SlideShare a Scribd company logo
1 of 14
Download to read offline
Types voltaic cell
Conversion electrical energy
to chemical energy
Electrochemistry
Electrolytic cellVoltaic cell
NH4CI and ZnCI2
Redox rxn
(Oxidation/reduction)
Movement electron
Produce electricity
Conversion chemical energy
to electrical energy
Electrodes – different metal (Half cell) Electrodes – same metal (Half cell)
Daniell cell Alkaline cellDry cell Nickel cadmium cell
Primary cell (Non rechargeable)
MnO2 and KOH
Secondary cell (Rechargeable)
Current– measured Amperesor Coulombs per second
1A = 1 Coulomb charge pass througha point in 1 s = 1C/s
1 Coulomb charge (elec) = 6.28 x 10 18 elec passing in 1 s
1 elec/proton carry charge of – 1.6 x 10 -19 C ( very small)
6.28 x 10 18 elec carry charge of - 1 C
Electric current
Flow electric charges (elec, -ve)
From High to low electric potential
Potential Diff – measure with ammeter
ond
electron
ond
Coulomb
A
sec.1
.1028.6
sec1
1
1
18


Current Electric Current – movingcharges in solid wire or solution
Flow of
charges
-
-
-
Solid/WireSolution/Electrolyte
Electron move in random
No current flow cause
No potential difference
Electrons & Protons
-
-
+
+
1A = 6.28 x 1018 e
1 s
Potential Difference across wire
Electron move in one direction
Current flow
+ve ions -ve ions
(cations) (anions)
Potential Diff applied/Battery
ItQ  t = Time/ s
Find amt charges pass through if
Current is 2.ooA, time is 15 min
ItQ 
Current flow
Q = Amt Charges/ C I = Current/ A
CQ 1800601500.2 
Electric Potential
C
J
Volt
1
1 
-Measured in Volt with Voltmeter
- 1 V = 1 Joule energy released when 1 Coulomb
charge pass through 1 point
- 1 V = 1 J/C
V = Potential Diff
I = Current
R = Resistance
Potential diff bet 2 points is 1 V
↓
1 J energy released when 1 C charge passes through
Voltmeter across
1Volt
1 V
+ -
1 Ω 2 Ω
Charges (-ve)
flow down
A
R
V
I
RIV
2
3
6


VV
RIV
212 

-
+
-
+
VV
RIV
422 

Total current
Potential Diff(PD)vs Current
PD = Water Pressure
PD = 1.5V – 1.5J energy released 1C charge flow down
PD – cause charge flow = CURRENT
Potential Diff(PD)vs Current
1.5V = 1.5J/C
A
DElectric potential/PD/Voltage = Electric Pressure = Volt
Electric Current = Charge flow = Amp
Electric Potential Energy = Work done to bring a charge to a point = Joule
Voltage NOT same as energy, Voltage = energy/charge
Battery lift charges, Q to higher potential
Potential Energy bet 2 terminals in battery stored as chemical energy
2A 2A
Potential Diff/VoltagePotential Diff/Voltage
EMF vs PD
V = Potential Diff
I = Current
R = Resistance
Max potential diff bet two
electrodes of battery source.
+ -
1 Ω 2 Ω
A
R
V
I
RIV
2
3
6


VV
RIV
212 

VV
RIV
422 

Total current
Current flow Circuit complete
Circuit complete
↓
Current flow
↓
Internal resistance
(battery - 1Ω)
↓
Terminal PD = 8V
(Voltage drop)
Potential Diff/Voltage in Volt
Symbol for EMF = E / ℰ
No Current flow in circuit
EMF (Electromotive Force) Volt
Battery = EMF = 9V
9 Volt
).(9 currentnoVEMFV
IRV


EMF Internal resistance Ir
Place voltmeter across – EMF= 9V
No currentflow.
A
rR
E
I
rRIE
IrIREMFE
1
9
9
)18(
9
)(
)(
)(







VV
RIV
881 

VV
RIV
111 

EMF = 8V+1V
8 Volt
1 Volt
EMF (6V) = 2V + 4V
4 Volt2 Volt
Charges passing through wire
Current flow Circuit complete
Internal resistance
Collision bet + ve ions with elec
(drift velocity elec)
- +
Eθ value DO NOT depend surface area of metal electrode.
E cell = Energy per unit charge. (Joule)/C
E cell- 10v = 10J energy released by 1C of charge
= 100J energy released by 10C of charge
Eθ – intensiveproperty–independentof amt – Ratio energy/charge
Increasing surface area metal will NOT increase E cell
Eθ
Zn/Cu = 1.10V
Surface area - 10 cm2
Total charge- 100C leave electrode
E cell = 1.1V = 1.1 J energy for 1 C (charges leaving)
1C release 1.1 J energy
100 C release 110 J energy
Voltmetermeasure energy for 1C – 110J/100C – 1.1V
E cell no change
Current– measured in Amp or Coulomb per s
1A = 1 Coulomb charge pass througha point in 1 s = 1C/s
1 Coulomb charge (elec) = 6.28 x 10 18 elec passing in 1 s
1 electron/protoncarry charge of – 1.6 x 10 -19 C ( very small)
6.28 x 10 18 electron carry charge of - 1 C
ond
electron
ond
Coulomb
A
sec.1
.1028.6
sec1
1
1
18


Surface area increase ↑
Total Energy increase ↑
Total Charge increase ↑Current increase ↑
BUT E cell remainSAME
E cell = (Energy/charge)
t
Q
I
tIQ


Q up ↑ – I up ↑
100C flow
110J released
VEcell
Ecell
eCh
Energy
Ecell
10.1
100
110
arg



Surface area - 100 cm2
Total charge 1000C leave electrode
E cell = 1.1V = 1.1 J energy for 1 C (charges leaving)
1 C release 1.1J energy
1000 C release 1100 J energy
Voltmetermeasure energy for 1C – 1100J/1000C – 1.1V
E cell no change
VEcell
Ecell
eCh
Energy
Ecell
10.1
1000
1100
arg



Eθ
Zn/Cu = 1.10V
1000C flow
1100J released
t
Q
I 
t
Q
I 
Surface area exposed 10 cm2
Surface area exposed 100 cm2
Relationship bet ∆G and Kc
cellnFEG  
Relationship bet
Energetics and Equilibrium
cKRTG ln 
STHG 
Enthalpy
change
Entropy
change
Equilibrium
constant
Gibbs free
energy change
H
G
Relationshipbet ∆G, Kc and E cell
cellnFEG  
STHG  cKRTG ln 
cK
Relationship bet
Energetics and Cell Potential

G cellE
Gibbs free
energy change
Cell potential
F = Faraday constant
(96 500 Cmol-1)
n = number
electron
Relationship bet ∆G, Kc and Ecell
ΔGθ Kc Eθ/V Extent of rxn
> 0 < 1 < 0 No Reaction
Non spontaneous
ΔGθ = 0 Kc = 1 0 Equilibrium
Mix reactant/product
< 0 > 1 > 0 Reaction complete
Spontaneous
ΔGθ Kc Eq mixture
ΔGθ = + 200 9 x 10-36 Reactants
ΔGθ = + 10 2 x 1-2 Mixture
ΔGθ = 0 Kc = 1 Equilibrium
ΔGθ = - 10 5 x 101 Mixture
ΔGθ = - 200 1 x 1035 Products
shift to left (reactant)
shift to right (products)
cellE

G
cK
K
nF
RT
E cell ln
ΔGθ ln K Kc Eq mixture
ΔGθ -ve
< 0
Positive
( + )
Kc > 1 Product
(Right)
ΔGθ +ve
> 0
Negative
( - )
Kc < 1 Reactant
(left)
ΔGθ = 0 0 Kc = 1 Equilibrium
E cell/Voltage– dependon natureof material
Q
nF
RT
EE ln 
T = Temp in K
Q = Rxn Quotient
E0 = std (1M)
n = # e transfer
F = Faraday constant
(96 500C mol -1 )
R = Gas constant
(8.31)
cKRTQRTG lnln 
KRTG
KRTQRTG
o
c
ln
lnln


When ratio conc, Q = 1,
all in std conc = 1M
Non std condition
01ln
1


RT
Q
Q
nF
RT
EE ln 
QRTGG o
ln
Non std condition
o
nFEG  nFEG 
QRTnFEnFE ln 
Nernst equation
Work or Free energyto do work
dependon quantitymaterial and surface area
E cell depend
Nature of electrode
Type of metal used Conc of ion Temp of sol
Eθ Q T
Current/I depend
Surface area
of contact
Salt bridge conc Size of
cation/anion
Resistance high ↑ – current low ↓E cell depend
Surface area
of contact Salt bridge conc
Size of
cation/anion
cellnFEG  
Gibbs free
energy change
do do WORK
n = number
electron
F = Faraday constant
(96 500 Cmol-1)
Cell potential
Increasing surface area → increase charge Q and I current - Work increase
Current– dependon quantityand surface area
Zn ↔ Zn2+ + 2e Eθ = +0.76
Cu2+ + 2e ↔ Cu Eθ = +0.34
Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Cu2+
(aq) | Cu (s)
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/Cu Cell - 1M std condition
-e -e
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.34 – (-0.76) = +1.10V
Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V
Cu2+ + 2e ↔ Cu (cathode) Eθ = +0.34V
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn - 0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 +0.17
Cu2+ + 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
+
+1.10 V
Eθ
Zn/Cu = 1.10V
Cu2+
-
-
-
-
Zn Cu
+
+
+
+
cellnFEG  
E cell with ∆G
F = Faraday constant
(96 500 Cmol-1)
n = number electron
cellnFEG  
kJJG
G
212212300
10.1965002




Std electrodepotential- std reduction potential
STD CONDITION
Zn/Cu half cellCell diagram
Q
nF
RT
EE ln 
Ratio conc, Q = 1,
all in std conc = 1M, T = 298K
VE
E
10.1
1ln
965002
298314.8
10.1




Zn ↔ Zn2+ + 2e Eθ = +0.76
2Ag++2e ↔ 2Ag Eθ = +0.80
Zn + Ag+ → Zn 2+ + Ag Eθ = +1.56V
Zn half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Ag+
(aq) | Ag (s)
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
-e -e
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.80 – (-0.76) = +1.56V
Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V
Ag + + e ↔ Ag(cathode) Eθ = +0.80V
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
Ag+ + e ↔ Ag Eθ = +0.80V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn - 0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag + 0.80
1/2Br2 + e- ↔ Br- +1.07
+
+1.56 V
Ag
Eθ
Zn/Ag = +1.56V
Ag+
-
-
-
-
+
+
+
+
Zn
E cell with ∆G
cellnFEG  
n = number electron F = Faraday constant
(96 500 Cmol-1)
cellnFEG  
kJJG
G
301301000
56.1965002




Cell diagram Zn/Ag half cells
Ratio conc, Q = 1,
all in std conc = 1M, T = 298K
Zn/Ag Cell - 1M std condition
Q
nF
RT
EE ln 
VE
E
56.1
1ln
965002
298314.8
56.1




STD CONDITION
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Zn/Cu Cell
-e -e
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Zn ↔ Zn2+ + 2e Eθ = +0.76V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn - 0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
+1.10 V
Cu2+
-
-
-
-
Zn Cu
+
+
+
+
Q
nF
RT
EE ln  1M 0.1M
Zn2+
10
]1.0[
]1[
][
][
2
2

 

c
c
Q
M
M
Cu
Zn
Q
0.1 M 1 M
Using Nernst Eqn
E0 = Std condition (1M) – 1.10V
R = Gas constant (8.31)
n = # e transfer(2 e)
F = Faraday constant (96500C mol -1 )
VE
E
E
07.1
03.010.1
)10ln(
)965002(
)29831.8(
10.1





Non std 0.1M
E cell decrease ↓ [Cu2+] decrease ↓
↓
Le Chatelier’s principle
Cu2+ + 2e ↔ Cu
↓
[Cu2+] decrease ↓
↓
Shift to left ←
↓
E cell → less ↓ → Cu2+ less able ↓ to receive e-
[Cu2+] ↓ E cell < Eθ
1.07 < 1.10
Zn/Cu half cellZn +Cu2+→Zn2++Cu
NON STD CONDITION
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Zn/Cu Cell
-e -e
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Zn ↔ Zn2+ + 2e Eθ = +0.76V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn - 0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
+1.10 V
Cu2+
-
-
-
-
Zn Cu
+
+
+
+
Q
nF
RT
EE ln  1M 10M
Zn2+
1.0
]10[
]1[
][
][
2
2

 

c
c
Q
M
M
Cu
Zn
Q
10 M 1 M
Using Nernst Eqn
E0 =Std condition (1M) – 1.10V
R = Gas constant (8.31)
n = # e transfer(2 e)
F = Faraday constant (96500C mol -1 )
VE
E
E
13.1
03.010.1
)1.0ln(
)965002(
)29831.8(
10.1





Non std 0.1M
E cell increase ↑ [Cu2+] increase ↑
↓
Le Chatelier’s principle
Cu2+ + 2e ↔ Cu
↓
[Cu2+] increase ↑
↓
Shift to right →
↓
E cell → more ↑→ Cu2+ more able receive e-
[Cu2+] ↑ E cell > Eθ
1.13 > 1.10
Zn/Cu half cellZn +Cu2+→Zn2++Cu
NON STD CONDITION
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Zn/Cu Cell
-e -e
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Zn ↔ Zn2+ + 2e Eθ = +0.76V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn - 0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
+1.10 V
Cu2+
-
-
-
-
Zn Cu
+
+
+
+
Q
nF
RT
EE ln  0.1M 1M
Zn2+
1.0
]1[
]1.0[
][
][
2
2

 

c
c
Q
M
M
Cu
Zn
Q
1 M 0.1 M
Using Nernst Eqn
E0 = Std condition (1M) – 1.10V
R = Gas constant (8.31)
n = # e transfer(2 e)
F = Faraday constant (96500C mol -1 )
VE
E
E
13.1
03.010.1
)1.0ln(
)965002(
)29831.8(
10.1





Non std 0.1M
E cell increase ↑ [Zn2+] decrease ↓
↓
Le Chatelier’s principle
Zn2+ + 2e ↔ Zn
↓
[Zn2+] decrease ↓
↓
Shift to left ←
↓
E cell → more ↑→ Zn more able lose elec
[Zn2+] ↓ E cell > Eθ
1.13 > 1.10
Zn/Cu half cellZn + Cu2+→ Zn2+ + Cu
NON STD CONDITION
Cu half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
-e
Cu ↔ Cu 2+ + 2e Eθ = - 0.34V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Cu ↔ Cu2+ + 2e Eθ = - 0.34V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Cu + Cu2+ → Cu2+ + Cu Eθ = 0V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu2+
Zn Cu
+
+
+
+
Q
nF
RT
EE ln 
0.1M
01.0
]1.0[
]001.0[
][
][
2
2

 

c
cathode
anode
c
Q
Cu
Cu
Q
0.1 M 0.001 M
Using Nernst Eqn
E0 = Std condition (1M) – 1.10V
R = Gas constant (8.31)
n = # e transfer(2 e)
F = Faraday constant (96500C mol -1 )
VE
E
E
0285.0
0285.00
)01.0ln(
)965002(
)29831.8(
0





Cu2+/Cu half cell
Cu + Cu2+ → Cu2+ + Cu
-e
Cu2+
0.001M
Cu (s) │Cu2+
(aq) (0.001M) ║ Cu2+
(aq) (0.1M)│Cu(s)
-
-
-
-
Concentration cell
Electrode same - diff conc
Oxi cell – anode – lower conc
Red cell – cathode – higher conc
cathode anode
Cu
Conc cell made of Zn/Zn2+
Conc Zn2+- 0.11M and 0.22M. Find voltage.
Zn (s) │Zn2+
(aq) (0.11M) ║ Zn2+
(aq) (0.22M)│Zn(s)
Zn + Zn2+ → Zn2+ + Zn
cathode anode
0.22M 0.11 M
5.0
]22.0[
]11.0[
][
][
2
2

 

c
cathode
anode
c
Q
Zn
Zn
Q
Q
nF
RT
EE ln 
VE
E
0089.0
)5.0ln(
)965002(
)29831.8(
0




Fe half cell (-ve)
Oxidation
Fe half cell (+ve)
Reduction
-e
Fe ↔ Fe 2+ + 2e Eθ = + 0.45V
Fe2+ + 2e ↔ Fe Eθ = - 0.45V
Fe ↔ Fe2+ + 2e Eθ = + 0.45V
Fe2+ + 2e ↔ Fe Eθ = - 0.45 V
Fe + Fe2+ → Fe2+ +Fe Eθ = 0V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Fe2+
Zn Fe
+
+
+
+
Q
nF
RT
EE ln 
0.1M
1.0
]1.0[
]01.0[
][
][
2
2

 

c
cathode
anode
c
Q
Fe
Fe
Q
0.1 M 0.01 M
Using Nernst Eqn
E0 = Std condition (1M) – 1.10V
R = Gas constant (8.31)
n = # e transfer(2 e)
F = Faraday constant (96500C mol -1 )
VE
E
E
029.0
029.00
)1.0ln(
)965002(
)29831.8(
0





Fe2+/Fe half cell
Fe + Fe2+ → Fe2++ Fe
-e
Fe2+
0.01M
Fe(s)│Fe2+
(aq) (0.01M) ║ Fe2+
(aq) (0.1M)│Fe(s)
-
-
-
-
Concentration cell
Electrode same - in diff conc
Oxi cell – anode – lower conc
Red cell – cathode – higher conc
cathode anode
Fe
Find cell potential
Mn (s) │Mn2+
(aq) (0.1M) ║ Pb2+
(aq) (0.0001M)│Pb(s)
Mn + Pb2+ → Mn2+ + Pb
0.0001M 0.1 M
cathode anode 001.0
]0001.0[
]1.0[
][
][
2
2

 

c
cathode
anode
c
Q
Pb
Mn
Q
Q
nF
RT
EE ln 
VE
E
96.0
)001.0ln(
)965002(
)29831.8(
05.1





More Related Content

What's hot

Redox reactions
Redox reactionsRedox reactions
Redox reactionsRaj Sharma
 
Ch 8 - Energy, Enthalpy, and Thermochemistry.pdf
Ch 8 - Energy, Enthalpy, and Thermochemistry.pdfCh 8 - Energy, Enthalpy, and Thermochemistry.pdf
Ch 8 - Energy, Enthalpy, and Thermochemistry.pdfCharbelRahme2
 
An Introduction Acids, Bases and pH
An Introduction Acids, Bases and pHAn Introduction Acids, Bases and pH
An Introduction Acids, Bases and pHMatthew Morrison
 
Electrochemistry
ElectrochemistryElectrochemistry
ElectrochemistryChemrcwss
 
IB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawIB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawLawrence kok
 
Electrochemistry main (2)
Electrochemistry main (2)Electrochemistry main (2)
Electrochemistry main (2)Poonam Singh
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistryomar_egypt
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistrysmitamalik
 
Ch. 7 Chemical Periodicity
Ch. 7 Chemical PeriodicityCh. 7 Chemical Periodicity
Ch. 7 Chemical Periodicityewalenta
 
GCSE Chemistry [C3]
GCSE Chemistry [C3]GCSE Chemistry [C3]
GCSE Chemistry [C3]Katie B
 
Chemistry - Chp 8 - Covalent Bonding - PowerPoint
Chemistry - Chp 8 - Covalent Bonding - PowerPointChemistry - Chp 8 - Covalent Bonding - PowerPoint
Chemistry - Chp 8 - Covalent Bonding - PowerPointMr. Walajtys
 
Ch.9. elements and atoms
Ch.9. elements and atomsCh.9. elements and atoms
Ch.9. elements and atomsReem Bakr
 
Class XII Electrochemistry - Nernst equation.
Class XII Electrochemistry - Nernst equation.Class XII Electrochemistry - Nernst equation.
Class XII Electrochemistry - Nernst equation.Arunesh Gupta
 
States of matter exercise -with solutions
States of matter exercise -with solutionsStates of matter exercise -with solutions
States of matter exercise -with solutionssuresh gdvm
 
IB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawIB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawLawrence kok
 

What's hot (20)

Redox reactions
Redox reactionsRedox reactions
Redox reactions
 
Ap ch 18 electrochemistry ppt
Ap ch 18 electrochemistry pptAp ch 18 electrochemistry ppt
Ap ch 18 electrochemistry ppt
 
Ch 8 - Energy, Enthalpy, and Thermochemistry.pdf
Ch 8 - Energy, Enthalpy, and Thermochemistry.pdfCh 8 - Energy, Enthalpy, and Thermochemistry.pdf
Ch 8 - Energy, Enthalpy, and Thermochemistry.pdf
 
Chapter19
Chapter19Chapter19
Chapter19
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
An Introduction Acids, Bases and pH
An Introduction Acids, Bases and pHAn Introduction Acids, Bases and pH
An Introduction Acids, Bases and pH
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
IB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawIB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's Law
 
Electrochemistry main (2)
Electrochemistry main (2)Electrochemistry main (2)
Electrochemistry main (2)
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
C.v data
C.v dataC.v data
C.v data
 
Ch. 7 Chemical Periodicity
Ch. 7 Chemical PeriodicityCh. 7 Chemical Periodicity
Ch. 7 Chemical Periodicity
 
GCSE Chemistry [C3]
GCSE Chemistry [C3]GCSE Chemistry [C3]
GCSE Chemistry [C3]
 
Chemistry - Chp 8 - Covalent Bonding - PowerPoint
Chemistry - Chp 8 - Covalent Bonding - PowerPointChemistry - Chp 8 - Covalent Bonding - PowerPoint
Chemistry - Chp 8 - Covalent Bonding - PowerPoint
 
Chapter 2 Atomic Structures
Chapter 2 Atomic StructuresChapter 2 Atomic Structures
Chapter 2 Atomic Structures
 
Ch.9. elements and atoms
Ch.9. elements and atomsCh.9. elements and atoms
Ch.9. elements and atoms
 
Class XII Electrochemistry - Nernst equation.
Class XII Electrochemistry - Nernst equation.Class XII Electrochemistry - Nernst equation.
Class XII Electrochemistry - Nernst equation.
 
States of matter exercise -with solutions
States of matter exercise -with solutionsStates of matter exercise -with solutions
States of matter exercise -with solutions
 
IB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawIB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's Law
 

Viewers also liked

Half life and radioactivity
Half life and radioactivityHalf life and radioactivity
Half life and radioactivitykiracandance
 
Option C Nuclear Physics, Radioactive decay and half life
Option C Nuclear Physics, Radioactive decay and half lifeOption C Nuclear Physics, Radioactive decay and half life
Option C Nuclear Physics, Radioactive decay and half lifeLawrence kok
 
Radioactive decay half-life calculation
Radioactive decay  half-life calculationRadioactive decay  half-life calculation
Radioactive decay half-life calculationDamion Lawrence
 
Radioactivity
RadioactivityRadioactivity
RadioactivityE H Annex
 
Radioactivity
RadioactivityRadioactivity
Radioactivitywilsone
 
Option C Nuclear Physics, Radioactive decay and half life
Option C Nuclear Physics, Radioactive decay and half lifeOption C Nuclear Physics, Radioactive decay and half life
Option C Nuclear Physics, Radioactive decay and half lifeLawrence kok
 

Viewers also liked (9)

Half life and radioactivity
Half life and radioactivityHalf life and radioactivity
Half life and radioactivity
 
Option C Nuclear Physics, Radioactive decay and half life
Option C Nuclear Physics, Radioactive decay and half lifeOption C Nuclear Physics, Radioactive decay and half life
Option C Nuclear Physics, Radioactive decay and half life
 
Unit 17 Radioactive Decay
Unit 17 Radioactive DecayUnit 17 Radioactive Decay
Unit 17 Radioactive Decay
 
Radioactive decay half-life calculation
Radioactive decay  half-life calculationRadioactive decay  half-life calculation
Radioactive decay half-life calculation
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Option C Nuclear Physics, Radioactive decay and half life
Option C Nuclear Physics, Radioactive decay and half lifeOption C Nuclear Physics, Radioactive decay and half life
Option C Nuclear Physics, Radioactive decay and half life
 
RADIOACTIVE DECAY AND HALF-LIFE CONCEPTS
RADIOACTIVE DECAY AND HALF-LIFE CONCEPTSRADIOACTIVE DECAY AND HALF-LIFE CONCEPTS
RADIOACTIVE DECAY AND HALF-LIFE CONCEPTS
 
Radioactivity.ppt
Radioactivity.pptRadioactivity.ppt
Radioactivity.ppt
 

Similar to Option C Nernst Equation, Voltaic Cell and Concentration Cell

Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellLawrence kok
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...Lawrence kok
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...Lawrence kok
 
IA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationIA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationLawrence kok
 
Chapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).pptChapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).pptshewanehayele2
 
Module 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptxModule 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptxAdittyaSenGupta
 
Ch17z5eelectrochem 110115232747-phpapp02
Ch17z5eelectrochem 110115232747-phpapp02Ch17z5eelectrochem 110115232747-phpapp02
Ch17z5eelectrochem 110115232747-phpapp02Cleophas Rwemera
 
intro to electrochemistry
intro to  electrochemistryintro to  electrochemistry
intro to electrochemistrySundar Singh
 
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01Cleophas Rwemera
 
electro chemistry6676992 (1).pptx
electro chemistry6676992 (1).pptxelectro chemistry6676992 (1).pptx
electro chemistry6676992 (1).pptxISHIKKAISHIKKA
 
Lecture 21- Electrochemical cells
Lecture 21- Electrochemical cellsLecture 21- Electrochemical cells
Lecture 21- Electrochemical cellsMary Beth Smith
 
421-821-chapter-25.ppt
421-821-chapter-25.ppt421-821-chapter-25.ppt
421-821-chapter-25.pptAbidJan4
 
Electrochemistry Notes
Electrochemistry NotesElectrochemistry Notes
Electrochemistry NotesSueyin Lee
 
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...KeyredinWabela
 
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...KeyredinWabela
 
Electro chemistry.docx
Electro chemistry.docxElectro chemistry.docx
Electro chemistry.docxSenthilJS2
 

Similar to Option C Nernst Equation, Voltaic Cell and Concentration Cell (20)

Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration Cell
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
 
IA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationIA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equation
 
Chapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).pptChapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).ppt
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Module 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptxModule 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptx
 
Ch17z5eelectrochem 110115232747-phpapp02
Ch17z5eelectrochem 110115232747-phpapp02Ch17z5eelectrochem 110115232747-phpapp02
Ch17z5eelectrochem 110115232747-phpapp02
 
Chapter 2.pdf
Chapter 2.pdfChapter 2.pdf
Chapter 2.pdf
 
Vii.electrochemistry
Vii.electrochemistryVii.electrochemistry
Vii.electrochemistry
 
4606
46064606
4606
 
intro to electrochemistry
intro to  electrochemistryintro to  electrochemistry
intro to electrochemistry
 
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
 
electro chemistry6676992 (1).pptx
electro chemistry6676992 (1).pptxelectro chemistry6676992 (1).pptx
electro chemistry6676992 (1).pptx
 
Lecture 21- Electrochemical cells
Lecture 21- Electrochemical cellsLecture 21- Electrochemical cells
Lecture 21- Electrochemical cells
 
421-821-chapter-25.ppt
421-821-chapter-25.ppt421-821-chapter-25.ppt
421-821-chapter-25.ppt
 
Electrochemistry Notes
Electrochemistry NotesElectrochemistry Notes
Electrochemistry Notes
 
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
 
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
 
Electro chemistry.docx
Electro chemistry.docxElectro chemistry.docx
Electro chemistry.docx
 

More from Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...Lawrence kok
 

More from Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Recently uploaded

Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 

Recently uploaded (20)

Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 

Option C Nernst Equation, Voltaic Cell and Concentration Cell

  • 1. Types voltaic cell Conversion electrical energy to chemical energy Electrochemistry Electrolytic cellVoltaic cell NH4CI and ZnCI2 Redox rxn (Oxidation/reduction) Movement electron Produce electricity Conversion chemical energy to electrical energy Electrodes – different metal (Half cell) Electrodes – same metal (Half cell) Daniell cell Alkaline cellDry cell Nickel cadmium cell Primary cell (Non rechargeable) MnO2 and KOH Secondary cell (Rechargeable)
  • 2. Current– measured Amperesor Coulombs per second 1A = 1 Coulomb charge pass througha point in 1 s = 1C/s 1 Coulomb charge (elec) = 6.28 x 10 18 elec passing in 1 s 1 elec/proton carry charge of – 1.6 x 10 -19 C ( very small) 6.28 x 10 18 elec carry charge of - 1 C Electric current Flow electric charges (elec, -ve) From High to low electric potential Potential Diff – measure with ammeter ond electron ond Coulomb A sec.1 .1028.6 sec1 1 1 18   Current Electric Current – movingcharges in solid wire or solution Flow of charges - - - Solid/WireSolution/Electrolyte Electron move in random No current flow cause No potential difference Electrons & Protons - - + + 1A = 6.28 x 1018 e 1 s Potential Difference across wire Electron move in one direction Current flow +ve ions -ve ions (cations) (anions) Potential Diff applied/Battery ItQ  t = Time/ s Find amt charges pass through if Current is 2.ooA, time is 15 min ItQ  Current flow Q = Amt Charges/ C I = Current/ A CQ 1800601500.2 
  • 3. Electric Potential C J Volt 1 1  -Measured in Volt with Voltmeter - 1 V = 1 Joule energy released when 1 Coulomb charge pass through 1 point - 1 V = 1 J/C V = Potential Diff I = Current R = Resistance Potential diff bet 2 points is 1 V ↓ 1 J energy released when 1 C charge passes through Voltmeter across 1Volt 1 V + - 1 Ω 2 Ω Charges (-ve) flow down A R V I RIV 2 3 6   VV RIV 212   - + - + VV RIV 422   Total current Potential Diff(PD)vs Current PD = Water Pressure PD = 1.5V – 1.5J energy released 1C charge flow down PD – cause charge flow = CURRENT Potential Diff(PD)vs Current 1.5V = 1.5J/C A DElectric potential/PD/Voltage = Electric Pressure = Volt Electric Current = Charge flow = Amp Electric Potential Energy = Work done to bring a charge to a point = Joule Voltage NOT same as energy, Voltage = energy/charge Battery lift charges, Q to higher potential Potential Energy bet 2 terminals in battery stored as chemical energy 2A 2A Potential Diff/VoltagePotential Diff/Voltage
  • 4. EMF vs PD V = Potential Diff I = Current R = Resistance Max potential diff bet two electrodes of battery source. + - 1 Ω 2 Ω A R V I RIV 2 3 6   VV RIV 212   VV RIV 422   Total current Current flow Circuit complete Circuit complete ↓ Current flow ↓ Internal resistance (battery - 1Ω) ↓ Terminal PD = 8V (Voltage drop) Potential Diff/Voltage in Volt Symbol for EMF = E / ℰ No Current flow in circuit EMF (Electromotive Force) Volt Battery = EMF = 9V 9 Volt ).(9 currentnoVEMFV IRV   EMF Internal resistance Ir Place voltmeter across – EMF= 9V No currentflow. A rR E I rRIE IrIREMFE 1 9 9 )18( 9 )( )( )(        VV RIV 881   VV RIV 111   EMF = 8V+1V 8 Volt 1 Volt EMF (6V) = 2V + 4V 4 Volt2 Volt Charges passing through wire Current flow Circuit complete Internal resistance Collision bet + ve ions with elec (drift velocity elec) - +
  • 5. Eθ value DO NOT depend surface area of metal electrode. E cell = Energy per unit charge. (Joule)/C E cell- 10v = 10J energy released by 1C of charge = 100J energy released by 10C of charge Eθ – intensiveproperty–independentof amt – Ratio energy/charge Increasing surface area metal will NOT increase E cell Eθ Zn/Cu = 1.10V Surface area - 10 cm2 Total charge- 100C leave electrode E cell = 1.1V = 1.1 J energy for 1 C (charges leaving) 1C release 1.1 J energy 100 C release 110 J energy Voltmetermeasure energy for 1C – 110J/100C – 1.1V E cell no change Current– measured in Amp or Coulomb per s 1A = 1 Coulomb charge pass througha point in 1 s = 1C/s 1 Coulomb charge (elec) = 6.28 x 10 18 elec passing in 1 s 1 electron/protoncarry charge of – 1.6 x 10 -19 C ( very small) 6.28 x 10 18 electron carry charge of - 1 C ond electron ond Coulomb A sec.1 .1028.6 sec1 1 1 18   Surface area increase ↑ Total Energy increase ↑ Total Charge increase ↑Current increase ↑ BUT E cell remainSAME E cell = (Energy/charge) t Q I tIQ   Q up ↑ – I up ↑ 100C flow 110J released VEcell Ecell eCh Energy Ecell 10.1 100 110 arg    Surface area - 100 cm2 Total charge 1000C leave electrode E cell = 1.1V = 1.1 J energy for 1 C (charges leaving) 1 C release 1.1J energy 1000 C release 1100 J energy Voltmetermeasure energy for 1C – 1100J/1000C – 1.1V E cell no change VEcell Ecell eCh Energy Ecell 10.1 1000 1100 arg    Eθ Zn/Cu = 1.10V 1000C flow 1100J released t Q I  t Q I  Surface area exposed 10 cm2 Surface area exposed 100 cm2
  • 6. Relationship bet ∆G and Kc cellnFEG   Relationship bet Energetics and Equilibrium cKRTG ln  STHG  Enthalpy change Entropy change Equilibrium constant Gibbs free energy change H G Relationshipbet ∆G, Kc and E cell cellnFEG   STHG  cKRTG ln  cK Relationship bet Energetics and Cell Potential  G cellE Gibbs free energy change Cell potential F = Faraday constant (96 500 Cmol-1) n = number electron Relationship bet ∆G, Kc and Ecell ΔGθ Kc Eθ/V Extent of rxn > 0 < 1 < 0 No Reaction Non spontaneous ΔGθ = 0 Kc = 1 0 Equilibrium Mix reactant/product < 0 > 1 > 0 Reaction complete Spontaneous ΔGθ Kc Eq mixture ΔGθ = + 200 9 x 10-36 Reactants ΔGθ = + 10 2 x 1-2 Mixture ΔGθ = 0 Kc = 1 Equilibrium ΔGθ = - 10 5 x 101 Mixture ΔGθ = - 200 1 x 1035 Products shift to left (reactant) shift to right (products) cellE  G cK K nF RT E cell ln ΔGθ ln K Kc Eq mixture ΔGθ -ve < 0 Positive ( + ) Kc > 1 Product (Right) ΔGθ +ve > 0 Negative ( - ) Kc < 1 Reactant (left) ΔGθ = 0 0 Kc = 1 Equilibrium
  • 7. E cell/Voltage– dependon natureof material Q nF RT EE ln  T = Temp in K Q = Rxn Quotient E0 = std (1M) n = # e transfer F = Faraday constant (96 500C mol -1 ) R = Gas constant (8.31) cKRTQRTG lnln  KRTG KRTQRTG o c ln lnln   When ratio conc, Q = 1, all in std conc = 1M Non std condition 01ln 1   RT Q Q nF RT EE ln  QRTGG o ln Non std condition o nFEG  nFEG  QRTnFEnFE ln  Nernst equation Work or Free energyto do work dependon quantitymaterial and surface area E cell depend Nature of electrode Type of metal used Conc of ion Temp of sol Eθ Q T Current/I depend Surface area of contact Salt bridge conc Size of cation/anion Resistance high ↑ – current low ↓E cell depend Surface area of contact Salt bridge conc Size of cation/anion cellnFEG   Gibbs free energy change do do WORK n = number electron F = Faraday constant (96 500 Cmol-1) Cell potential Increasing surface area → increase charge Q and I current - Work increase Current– dependon quantityand surface area
  • 8. Zn ↔ Zn2+ + 2e Eθ = +0.76 Cu2+ + 2e ↔ Cu Eθ = +0.34 Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Cu2+ (aq) | Cu (s) Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/Cu Cell - 1M std condition -e -e Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.34 – (-0.76) = +1.10V Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V Cu2+ + 2e ↔ Cu (cathode) Eθ = +0.34V Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e ↔ Zn Eθ = -0.76V Cu2+ + 2e ↔ Cu Eθ = +0.34V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn - 0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 + +1.10 V Eθ Zn/Cu = 1.10V Cu2+ - - - - Zn Cu + + + + cellnFEG   E cell with ∆G F = Faraday constant (96 500 Cmol-1) n = number electron cellnFEG   kJJG G 212212300 10.1965002     Std electrodepotential- std reduction potential STD CONDITION Zn/Cu half cellCell diagram Q nF RT EE ln  Ratio conc, Q = 1, all in std conc = 1M, T = 298K VE E 10.1 1ln 965002 298314.8 10.1    
  • 9. Zn ↔ Zn2+ + 2e Eθ = +0.76 2Ag++2e ↔ 2Ag Eθ = +0.80 Zn + Ag+ → Zn 2+ + Ag Eθ = +1.56V Zn half cell (-ve) Oxidation Ag half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Ag+ (aq) | Ag (s) Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons -e -e Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.80 – (-0.76) = +1.56V Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V Ag + + e ↔ Ag(cathode) Eθ = +0.80V Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e ↔ Zn Eθ = -0.76V Ag+ + e ↔ Ag Eθ = +0.80V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn - 0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag + 0.80 1/2Br2 + e- ↔ Br- +1.07 + +1.56 V Ag Eθ Zn/Ag = +1.56V Ag+ - - - - + + + + Zn E cell with ∆G cellnFEG   n = number electron F = Faraday constant (96 500 Cmol-1) cellnFEG   kJJG G 301301000 56.1965002     Cell diagram Zn/Ag half cells Ratio conc, Q = 1, all in std conc = 1M, T = 298K Zn/Ag Cell - 1M std condition Q nF RT EE ln  VE E 56.1 1ln 965002 298314.8 56.1     STD CONDITION
  • 10. Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Zn/Cu Cell -e -e Zn 2+ + 2e ↔ Zn Eθ = -0.76V Cu2+ + 2e ↔ Cu Eθ = +0.34V Zn ↔ Zn2+ + 2e Eθ = +0.76V Cu2+ + 2e ↔ Cu Eθ = +0.34V Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn - 0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 +1.10 V Cu2+ - - - - Zn Cu + + + + Q nF RT EE ln  1M 0.1M Zn2+ 10 ]1.0[ ]1[ ][ ][ 2 2     c c Q M M Cu Zn Q 0.1 M 1 M Using Nernst Eqn E0 = Std condition (1M) – 1.10V R = Gas constant (8.31) n = # e transfer(2 e) F = Faraday constant (96500C mol -1 ) VE E E 07.1 03.010.1 )10ln( )965002( )29831.8( 10.1      Non std 0.1M E cell decrease ↓ [Cu2+] decrease ↓ ↓ Le Chatelier’s principle Cu2+ + 2e ↔ Cu ↓ [Cu2+] decrease ↓ ↓ Shift to left ← ↓ E cell → less ↓ → Cu2+ less able ↓ to receive e- [Cu2+] ↓ E cell < Eθ 1.07 < 1.10 Zn/Cu half cellZn +Cu2+→Zn2++Cu NON STD CONDITION
  • 11. Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Zn/Cu Cell -e -e Zn 2+ + 2e ↔ Zn Eθ = -0.76V Cu2+ + 2e ↔ Cu Eθ = +0.34V Zn ↔ Zn2+ + 2e Eθ = +0.76V Cu2+ + 2e ↔ Cu Eθ = +0.34V Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn - 0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 +1.10 V Cu2+ - - - - Zn Cu + + + + Q nF RT EE ln  1M 10M Zn2+ 1.0 ]10[ ]1[ ][ ][ 2 2     c c Q M M Cu Zn Q 10 M 1 M Using Nernst Eqn E0 =Std condition (1M) – 1.10V R = Gas constant (8.31) n = # e transfer(2 e) F = Faraday constant (96500C mol -1 ) VE E E 13.1 03.010.1 )1.0ln( )965002( )29831.8( 10.1      Non std 0.1M E cell increase ↑ [Cu2+] increase ↑ ↓ Le Chatelier’s principle Cu2+ + 2e ↔ Cu ↓ [Cu2+] increase ↑ ↓ Shift to right → ↓ E cell → more ↑→ Cu2+ more able receive e- [Cu2+] ↑ E cell > Eθ 1.13 > 1.10 Zn/Cu half cellZn +Cu2+→Zn2++Cu NON STD CONDITION
  • 12. Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Zn/Cu Cell -e -e Zn 2+ + 2e ↔ Zn Eθ = -0.76V Cu2+ + 2e ↔ Cu Eθ = +0.34V Zn ↔ Zn2+ + 2e Eθ = +0.76V Cu2+ + 2e ↔ Cu Eθ = +0.34V Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn - 0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 +1.10 V Cu2+ - - - - Zn Cu + + + + Q nF RT EE ln  0.1M 1M Zn2+ 1.0 ]1[ ]1.0[ ][ ][ 2 2     c c Q M M Cu Zn Q 1 M 0.1 M Using Nernst Eqn E0 = Std condition (1M) – 1.10V R = Gas constant (8.31) n = # e transfer(2 e) F = Faraday constant (96500C mol -1 ) VE E E 13.1 03.010.1 )1.0ln( )965002( )29831.8( 10.1      Non std 0.1M E cell increase ↑ [Zn2+] decrease ↓ ↓ Le Chatelier’s principle Zn2+ + 2e ↔ Zn ↓ [Zn2+] decrease ↓ ↓ Shift to left ← ↓ E cell → more ↑→ Zn more able lose elec [Zn2+] ↓ E cell > Eθ 1.13 > 1.10 Zn/Cu half cellZn + Cu2+→ Zn2+ + Cu NON STD CONDITION
  • 13. Cu half cell (-ve) Oxidation Cu half cell (+ve) Reduction -e Cu ↔ Cu 2+ + 2e Eθ = - 0.34V Cu2+ + 2e ↔ Cu Eθ = +0.34V Cu ↔ Cu2+ + 2e Eθ = - 0.34V Cu2+ + 2e ↔ Cu Eθ = +0.34V Cu + Cu2+ → Cu2+ + Cu Eθ = 0V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu2+ Zn Cu + + + + Q nF RT EE ln  0.1M 01.0 ]1.0[ ]001.0[ ][ ][ 2 2     c cathode anode c Q Cu Cu Q 0.1 M 0.001 M Using Nernst Eqn E0 = Std condition (1M) – 1.10V R = Gas constant (8.31) n = # e transfer(2 e) F = Faraday constant (96500C mol -1 ) VE E E 0285.0 0285.00 )01.0ln( )965002( )29831.8( 0      Cu2+/Cu half cell Cu + Cu2+ → Cu2+ + Cu -e Cu2+ 0.001M Cu (s) │Cu2+ (aq) (0.001M) ║ Cu2+ (aq) (0.1M)│Cu(s) - - - - Concentration cell Electrode same - diff conc Oxi cell – anode – lower conc Red cell – cathode – higher conc cathode anode Cu Conc cell made of Zn/Zn2+ Conc Zn2+- 0.11M and 0.22M. Find voltage. Zn (s) │Zn2+ (aq) (0.11M) ║ Zn2+ (aq) (0.22M)│Zn(s) Zn + Zn2+ → Zn2+ + Zn cathode anode 0.22M 0.11 M 5.0 ]22.0[ ]11.0[ ][ ][ 2 2     c cathode anode c Q Zn Zn Q Q nF RT EE ln  VE E 0089.0 )5.0ln( )965002( )29831.8( 0    
  • 14. Fe half cell (-ve) Oxidation Fe half cell (+ve) Reduction -e Fe ↔ Fe 2+ + 2e Eθ = + 0.45V Fe2+ + 2e ↔ Fe Eθ = - 0.45V Fe ↔ Fe2+ + 2e Eθ = + 0.45V Fe2+ + 2e ↔ Fe Eθ = - 0.45 V Fe + Fe2+ → Fe2+ +Fe Eθ = 0V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Fe2+ Zn Fe + + + + Q nF RT EE ln  0.1M 1.0 ]1.0[ ]01.0[ ][ ][ 2 2     c cathode anode c Q Fe Fe Q 0.1 M 0.01 M Using Nernst Eqn E0 = Std condition (1M) – 1.10V R = Gas constant (8.31) n = # e transfer(2 e) F = Faraday constant (96500C mol -1 ) VE E E 029.0 029.00 )1.0ln( )965002( )29831.8( 0      Fe2+/Fe half cell Fe + Fe2+ → Fe2++ Fe -e Fe2+ 0.01M Fe(s)│Fe2+ (aq) (0.01M) ║ Fe2+ (aq) (0.1M)│Fe(s) - - - - Concentration cell Electrode same - in diff conc Oxi cell – anode – lower conc Red cell – cathode – higher conc cathode anode Fe Find cell potential Mn (s) │Mn2+ (aq) (0.1M) ║ Pb2+ (aq) (0.0001M)│Pb(s) Mn + Pb2+ → Mn2+ + Pb 0.0001M 0.1 M cathode anode 001.0 ]0001.0[ ]1.0[ ][ ][ 2 2     c cathode anode c Q Pb Mn Q Q nF RT EE ln  VE E 96.0 )001.0ln( )965002( )29831.8( 05.1    