Your SlideShare is downloading. ×
0
Polynomial Functions
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
            P x   p0  p1 x  p2 ...
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
            P x   p0  p1 x  p2 ...
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
            P x   p0  p1 x  p2 ...
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
              P x   p0  p1 x  p...
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
              P x   p0  p1 x  p...
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
              P x   p0  p1 x  p...
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
              P x   p0  p1 x  p...
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
              P x   p0  p1 x  p...
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
              P x   p0  p1 x  p...
P(x) = 0: polynomial equation
P(x) = 0: polynomial equation
y = P(x): polynomial function
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: th...
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zero...
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zero...
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zero...
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zero...
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zero...
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zero...
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zero...
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zero...
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zero...
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zero...
Upcoming SlideShare
Loading in...5
×

11X1 T13 01 polynomial definitions

791

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
791
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
26
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "11X1 T13 01 polynomial definitions"

  1. 1. Polynomial Functions
  2. 2. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
  3. 3. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0
  4. 4. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer
  5. 5. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn
  6. 6. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals.
  7. 7. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n”
  8. 8. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n” n leading term: pn x
  9. 9. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n” n leading term: pn x leading coefficient: pn
  10. 10. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n” n leading term: pn x leading coefficient: pn monic polynomial: leading coefficient is equal to one.
  11. 11. P(x) = 0: polynomial equation
  12. 12. P(x) = 0: polynomial equation y = P(x): polynomial function
  13. 13. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0
  14. 14. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial.
  15. 15. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 4 b) 2 x 3 x2  3 c) 4 d) 7
  16. 16. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 b) 2 x 3 x2  3 c) 4 d) 7
  17. 17. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 c) 4 d) 7
  18. 18. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  4 4 4 d) 7
  19. 19. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  4 4 4 d) 7 YES, 7x 0
  20. 20. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  4 4 4 d) 7 YES, 7x 0 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree.
  21. 21. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  4 4 4 d) 7 YES, 7x 0 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
  22. 22. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  4 4 4 d) 7 YES, 7x 0 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3  x3  2 x 2  7 x  8
  23. 23. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  4 4 4 d) 7 YES, 7x 0 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3  x3  2 x 2  7 x  8  monic, degree = 3
  24. 24. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  Exercise 4A; 1, 2acehi, 3bdf, 4 4 4 6bdf, 7, 9d, 10ad, 13 0 d) 7 YES, 7x (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3  x3  2 x 2  7 x  8  monic, degree = 3
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×