
 
Seismic presentation for Dip correction for convolution modelling
Seismic presentation for Dip correction for convolution modellingSeismic presentation for Dip correction for convolution modelling
Seismic presentation for Dip correction for convolution modellingHarshal Pende
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier propertiesskysunilyadav
 
Optics Fourier Transform Ii
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Iidiarmseven
 
Analog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdfAnalog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdfShreyaLathiya
 
Properties of fourier transform
Properties of fourier transformProperties of fourier transform
Properties of fourier transformNisarg Amin
 
DISP-2003_L01B_20Feb03.ppt
DISP-2003_L01B_20Feb03.pptDISP-2003_L01B_20Feb03.ppt
DISP-2003_L01B_20Feb03.pptgopal556359
 
Ch5 angle modulation pg 97
Ch5 angle modulation pg 97Ch5 angle modulation pg 97
Ch5 angle modulation pg 97Prateek Omer
 
Fourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of TelecomFourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of TelecomAmirKhan877722
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systemsbabak danyal
 
Math cad fourier analysis (jcb-edited)
Math cad   fourier analysis (jcb-edited)Math cad   fourier analysis (jcb-edited)
Math cad fourier analysis (jcb-edited)Julio Banks
 
communication system Chapter 3
communication system Chapter 3communication system Chapter 3
communication system Chapter 3moeen khan afridi
 
1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processingSolo Hermelin
 

Similar to 03-03-01-ACA-Input-TF-Fourier.pdf (20)

Master Thesis on Rotating Cryostats and FFT, DRAFT VERSION
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSIONMaster Thesis on Rotating Cryostats and FFT, DRAFT VERSION
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSION
 
Seismic presentation for Dip correction for convolution modelling
Seismic presentation for Dip correction for convolution modellingSeismic presentation for Dip correction for convolution modelling
Seismic presentation for Dip correction for convolution modelling
 
lec-4.ppt
lec-4.pptlec-4.ppt
lec-4.ppt
 
lec-4.ppt
lec-4.pptlec-4.ppt
lec-4.ppt
 
lec-4.ppt
lec-4.pptlec-4.ppt
lec-4.ppt
 
Fourier image
Fourier imageFourier image
Fourier image
 
Unit 8
Unit 8Unit 8
Unit 8
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier properties
 
Optics Fourier Transform Ii
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Ii
 
Analog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdfAnalog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdf
 
Properties of fourier transform
Properties of fourier transformProperties of fourier transform
Properties of fourier transform
 
DISP-2003_L01B_20Feb03.ppt
DISP-2003_L01B_20Feb03.pptDISP-2003_L01B_20Feb03.ppt
DISP-2003_L01B_20Feb03.ppt
 
Lect7-Fourier-Transform.pdf
Lect7-Fourier-Transform.pdfLect7-Fourier-Transform.pdf
Lect7-Fourier-Transform.pdf
 
Ch5 angle modulation pg 97
Ch5 angle modulation pg 97Ch5 angle modulation pg 97
Ch5 angle modulation pg 97
 
Fourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of TelecomFourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of Telecom
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systems
 
Signal Processing Assignment Help
Signal Processing Assignment HelpSignal Processing Assignment Help
Signal Processing Assignment Help
 
Math cad fourier analysis (jcb-edited)
Math cad   fourier analysis (jcb-edited)Math cad   fourier analysis (jcb-edited)
Math cad fourier analysis (jcb-edited)
 
communication system Chapter 3
communication system Chapter 3communication system Chapter 3
communication system Chapter 3
 
1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processing
 

More from AlexanderLerch4

0A-02-ACA-Fundamentals-Convolution.pdf
0A-02-ACA-Fundamentals-Convolution.pdf0A-02-ACA-Fundamentals-Convolution.pdf
0A-02-ACA-Fundamentals-Convolution.pdfAlexanderLerch4
 
09-03-ACA-Temporal-Onsets.pdf
09-03-ACA-Temporal-Onsets.pdf09-03-ACA-Temporal-Onsets.pdf
09-03-ACA-Temporal-Onsets.pdfAlexanderLerch4
 
09-07-ACA-Temporal-Structure.pdf
09-07-ACA-Temporal-Structure.pdf09-07-ACA-Temporal-Structure.pdf
09-07-ACA-Temporal-Structure.pdfAlexanderLerch4
 
09-01-ACA-Temporal-Intro.pdf
09-01-ACA-Temporal-Intro.pdf09-01-ACA-Temporal-Intro.pdf
09-01-ACA-Temporal-Intro.pdfAlexanderLerch4
 
07-06-ACA-Tonal-Chord.pdf
07-06-ACA-Tonal-Chord.pdf07-06-ACA-Tonal-Chord.pdf
07-06-ACA-Tonal-Chord.pdfAlexanderLerch4
 
15-00-ACA-Music-Performance-Analysis.pdf
15-00-ACA-Music-Performance-Analysis.pdf15-00-ACA-Music-Performance-Analysis.pdf
15-00-ACA-Music-Performance-Analysis.pdfAlexanderLerch4
 
12-01-ACA-Similarity.pdf
12-01-ACA-Similarity.pdf12-01-ACA-Similarity.pdf
12-01-ACA-Similarity.pdfAlexanderLerch4
 
09-04-ACA-Temporal-BeatHisto.pdf
09-04-ACA-Temporal-BeatHisto.pdf09-04-ACA-Temporal-BeatHisto.pdf
09-04-ACA-Temporal-BeatHisto.pdfAlexanderLerch4
 
09-05-ACA-Temporal-Tempo.pdf
09-05-ACA-Temporal-Tempo.pdf09-05-ACA-Temporal-Tempo.pdf
09-05-ACA-Temporal-Tempo.pdfAlexanderLerch4
 
11-00-ACA-Fingerprinting.pdf
11-00-ACA-Fingerprinting.pdf11-00-ACA-Fingerprinting.pdf
11-00-ACA-Fingerprinting.pdfAlexanderLerch4
 
03-05-ACA-Input-Features.pdf
03-05-ACA-Input-Features.pdf03-05-ACA-Input-Features.pdf
03-05-ACA-Input-Features.pdfAlexanderLerch4
 
07-03-03-ACA-Tonal-Monof0.pdf
07-03-03-ACA-Tonal-Monof0.pdf07-03-03-ACA-Tonal-Monof0.pdf
07-03-03-ACA-Tonal-Monof0.pdfAlexanderLerch4
 
05-00-ACA-Data-Intro.pdf
05-00-ACA-Data-Intro.pdf05-00-ACA-Data-Intro.pdf
05-00-ACA-Data-Intro.pdfAlexanderLerch4
 
07-03-05-ACA-Tonal-F0Eval.pdf
07-03-05-ACA-Tonal-F0Eval.pdf07-03-05-ACA-Tonal-F0Eval.pdf
07-03-05-ACA-Tonal-F0Eval.pdfAlexanderLerch4
 
03-06-ACA-Input-FeatureLearning.pdf
03-06-ACA-Input-FeatureLearning.pdf03-06-ACA-Input-FeatureLearning.pdf
03-06-ACA-Input-FeatureLearning.pdfAlexanderLerch4
 
07-03-04-ACA-Tonal-Polyf0.pdf
07-03-04-ACA-Tonal-Polyf0.pdf07-03-04-ACA-Tonal-Polyf0.pdf
07-03-04-ACA-Tonal-Polyf0.pdfAlexanderLerch4
 

More from AlexanderLerch4 (20)

0A-02-ACA-Fundamentals-Convolution.pdf
0A-02-ACA-Fundamentals-Convolution.pdf0A-02-ACA-Fundamentals-Convolution.pdf
0A-02-ACA-Fundamentals-Convolution.pdf
 
12-02-ACA-Genre.pdf
12-02-ACA-Genre.pdf12-02-ACA-Genre.pdf
12-02-ACA-Genre.pdf
 
10-02-ACA-Alignment.pdf
10-02-ACA-Alignment.pdf10-02-ACA-Alignment.pdf
10-02-ACA-Alignment.pdf
 
09-03-ACA-Temporal-Onsets.pdf
09-03-ACA-Temporal-Onsets.pdf09-03-ACA-Temporal-Onsets.pdf
09-03-ACA-Temporal-Onsets.pdf
 
13-00-ACA-Mood.pdf
13-00-ACA-Mood.pdf13-00-ACA-Mood.pdf
13-00-ACA-Mood.pdf
 
09-07-ACA-Temporal-Structure.pdf
09-07-ACA-Temporal-Structure.pdf09-07-ACA-Temporal-Structure.pdf
09-07-ACA-Temporal-Structure.pdf
 
09-01-ACA-Temporal-Intro.pdf
09-01-ACA-Temporal-Intro.pdf09-01-ACA-Temporal-Intro.pdf
09-01-ACA-Temporal-Intro.pdf
 
07-06-ACA-Tonal-Chord.pdf
07-06-ACA-Tonal-Chord.pdf07-06-ACA-Tonal-Chord.pdf
07-06-ACA-Tonal-Chord.pdf
 
15-00-ACA-Music-Performance-Analysis.pdf
15-00-ACA-Music-Performance-Analysis.pdf15-00-ACA-Music-Performance-Analysis.pdf
15-00-ACA-Music-Performance-Analysis.pdf
 
12-01-ACA-Similarity.pdf
12-01-ACA-Similarity.pdf12-01-ACA-Similarity.pdf
12-01-ACA-Similarity.pdf
 
09-04-ACA-Temporal-BeatHisto.pdf
09-04-ACA-Temporal-BeatHisto.pdf09-04-ACA-Temporal-BeatHisto.pdf
09-04-ACA-Temporal-BeatHisto.pdf
 
09-05-ACA-Temporal-Tempo.pdf
09-05-ACA-Temporal-Tempo.pdf09-05-ACA-Temporal-Tempo.pdf
09-05-ACA-Temporal-Tempo.pdf
 
11-00-ACA-Fingerprinting.pdf
11-00-ACA-Fingerprinting.pdf11-00-ACA-Fingerprinting.pdf
11-00-ACA-Fingerprinting.pdf
 
08-00-ACA-Intensity.pdf
08-00-ACA-Intensity.pdf08-00-ACA-Intensity.pdf
08-00-ACA-Intensity.pdf
 
03-05-ACA-Input-Features.pdf
03-05-ACA-Input-Features.pdf03-05-ACA-Input-Features.pdf
03-05-ACA-Input-Features.pdf
 
07-03-03-ACA-Tonal-Monof0.pdf
07-03-03-ACA-Tonal-Monof0.pdf07-03-03-ACA-Tonal-Monof0.pdf
07-03-03-ACA-Tonal-Monof0.pdf
 
05-00-ACA-Data-Intro.pdf
05-00-ACA-Data-Intro.pdf05-00-ACA-Data-Intro.pdf
05-00-ACA-Data-Intro.pdf
 
07-03-05-ACA-Tonal-F0Eval.pdf
07-03-05-ACA-Tonal-F0Eval.pdf07-03-05-ACA-Tonal-F0Eval.pdf
07-03-05-ACA-Tonal-F0Eval.pdf
 
03-06-ACA-Input-FeatureLearning.pdf
03-06-ACA-Input-FeatureLearning.pdf03-06-ACA-Input-FeatureLearning.pdf
03-06-ACA-Input-FeatureLearning.pdf
 
07-03-04-ACA-Tonal-Polyf0.pdf
07-03-04-ACA-Tonal-Polyf0.pdf07-03-04-ACA-Tonal-Polyf0.pdf
07-03-04-ACA-Tonal-Polyf0.pdf
 

Recently uploaded

Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 

Recently uploaded (20)

Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 

03-03-01-ACA-Input-TF-Fourier.pdf

  • 1. Introduction to Audio Content Analysis module 3.3.1: time-frequency representations — Fourier transform alexander lerch
  • 2. overview introduction definition properties sampled STFT DFT summary introduction overview corresponding textbook section section 3.3.1 appendix B lecture content • FT of continuous signals • FT properties • FT of sampled signals • Short Time FT (STFT) • DFT learning objectives • name and explain definition and properties of the FT module 3.3.1: time-frequency representations — Fourier transform 1 / 19
  • 3. overview introduction definition properties sampled STFT DFT summary introduction overview corresponding textbook section section 3.3.1 appendix B lecture content • FT of continuous signals • FT properties • FT of sampled signals • Short Time FT (STFT) • DFT learning objectives • name and explain definition and properties of the FT module 3.3.1: time-frequency representations — Fourier transform 1 / 19
  • 4. overview introduction definition properties sampled STFT DFT summary fourier transform introduction top time domain signal magnitude spectrum in dB bottom real spectrum imaginary spectrum module 3.3.1: time-frequency representations — Fourier transform 2 / 19 matlab source: plotFourierTransform.m
  • 5. overview introduction definition properties sampled STFT DFT summary fourier transform definition (continuous) X(jω) = F[x(t)] = ∞ Z −∞ x(t)e−jωt dt sidenote: Fourier series coefficients ak = 1 T0 T0/2 Z −T0/2 x(t)e−jω0kt dt T0 → ∞ to allow the analysis of aperiodic functions ⇒ kω0 → ω module 3.3.1: time-frequency representations — Fourier transform 3 / 19
  • 6. overview introduction definition properties sampled STFT DFT summary fourier transform definition (continuous) X(jω) = F[x(t)] = ∞ Z −∞ x(t)e−jωt dt sidenote: Fourier series coefficients ak = 1 T0 T0/2 Z −T0/2 x(t)e−jω0kt dt T0 → ∞ to allow the analysis of aperiodic functions ⇒ kω0 → ω module 3.3.1: time-frequency representations — Fourier transform 3 / 19
  • 7. overview introduction definition properties sampled STFT DFT summary fourier transform representations X(jω) = ℜ[X(jω)] + ℑ[X(jω)] = |X(jω)| | {z } magnitude · ΦX(ω) | {z } phase |X(jω)| = q ℜ[X(jω)]2 + ℑ[X(jω)]2 ΦX(ω) = atan 2 ℑ[X(jω)] ℜ[X(jω)] complex spectrum either represented as magnitude phase or as real imaginary magnitude spectrum has no negative values module 3.3.1: time-frequency representations — Fourier transform 4 / 19
  • 8. overview introduction definition properties sampled STFT DFT summary fourier transform representations X(jω) = ℜ[X(jω)] + ℑ[X(jω)] = |X(jω)| | {z } magnitude · ΦX(ω) | {z } phase |X(jω)| = q ℜ[X(jω)]2 + ℑ[X(jω)]2 ΦX(ω) = atan 2 ℑ[X(jω)] ℜ[X(jω)] note: complex spectrum either represented as magnitude phase or as real imaginary magnitude spectrum has no negative values module 3.3.1: time-frequency representations — Fourier transform 4 / 19
  • 9. overview introduction definition properties sampled STFT DFT summary fourier transform property 1: invertibility x(t) = F−1 [X(jω)] = 1 2π ∞ Z −∞ X(jω)ejωt dω time domain signal can be perfectly reconstructed — no information loss FT and IFT are very similar, largely equivalent module 3.3.1: time-frequency representations — Fourier transform 5 / 19
  • 10. overview introduction definition properties sampled STFT DFT summary fourier transform property 1: invertibility x(t) = F−1 [X(jω)] = 1 2π ∞ Z −∞ X(jω)ejωt dω note: time domain signal can be perfectly reconstructed — no information loss FT and IFT are very similar, largely equivalent module 3.3.1: time-frequency representations — Fourier transform 5 / 19
  • 11. overview introduction definition properties sampled STFT DFT summary fourier transform property 2: superposition y(t) = c1 · x1(t) + c2 · x2(t) 7→ Y (jω) = c1 · X1(jω) + c2 · X2(jω) FT is a linear transform module 3.3.1: time-frequency representations — Fourier transform 6 / 19
  • 12. overview introduction definition properties sampled STFT DFT summary fourier transform property 2: superposition y(t) = c1 · x1(t) + c2 · x2(t) 7→ Y (jω) = c1 · X1(jω) + c2 · X2(jω) note: FT is a linear transform module 3.3.1: time-frequency representations — Fourier transform 6 / 19
  • 13. overview introduction definition properties sampled STFT DFT summary fourier transform property 3: convolution and multiplication y(t) = Z ∞ −∞ h(τ) · x(t − τ) dτ 7→ Y (jω) = H(jω) · X(jω) convolution in time domain means multiplication in frequency domain convolution in frequency domain means multiplication in time domain module 3.3.1: time-frequency representations — Fourier transform 7 / 19
  • 14. overview introduction definition properties sampled STFT DFT summary fourier transform property 3: convolution and multiplication y(t) = Z ∞ −∞ h(τ) · x(t − τ) dτ 7→ Y (jω) = H(jω) · X(jω) note: convolution in time domain means multiplication in frequency domain convolution in frequency domain means multiplication in time domain module 3.3.1: time-frequency representations — Fourier transform 7 / 19
  • 15. overview introduction definition properties sampled STFT DFT summary fourier transform property 4: Parseval’s theorem ∞ Z −∞ x2 (t) dt = 1 2π ∞ Z −∞ |X(jω)|2 dω energy of the signal is preserved when switching between time and frequency domains module 3.3.1: time-frequency representations — Fourier transform 8 / 19
  • 16. overview introduction definition properties sampled STFT DFT summary fourier transform property 4: Parseval’s theorem ∞ Z −∞ x2 (t) dt = 1 2π ∞ Z −∞ |X(jω)|2 dω note: energy of the signal is preserved when switching between time and frequency domains module 3.3.1: time-frequency representations — Fourier transform 8 / 19
  • 17. overview introduction definition properties sampled STFT DFT summary fourier transform property 5: time frequency shift time shift x(t − t0) 7→ X(jω)e−jωt0 frequency shift 1 2π ∞ Z −∞ X(jω − ω0)ejωt dω = ejω0t · x(t) time shift results in phase shift frequency shift results in modulation of time signal module 3.3.1: time-frequency representations — Fourier transform 9 / 19
  • 18. overview introduction definition properties sampled STFT DFT summary fourier transform property 5: time frequency shift time shift x(t − t0) 7→ X(jω)e−jωt0 frequency shift 1 2π ∞ Z −∞ X(jω − ω0)ejωt dω = ejω0t · x(t) note: time shift results in phase shift frequency shift results in modulation of time signal module 3.3.1: time-frequency representations — Fourier transform 9 / 19
  • 19. overview introduction definition properties sampled STFT DFT summary fourier transform property 6: symmetry |X(jω)| = |X(−jω)| ΦX(ω) = −ΦX(−ω) spectrum of (real) signal is conjugate complex • magnitude spectrum is symmetric to ordinate • phase spectrum is symmetric to origin even signals have no imaginary spectrum odd signals have no real spectrum module 3.3.1: time-frequency representations — Fourier transform 10 / 19
  • 20. overview introduction definition properties sampled STFT DFT summary fourier transform property 6: symmetry |X(jω)| = |X(−jω)| ΦX(ω) = −ΦX(−ω) note: spectrum of (real) signal is conjugate complex • magnitude spectrum is symmetric to ordinate • phase spectrum is symmetric to origin even signals have no imaginary spectrum odd signals have no real spectrum module 3.3.1: time-frequency representations — Fourier transform 10 / 19
  • 21. overview introduction definition properties sampled STFT DFT summary fourier transform property 7: time frequency scaling y(t) = x(c · t) 7→ Y (jω) = 1 |c| X j ω c scaling of abscissa in one domain leads to inverse scaling in the other domain module 3.3.1: time-frequency representations — Fourier transform 11 / 19
  • 22. overview introduction definition properties sampled STFT DFT summary fourier transform property 7: time frequency scaling y(t) = x(c · t) 7→ Y (jω) = 1 |c| X j ω c note: scaling of abscissa in one domain leads to inverse scaling in the other domain module 3.3.1: time-frequency representations — Fourier transform 11 / 19
  • 23. overview introduction definition properties sampled STFT DFT summary fourier transform sampled time signals 1/2 sampled time signal can be modeled as multiplication of original signal with delta pulse δT(t) multiplication in time domain 7→ convolution in frequency domain F[x(i)] = F[x(t) · δT(t)] = F[x(t)] ∗ F[δT(t)] = X(jω) ∗ ∆T(jω) note even if time domain signal is discrete, its Fourier transform is still continuous spectrum is repeated periodically module 3.3.1: time-frequency representations — Fourier transform 12 / 19
  • 24. overview introduction definition properties sampled STFT DFT summary fourier transform sampled time signals 1/2 sampled time signal can be modeled as multiplication of original signal with delta pulse δT(t) multiplication in time domain 7→ convolution in frequency domain F[x(i)] = F[x(t) · δT(t)] = F[x(t)] ∗ F[δT(t)] = X(jω) ∗ ∆T(jω) note even if time domain signal is discrete, its Fourier transform is still continuous spectrum is repeated periodically module 3.3.1: time-frequency representations — Fourier transform 12 / 19
  • 25. overview introduction definition properties sampled STFT DFT summary fourier transform sampled time signals 1/2 sampled time signal can be modeled as multiplication of original signal with delta pulse δT(t) multiplication in time domain 7→ convolution in frequency domain F[x(i)] = F[x(t) · δT(t)] = F[x(t)] ∗ F[δT(t)] = X(jω) ∗ ∆T(jω) note even if time domain signal is discrete, its Fourier transform is still continuous spectrum is repeated periodically module 3.3.1: time-frequency representations — Fourier transform 12 / 19
  • 26. overview introduction definition properties sampled STFT DFT summary fourier transform sampled time signals 2/2 module 3.3.1: time-frequency representations — Fourier transform 13 / 19 matlab source: matlab/animateSampling.m
  • 27. overview introduction definition properties sampled STFT DFT summary fourier transform STFT 1/2 short time Fourier transform (STFT): Fourier transform of a short time segment reasons: • remember block based processing • segment can be seen as quasi-periodic or stationary implementation: • pretend signal is 0 outside of the segment ⇒ multiplication of signal and window function module 3.3.1: time-frequency representations — Fourier transform 14 / 19
  • 28. overview introduction definition properties sampled STFT DFT summary fourier transform STFT 1/2 short time Fourier transform (STFT): Fourier transform of a short time segment reasons: • remember block based processing • segment can be seen as quasi-periodic or stationary implementation: • pretend signal is 0 outside of the segment ⇒ multiplication of signal and window function module 3.3.1: time-frequency representations — Fourier transform 14 / 19
  • 29. overview introduction definition properties sampled STFT DFT summary fourier transform STFT 1/2 short time Fourier transform (STFT): Fourier transform of a short time segment reasons: • remember block based processing • segment can be seen as quasi-periodic or stationary implementation: • pretend signal is 0 outside of the segment ⇒ multiplication of signal and window function module 3.3.1: time-frequency representations — Fourier transform 14 / 19
  • 30. overview introduction definition properties sampled STFT DFT summary fourier transform STFT 2/2 module 3.3.1: time-frequency representations — Fourier transform 15 / 19 matlab source: matlab/animateStft.m
  • 31. overview introduction definition properties sampled STFT DFT summary fourier transform STFT: window functions time domain multiplication 7→ frequency domain convolution time domain shape determines frequency domain shape of the window module 3.3.1: time-frequency representations — Fourier transform 16 / 19
  • 32. overview introduction definition properties sampled STFT DFT summary fourier transform STFT: window functions time domain multiplication 7→ frequency domain convolution time domain shape determines frequency domain shape of the window module 3.3.1: time-frequency representations — Fourier transform 16 / 19 matlab source: plotSpectralWindows.m
  • 33. overview introduction definition properties sampled STFT DFT summary fourier transform STFT: window functions time domain multiplication 7→ frequency domain convolution time domain shape determines frequency domain shape of the window spectral leakage characterization main lobe width side lobe height side lobe attenuation module 3.3.1: time-frequency representations — Fourier transform 16 / 19
  • 34. overview introduction definition properties sampled STFT DFT summary fourier transform DFT digital domain: requires discrete frequency values: ⇒ discrete Fourier transform X(k) = K−1 X i=0 x(i)e−jki 2π K with ∆Ω = 2π KTS = 2πfS K 2 interpretations: sampled continuous Fourier transform continuous Fourier transform of periodically extended time domain segment module 3.3.1: time-frequency representations — Fourier transform 17 / 19
  • 35. overview introduction definition properties sampled STFT DFT summary fourier transform DFT digital domain: requires discrete frequency values: ⇒ discrete Fourier transform X(k) = K−1 X i=0 x(i)e−jki 2π K with ∆Ω = 2π KTS = 2πfS K 2 interpretations: sampled continuous Fourier transform continuous Fourier transform of periodically extended time domain segment module 3.3.1: time-frequency representations — Fourier transform 17 / 19
  • 36. overview introduction definition properties sampled STFT DFT summary fourier transform spectrogram spectrogram allows to visualize temporal changes in the spectrum displays the magnitude spectrum only module 3.3.1: time-frequency representations — Fourier transform 18 / 19 matlab source: plotSpecgram.m
  • 37. overview introduction definition properties sampled STFT DFT summary summary lecture content Fourier Transform (of a real signal) • is conjugate complex • often represented as magnitude + phase • invertible • linear • convolution in time domain is multiplication in frequency domain • energy preserving • time shift result in phase shift, frequency shift results in amplitude modulation • symmetric • time scaling result in inverse frequency scaling FT of sampled signals: • is periodic with sample rate STFT • window results in spectral leakage (convolution in freq domain) DFT • discrete in both time and freq domain module 3.3.1: time-frequency representations — Fourier transform 19 / 19