SlideShare a Scribd company logo
1 of 12
Download to read offline
energies
Article
Induction Motors Condition Monitoring System with
Fault Diagnosis Using a Hybrid Approach
Hong-Chan Chang *, Yu-Ming Jheng, Cheng-Chien Kuo and Yu-Min Hsueh
Department of Electrical Engineering, National Taiwan University of Science and Technology No.43,
Keelung Rd., Sec.4, Da’an Dist, Taipei 10607, Taiwan; 100m05001@stud.sju.edu.tw (Y.-M.J.);
cckuo@mail.ntust.edu.tw (C.-C.K.); D10307009@mail.ntust.edu.tw (Y.-M.H.)
* Correspondence: hcchang@mail.ntust.edu.tw; Tel.: +886-2737-6677
Received: 17 March 2019; Accepted: 9 April 2019; Published: 18 April 2019


Abstract: This study develops a condition monitoring system, which includes operating condition
monitoring (OCM) and fault diagnosis analysis (FDA). The OCM uses a vibration detection
approach based on the ISO 10816-1 and NEMA MG-1 international standards, and the FDA uses
a vibration-electrical hybrid approach based on various indices. The system can acquire real-time
vibration and electrical signals. Once an abnormal vibration has been detected by using OCM, the FDA
is applied to classify the type of faults. Laboratory results indicate that the OCM can successfully
diagnose induction motors healthy condition, and FDA can classify the various damages stator fault,
rotor fault, bearing fault and eccentric fault. The FDA with the hybrid approach is more reliable than
the traditional approach using electrical detection alone. The proposed condition monitoring system
can provide simple and clear maintenance information to improve the reliability of motor operations.
Keywords: operating condition monitoring; fault diagnosis analysis; hybrid approach
1. Introduction
Taking a large power plant in Taiwan as an example, each of its large thermal generator sets relies
on an auxiliary system with numerous high-voltage motors for operation. The elements of the auxiliary
system for the generator sets—which includes fans, coal pulverizers, gearboxes, fluid couplings,
and conveyor belts—are all driven by high-voltage motors, and these motors often require operation
under specialized conditions. Any breakdown in the auxiliary system not only affects the power
quality and reliability of the entire power system, but it can also result in enormous economic losses.
Thus, the importance of condition monitoring and fault diagnosis of induction motors in auxiliary
systems cannot be underestimated.
Various damage types were found, such as interturn short-circuit [1], broken rotor bar [2],
bearing inner ring failure, bearing outer ring failure, ball failure, cage failure [3], and eccentricity [4].
As for fault diagnosis of an induction motor, the literature has also indicated that approximately
30% of motor breakdowns are related to stators, 10% to rotors, 40% to bearings, and 20% to other
components [5].
A great deal of research proposes how to classify the damage types, such as stator breakdowns,
and have employed various approaches [6–12], including magnetic pendulous oscillation, motor current
signature analysis, instantaneous active and reactive power signature analyses, and total harmonic
voltage. Studies on rotor breakdowns [13–16] have used mathematical morphology and wavelet
analysis. Bearing breakdowns have been investigated using the root-multiple signal classification
method and neural networks [17,18]. As for breakdowns in other components, recent studies focused
on the relatively more common eccentricity problems, which were examined in References [19–22].
Energies 2019, 12, 1471; doi:10.3390/en12081471 www.mdpi.com/journal/energies
Energies 2019, 12, 1471 2 of 12
Recently, a motor diagnosis manner was generally used in industries, which is called time-based
maintenance (TBM) [23]. The TBM is maintenance performed on equipment based on calendar
schedules. This means that the schedules will be important for routine maintenance. However,
the TBM may result in over maintenance to prevent considerable waste of manpower and resources.
In industry 4.0, thriving developments in the sensor, communication, and information processing
industries have gradually made the real-time online monitoring of motors a real possibility. The latest
trend in motor maintenance is thus condition-based maintenance (CBM), which is effective in accident
prevention. CBM also allows motors to remain reliable throughout their service time [23]. Thus,
it is critically important to develop a condition monitoring system with fault diagnosis using a
vibration–electrical hybrid approach system for induction motors based on CBM.
2. Hardware Architecture
2.1. Overall Structure
Most condition monitoring systems (CMS) worldwide that are currently used for monitoring
important motors have a hierarchical structure. Figure 1 depicts such a system, the front end of which
consists of small, inexpensive, reliable, fast, and simply constructed data acquisition/transmission
devices, embedded in crucial equipment on site, and the back end of which is a monitoring system.
Relay stations may be installed between the front and back ends due to distance or data transmission
considerations. Relay stations must have high expandability and flexibility to allow effective and
timely presentation of motor conditions to on-site operators at the front end and long-term recording
of operating data at the back end. Additionally, the system should be able to perform trend analyses
based on longitudinal data stored in its database. The study develops condition monitoring with fault
diagnosis embedded system in the front end.
Energies 2019, 12, x FOR PEER REVIEW  2  of  12 
studies  focused  on  the  relatively  more  common  eccentricity  problems,  which  were  examined  in 
References [19–22]. 
Recently,  a  motor  diagnosis  manner  was  generally  used  in  industries,  which  is  called 
time‐based maintenance (TBM) [23]. The TBM is maintenance performed on equipment based on 
calendar  schedules.  This  means  that  the  schedules  will  be  important  for  routine  maintenance. 
However, the TBM may result in over maintenance to prevent considerable waste of manpower and 
resources. 
In  industry  4.0,  thriving  developments  in  the  sensor,  communication,  and  information 
processing  industries  have  gradually  made  the  real‐time  online  monitoring  of  motors  a  real 
possibility.  The  latest  trend  in  motor  maintenance  is  thus  condition‐based  maintenance  (CBM), 
which is effective in accident prevention. CBM also allows motors to remain reliable throughout 
their service time [23]. Thus, it is critically important to develop a condition monitoring system with 
fault diagnosis using a vibration–electrical hybrid approach system for induction motors based on 
CBM. 
2. Hardware Architecture 
2.1. Overall Structure 
Most condition monitoring systems (CMS) worldwide that are currently used for monitoring 
important  motors  have a hierarchical  structure. Figure 1  depicts  such a  system,  the  front end  of 
which  consists  of  small,  inexpensive,  reliable,  fast,  and  simply  constructed  data 
acquisition/transmission devices, embedded in crucial equipment on site, and the back end of which 
is a monitoring system. Relay stations may be installed between the front and back ends due to 
distance  or  data  transmission  considerations.  Relay  stations  must  have  high  expandability  and 
flexibility to allow effective and timely presentation of motor conditions to on‐site operators at the 
front  end  and  long‐term  recording  of  operating  data  at  the  back  end.  Additionally,  the  system 
should  be  able  to  perform  trend  analyses  based  on  longitudinal data  stored  in  its  database.  The 
study develops condition monitoring with fault diagnosis embedded system in the front end. 
 
Figure 1. Overall system diagram.
Energies 2019, 12, 1471 3 of 12
In Figure 2, a simple embedded system is proposed for condition monitoring and fault diagnosis
of induction motors. The front end embedded system prototype size is 240 × 170 × 30 mm. The system
assesses the current condition of a motor through vibration detection. When an abnormality is detected,
electrical detection is used in conjunction with vibration detection to determine the possible type of fault.
This system adopts a triaxial accelerometer to measure the vibration of the motor, non-contact capture
of voltage, and current signals using Hall sensors. The acquired analog signals are passed through a
signal processing circuit and transmitted to an analog-to-digital converter, which converts them into
digital signals and passes them on to a microprocessor for processing. Subsequently, fast-screening
fault diagnosis and fast-screening condition monitoring are employed, and the results are displayed
on the touchscreen in simple and intuitive graphics. If intranet is available on site, the original signal
data can be transmitted to the server-side system, which will make the system operations even more
comprehensive by conducting rigorous analyses. If intranet is not available, the original data can
be transported using a secure digital (SD) card to a computer for further analysis. As a means of
data transportation, the SD card and intranet are not mutually exclusive; the choice between the two
depends solely on the availability of on-site intranet.
Energies 2019, 12, x FOR PEER REVIEW  3  of  12 
Figure 1. Overall system diagram. 
In  Figure  2,  a  simple  embedded  system  is  proposed  for  condition  monitoring  and  fault 
diagnosis of induction motors. The front end embedded system prototype size is 240 × 170 × 30 mm. 
The  system  assesses  the  current  condition  of  a  motor  through  vibration  detection.  When  an 
abnormality  is  detected,  electrical  detection  is  used  in  conjunction  with  vibration  detection  to 
determine  the  possible  type  of  fault.  This  system  adopts  a  triaxial  accelerometer  to  measure  the 
vibration of the motor, non‐contact capture of voltage, and current signals using Hall sensors. The 
acquired  analog  signals  are  passed  through  a  signal  processing  circuit  and  transmitted  to  an 
analog‐to‐digital  converter,  which  converts  them  into  digital  signals  and  passes  them  on  to  a 
microprocessor  for  processing.  Subsequently,  fast‐screening  fault  diagnosis  and  fast‐screening 
condition monitoring are employed, and the results are displayed on the touchscreen in simple and 
intuitive graphics. If intranet is available on site, the original signal data can be transmitted to the 
server‐side system, which will make the system operations even more comprehensive by conducting 
rigorous analyses. If intranet is not available, the original data can be transported using a secure 
digital (SD) card to a computer for further analysis. As a means of data transportation, the SD card 
and  intranet  are  not  mutually  exclusive;  the  choice  between  the  two  depends  solely  on  the 
availability of on‐site intranet. 
Voltage Sensor
Current Sensor
3-Axis
Accelerometer
ADS8556
3 Data Line
3 Data Line
3 Data Line
ARM
LPC4088
16 Data Line
16 Data Line
Internet
USB
LCD
SD Card
ADS8556
 
Figure 2. Front‐end embedded system block diagram. 
2.2. Sensor Modules 
The voltage and current sensors are used in this study were all Hall devices because of their 
high safety and convenience. A triaxial accelerometer is used to measure accelerations along the 
three axes, and its sensor is an integrated electronics piezoelectric (IEPE) circuit. Such sensors have 
sensitive built‐in charge or voltage amplifiers because the current generated by the accelerometer is 
extremely weak, and that signal interference can easily occur in the sensors without such amplifiers. 
The IEPE transducer integrates these sensitive circuits and brings them close to the sensors to ensure 
greater noise immunity and easier packaging. The detailed sensor specifications are as listed in Table 
1. 
Table 1. Specifications of sensors. 
Sensors Model  Type  Measuring Range  Frequency Bandwidth 
Voltage Sensor  CHV 50P/600  0~±800 V  0~20 kHz 
Current Sensor  HTR 50‐SB  0~±100 A  0~10 kHz 
3‐Axis Accelerometer  AD100T  ±50 g  0.3~12 kHz 
ADC  ADS8556  16 Bits  630 kSPS (Parallel) 
3. Software Process 
3.1. Overall Structure 
Figure 2. Front-end embedded system block diagram.
2.2. Sensor Modules
The voltage and current sensors are used in this study were all Hall devices because of their high
safety and convenience. A triaxial accelerometer is used to measure accelerations along the three axes,
and its sensor is an integrated electronics piezoelectric (IEPE) circuit. Such sensors have sensitive
built-in charge or voltage amplifiers because the current generated by the accelerometer is extremely
weak, and that signal interference can easily occur in the sensors without such amplifiers. The IEPE
transducer integrates these sensitive circuits and brings them close to the sensors to ensure greater
noise immunity and easier packaging. The detailed sensor specifications are as listed in Table 1.
Table 1. Specifications of sensors.
Sensors Model Type Measuring Range Frequency Bandwidth
Voltage Sensor CHV 50P/600 0~±800 V 0~20 kHz
Current Sensor HTR 50-SB 0~±100 A 0~10 kHz
3-Axis Accelerometer AD100T ±50 g 0.3~12 kHz
ADC ADS8556 16 Bits 630 kSPS (Parallel)
3. Software Process
3.1. Overall Structure
Figure 3 illustrates the process of the proposed hybrid approach. The CMS operations are divided
into two major parts: Operating condition monitoring (OCM) and fault diagnosis analysis (FDA).
When electrical and vibration signals have been acquired by the embedded system, the OCM module
Energies 2019, 12, 1471 4 of 12
determines the current condition of the motor using vibration indices and international standards.
When an abnormality is detected in the motor’s operations, the system can classify the type of detected
fault through vibration and electrical indices and simultaneously informs maintenance personnel of
the components requiring attention. The system can reduce maintenance costs or advise maintenance
personnel of the possible type of fault, thereby shortening the time needed for troubleshooting.
Energies 2019, 12, x FOR PEER REVIEW  4  of  12 
Figure  3  illustrates  the  process  of  the  proposed  hybrid  approach.  The  CMS  operations  are 
divided into two major parts: Operating condition monitoring (OCM) and fault diagnosis analysis 
(FDA). When electrical and vibration signals have been acquired by the embedded system, the OCM 
module  determines  the  current  condition  of  the  motor  using  vibration  indices  and  international 
standards. When an abnormality is detected in the motor’s operations, the system can classify the 
type  of  detected  fault  through  vibration  and  electrical  indices  and  simultaneously  informs 
maintenance personnel of the components requiring attention. The system can reduce maintenance 
costs  or  advise  maintenance  personnel  of  the  possible  type  of  fault,  thereby  shortening  the  time 
needed for troubleshooting. 
Operating Condition
Monitoring module
(OCM module)
Measuring voltage,
current and vibration
Index ISO threshold-(1)?
Fault diagnosis
analysis module
(FDA module)
Display the
operating status
Yes
Displays the fault type
Calculate the electrical
and vibration indicators
Index ISO threshold-(3)?
No
Start
No
Yes
Send message Maintenance work
 
Figure 3. Overall hybrid approach flow chart. 
3.2. OCM Module 
OCM relies on existing international standards as the basis for its judgments. The international 
standards used are primarily the ISO 10816‐1 [24], which regards velocity control (Table 2), and the 
NEMA MG‐1 [25], which regards displacement control (Table 3). 
Table 2. Thresholds by Std. ISO 10816‐1. 
Velocity (mm/s)  Threshold  Class I ≤ 15 kW 
1.12    Good 
1.12  ISO threshold‐(1)   
1.12~2.8    Satisfactory 
2.8  ISO threshold‐(2)   
2.8~7.1    Unsatisfactory 
7.1  ISO threshold‐(3)   
7.1    Unacceptable 
Table 3. Thresholds by Std. NEMA MG‐1. 
Figure 3. Overall hybrid approach flow chart.
3.2. OCM Module
OCM relies on existing international standards as the basis for its judgments. The international
standards used are primarily the ISO 10816-1 [24], which regards velocity control (Table 2), and the
NEMA MG-1 [25], which regards displacement control (Table 3).
Table 2. Thresholds by Std. ISO 10816-1.
Velocity (mm/s) Threshold Class I ≤ 15 kW
1.12 Good
1.12 ISO threshold-(1)
1.12~2.8 Satisfactory
2.8 ISO threshold-(2)
2.8~7.1 Unsatisfactory
7.1 ISO threshold-(3)
7.1 Unacceptable
Table 3. Thresholds by Std. NEMA MG-1.
Synchronous Speed (rpm)
Thresholds
(Maximum Relative Shaft Displacement, Peak-peak)
1801–3600 0.0028 in (70 µm)
≤1800 0.0035 in (90 µm)
Energies 2019, 12, 1471 5 of 12
Concerning the electrical detection method, although established international standards are
available for the indices, comparable standards for the operations of motors are currently lacking.
Hence, if the information currently at hand is to be used for the assessment of motor operating
conditions, algorithms must be employed to perform the necessary calculations. However, this is an
extremely time-consuming undertaking for microprocessors. For this reason, a fast-screening condition
monitoring method is introduced instead. The method uses international standards on vibrations to
assess the condition of motors. According to the motor’s accelerations along the three axes, first-order
integration is performed to obtain the velocity values to be compared with ISO 10816-1; subsequently,
second-order integration is performed to obtain the displacement values to be compared with NEMA
MG-1. Figure 4 describes the fast-screening process in more detail. Because ISO 10816-1 divides
motor operations into four steps whereas NEMA MG-1 only has two steps, the method makes a logic
judgment on the velocity and displacement comparison results and chooses the more serious ones
for display in the system. The displayed results can be categorized into four levels: normal, caution,
warning, and danger.
Energies 2019, 12, x FOR PEER REVIEW  5  of  12 
Synchronous Speed (rpm) 
Thresholds   
(Maximum Relative Shaft Displacement, Peak‐peak) 
1801–3600  0.0028 in (70 μm) 
≤1800  0.0035 in (90 μm) 
Concerning the electrical detection method, although established international standards are 
available for the indices, comparable standards for the operations of motors are currently lacking. 
Hence,  if  the  information  currently  at  hand  is  to  be  used  for  the  assessment  of  motor  operating 
conditions, algorithms must be employed to perform the necessary calculations. However, this is an 
extremely  time‐consuming  undertaking  for  microprocessors.  For  this  reason,  a  fast‐screening 
condition monitoring method is introduced instead. The method uses international standards on 
vibrations to assess the condition of motors. According to the motor’s accelerations along the three 
axes,  first‐order  integration  is  performed  to  obtain  the  velocity  values  to  be  compared  with  ISO 
10816‐1; subsequently, second‐order integration is performed to obtain the displacement values to 
be  compared  with  NEMA  MG‐1.  Figure  4  describes  the  fast‐screening  process  in  more  detail. 
Because ISO 10816‐1 divides motor operations into four steps whereas NEMA MG‐1 only has two 
steps, the method makes a logic judgment on the velocity and displacement comparison results and 
chooses the more serious ones for display in the system. The displayed results can be categorized 
into four levels: normal, caution, warning, and danger. 
Measurement of vibration
acceleration signal
Integral operation to obtain
speed, displacement
Compared to NEMA MG-1
international specification
Over ISO
threshold-(1)?
Normal Caution Warning Danger
The results are in
accordance with ISO
10816-1 international
standard
The results are in
accordance with
NEMA MG-1
international standard
No
Compared to ISO
10816-1 international
standard
Over
NEMA MG-1
threshold?
Yes
Over ISO
threshold-(2)?
Over ISO
threshold-(3)?
Danger
Yes
No No No
Yes Yes
 
Figure 4. OCM module flow chart. 
3.3. FDA Module 
A  two‐stage  hybrid  approach  for  fault  diagnosis  analysis  of  induction  motors  is  shown  in 
Figure 5. The first stage of FDA uses vibration detection for preliminary classification of the faults. 
Numerous studies have been consulted to establish the indices for signal analysis, from which a 
small number of key signal indices for vibration acceleration are chosen for use [26]. 
The  second  stage  of  FDA  involves  using  electrical  detection  to  develop  a  more  rigorous 
classification  system  of  fault  types  on  the  basis  of  the  electrical  indices.  The  suitability  of  an 
electrical index to the detection of a fault type can be determined by observing the effect of each 
electrical index on the corresponding fault model. 
Figure 4. OCM module flow chart.
3.3. FDA Module
A two-stage hybrid approach for fault diagnosis analysis of induction motors is shown in
Figure 5. The first stage of FDA uses vibration detection for preliminary classification of the faults.
Numerous studies have been consulted to establish the indices for signal analysis, from which a small
number of key signal indices for vibration acceleration are chosen for use [26].
The second stage of FDA involves using electrical detection to develop a more rigorous classification
system of fault types on the basis of the electrical indices. The suitability of an electrical index to
the detection of a fault type can be determined by observing the effect of each electrical index on the
corresponding fault model.
1. Current unbalance rate (CUR): IEC 60034-1 [27] and IEEE Std. 141 [28] are used as a reference
for the definition of CUR, which is similar to voltage imbalance rate; that is, it is the ratio of the
three-phase current’s maximum deviation value to its mean value. When the motor is operating
Energies 2019, 12, 1471 6 of 12
at its rated output, it should avoid exceeding 10% of the recommended value, as indicated in the
following equations:
Iavg
=
|Ia| + |Ib| + |Ic|
3
(1)
CUR(%) =
max

More Related Content

Similar to energies-12-01471 (3).pdf

DESIGN THINKING ON FAULT DIAGNOSIS OF FLOATING WIND TURBINE GENERATOR USING A...
DESIGN THINKING ON FAULT DIAGNOSIS OF FLOATING WIND TURBINE GENERATOR USING A...DESIGN THINKING ON FAULT DIAGNOSIS OF FLOATING WIND TURBINE GENERATOR USING A...
DESIGN THINKING ON FAULT DIAGNOSIS OF FLOATING WIND TURBINE GENERATOR USING A...IRJET Journal
 
IRJET- Wireless Sensor Network and its Application in Civil Infrastructure
IRJET- Wireless Sensor Network and its Application in Civil InfrastructureIRJET- Wireless Sensor Network and its Application in Civil Infrastructure
IRJET- Wireless Sensor Network and its Application in Civil InfrastructureIRJET Journal
 
Autonomous sensor nodes for Structural Health Monitoring of bridges
Autonomous sensor nodes for Structural Health Monitoring of bridgesAutonomous sensor nodes for Structural Health Monitoring of bridges
Autonomous sensor nodes for Structural Health Monitoring of bridgesIRJET Journal
 
Application of artificial intelligence in early fault detection of transmiss...
Application of artificial intelligence in early fault detection of  transmiss...Application of artificial intelligence in early fault detection of  transmiss...
Application of artificial intelligence in early fault detection of transmiss...IJECEIAES
 
sensors-23-04512-v3.pdf
sensors-23-04512-v3.pdfsensors-23-04512-v3.pdf
sensors-23-04512-v3.pdfSekharSankuri1
 
Condition-based Maintenance with sensor arrays and telematics
Condition-based Maintenance with sensor arrays and telematicsCondition-based Maintenance with sensor arrays and telematics
Condition-based Maintenance with sensor arrays and telematicsGopalakrishna Palem
 
CONDITION-BASED MAINTENANCE USING SENSOR ARRAYS AND TELEMATICS
CONDITION-BASED MAINTENANCE USING SENSOR ARRAYS AND TELEMATICSCONDITION-BASED MAINTENANCE USING SENSOR ARRAYS AND TELEMATICS
CONDITION-BASED MAINTENANCE USING SENSOR ARRAYS AND TELEMATICSijmnct
 
International Journal of Engineering (IJE) Volume (3) Issue (1)
International Journal of Engineering (IJE) Volume (3)  Issue (1)International Journal of Engineering (IJE) Volume (3)  Issue (1)
International Journal of Engineering (IJE) Volume (3) Issue (1)CSCJournals
 
FUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINE
FUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINEFUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINE
FUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINEJournal For Research
 
IRJET-Electrical Power Robbery Detection and Transformer Fault Detection
IRJET-Electrical Power Robbery Detection and Transformer Fault Detection  IRJET-Electrical Power Robbery Detection and Transformer Fault Detection
IRJET-Electrical Power Robbery Detection and Transformer Fault Detection IRJET Journal
 
Predictive maintenance of rotational machinery using deep learning
Predictive maintenance of rotational machinery using deep learningPredictive maintenance of rotational machinery using deep learning
Predictive maintenance of rotational machinery using deep learningIJECEIAES
 
Wide area protection-research_in_the_smart_grid
Wide area protection-research_in_the_smart_gridWide area protection-research_in_the_smart_grid
Wide area protection-research_in_the_smart_gridAlaa Eladl
 
Monitoring wind turbine using wi fi network for reliable communication
Monitoring wind turbine using wi fi network for reliable communicationMonitoring wind turbine using wi fi network for reliable communication
Monitoring wind turbine using wi fi network for reliable communicationeSAT Publishing House
 
Advanced Automated Approach for Interconnected Power System Congestion Forecast
Advanced Automated Approach for Interconnected Power System Congestion ForecastAdvanced Automated Approach for Interconnected Power System Congestion Forecast
Advanced Automated Approach for Interconnected Power System Congestion ForecastPower System Operation
 
An investigation on the application and challenges for wide area monitoring a...
An investigation on the application and challenges for wide area monitoring a...An investigation on the application and challenges for wide area monitoring a...
An investigation on the application and challenges for wide area monitoring a...journalBEEI
 
IRJET - Sensor Technology based Fault Detection and Automated Gate System for...
IRJET - Sensor Technology based Fault Detection and Automated Gate System for...IRJET - Sensor Technology based Fault Detection and Automated Gate System for...
IRJET - Sensor Technology based Fault Detection and Automated Gate System for...IRJET Journal
 
Cluster Computing Environment for On - line Static Security Assessment of lar...
Cluster Computing Environment for On - line Static Security Assessment of lar...Cluster Computing Environment for On - line Static Security Assessment of lar...
Cluster Computing Environment for On - line Static Security Assessment of lar...IDES Editor
 
IRJET-Comparative Study on Evolution of State of Art Practices on Smart Grid ...
IRJET-Comparative Study on Evolution of State of Art Practices on Smart Grid ...IRJET-Comparative Study on Evolution of State of Art Practices on Smart Grid ...
IRJET-Comparative Study on Evolution of State of Art Practices on Smart Grid ...IRJET Journal
 

Similar to energies-12-01471 (3).pdf (20)

DESIGN THINKING ON FAULT DIAGNOSIS OF FLOATING WIND TURBINE GENERATOR USING A...
DESIGN THINKING ON FAULT DIAGNOSIS OF FLOATING WIND TURBINE GENERATOR USING A...DESIGN THINKING ON FAULT DIAGNOSIS OF FLOATING WIND TURBINE GENERATOR USING A...
DESIGN THINKING ON FAULT DIAGNOSIS OF FLOATING WIND TURBINE GENERATOR USING A...
 
IRJET- Wireless Sensor Network and its Application in Civil Infrastructure
IRJET- Wireless Sensor Network and its Application in Civil InfrastructureIRJET- Wireless Sensor Network and its Application in Civil Infrastructure
IRJET- Wireless Sensor Network and its Application in Civil Infrastructure
 
Autonomous sensor nodes for Structural Health Monitoring of bridges
Autonomous sensor nodes for Structural Health Monitoring of bridgesAutonomous sensor nodes for Structural Health Monitoring of bridges
Autonomous sensor nodes for Structural Health Monitoring of bridges
 
Application of artificial intelligence in early fault detection of transmiss...
Application of artificial intelligence in early fault detection of  transmiss...Application of artificial intelligence in early fault detection of  transmiss...
Application of artificial intelligence in early fault detection of transmiss...
 
sensors-23-04512-v3.pdf
sensors-23-04512-v3.pdfsensors-23-04512-v3.pdf
sensors-23-04512-v3.pdf
 
Computer Application in Power system chapter one - introduction
Computer Application in Power system chapter one - introductionComputer Application in Power system chapter one - introduction
Computer Application in Power system chapter one - introduction
 
Condition-based Maintenance with sensor arrays and telematics
Condition-based Maintenance with sensor arrays and telematicsCondition-based Maintenance with sensor arrays and telematics
Condition-based Maintenance with sensor arrays and telematics
 
CONDITION-BASED MAINTENANCE USING SENSOR ARRAYS AND TELEMATICS
CONDITION-BASED MAINTENANCE USING SENSOR ARRAYS AND TELEMATICSCONDITION-BASED MAINTENANCE USING SENSOR ARRAYS AND TELEMATICS
CONDITION-BASED MAINTENANCE USING SENSOR ARRAYS AND TELEMATICS
 
International Journal of Engineering (IJE) Volume (3) Issue (1)
International Journal of Engineering (IJE) Volume (3)  Issue (1)International Journal of Engineering (IJE) Volume (3)  Issue (1)
International Journal of Engineering (IJE) Volume (3) Issue (1)
 
FUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINE
FUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINEFUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINE
FUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINE
 
IRJET-Electrical Power Robbery Detection and Transformer Fault Detection
IRJET-Electrical Power Robbery Detection and Transformer Fault Detection  IRJET-Electrical Power Robbery Detection and Transformer Fault Detection
IRJET-Electrical Power Robbery Detection and Transformer Fault Detection
 
Predictive maintenance of rotational machinery using deep learning
Predictive maintenance of rotational machinery using deep learningPredictive maintenance of rotational machinery using deep learning
Predictive maintenance of rotational machinery using deep learning
 
Wide area protection-research_in_the_smart_grid
Wide area protection-research_in_the_smart_gridWide area protection-research_in_the_smart_grid
Wide area protection-research_in_the_smart_grid
 
Monitoring wind turbine using wi fi network for reliable communication
Monitoring wind turbine using wi fi network for reliable communicationMonitoring wind turbine using wi fi network for reliable communication
Monitoring wind turbine using wi fi network for reliable communication
 
Advanced Automated Approach for Interconnected Power System Congestion Forecast
Advanced Automated Approach for Interconnected Power System Congestion ForecastAdvanced Automated Approach for Interconnected Power System Congestion Forecast
Advanced Automated Approach for Interconnected Power System Congestion Forecast
 
An investigation on the application and challenges for wide area monitoring a...
An investigation on the application and challenges for wide area monitoring a...An investigation on the application and challenges for wide area monitoring a...
An investigation on the application and challenges for wide area monitoring a...
 
Sensor Fault Detection and Isolation Based on Artificial Neural Networks and ...
Sensor Fault Detection and Isolation Based on Artificial Neural Networks and ...Sensor Fault Detection and Isolation Based on Artificial Neural Networks and ...
Sensor Fault Detection and Isolation Based on Artificial Neural Networks and ...
 
IRJET - Sensor Technology based Fault Detection and Automated Gate System for...
IRJET - Sensor Technology based Fault Detection and Automated Gate System for...IRJET - Sensor Technology based Fault Detection and Automated Gate System for...
IRJET - Sensor Technology based Fault Detection and Automated Gate System for...
 
Cluster Computing Environment for On - line Static Security Assessment of lar...
Cluster Computing Environment for On - line Static Security Assessment of lar...Cluster Computing Environment for On - line Static Security Assessment of lar...
Cluster Computing Environment for On - line Static Security Assessment of lar...
 
IRJET-Comparative Study on Evolution of State of Art Practices on Smart Grid ...
IRJET-Comparative Study on Evolution of State of Art Practices on Smart Grid ...IRJET-Comparative Study on Evolution of State of Art Practices on Smart Grid ...
IRJET-Comparative Study on Evolution of State of Art Practices on Smart Grid ...
 

Recently uploaded

Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 

Recently uploaded (20)

Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 

energies-12-01471 (3).pdf

  • 1. energies Article Induction Motors Condition Monitoring System with Fault Diagnosis Using a Hybrid Approach Hong-Chan Chang *, Yu-Ming Jheng, Cheng-Chien Kuo and Yu-Min Hsueh Department of Electrical Engineering, National Taiwan University of Science and Technology No.43, Keelung Rd., Sec.4, Da’an Dist, Taipei 10607, Taiwan; 100m05001@stud.sju.edu.tw (Y.-M.J.); cckuo@mail.ntust.edu.tw (C.-C.K.); D10307009@mail.ntust.edu.tw (Y.-M.H.) * Correspondence: hcchang@mail.ntust.edu.tw; Tel.: +886-2737-6677 Received: 17 March 2019; Accepted: 9 April 2019; Published: 18 April 2019 Abstract: This study develops a condition monitoring system, which includes operating condition monitoring (OCM) and fault diagnosis analysis (FDA). The OCM uses a vibration detection approach based on the ISO 10816-1 and NEMA MG-1 international standards, and the FDA uses a vibration-electrical hybrid approach based on various indices. The system can acquire real-time vibration and electrical signals. Once an abnormal vibration has been detected by using OCM, the FDA is applied to classify the type of faults. Laboratory results indicate that the OCM can successfully diagnose induction motors healthy condition, and FDA can classify the various damages stator fault, rotor fault, bearing fault and eccentric fault. The FDA with the hybrid approach is more reliable than the traditional approach using electrical detection alone. The proposed condition monitoring system can provide simple and clear maintenance information to improve the reliability of motor operations. Keywords: operating condition monitoring; fault diagnosis analysis; hybrid approach 1. Introduction Taking a large power plant in Taiwan as an example, each of its large thermal generator sets relies on an auxiliary system with numerous high-voltage motors for operation. The elements of the auxiliary system for the generator sets—which includes fans, coal pulverizers, gearboxes, fluid couplings, and conveyor belts—are all driven by high-voltage motors, and these motors often require operation under specialized conditions. Any breakdown in the auxiliary system not only affects the power quality and reliability of the entire power system, but it can also result in enormous economic losses. Thus, the importance of condition monitoring and fault diagnosis of induction motors in auxiliary systems cannot be underestimated. Various damage types were found, such as interturn short-circuit [1], broken rotor bar [2], bearing inner ring failure, bearing outer ring failure, ball failure, cage failure [3], and eccentricity [4]. As for fault diagnosis of an induction motor, the literature has also indicated that approximately 30% of motor breakdowns are related to stators, 10% to rotors, 40% to bearings, and 20% to other components [5]. A great deal of research proposes how to classify the damage types, such as stator breakdowns, and have employed various approaches [6–12], including magnetic pendulous oscillation, motor current signature analysis, instantaneous active and reactive power signature analyses, and total harmonic voltage. Studies on rotor breakdowns [13–16] have used mathematical morphology and wavelet analysis. Bearing breakdowns have been investigated using the root-multiple signal classification method and neural networks [17,18]. As for breakdowns in other components, recent studies focused on the relatively more common eccentricity problems, which were examined in References [19–22]. Energies 2019, 12, 1471; doi:10.3390/en12081471 www.mdpi.com/journal/energies
  • 2. Energies 2019, 12, 1471 2 of 12 Recently, a motor diagnosis manner was generally used in industries, which is called time-based maintenance (TBM) [23]. The TBM is maintenance performed on equipment based on calendar schedules. This means that the schedules will be important for routine maintenance. However, the TBM may result in over maintenance to prevent considerable waste of manpower and resources. In industry 4.0, thriving developments in the sensor, communication, and information processing industries have gradually made the real-time online monitoring of motors a real possibility. The latest trend in motor maintenance is thus condition-based maintenance (CBM), which is effective in accident prevention. CBM also allows motors to remain reliable throughout their service time [23]. Thus, it is critically important to develop a condition monitoring system with fault diagnosis using a vibration–electrical hybrid approach system for induction motors based on CBM. 2. Hardware Architecture 2.1. Overall Structure Most condition monitoring systems (CMS) worldwide that are currently used for monitoring important motors have a hierarchical structure. Figure 1 depicts such a system, the front end of which consists of small, inexpensive, reliable, fast, and simply constructed data acquisition/transmission devices, embedded in crucial equipment on site, and the back end of which is a monitoring system. Relay stations may be installed between the front and back ends due to distance or data transmission considerations. Relay stations must have high expandability and flexibility to allow effective and timely presentation of motor conditions to on-site operators at the front end and long-term recording of operating data at the back end. Additionally, the system should be able to perform trend analyses based on longitudinal data stored in its database. The study develops condition monitoring with fault diagnosis embedded system in the front end. Energies 2019, 12, x FOR PEER REVIEW  2  of  12  studies  focused  on  the  relatively  more  common  eccentricity  problems,  which  were  examined  in  References [19–22].  Recently,  a  motor  diagnosis  manner  was  generally  used  in  industries,  which  is  called  time‐based maintenance (TBM) [23]. The TBM is maintenance performed on equipment based on  calendar  schedules.  This  means  that  the  schedules  will  be  important  for  routine  maintenance.  However, the TBM may result in over maintenance to prevent considerable waste of manpower and  resources.  In  industry  4.0,  thriving  developments  in  the  sensor,  communication,  and  information  processing  industries  have  gradually  made  the  real‐time  online  monitoring  of  motors  a  real  possibility.  The  latest  trend  in  motor  maintenance  is  thus  condition‐based  maintenance  (CBM),  which is effective in accident prevention. CBM also allows motors to remain reliable throughout  their service time [23]. Thus, it is critically important to develop a condition monitoring system with  fault diagnosis using a vibration–electrical hybrid approach system for induction motors based on  CBM.  2. Hardware Architecture  2.1. Overall Structure  Most condition monitoring systems (CMS) worldwide that are currently used for monitoring  important  motors  have a hierarchical  structure. Figure 1  depicts  such a  system,  the  front end  of  which  consists  of  small,  inexpensive,  reliable,  fast,  and  simply  constructed  data  acquisition/transmission devices, embedded in crucial equipment on site, and the back end of which  is a monitoring system. Relay stations may be installed between the front and back ends due to  distance  or  data  transmission  considerations.  Relay  stations  must  have  high  expandability  and  flexibility to allow effective and timely presentation of motor conditions to on‐site operators at the  front  end  and  long‐term  recording  of  operating  data  at  the  back  end.  Additionally,  the  system  should  be  able  to  perform  trend  analyses  based  on  longitudinal data  stored  in  its  database.  The  study develops condition monitoring with fault diagnosis embedded system in the front end.    Figure 1. Overall system diagram.
  • 3. Energies 2019, 12, 1471 3 of 12 In Figure 2, a simple embedded system is proposed for condition monitoring and fault diagnosis of induction motors. The front end embedded system prototype size is 240 × 170 × 30 mm. The system assesses the current condition of a motor through vibration detection. When an abnormality is detected, electrical detection is used in conjunction with vibration detection to determine the possible type of fault. This system adopts a triaxial accelerometer to measure the vibration of the motor, non-contact capture of voltage, and current signals using Hall sensors. The acquired analog signals are passed through a signal processing circuit and transmitted to an analog-to-digital converter, which converts them into digital signals and passes them on to a microprocessor for processing. Subsequently, fast-screening fault diagnosis and fast-screening condition monitoring are employed, and the results are displayed on the touchscreen in simple and intuitive graphics. If intranet is available on site, the original signal data can be transmitted to the server-side system, which will make the system operations even more comprehensive by conducting rigorous analyses. If intranet is not available, the original data can be transported using a secure digital (SD) card to a computer for further analysis. As a means of data transportation, the SD card and intranet are not mutually exclusive; the choice between the two depends solely on the availability of on-site intranet. Energies 2019, 12, x FOR PEER REVIEW  3  of  12  Figure 1. Overall system diagram.  In  Figure  2,  a  simple  embedded  system  is  proposed  for  condition  monitoring  and  fault  diagnosis of induction motors. The front end embedded system prototype size is 240 × 170 × 30 mm.  The  system  assesses  the  current  condition  of  a  motor  through  vibration  detection.  When  an  abnormality  is  detected,  electrical  detection  is  used  in  conjunction  with  vibration  detection  to  determine  the  possible  type  of  fault.  This  system  adopts  a  triaxial  accelerometer  to  measure  the  vibration of the motor, non‐contact capture of voltage, and current signals using Hall sensors. The  acquired  analog  signals  are  passed  through  a  signal  processing  circuit  and  transmitted  to  an  analog‐to‐digital  converter,  which  converts  them  into  digital  signals  and  passes  them  on  to  a  microprocessor  for  processing.  Subsequently,  fast‐screening  fault  diagnosis  and  fast‐screening  condition monitoring are employed, and the results are displayed on the touchscreen in simple and  intuitive graphics. If intranet is available on site, the original signal data can be transmitted to the  server‐side system, which will make the system operations even more comprehensive by conducting  rigorous analyses. If intranet is not available, the original data can be transported using a secure  digital (SD) card to a computer for further analysis. As a means of data transportation, the SD card  and  intranet  are  not  mutually  exclusive;  the  choice  between  the  two  depends  solely  on  the  availability of on‐site intranet.  Voltage Sensor Current Sensor 3-Axis Accelerometer ADS8556 3 Data Line 3 Data Line 3 Data Line ARM LPC4088 16 Data Line 16 Data Line Internet USB LCD SD Card ADS8556   Figure 2. Front‐end embedded system block diagram.  2.2. Sensor Modules  The voltage and current sensors are used in this study were all Hall devices because of their  high safety and convenience. A triaxial accelerometer is used to measure accelerations along the  three axes, and its sensor is an integrated electronics piezoelectric (IEPE) circuit. Such sensors have  sensitive built‐in charge or voltage amplifiers because the current generated by the accelerometer is  extremely weak, and that signal interference can easily occur in the sensors without such amplifiers.  The IEPE transducer integrates these sensitive circuits and brings them close to the sensors to ensure  greater noise immunity and easier packaging. The detailed sensor specifications are as listed in Table  1.  Table 1. Specifications of sensors.  Sensors Model  Type  Measuring Range  Frequency Bandwidth  Voltage Sensor  CHV 50P/600  0~±800 V  0~20 kHz  Current Sensor  HTR 50‐SB  0~±100 A  0~10 kHz  3‐Axis Accelerometer  AD100T  ±50 g  0.3~12 kHz  ADC  ADS8556  16 Bits  630 kSPS (Parallel)  3. Software Process  3.1. Overall Structure  Figure 2. Front-end embedded system block diagram. 2.2. Sensor Modules The voltage and current sensors are used in this study were all Hall devices because of their high safety and convenience. A triaxial accelerometer is used to measure accelerations along the three axes, and its sensor is an integrated electronics piezoelectric (IEPE) circuit. Such sensors have sensitive built-in charge or voltage amplifiers because the current generated by the accelerometer is extremely weak, and that signal interference can easily occur in the sensors without such amplifiers. The IEPE transducer integrates these sensitive circuits and brings them close to the sensors to ensure greater noise immunity and easier packaging. The detailed sensor specifications are as listed in Table 1. Table 1. Specifications of sensors. Sensors Model Type Measuring Range Frequency Bandwidth Voltage Sensor CHV 50P/600 0~±800 V 0~20 kHz Current Sensor HTR 50-SB 0~±100 A 0~10 kHz 3-Axis Accelerometer AD100T ±50 g 0.3~12 kHz ADC ADS8556 16 Bits 630 kSPS (Parallel) 3. Software Process 3.1. Overall Structure Figure 3 illustrates the process of the proposed hybrid approach. The CMS operations are divided into two major parts: Operating condition monitoring (OCM) and fault diagnosis analysis (FDA). When electrical and vibration signals have been acquired by the embedded system, the OCM module
  • 4. Energies 2019, 12, 1471 4 of 12 determines the current condition of the motor using vibration indices and international standards. When an abnormality is detected in the motor’s operations, the system can classify the type of detected fault through vibration and electrical indices and simultaneously informs maintenance personnel of the components requiring attention. The system can reduce maintenance costs or advise maintenance personnel of the possible type of fault, thereby shortening the time needed for troubleshooting. Energies 2019, 12, x FOR PEER REVIEW  4  of  12  Figure  3  illustrates  the  process  of  the  proposed  hybrid  approach.  The  CMS  operations  are  divided into two major parts: Operating condition monitoring (OCM) and fault diagnosis analysis  (FDA). When electrical and vibration signals have been acquired by the embedded system, the OCM  module  determines  the  current  condition  of  the  motor  using  vibration  indices  and  international  standards. When an abnormality is detected in the motor’s operations, the system can classify the  type  of  detected  fault  through  vibration  and  electrical  indices  and  simultaneously  informs  maintenance personnel of the components requiring attention. The system can reduce maintenance  costs  or  advise  maintenance  personnel  of  the  possible  type  of  fault,  thereby  shortening  the  time  needed for troubleshooting.  Operating Condition Monitoring module (OCM module) Measuring voltage, current and vibration Index ISO threshold-(1)? Fault diagnosis analysis module (FDA module) Display the operating status Yes Displays the fault type Calculate the electrical and vibration indicators Index ISO threshold-(3)? No Start No Yes Send message Maintenance work   Figure 3. Overall hybrid approach flow chart.  3.2. OCM Module  OCM relies on existing international standards as the basis for its judgments. The international  standards used are primarily the ISO 10816‐1 [24], which regards velocity control (Table 2), and the  NEMA MG‐1 [25], which regards displacement control (Table 3).  Table 2. Thresholds by Std. ISO 10816‐1.  Velocity (mm/s)  Threshold  Class I ≤ 15 kW  1.12    Good  1.12  ISO threshold‐(1)    1.12~2.8    Satisfactory  2.8  ISO threshold‐(2)    2.8~7.1    Unsatisfactory  7.1  ISO threshold‐(3)    7.1    Unacceptable  Table 3. Thresholds by Std. NEMA MG‐1.  Figure 3. Overall hybrid approach flow chart. 3.2. OCM Module OCM relies on existing international standards as the basis for its judgments. The international standards used are primarily the ISO 10816-1 [24], which regards velocity control (Table 2), and the NEMA MG-1 [25], which regards displacement control (Table 3). Table 2. Thresholds by Std. ISO 10816-1. Velocity (mm/s) Threshold Class I ≤ 15 kW 1.12 Good 1.12 ISO threshold-(1) 1.12~2.8 Satisfactory 2.8 ISO threshold-(2) 2.8~7.1 Unsatisfactory 7.1 ISO threshold-(3) 7.1 Unacceptable Table 3. Thresholds by Std. NEMA MG-1. Synchronous Speed (rpm) Thresholds (Maximum Relative Shaft Displacement, Peak-peak) 1801–3600 0.0028 in (70 µm) ≤1800 0.0035 in (90 µm)
  • 5. Energies 2019, 12, 1471 5 of 12 Concerning the electrical detection method, although established international standards are available for the indices, comparable standards for the operations of motors are currently lacking. Hence, if the information currently at hand is to be used for the assessment of motor operating conditions, algorithms must be employed to perform the necessary calculations. However, this is an extremely time-consuming undertaking for microprocessors. For this reason, a fast-screening condition monitoring method is introduced instead. The method uses international standards on vibrations to assess the condition of motors. According to the motor’s accelerations along the three axes, first-order integration is performed to obtain the velocity values to be compared with ISO 10816-1; subsequently, second-order integration is performed to obtain the displacement values to be compared with NEMA MG-1. Figure 4 describes the fast-screening process in more detail. Because ISO 10816-1 divides motor operations into four steps whereas NEMA MG-1 only has two steps, the method makes a logic judgment on the velocity and displacement comparison results and chooses the more serious ones for display in the system. The displayed results can be categorized into four levels: normal, caution, warning, and danger. Energies 2019, 12, x FOR PEER REVIEW  5  of  12  Synchronous Speed (rpm)  Thresholds    (Maximum Relative Shaft Displacement, Peak‐peak)  1801–3600  0.0028 in (70 μm)  ≤1800  0.0035 in (90 μm)  Concerning the electrical detection method, although established international standards are  available for the indices, comparable standards for the operations of motors are currently lacking.  Hence,  if  the  information  currently  at  hand  is  to  be  used  for  the  assessment  of  motor  operating  conditions, algorithms must be employed to perform the necessary calculations. However, this is an  extremely  time‐consuming  undertaking  for  microprocessors.  For  this  reason,  a  fast‐screening  condition monitoring method is introduced instead. The method uses international standards on  vibrations to assess the condition of motors. According to the motor’s accelerations along the three  axes,  first‐order  integration  is  performed  to  obtain  the  velocity  values  to  be  compared  with  ISO  10816‐1; subsequently, second‐order integration is performed to obtain the displacement values to  be  compared  with  NEMA  MG‐1.  Figure  4  describes  the  fast‐screening  process  in  more  detail.  Because ISO 10816‐1 divides motor operations into four steps whereas NEMA MG‐1 only has two  steps, the method makes a logic judgment on the velocity and displacement comparison results and  chooses the more serious ones for display in the system. The displayed results can be categorized  into four levels: normal, caution, warning, and danger.  Measurement of vibration acceleration signal Integral operation to obtain speed, displacement Compared to NEMA MG-1 international specification Over ISO threshold-(1)? Normal Caution Warning Danger The results are in accordance with ISO 10816-1 international standard The results are in accordance with NEMA MG-1 international standard No Compared to ISO 10816-1 international standard Over NEMA MG-1 threshold? Yes Over ISO threshold-(2)? Over ISO threshold-(3)? Danger Yes No No No Yes Yes   Figure 4. OCM module flow chart.  3.3. FDA Module  A  two‐stage  hybrid  approach  for  fault  diagnosis  analysis  of  induction  motors  is  shown  in  Figure 5. The first stage of FDA uses vibration detection for preliminary classification of the faults.  Numerous studies have been consulted to establish the indices for signal analysis, from which a  small number of key signal indices for vibration acceleration are chosen for use [26].  The  second  stage  of  FDA  involves  using  electrical  detection  to  develop  a  more  rigorous  classification  system  of  fault  types  on  the  basis  of  the  electrical  indices.  The  suitability  of  an  electrical index to the detection of a fault type can be determined by observing the effect of each  electrical index on the corresponding fault model.  Figure 4. OCM module flow chart. 3.3. FDA Module A two-stage hybrid approach for fault diagnosis analysis of induction motors is shown in Figure 5. The first stage of FDA uses vibration detection for preliminary classification of the faults. Numerous studies have been consulted to establish the indices for signal analysis, from which a small number of key signal indices for vibration acceleration are chosen for use [26]. The second stage of FDA involves using electrical detection to develop a more rigorous classification system of fault types on the basis of the electrical indices. The suitability of an electrical index to the detection of a fault type can be determined by observing the effect of each electrical index on the corresponding fault model. 1. Current unbalance rate (CUR): IEC 60034-1 [27] and IEEE Std. 141 [28] are used as a reference for the definition of CUR, which is similar to voltage imbalance rate; that is, it is the ratio of the three-phase current’s maximum deviation value to its mean value. When the motor is operating
  • 6. Energies 2019, 12, 1471 6 of 12 at its rated output, it should avoid exceeding 10% of the recommended value, as indicated in the following equations:
  • 7.
  • 8.
  • 10.
  • 11.
  • 12. = |Ia| + |Ib| + |Ic| 3 (1) CUR(%) = max
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 19.
  • 20.
  • 21. Iavg
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27. ,
  • 28.
  • 29.
  • 31.
  • 32.
  • 33. Iavg
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39. ,
  • 40.
  • 41.
  • 43.
  • 44.
  • 45. Iavg
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56. Iavg
  • 57.
  • 58.
  • 59. × 100%, (2) 2. Current unbalance factor (CUF): IEC 60034-1 is used as a reference for CUF. Continuous operation of over 5% should be avoided:           I0 I1 I2           = 1 3           1 1 1 1 a a2 1 a2 a                     Ia Ib Ic           , a = 1∠120◦ , (3) CUF(%) =
  • 60.
  • 61.
  • 62. I2
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68. I1
  • 69.
  • 70.
  • 71. × 100%. (4) 3. Voltage total harmonic distortion (VTHD): IEEE Std. 519 [29] was used as a reference for VTHD, which is expressed as a percentage and defined as the square root of the sum of harmonic voltages divided by the fundamental frequency voltage, as shown in Equation (4). It is one of the means of assessing the total harmonic voltage’s effect on the system. THDV = qP∞ h=2 V2 h V1 × 100%. (5) 4. Each voltage harmonic distortion (EVHD): IEEE Std. 519 is used as a reference for EVHD, which is defined as the percentage of the fundamental frequency voltage that is individual harmonic voltage, as shown in Equation (6). It is one of the means of assessing an individual harmonic voltage’s effect on the system. VHD(%) = Vh V1 × 100%. (6) 5. Current total harmonic distortion (CTHD): IEEE Std. 519 is used as a reference for CTHD, which is expressed as a percentage and defined as the square root of the sum of harmonic currents divided by the fundamental frequency voltage, as shown in Equation (7). CTHD is used to assess the total harmonic current’s effect on the system. THDI(%) = qP∞ h=2 I2 h I1 × 100%. (7) 6. Each current harmonic distortion (ECHD): IEEE Std. 519 is used as a reference for ECHD. Defined in the same vein as EVHD, ECHD refers to the rate of an individual harmonic current’s voltage to the fundamental frequency voltage. Expressed in percentage, this index serves as a means of assessing an individual harmonic current’s effect on the system. IHD(%) = Ih I1 × 100%. (8) The suitability coefficient for an electrical index can be obtained by taking the mean of 50 data points of an index in the fault model, and calculating its difference from that of a healthy motor,
  • 72. Energies 2019, 12, 1471 7 of 12 followed by dividing the difference by the product of the difference (∆) between the maximum and minimum values in the 50 data points of the same index in the fault model and that of a healthy motor. Fault diagnosis in induction motors can be divided into two stages. The first is a preliminary classification of fault type through vibration detection, and the second is a further classification of fault type through electrical detection. The following is a description of the fast-screening fault diagnosis of the two stages. In the first stage, the motor’s acceleration signals along the three axes are acquired to calculate the statistical indices and peak values and to determine the corresponding thresholds. As the values for motors with stator and rotor faults are statistically closer to those for healthy motors, they are considered as belonging to the same fault group (Group 1). Bearing and misalignment faults are considered to belong to the same fault group (Group 2) because the index values for such motors are significantly higher than those for healthy motors. In summary, peak values can be used to roughly divide fault types into two groups. The second stage is to acquire the motor’s signals for the three-phase voltages and currents for determination of the electrical indices. According to the aforementioned suitability assessment, current unbalance rate (CUR), current unbalance factor (CUF), voltage total harmonic distortion (VTHD), each voltage harmonic distortion (EVHD), current total harmonic distortion (CTHD), and each current harmonic distortion (ECHD) are classified as either current imbalance electrical indices or harmonic distortion electrical indices for fast-screening fault diagnosis. If the result of the first stage is Group 1, then the screening rules for the second stage are as follows: If the electrical indices in both current imbalance and harmonic distortion are all lower than the international standard threshold, the motor is identified as healthy; if any electrical index in current imbalance exceeds the international standard threshold, it is identified as a stator fault; and if any electrical index in harmonic distortion exceeds the international standard threshold, it is identified as a rotor fault. As the fast-screening fault diagnosis is only based on a logic judgment of whether a value exceeds the threshold or not, it is unable to distinguish whether a fault occurs in the stator or rotor when electrical indices in both current imbalance and harmonic distortion exceed the threshold. Energies 2019, 12, x FOR PEER REVIEW  7  of  12  minimum values in the 50 data points of the same index in the fault model and that of a healthy  motor.  Fault diagnosis in induction motors can be divided into two stages. The first is a preliminary  classification of fault type through vibration detection, and the second is a further classification of  fault  type  through  electrical  detection.  The  following  is  a  description  of  the  fast‐screening  fault  diagnosis of the two stages.  In the first stage, the motor’s acceleration signals along the three axes are acquired to calculate  the statistical indices and peak values and to determine the corresponding thresholds. As the values  for motors with stator and rotor faults are statistically closer to those for healthy motors, they are  considered as belonging to the same fault group (Group 1). Bearing and misalignment faults are  considered to belong to the same fault group (Group 2) because the index values for such motors  are  significantly  higher  than  those  for  healthy  motors.  In  summary,  peak  values  can  be  used  to  roughly divide fault types into two groups.  The second stage is to acquire the motor’s signals for the three‐phase voltages and currents for  determination  of  the  electrical  indices.  According  to  the  aforementioned  suitability  assessment,  current  unbalance  rate  (CUR),  current  unbalance  factor  (CUF),  voltage  total  harmonic  distortion  (VTHD), each voltage harmonic distortion (EVHD), current total harmonic distortion (CTHD), and  each current harmonic distortion (ECHD) are classified as either current imbalance electrical indices  or harmonic distortion electrical indices for fast‐screening fault diagnosis. If the result of the first  stage is Group 1, then the screening rules for the second stage are as follows: If the electrical indices  in  both  current  imbalance  and  harmonic  distortion  are  all  lower  than  the  international  standard  threshold, the motor is identified as healthy; if any electrical index in current imbalance exceeds the  international  standard  threshold,  it  is  identified  as  a  stator  fault;  and  if  any  electrical  index  in  harmonic distortion exceeds the international standard threshold, it is identified as a rotor fault. As  the fast‐screening fault diagnosis is only based on a logic judgment of whether a value exceeds the  threshold  or  not,  it  is  unable  to  distinguish  whether  a  fault  occurs  in  the  stator  or  rotor  when  electrical indices in both current imbalance and harmonic distortion exceed the threshold.  (Group 2) Bearing Eccentric Yes (Group 1) Health Stator Rotor No Three - axis vibration acceleration signal Select the acceleration fitness index (Peak) Set the accelerometer threshold Over the threshold? CIR:10 % CIF:2.5 % VTHD:5 % EVHD:3 % CTHD:5 % ECHD:4 % Electrical indicators threshold Two types of indicators are above threshold Can not distinguish stator or rotor Stator Fault What kind of indicators over the threshold? Yes Health No Current imbalance Rotor Fault Harmonic distortion Two types of indicators are above threshold Can not distinguish stator or rotor Misalignment Fault What kind of indicators over the threshold? Yes No Current imbalance Bearing Fault Harmonic distortion One of them is greater than the threshold Can not distinguish stator or rotor   Figure 5. FDA module two-stage hybrid approach flow chart.
  • 73. Energies 2019, 12, 1471 8 of 12 4. Experimental Results and Analysis 4.1. OCM Results and Analysis The rules are established based on two sets of international standards: ISO 10816-1 and NEMA MG-1. When the displacement is judged to be “Normal” according to NEMA MG-1, the velocity would be used to assess the level of operating condition as per IOS 10816-1; conversely, when the displacement is judged to be “Danger” as per NEMA MG-1, the operating condition would be rated as “Danger”. The comprehensive results are shown in (Table 4). Table 4. Operating condition monitoring rules. NEMA MG-1 ISO 10816-1 Good Acceptable Unsatisfactory Unacceptable Normal Normal Caution Warning Danger Danger Danger Danger Danger Danger The feasibility assessment of the motor condition monitoring system requires longitudinal data. However, such data are lacking because the proposed system had not yet begun on-site testing. Hence, the feasibility of the proposed system is assessed using a vibration exciter in the laboratory to generate varying vibrations, the velocities, and displacements of which, after integral operations, is fast-screened to determine the operating conditions. 4.2. FDA Results and Analysis To obtain standard sample data for the proposed fault diagnosis, this study used induction motors with identical specifications (220 V, 7 A, 60 Hz, 2 HP, and four poles) to create four common fault models, and then used a healthy model for contrast. The experimental scale-down fault models are described as follows: 1. Stator fault: This fault occurs when the insulation layer of the stator coils is damaged by friction, aging, overheating, humidity, or corona. In the present study, a mild inter-coil short circuit is simulated by two coils short circuit after part of their insulation layer had been lightly scraped off (Figure 6a). 2. Rotor fault: If a motor is overloaded or restarted often, stress or heat buildup can cause the breakage of a rotor bar. This study consulted the literature and drilled a hole 7 mm in diameter and 30 mm in depth into the rotor bar (Figure 6b). 3. Bearing fault: The bearing outer ring is prone to damage when the motor is overloaded, overheated, or intruded by foreign objects. In this study, electric heating is applied to melt a hole in the bearing outer ring under the premise that the bearing and other components were not to be affected. The hole was 1 mm in diameter and depth (Figure 6c). 4. Misalignment fault: When the motor is with load, the coupling can cause misalignment at both ends due to human, environmental, or operational reasons, which in turn induces problems such as noise and heating. Because of safety considerations, the present study uses a healthy motor but displaced the coupling and load 0.5 mm upward (Figure 6d).
  • 74. Energies 2019, 12, 1471 9 of 12 Energies 2019, 12, x FOR PEER REVIEW  9  of  12    Figure  6.  Four  experimental  models:  (a)  Stator  fault,  (b)  rotor  fault,  (c)  bearing  fault,  (d)  misalignment fault.  To verify the effectiveness of the proposed system, the aforementioned stator interturn short  circuit, rotor bar breaking, bearing outer ring damage, and misalignment fault models and a healthy  motor were employed for measurement. The sampling rate was 10 kHz, and 50 data entries were  taken for each motor, amounting to 250 data points in total. The data were used to compare the  diagnostic results when electrical detection alone was employed and the proposed hybrid approach  of combining vibration detection and electrical detection was used. From the results of Table 5, it is  shown that the five experimental models can be effectively distinguished using the hybrid approach.  Table 5. FDA results classification accuracy (%).    Fault Type  H  S  R  B  M  Diagnosis    H  100  0  0  0  0  S  0  100  0  0  4 *1  0 *2  R  0  0  100  0  0  B  0  0  0  100  0  M  0  0  0  0  96 *1  100 *2  H: Health, S: Stator, R: Rotor, B: Bearing, M: Misalignment; *1: Electrical approach; *2: Hybrid approach.  Table 6 presents the testing results of the samples, suggesting that electrical detection alone and  the proposed hybrid approach are both able to accurately identify the healthy motor and the stator,  rotor, and bearing faults; however, for misalignment faults, electrical detection identified 20.76% as  misalignment  faults  and  misidentified  37.85%  as  stator  faults.  By  contrast,  the  proposed  hybrid  approach was able to accurately identify misalignment faults. For each individual model, the hybrid  approach was superior to electrical detection in fault diagnosis. For example, the hybrid approach  was able to identify 56.21% of stator faults whereas electrical detection was only able to identify  37.85%.    Figure 6. Four experimental models: (a) Stator fault, (b) rotor fault, (c) bearing fault, (d) misalignment fault. To verify the effectiveness of the proposed system, the aforementioned stator interturn short circuit, rotor bar breaking, bearing outer ring damage, and misalignment fault models and a healthy motor were employed for measurement. The sampling rate was 10 kHz, and 50 data entries were taken for each motor, amounting to 250 data points in total. The data were used to compare the diagnostic results when electrical detection alone was employed and the proposed hybrid approach of combining vibration detection and electrical detection was used. From the results of Table 5, it is shown that the five experimental models can be effectively distinguished using the hybrid approach. Table 5. FDA results classification accuracy (%). Fault Type Diagnosis H S R B M H 100 0 0 0 0 S 0 100 0 0 4 *1 0 *2 R 0 0 100 0 0 B 0 0 0 100 0 M 0 0 0 0 96 *1 100 *2 H: Health, S: Stator, R: Rotor, B: Bearing, M: Misalignment; *1: Electrical approach; *2: Hybrid approach. Table 6 presents the testing results of the samples, suggesting that electrical detection alone and the proposed hybrid approach are both able to accurately identify the healthy motor and the stator, rotor, and bearing faults; however, for misalignment faults, electrical detection identified 20.76% as misalignment faults and misidentified 37.85% as stator faults. By contrast, the proposed hybrid approach was able to accurately identify misalignment faults. For each individual model, the hybrid approach was superior to electrical detection in fault diagnosis. For example, the hybrid approach was able to identify 56.21% of stator faults whereas electrical detection was only able to identify 37.85%.
  • 75. Energies 2019, 12, 1471 10 of 12 Table 6. FDA results classification accuracy (%). Fault Type Diagnosis H S R B M H 99.99 *1 0.01 *1 0.61 *1 0.01 *1 0.01 *1 99.91 *2 0.01 *2 0.01 *2 0 *2 0 *2 S 0 *1 37.85 *1 16.05 *1 19.61 *1 37.85 *1 0.01 *2 56.21 *2 38.99 *2 0.01 *2 0.01 *2 R 0 *1 19.83 *1 51.4 *1 27.13 *1 20.45 *1 0.01 *2 43.77 *2 60.99 *2 0.01 *2 0 *2 B 0 *1 21.54 *1 24.02 *1 41.3 *1 20.93 *1 0.04 *2 0 *2 0 *2 99.97 *2 0.01 *2 M 0 *1 20.76 *1 7.92 *1 11.94 *1 20.76 *1 0 *2 0 *2 0 *2 0.01 *2 99.98 *2 H: Health, S: Stator, R: Rotor, B: Bearing, M: Misalignment; *1: Electrical approach; *2: Hybrid approach. 5. Conclusions The present study successfully develops a condition-based system which can monitor various types of motor faults by using the proposed vibration-electrical hybrid approach. The system uses vibration detection for operating condition monitoring in accordance with rules drawn from the ISO 10816-1 and NEMA MG-1 standards. Laboratory test results indicate that the system can correctly monitor the operating conditions of a motor as per the rules. For fault diagnosis analysis, the system uses vibration detection and electrical detection for fault classification. The results of laboratory tests show that the classification accuracy of the proposed hybrid system is superior to that of the electrical approach to fault type identification. Additionally, the system is able to issue simple and clear instructions, which is a substantial improvement on existing systems and highly convenient for on-site personnel. Author Contributions: Conceptualization, H.-C.C. and C.-C.K.; methodology, H.-C.C. and C.-C.K.; software, Y.-M.J. and Y.-M.H.; validation, Y.-M.J. and Y.-M.H.; data curation, H.-C.C.; writing—original draft preparation, Y.-M.J. Funding: MOST-105-2221-E-011-081-MY3. Acknowledgments: This paper supports the research funding of the Ministry of Science and Technology, Taiwan under Grant MOST-105-2221-E-011-081-MY3 is gratefully acknowledged. Conflicts of Interest: The authors declare no conflict of interest. References 1. Maitre, J.; Bouchard, B.; Bouzouane, A.; Gaboury, S. Classification Algorithms Comparison for Interturn Short-Circuit Recognition in Induction Machines Using Best-Fit 3-D-Ellipse Method. Can. J. Electr. Comput. Eng. 2017, 40, 255–265. 2. Hou, Z.; Huang, J.; Liu, H.; Ye, M.; Liu, Z.; Yang, J. Diagnosis of broken rotor bar fault in open- and closed-loop controlled wye-connected induction motors using zero-sequence voltage. IET Electr. Power Appl. 2017, 11, 1214–1223. [CrossRef] 3. Boudinar, A.H.; Benouzza, N.; Bendiabdellah, A. Induction Motor Bearing Fault Analysis Using a Root-MUSIC Method. IEEE Trans. Ind. Appl. 2016, 52, 3851–3860. [CrossRef] 4. Antonino-Daviu, J.A.; Arkkio, A.; Georgoulas, G.; Climente-Alarcon, V.; Tsoumas, I.P.; Stylios, C.D.; Nikolakopoulos, G. The Use of a Multilabel Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults Based on the Start-Up Transient. IEEE Trans. Ind. Inform. 2017, 13, 625–634. 5. Zhang, P.; Du, Y.; Habetler, T.G.; Lu, B. A Survey of Condition Monitoring and Protection Methods for Medium-Voltage Induction Motors. IEEE Trans. Ind. Appl. 2011, 47, 34–46. [CrossRef] 6. Mahmoud, H.; Abdallh, A.A.; Bianchi, N.; El-Hakim, S.M.; Shaltout, A.; Dupré, L. An Inverse Approach for Inter-Turn Fault Detection in Asynchronous Machines Using Magnetic Pendulous Oscillation Technique. IEEE Trans. Ind. Appl. 2016, 52, 226–233. [CrossRef]
  • 76. Energies 2019, 12, 1471 11 of 12 7. Ghanbari, T. Autocorrelation function-based technique for stator turn-fault detection of induction motor. IET Sci. Meas. Technol. 2016, 10, 100–110. [CrossRef] 8. Drif, M.; Cardoso, A.J.M. Stator Fault Diagnostics in Squirrel Cage Three-Phase Induction Motor Drives Using the Instantaneous Active and Reactive Power Signature Analyses. IEEE Trans. Ind. Inform. 2014, 10, 1348–1360. [CrossRef] 9. Duan, F.; Živanović, R. Condition Monitoring of an Induction Motor Stator Windings Via Global Optimization Based on the Hyperbolic Cross Points. IEEE Trans. Ind. Electron. 2015, 62, 1826–1834. [CrossRef] 10. Urresty, J.-C.; Ruiz, J.-R.R.; Romeral, L. Influence of the Stator Windings Configuration in the Currents and Zero-Sequence Voltage Harmonics in Permanent Magnet Synchronous Motors With Demagnetization Faults. IEEE Trans. Magn. 2013, 49, 4885–4893. [CrossRef] 11. Faiz, J.; Nejadi-Koti, H.; Valipour, Z. Comprehensive review on inter-turn fault indexes in permanent magnet motors. IET Electr. Appl. 2017, 11, 142–156. [CrossRef] 12. Abdallah, H.; Benatman, K. Stator winding inter-turn short-circuit detection in induction motors by parameter identification. IET Electr. Appl. 2017, 11, 272–288. [CrossRef] 13. Rangel-Magdaleno, J.D.J.; Peregrina-Barreto, H.; Ramirez-Cortes, J.M.; Gomez-Gil, P.; Morales-Caporal, R. FPGA-Based Broken Bars Detection on Induction Motors Under Different Load Using Motor Current Signature Analysis and Mathematical Morphology. IEEE Trans. Instrum. Meas. 2014, 63, 1032–1040. [CrossRef] 14. Gritli, Y.; Bin Lee, S.; Filippetti, F.; Zarri, L. Advanced Diagnosis of Outer Cage Damage in Double-Squirrel-Cage Induction Motors Under Time-Varying Conditions Based on Wavelet Analysis. IEEE Trans. Ind. Appl. 2014, 50, 1791–1800. [CrossRef] 15. Kang, T.-J.; Kim, J.; Bin Lee, S.; Yung, C. Experimental Evaluation of Low-Voltage Offline Testing for Induction Motor Rotor Fault Diagnostics. IEEE Trans. Ind. Appl. 2015, 51, 1375–1384. [CrossRef] 16. Godoy, W.F.; Da Silva, I.N.; Lopes, T.D.; Goedtel, A.; Palácios, R.H.C. Application of intelligent tools to detect and classify broken rotor bars in three-phase induction motors fed by an inverter. IET Electr. Appl. 2016, 10, 430–439. [CrossRef] 17. Frosini, L.; Harlisca, C.; Szabó, L. Induction Machine Bearing Fault Detection by Means of Statistical Processing of the Stray Flux Measurement. IEEE Trans. Ind. Electron. 2015, 62, 1846–1854. [CrossRef] 18. Prieto, M.D.; Cirrincione, G.; Espinosa, A.G.; Ortega, J.A.; Henao, H. Bearing Fault Detection by a Novel Condition-Monitoring Scheme Based on Statistical-Time Features and Neural Networks. IEEE Trans. Ind. Electron. 2013, 60, 3398–3407. [CrossRef] 19. Sousa, K.M.; Dreyer, U.J.; Martelli, C.; Da Silva, J.C.C. Dynamic Eccentricity Induced in Induction Motor Detected by Optical Fiber Bragg Grating Strain Sensors. IEEE Sens. J. 2016, 16, 4786–4792. [CrossRef] 20. Ebrahimi, B.M.; Roshtkhari, M.J.; Faiz, J.; Khatami, S.V. Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis. IEEE Trans. Ind. Electron. 2014, 61, 2041–2052. [CrossRef] 21. Yahia, K.; Sahraoui, M.; Ghoggal, A.; Cardoso, A.J. The Use of a Modified Prony’s Method to Detect the Airgap-Eccentricity Occurrence in Induction Motors. IEEE Trans. Ind. Appl. 2016, 52, 3869–3877. [CrossRef] 22. Ojaghi, M.; Aghmasheh, R.; Sabouri, M. Model-based exact technique to identify type and degree of eccentricity faults in induction motors. IET Electr. Appl. 2016, 10, 706–713. [CrossRef] 23. Fischer, K.; Coronado, D.A. Condition Monitoring of Wind Turbines: State of the Art, User Experience and Recommendation; Fraunhofer Institute for Wind Energy and Energy System Technology IWES: Bremerhaven, Germany, January 2015; pp. 51–56. 24. ISO 10816-1. Mechanical Vibration—Evaluation of Machine Vibration by Measurements on Non-Rotating Parts—Part 1: General Guidelines; ISO: Geneva, Switzerland, 1995. 25. NEMA MG-1. Motors and Generators; NEMA: Rosslyn, VI, USA, 2009. 26. Lin, S.C.; Chang, H.C.; Kuo, C.C.; Hsu, T.C.; Shen, W.C. Assessment of Motor Conditions Using Electrical and Vibrational Detection Methods. In Proceedings of the International Conference on Engineering and Natural Science, Tokyo, Japan, 22–24 July 2015; pp. 41–58. 27. IEC 60034-1. Rotating Electrical Machines—Part 1: Rating and Performance; IEC: Geneva, Switzerland, 2010. 28. ANSI/IEEE Std. IEEE Recommended Practice for Electric Power Distribution for Industrial Plants; ANSI/IEEE Std.: New York, NY, USA, 1993.
  • 77. Energies 2019, 12, 1471 12 of 12 29. IEEE Std. 519. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems; IEEE Std.: New York, NY, USA, 1992. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).